JP5009130B2 - Clock phase synchronization circuit and optical receiver - Google Patents

Clock phase synchronization circuit and optical receiver Download PDF

Info

Publication number
JP5009130B2
JP5009130B2 JP2007287735A JP2007287735A JP5009130B2 JP 5009130 B2 JP5009130 B2 JP 5009130B2 JP 2007287735 A JP2007287735 A JP 2007287735A JP 2007287735 A JP2007287735 A JP 2007287735A JP 5009130 B2 JP5009130 B2 JP 5009130B2
Authority
JP
Japan
Prior art keywords
signal
optical
output
time division
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007287735A
Other languages
Japanese (ja)
Other versions
JP2009118089A (en
Inventor
聖 成川
尚也 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007287735A priority Critical patent/JP5009130B2/en
Publication of JP2009118089A publication Critical patent/JP2009118089A/en
Application granted granted Critical
Publication of JP5009130B2 publication Critical patent/JP5009130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光時分割多重信号を多重分離する際に用いられるクロック位相同期回路及び光受信器に関するものである。   The present invention relates to a clock phase synchronization circuit and an optical receiver used when demultiplexing an optical time division multiplexed signal.

光時分割多重信号を多重分離する際に、光周波数領域で信号処理を行うことで、高速な多重分離動作を実現することが可能となる。このような多重分離動作を実現する方法として、図1に示すような光受信器の構成が知られている(例えば、非特許文献1)。   By performing signal processing in the optical frequency domain when demultiplexing an optical time division multiplexed signal, a high-speed demultiplexing operation can be realized. As a method for realizing such demultiplexing operation, a configuration of an optical receiver as shown in FIG. 1 is known (for example, Non-Patent Document 1).

図1Aに示すように、従来の光受信器101は、信号発生器102と、信号発生器102の出力により直接周波数偏移変調された光信号を出力する直接変調光源103と、光受信器101の光信号入力部から入力された光時分割多重信号と直接変調光源103から出力された光信号とを合波する光結合器104と、光結合器104で合波された光時分割多重信号と直接変調光源103から出力された光信号を光ヘテロダイン受信する光検波器105と、光検波器105の出力信号の一部の帯域を透過する電気バンドパスフィルタ106と、電気バンドパスフィルタ106の出力を復調し、目的の信号を出力する中間周波信号復調器107とを具える。   As shown in FIG. 1A, a conventional optical receiver 101 includes a signal generator 102, a direct modulation light source 103 that outputs an optical signal that is directly frequency shift modulated by the output of the signal generator 102, and an optical receiver 101. The optical coupler 104 that combines the optical time division multiplexed signal input from the optical signal input unit and the optical signal output from the direct modulation light source 103, and the optical time division multiplexed signal combined by the optical coupler 104 And an optical detector 105 for optical heterodyne reception of an optical signal output from the direct modulation light source 103, an electric bandpass filter 106 that transmits a part of the band of the output signal of the optical detector 105, and an electric bandpass filter 106. An intermediate frequency signal demodulator 107 that demodulates the output and outputs a target signal is provided.

ここで、図1A中の(a)、(b)、(c)、(d)における信号の時間波形と周波数成分の関係の一例を図1Bに示す。光受信器101の光信号入力部から入力される光時分割多重信号の時間波形は、図1B中の(a)であり、信号チャネルα、β、γ、δが多重されている。このとき、光時分割多重信号は、中心周波数fから変調速度fだけ周波数成分が広がっている。また、信号発生器102と直接変調光源103により、図1B(b)に示すような、中心周波数fLOかつ強度一定かつ変調速度fの1/4の速度で周波数が−Δf〜+Δfまで変動する局部発振光を出力する。次に、光時分割多重信号と局部発振光を、光結合器104を用いて合波するが、このとき、光時分割多重信号の目的の信号チャネルαと局部発振光の周波数変動が+Δfになるタイミングを一致させるように合波する。その後、光検波器105において、光ヘテロダイン受信を起こし、図1B(c)に示すような、目的の信号チャネルαが中心周波数f−fLOからΔfだけ低周波側にシフトした中間周波信号が出力される。中間周波信号の周波数成分のうち、信号チャネルαに相当する周波数成分のみを電気バンドパスフィルタ106を用いて透過することにより、図1B(d)に示すように、目的の信号チャネルαのみを多重分離することができ、多重分離した信号を中間周波信号復調器107を用いて復調することで目的の信号チャネルαを復調することができる。
成川聖、桜井尚也、木村秀明、坪川信著、“光ヘテロダイン受信を用いたOTDM信号の多重分離方式”、2007年電子情報通信学会ソサイエティ大会B−10−61(2007)、2007年9月13日
Here, FIG. 1B shows an example of the relationship between the time waveform of the signal and the frequency component in (a), (b), (c), and (d) in FIG. 1A. The time waveform of the optical time division multiplexed signal input from the optical signal input unit of the optical receiver 101 is (a) in FIG. 1B, and the signal channels α, β, γ, and δ are multiplexed. At this time, the frequency component of the optical time division multiplexed signal spreads from the center frequency f S by the modulation speed f B. In addition, the signal generator 102 and the direct modulation light source 103 cause the frequency to vary from −Δf to + Δf at a center frequency f LO, constant intensity, and a quarter of the modulation speed f B as shown in FIG. 1B (b). Output local oscillation light. Next, the optical time division multiplexed signal and the local oscillation light are multiplexed using the optical coupler 104. At this time, the frequency variation of the target signal channel α of the optical time division multiplexed signal and the local oscillation light becomes + Δf. Are combined so that the timings coincide. Thereafter, the optical detector 105 causes optical heterodyne reception, and an intermediate frequency signal in which the target signal channel α is shifted from the center frequency f S −f LO to the low frequency side by Δf as shown in FIG. Is output. By passing only the frequency component corresponding to the signal channel α among the frequency components of the intermediate frequency signal using the electric bandpass filter 106, only the target signal channel α is multiplexed as shown in FIG. 1B (d). The target signal channel α can be demodulated by demodulating the demultiplexed signal using the intermediate frequency signal demodulator 107.
Sei Narukawa, Naoya Sakurai, Hideaki Kimura, Shin Tsubokawa, "Demultiplexing method of OTDM signal using optical heterodyne reception", 2007 IEICE Society Conference B-10-61 (2007), September 13, 2007 Day

図1に示した従来の光受信器では、簡易な構成で高速な光時分割多重信号を多重分離可能である反面、信号発生器102と直接変調光源103から出力される周波数偏移変調信号の変調のタイミングを光時分割多重信号の目的の信号チャネルと厳密に合わせる必要がある。このため、光時分割多重信号のクロック成分が必要となるが、従来の構成では光受信器側においてクロック位相同期を行っていないことから、クロック信号を光時分割多重信号とは別途送信器より伝送する必要があり、経済的に光伝送システムを構成することが困難である。   The conventional optical receiver shown in FIG. 1 is capable of demultiplexing a high-speed optical time division multiplexed signal with a simple configuration, while the frequency-shifted modulation signal output from the signal generator 102 and the direct modulation light source 103 is used. It is necessary to strictly match the modulation timing with the target signal channel of the optical time division multiplexed signal. For this reason, the clock component of the optical time division multiplexed signal is required. However, in the conventional configuration, clock phase synchronization is not performed on the optical receiver side, so the clock signal is transmitted from the transmitter separately from the optical time division multiplexed signal. Therefore, it is difficult to construct an optical transmission system economically.

本発明の目的は、光時分割多重信号受信時におけるクロック位相同期回路を、光受信器側において光受信器構成を大きく変えることなく実現し、経済的な光受信器を提供することにある。   An object of the present invention is to provide an economical optical receiver by realizing a clock phase synchronization circuit at the time of optical time division multiplexed signal reception without largely changing the configuration of the optical receiver on the optical receiver side.

本発明による第1の態様は、
光時分割多重信号を多重分離受信する際に用いるクロック位相同期回路において、
前記クロック位相同期回路で位相同期される信号を発生する信号発生手段と、
前記信号発生手段により直接周波数偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された直接周波数偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と直接周波数偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する透過手段と、
前記透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記透過手段が透過する、前記光時分割多重信号の中心周波数と光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする。
According to a first aspect of the present invention,
In the clock phase synchronization circuit used when demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal phase-synchronized by the clock phase synchronization circuit ;
An optical signal output means for outputting an optical signal directly frequency shift modulated by the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the direct frequency shift keying signal output from the optical signal output means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal and direct frequency shift keying signal combined by the optical multiplexing means;
Of the signals output from the optical receiving means, the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical signal output means is only ½ of the signal speed of the optical time division multiplexed signal. Transmission means for transmitting signals of shifted electrical frequencies ;
Comprising intensity detection means for intensity detection of the output of the transmission means,
Said intensity Ri by the output of the detection means, the transmitting means transmits the optical time division multiplex signal center frequency and the optical signal output means signal of the optical time division multiplex signal from the difference between the center frequency of the optical signal output from the The phase of the output signal of the signal generating means is controlled so that the signal of the electrical frequency shifted by ½ of the speed becomes maximum .

本発明による第2の態様は、
光時分割多重信号を多重分離受信する際に用いるクロック位相同期回路において、
連続光を出力する光出力手段と、
前記クロック位相同期回路で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により、前記光出力手段から出力された連続光を周波数偏移変調又は位相偏移変調する光変調手段と、
前記光時分割多重信号と前記光変調手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と光出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する透過手段と、
前記透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記透過手段が透過する、前記光時分割多重信号の中心周波数と光出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする。
According to a second aspect of the present invention,
In the clock phase synchronization circuit used when demultiplexing and receiving optical time division multiplexed signals,
Light output means for outputting continuous light;
Signal generating means for generating a signal phase-synchronized by the clock phase synchronization circuit ;
Light modulation means for frequency shift modulation or phase shift modulation of the continuous light output from the light output means by the output of the signal generation means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift modulation signal or phase shift modulation signal output from the optical modulation means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift modulation signal or phase shift modulation signal;
Of the signals output from the optical receiving means, the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical output means is shifted by 1/2 of the signal speed of the optical time division multiplexed signal. Transmitting means for transmitting a signal of electrical frequency ,
Comprising intensity detection means for intensity detection of the output of the transmission means,
Ri by the output of said intensity detecting means, the transmitting means transmits the signal speed of the optical time division multiplex signal from the difference between the center frequency of the center frequency and the optical signal optical output means outputs the optical time division multiplex signal The phase of the output signal of the signal generating means is controlled so that the signal with the electrical frequency shifted by ½ is maximized .

本発明による第3の態様は、前記光受信手段が差動受信型光検波器を有することを特徴とする。   A third aspect of the present invention is characterized in that the optical receiving means has a differential reception type optical detector.

本発明による第4の態様は、
光時分割多重信号を多重分離受信する光受信器において、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を透過する第1の透過手段と、
前記第1の透過手段の出力を復調する復調手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する第2の透過手段と、
前記第2の透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記第2の透過手段が透過する、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする。
According to a fourth aspect of the present invention,
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift keying signal or phase shift keying signal output from the optical signal output means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift modulation signal or phase shift modulation signal;
First transmission means for transmitting a signal having a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the optical reception means;
Demodulation means for demodulating the output of the first transmission means;
1/2 from the difference between the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal out of the signal output from the light receiving means of the signal speed of the optical time division multiplex signal A second transmission means for transmitting a signal having an electrical frequency shifted by
Comprising intensity detecting means for intensity detecting the output of the second transmitting means,
The optical time division multiplex signal is obtained from the difference between the center frequency of the optical time division multiplex signal transmitted by the second transmission means and the center frequency of the optical signal output from the optical signal output means by the output of the intensity detection means. The phase of the output signal of the signal generating means is controlled so that the signal of the electrical frequency shifted by ½ of the signal speed becomes maximum.

本発明による第5の態様は、
光時分割多重信号を多重分離受信する光受信器において、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第1の光受信手段と、
前記第1の光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を透過する第1の透過手段と、
前記第1の透過手段の出力を復調する復調手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第2の光受信手段と、
前記第2の光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する第2の透過手段と、
前記第2の透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記第2の透過手段が透過する、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする。
According to a fifth aspect of the present invention,
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift keying signal or phase shift keying signal output from the optical signal output means;
First optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and a part of the frequency shift keying signal or phase shift keying signal;
First transmission means for transmitting a signal having a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the first optical reception means;
Demodulation means for demodulating the output of the first transmission means;
Second optical receiving means for optically heterodyne receiving a part of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift keying signal or phase shift keying signal;
From the difference between the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal of the signal output from the second light receiving means of the signal speed of the optical time division multiplex signal A second transmission means for transmitting a signal having an electrical frequency shifted by ½,
Comprising intensity detecting means for intensity detecting the output of the second transmitting means,
The optical time division multiplex signal is obtained from the difference between the center frequency of the optical time division multiplex signal transmitted by the second transmission means and the center frequency of the optical signal output from the optical signal output means by the output of the intensity detection means. The phase of the output signal of the signal generating means is controlled so that the signal of the electrical frequency shifted by ½ of the signal speed becomes maximum.

本発明による第6の態様は、
光時分割多重信号を多重分離受信する光受信器において、
前記光時分割多重信号を分岐する第1の光分岐手段と、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光信号出力手段の出力光信号を分岐する第2の光分岐手段と、
前記第2の光分岐手段の出力光信号に光遅延を与える少なくとも1つの光遅延手段と、
前記第2の光分岐手段の出力光信号と、前記第1の光分岐手段の出力光信号とを合波する第1の光結合手段と、
前記光遅延手段に対応して設けられ、前記光遅延手段の出力光信号と、前記第1の光分岐手段の出力光信号とを合波する少なくとも1つの第2の光結合手段と、
前記第1および第2の光結合手段に対応して設けられ、前記第1および第2の光結合手段で合波された出力光信号を光ヘテロダイン受信する複数の光受信手段と、
前記複数の光受信手段に対応して設けられ、前記光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を用いて復調する複数の復調手段と、
前記複数の光受信手段のいずれか1つに接続され、前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を用いて位相制御信号を抽出する位相制御信号抽出手段とを具え、
前記位相制御信号抽出手段が出力する前記位相制御信号により、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする。
According to a sixth aspect of the present invention,
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
First optical branching means for branching the optical time division multiplexed signal;
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Second optical branching means for branching the output optical signal of the optical signal output means;
At least one optical delay means for providing an optical delay to the output optical signal of the second optical branching means;
First optical coupling means for combining the output optical signal of the second optical branching means and the output optical signal of the first optical branching means;
Provided corresponding to the optical delay means, and at least one second optical coupling means for multiplexing the output optical signal of the optical delay means and the output optical signal of the first optical branching means;
A plurality of optical receiving means provided corresponding to the first and second optical coupling means, for optically heterodyne-receiving the output optical signal combined by the first and second optical coupling means;
A plurality of demodulation means that are provided corresponding to the plurality of optical receiving means and demodulate using a signal of a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the optical receiving means;
Is connected to one of said plurality of light receiving means, the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal of the signal output from the light receiving means Phase control signal extraction means for extracting a phase control signal using a signal having an electrical frequency shifted from the difference by 1/2 of the signal speed of the optical time division multiplexed signal,
Due to the phase control signal output from the phase control signal extraction means, the signal speed of the optical time division multiplexed signal is calculated from the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical signal output means. The phase of the output signal of the signal generating means is controlled so that the signal with the electrical frequency shifted by ½ is maximized.

本発明による第7の態様は、第4または6の態様において、前記光受信手段が差動受信型光検波器を有することを特徴とする。 According to a seventh aspect of the present invention, in the fourth or sixth aspect, the optical receiving means includes a differential reception type optical detector.

本発明による第8の態様は、第5の態様において、前記第1および第2の光受信手段が差動受信型光検波器を有することを特徴とする。According to an eighth aspect of the present invention, in the fifth aspect, the first and second optical receiving means include a differential reception type optical detector.

本発明による第1の態様によれば、周波数偏移変調光を局部発振光として用いた光ヘテロダイン受信によって、高速に伝送される光時分割多重信号のクロック成分の位相誤差信号を抽出することが可能となり、この位相誤差信号を用いて信号発生手段を制御することで、目的のチャネルを安定して多重分離受信することが可能となる。   According to the first aspect of the present invention, a phase error signal of a clock component of an optical time division multiplexed signal transmitted at high speed can be extracted by optical heterodyne reception using frequency shift modulated light as local oscillation light. By controlling the signal generating means using this phase error signal, it becomes possible to demultiplex and receive the target channel stably.

本発明による第2の態様によれば、周波数偏移変調光又は位相偏移変調光を局部発振光として用いた光ヘテロダイン受信によって、高速に伝送される光時分割多重信号のクロック成分の位相誤差信号を抽出することが可能となり、この位相誤差信号を用いて信号発生手段を制御することで、目的のチャネルを安定して多重分離受信することが可能となる。   According to the second aspect of the present invention, the phase error of the clock component of the optical time division multiplexed signal transmitted at high speed by the optical heterodyne reception using the frequency shift modulated light or the phase shift modulated light as the local oscillation light. It becomes possible to extract a signal, and by controlling the signal generating means using this phase error signal, it becomes possible to stably demultiplex and receive the target channel.

本発明による第3の態様によれば、第1又は第2の態様のクロック位相同期回路において、光ヘテロダイン受信を行った際に生じる光時分割多重信号のベースバンド成分を除去することが可能となり、より受信特性の高いクロック位相同期回路を構成することが可能となる。   According to the third aspect of the present invention, in the clock phase synchronization circuit of the first or second aspect, it becomes possible to remove the baseband component of the optical time division multiplexed signal generated when optical heterodyne reception is performed. Thus, it is possible to configure a clock phase synchronization circuit with higher reception characteristics.

本発明による第4の態様によれば、第1〜第3の態様のクロック位相同期回路において、位相誤差信号を高感度に受信することが可能となり、より精度の高いクロック位相同期動作を実現することが可能となる。   According to the fourth aspect of the present invention, in the clock phase synchronization circuit according to the first to third aspects, it is possible to receive the phase error signal with high sensitivity and to realize a more accurate clock phase synchronization operation. It becomes possible.

本発明による第5の態様によれば、光受信部とクロック位相同期回路で信号発生手段と光信号出力手段を共用した構成で、光時分割多重信号の多重分離とクロック位相同期を行うことが可能となり、光増幅器や位相変調器を含むような、高価でかつ複雑な構成を用いることなく、安定な多重分離動作を実現することができる。   According to the fifth aspect of the present invention, it is possible to perform demultiplexing and clock phase synchronization of an optical time division multiplexed signal in a configuration in which the signal generating means and the optical signal output means are shared by the optical receiver and the clock phase synchronization circuit. This makes it possible to realize a stable demultiplexing operation without using an expensive and complicated configuration including an optical amplifier and a phase modulator.

本発明による第6の態様によれば、第5の態様と同様に、光受信部とクロック位相同期回路で信号発生手段と光信号出力手段を共用した構成で、光時分割多重信号の多重分離とクロック位相同期を行うことが可能となり、光増幅器や位相変調器を含むような、高価でかつ複雑な構成を用いることなく、安定な多重分離動作を実現することができる。さらに、光受信手段を複数配置することで、光受信手段の特性を信号の多重分離動作とクロック位相同期動作に個別に最適化することが可能となり、より受信特性の高い光受信器を構成することが可能となる。   According to the sixth aspect of the present invention, as in the fifth aspect, the optical time division multiplexed signal is demultiplexed in a configuration in which the signal generating means and the optical signal output means are shared by the optical receiver and the clock phase synchronization circuit. The clock phase synchronization can be performed, and a stable demultiplexing operation can be realized without using an expensive and complicated configuration including an optical amplifier and a phase modulator. Furthermore, by arranging a plurality of optical receiving means, it becomes possible to individually optimize the characteristics of the optical receiving means for the signal demultiplexing operation and the clock phase synchronization operation, thereby configuring an optical receiver with higher receiving characteristics. It becomes possible.

本発明による第7の態様によれば、複数の信号チャネルを同時に多重分離受信する際に、多重分離受信部に個別にクロック位相同期回路を配置する必要がないことから、経済的な多重分離動作が可能となる。   According to the seventh aspect of the present invention, when a plurality of signal channels are simultaneously demultiplexed and received, it is not necessary to separately provide a clock phase synchronization circuit in the demultiplexing and receiving unit. Is possible.

本発明による第8の態様によれば、第5〜第7の態様の光受信器において、光ヘテロダイン受信を行った際に生じる光時分割多重信号のベースバンド成分を除去することが可能となり、より受信特性の高い光受信器を構成することが可能となる。   According to the eighth aspect of the present invention, in the optical receivers of the fifth to seventh aspects, it becomes possible to remove the baseband component of the optical time division multiplexed signal generated when optical heterodyne reception is performed, An optical receiver with higher reception characteristics can be configured.

本発明による第9の態様によれば、第5〜第8の態様の光受信器において、位相誤差信号を高感度に受信することが可能となり、より精度の高いクロック位相同期動作を実現することが可能となる。   According to the ninth aspect of the present invention, in the optical receivers of the fifth to eighth aspects, it is possible to receive the phase error signal with high sensitivity, and to realize a more accurate clock phase synchronization operation. Is possible.

本発明の実施の形態について図面を参照して説明する。
図2は、本発明の第1の実施の形態に係わるクロック位相同期回路の構成を示す図である。第1の実施の形態に係わるクロック位相同期回路201は、図2Aに示すように、信号発生手段としての信号発生器202と、信号発生器202により直接周波数偏移変調された光信号を出力する光信号出力手段としての直接変調光源203と、クロック位相同期回路201の光信号入力部から入力された光時分割多重信号と直接変調光源203から出力された直接周波数偏移変調信号とを合波する光合波手段としての光結合器204と、光結合器204で合波された光時分割多重信号と直接周波数偏移変調信号を光ヘテロダイン受信する光受信手段としての光検波器205と、光検波器205の出力の一部を透過する透過手段としての電気バンドパスフィルタ206と、電気バンドパスフィルタ206の出力を強度検波する強度検波手段としての強度検波器207とを具える。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a diagram showing the configuration of the clock phase synchronization circuit according to the first embodiment of the present invention. As shown in FIG. 2A, the clock phase synchronization circuit 201 according to the first embodiment outputs a signal generator 202 as signal generating means and an optical signal that is directly frequency shift modulated by the signal generator 202. A direct modulation light source 203 as an optical signal output means, an optical time division multiplexed signal input from the optical signal input unit of the clock phase synchronization circuit 201, and a direct frequency shift keying signal output from the direct modulation light source 203 are combined. An optical coupler 204 as an optical multiplexing means, an optical detector 205 as an optical receiving means for optical heterodyne reception of the optical time division multiplexed signal and the direct frequency shift keying signal multiplexed by the optical coupler 204, An electric bandpass filter 206 as a transmission means that transmits a part of the output of the detector 205, and an intensity detection means for intensity detection of the output of the electric bandpass filter 206; Comprising a strength detector 207 of Te.

第1の実施の形態では、強度検波器207の出力によって信号発生器202の出力信号の位相を制御し、信号発生器202は、例えば発振器と電気増幅器を用いて構成することができる。   In the first embodiment, the phase of the output signal of the signal generator 202 is controlled by the output of the intensity detector 207, and the signal generator 202 can be configured using, for example, an oscillator and an electric amplifier.

ここで、図2A中の(a)、(b)、(c)における信号の時間波形と周波数成分の関係の一例を図2B、図2Cに示している。クロック位相同期回路201の光信号入力部から入力される光時分割多重信号の時間波形は、図2B又は図2C中の(a)であり、信号チャネルα、β、γ、δが多重されている。このとき、光時分割多重信号は、中心周波数fから変調速度fだけ周波数成分が広がっている。また、信号発生器202と直接変調光源203により、図2B又は図2Cの(b)に示すような、中心周波数fLOかつ強度一定かつ変調速度fの1/4の速度で周波数が−Δf〜+Δfまで変動する局部発振光を出力する。 Here, FIG. 2B and FIG. 2C show an example of the relationship between the time waveform of the signal and the frequency component in (a), (b), and (c) in FIG. 2A. The time waveform of the optical time division multiplexed signal input from the optical signal input unit of the clock phase synchronization circuit 201 is (a) in FIG. 2B or 2C, and the signal channels α, β, γ, and δ are multiplexed. Yes. At this time, the frequency component of the optical time division multiplexed signal spreads from the center frequency f S by the modulation speed f B. Further, the signal generator 202 and the direct modulation light source 203 allow the frequency to be −Δf at a center frequency f LO, constant intensity, and 1/4 of the modulation speed f B as shown in FIG. 2B or 2B (b). The local oscillation light which fluctuates up to + Δf is output.

次に、光時分割多重信号と局部発振光を光結合器204を用いて合波するが、この際、図2B(b)のように、光時分割多重信号の目的の信号チャネルαと局部発振光の周波数変動が+Δfになるタイミングを一致させるように合波することにより、光時分割多重信号の多重分離動作を実現可能である。しかしながら、図2C(b)のように、例えば、光時分割多重信号の目的の信号チャネルαと局部発振光の周波数変動が+Δfになるタイミングが一致しておらず、局部発振光の周波数変動+Δfになるタイミングが光時分割多重信号のチャネル間隔に相当するタイミングと一致してしまっているような場合には、信号を多重分離することができない。   Next, the optical time division multiplexed signal and the local oscillation light are multiplexed using the optical coupler 204. At this time, as shown in FIG. 2B (b), the target signal channel α and the local part of the optical time division multiplexed signal are combined. By multiplexing so that the timing when the frequency fluctuation of the oscillation light becomes + Δf is coincident, the demultiplexing operation of the optical time division multiplexed signal can be realized. However, as shown in FIG. 2C (b), for example, the target signal channel α of the optical time division multiplexed signal does not coincide with the timing at which the frequency fluctuation of the local oscillation light becomes + Δf, and the frequency fluctuation of the local oscillation light + Δf In such a case, the signal cannot be demultiplexed if the timing becomes the same as the timing corresponding to the channel interval of the optical time division multiplexed signal.

このとき、図2B(c)と図2C(c)の周波数成分を比較すると、f−fLOの周波数成分又はf−fLO±fの周波数成分が、多重分離動作が実現可能な図2Bの場合には小さくなり、多重分離動作が行えない図2Cの場合には大きくなることがわかる。さらに、f−fLO±f/2の周波数成分又はf−fLO±3f/2の周波数成分が、多重分離動作が実現可能な図2Bの場合には大きくなり、多重分離動作が行えない図2Cの場合には小さくなることがわかる。 At this time, when comparing the frequency component of the FIG. 2B (c) and FIG. 2C (c), f S -f LO frequency components of the frequency components or f S -f LO ± f B is, demultiplexing operation is feasible It can be seen that the size is smaller in the case of FIG. 2B and larger in the case of FIG. 2C where the demultiplexing operation cannot be performed. Furthermore, the frequency component of f S -f LO ± f B / 2 or the frequency component of f S -f LO ± 3 f B / 2 becomes large in the case of FIG. It can be seen that in the case of FIG.

このことから、電気バンドパスフィルタ206により、f−fLOの周波数成分、f−fLO±fの周波数成分、f−fLO±f/2の周波数成分又はf−fLO±3f/2の周波数成分のいずれかの単一周波数成分を透過し、強度検波器207により強度成分を抽出した後、この強度成分が、f−fLOの周波数成分又はf−fLO±fの周波数成分を透過した場合には最小になるように、信号発生器202の出力信号の位相を制御し、また、f−fLO±f/2の周波数成分又はf−fLO±3f/2の周波数成分を透過した場合には最大になるように、信号発生器202の出力信号の位相を制御することにより、最適のタイミングで光時分割多重信号と局部発振光を合波することが可能となる。 Therefore, the electrical band-pass filter 206, f S -f frequency component of the LO, f S -f LO frequency components of ± f B, f S -f LO ± f B / 2 of the frequency components or f S -f After passing through any single frequency component of the frequency components of LO ± 3 f B / 2 and extracting the intensity component by the intensity detector 207, this intensity component becomes the frequency component of f S −f LO or f S −. The phase of the output signal of the signal generator 202 is controlled so as to be minimized when the frequency component of f LO ± f B is transmitted, and the frequency component of f S −f LO ± f B / 2 or f By controlling the phase of the output signal of the signal generator 202 so as to be maximized when the frequency component of S −f LO ± 3f B / 2 is transmitted, the optical time division multiplexed signal and the local part are optimally controlled. Combine oscillation light Is possible.

なお、図2Aの構成において、図2B、図2Cは、電気バンドパスフィルタ206がf−fLO−f/2の周波数成分を透過させた場合を示している。 In the configuration of FIG. 2A, FIGS. 2B and 2C show a case where the electric bandpass filter 206 transmits the frequency component of f S −f LO −f B / 2.

第1の実施の形態のような構成とすることにより、強度検波器207の出力によって信号発生器の出力信号の位相を制御するので、高速に伝送される光時分割多重信号のクロック位相同期動作を、信号速度に比べ比較的低周波な部品を用いて実現することが可能となる。   With the configuration as in the first embodiment, the phase of the output signal of the signal generator is controlled by the output of the intensity detector 207, so that the clock phase synchronization operation of the optical time division multiplexed signal transmitted at high speed Can be realized using components having a relatively low frequency compared to the signal speed.

また、光ヘテロダイン受信を用いて光電変換を行うことから、クロック位相同期に必要な周波数成分を高感度に受信することが可能であり、光増幅器といった複雑な光部品を用いる必要がない。   In addition, since photoelectric conversion is performed using optical heterodyne reception, frequency components necessary for clock phase synchronization can be received with high sensitivity, and it is not necessary to use complicated optical components such as an optical amplifier.

さらに、光部品に比べ経済的な電気部品を多く用いて多重分離するため、光周波数領域でクロック位相同期動作を行う必要がなく、経済的なクロック位相同期回路を構成することが可能となる。   Further, since the demultiplexing is performed by using more economical electrical components than optical components, it is not necessary to perform the clock phase synchronization operation in the optical frequency domain, and an economical clock phase synchronization circuit can be configured.

図3は、本発明の第2の実施の形態に係わるクロック位相同期回路の構成を示す図である。第2の実施形態に係わるクロック位相同期回路301は、図3に示すように、連続光を出力する光出力手段としての光源302と、信号発生手段としての信号発生器303と、信号発生器303の出力により、光源302から出力された連続光を周波数偏移変調又は位相偏移変調する光変調手段としての光変調器304と、クロック位相同期回路301の光信号入力部から入力された光時分割多重信号と光変調器304から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段としての光結合器305と、光結合器305で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段としての光検波器306と、光検波器306の出力の一部を透過する透過手段としての電気バンドパスフィルタ307と、電気バンドパスフィルタ307の出力を強度検波する強度検波手段としての強度検波器308を具える。   FIG. 3 is a diagram showing a configuration of a clock phase synchronization circuit according to the second embodiment of the present invention. As shown in FIG. 3, a clock phase synchronization circuit 301 according to the second embodiment includes a light source 302 as an optical output unit that outputs continuous light, a signal generator 303 as a signal generation unit, and a signal generator 303. The optical modulator 304 as optical modulation means for frequency shift modulation or phase shift modulation of the continuous light output from the light source 302, and the time of light input from the optical signal input unit of the clock phase synchronization circuit 301 An optical coupler 305 as optical multiplexing means for multiplexing the division multiplexed signal and the frequency shift modulation signal or phase shift modulation signal output from the optical modulator 304, and the time of the light combined by the optical coupler 305 An optical detector 306 as optical receiving means for optical heterodyne reception of the division multiplexed signal and frequency shift keying signal or phase shift keying signal, and transmission means for transmitting a part of the output of the optical detector 306 Comprising the electrical band-pass filter 307, an intensity detector 308 of the output of the electrical band-pass filter 307 as the intensity detecting means for intensity detection.

第2の実施の形態によれば、強度検波器308の出力によって信号発生器303の出力信号の位相を制御し、信号発生器303は、例えば発振器と電気増幅器を用いて構成することが可能である。   According to the second embodiment, the phase of the output signal of the signal generator 303 is controlled by the output of the intensity detector 308, and the signal generator 303 can be configured using, for example, an oscillator and an electric amplifier. is there.

第2の実施の形態における動作原理は第1の実施の形態の場合と同様である。第2の実施の形態のような構成とすることにより、強度検波器308の出力によって信号発生器303の出力信号の位相を制御するので、高速に伝送される光時分割多重信号のクロック位相同期動作を、信号速度に比べ比較的低周波な部品を用いて実現することが可能となる。   The operation principle in the second embodiment is the same as that in the first embodiment. By adopting the configuration as in the second embodiment, the phase of the output signal of the signal generator 303 is controlled by the output of the intensity detector 308, so that the clock phase synchronization of the optical time division multiplexed signal transmitted at high speed is achieved. The operation can be realized by using a component having a relatively low frequency compared to the signal speed.

また、光ヘテロダイン受信を用いて光電変換を行うことから、クロック位相同期に必要な周波数成分を高感度に受信することが可能であり、光増幅器といった複雑な光部品を用いる必要がない。   In addition, since photoelectric conversion is performed using optical heterodyne reception, frequency components necessary for clock phase synchronization can be received with high sensitivity, and it is not necessary to use complicated optical components such as an optical amplifier.

さらに、光部品に比べ経済的な電気部品を多く用いて多重分離するため、光周波数領域でクロック位相同期動作を行う必要がなく、経済的なクロック位相同期回路を構成することが可能となる。   Further, since the demultiplexing is performed by using more economical electrical components than optical components, it is not necessary to perform the clock phase synchronization operation in the optical frequency domain, and an economical clock phase synchronization circuit can be configured.

また、一般的に高速変調時において強度変調成分が生じることから、変調速度が制限される直接変調光源と比較し、光部品数が増加するものの、外部変調器を用いることで、さらに高速な信号のクロック位相同期動作を実現することができる。   In general, intensity modulation components are generated during high-speed modulation, but the number of optical components is increased compared to a direct modulation light source with a limited modulation speed. The clock phase synchronization operation can be realized.

図4は、本発明の第3の実施の形態に係わるクロック位相同期回路の構成を示す図である。第3の実施形態に係わるクロック位相同期回路401は、図4に示すように、信号発生手段としての信号発生器402と、信号発生器402により直接周波数偏移変調された光信号を出力する光信号出力手段としての直接変調光源403と、クロック位相同期回路401の光信号入力部から入力された光時分割多重信号と直接変調光源403から出力された直接周波数偏移変調信号とを合波する光合波手段としての光結合器404と、光結合器404で合波された光時分割多重信号と直接周波数偏移変調信号を光ヘテロダイン受信する光受信手段としての差動受信型光検波器405と、差動受信型光検波器405の出力の一部を透過する透過手段としての電気バンドパスフィルタ406と、電気バンドパスフィルタ406の出力を強度検波する強度検波手段としての強度検波器407を具える。   FIG. 4 is a diagram showing a configuration of a clock phase synchronization circuit according to the third embodiment of the present invention. As shown in FIG. 4, the clock phase synchronization circuit 401 according to the third embodiment includes a signal generator 402 as a signal generation unit, and an optical signal that outputs an optical signal that is directly frequency shift modulated by the signal generator 402. A direct modulation light source 403 serving as a signal output unit, an optical time division multiplexed signal input from the optical signal input unit of the clock phase synchronization circuit 401, and a direct frequency shift keying signal output from the direct modulation light source 403 are combined. An optical coupler 404 as optical multiplexing means, and a differential reception type optical detector 405 as optical receiving means for optical heterodyne reception of the optical time division multiplexed signal and direct frequency shift keying signal combined by the optical coupler 404. And an electric bandpass filter 406 as a transmission means that transmits a part of the output of the differential reception type optical detector 405, and intensity detection of the output of the electric bandpass filter 406 Comprising an intensity detector 407 as intensity detection means.

第3の実施の形態では、強度検波器407の出力によって信号発生器402の出力信号の位相を制御し、信号発生器402を、例えば発振器と電気増幅器を用いて構成することができる。   In the third embodiment, the phase of the output signal of the signal generator 402 is controlled by the output of the intensity detector 407, and the signal generator 402 can be configured using, for example, an oscillator and an electric amplifier.

第3の実施の形態における動作原理は第1の実施の形態の場合と同様である。また、第2の実施の形態と同様、直接変調光源403の代わりに、連続光源と外部変調器を用いることも可能である。   The operation principle in the third embodiment is the same as that in the first embodiment. As in the second embodiment, a continuous light source and an external modulator can be used instead of the direct modulation light source 403.

第3の実施の形態のような構成とすることにより、高速に伝送される光時分割多重信号のクロック位相同期動作を、信号速度に比べ比較的低周波な部品を用いて実現することが可能となる。   By adopting the configuration as in the third embodiment, it is possible to realize the clock phase synchronization operation of the optical time division multiplexed signal transmitted at high speed by using components having a relatively low frequency compared to the signal speed. It becomes.

また、光ヘテロダイン受信を用いて光電変換を行うことから、クロック位相同期に必要な周波数成分を高感度に受信することが可能であり、光増幅器といった複雑な光部品を用いる必要がない。   In addition, since photoelectric conversion is performed using optical heterodyne reception, frequency components necessary for clock phase synchronization can be received with high sensitivity, and it is not necessary to use complicated optical components such as an optical amplifier.

さらに、光部品に比べ経済的な電気部品を多く用いて多重分離するため、光周波数領域でクロック位相同期動作を行う必要がなく、経済的なクロック位相同期回路を構成することが可能となる。   Further, since the demultiplexing is performed by using more economical electrical components than optical components, it is not necessary to perform the clock phase synchronization operation in the optical frequency domain, and an economical clock phase synchronization circuit can be configured.

また、光ヘテロダイン受信時に差動受信型光検波器を用いることで、光結合器404において信号を合波する際に生じる結合損失がなくなる上、光時分割多重信号の直接受信成分を相殺することから、位相誤差信号成分を高感度に受信することができ、かつ、光検波後に生じる中間周波信号をより低周波側に寄せられることから、光検波器や電気部品の所望帯域を低減することが可能となるため、経済的な受信器構成に寄与することができる。   Further, by using a differential reception type optical detector at the time of optical heterodyne reception, there is no coupling loss generated when signals are combined in the optical coupler 404, and the direct reception component of the optical time division multiplexed signal is canceled out. Therefore, the phase error signal component can be received with high sensitivity, and the intermediate frequency signal generated after the optical detection can be shifted to the lower frequency side, so that the desired band of the optical detector and the electrical parts can be reduced. This makes it possible to contribute to an economical receiver configuration.

図5は、本発明の第4の実施の形態に係わる光受信器の構成を示す図である。第4の実施形態に係わる光受信器501は、図5に示すように、信号発生手段としての信号発生器502と、信号発生器502の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段としての変調光源503と、光受信器501の光信号入力部から入力された光時分割多重信号と変調光源503から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段としての光結合器504と、光結合器504で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段としての光検波器505と、光検波器505の出力の一部を透過する第1の透過手段としての電気バンドパスフィルタ506と、電気バンドパスフィルタ506の出力を復調する復調手段としての復調回路507と、光検波器505の出力の一部を透過する第2の透過手段としての電気バンドパスフィルタ508と、電気バンドパスフィルタ508の出力を強度検波する強度検波手段としての強度検波器509を具える。   FIG. 5 is a diagram showing a configuration of an optical receiver according to the fourth embodiment of the present invention. As shown in FIG. 5, the optical receiver 501 according to the fourth embodiment includes a signal generator 502 as signal generation means, and light that has been frequency-shift-modulated or phase-shift-modulated by the output of the signal generator 502. A modulated light source 503 as an optical signal output means for outputting a signal; an optical time division multiplexed signal input from the optical signal input unit of the optical receiver 501; and a frequency shift modulated signal or phase shift output from the modulated light source 503. Optical coupler 504 as optical multiplexing means for multiplexing the modulation signal, and light for optical heterodyne reception of the optical time division multiplexed signal combined with optical coupler 504 and the frequency shift modulation signal or phase shift modulation signal An optical detector 505 as a receiving means, an electric bandpass filter 506 as a first transmitting means that transmits part of the output of the optical detector 505, and an output of the electric bandpass filter 506 are demodulated. A demodulating circuit 507 as a demodulating unit, an electric bandpass filter 508 as a second transmitting unit that transmits a part of the output of the optical detector 505, and an intensity detecting unit that detects the intensity of the output of the electric bandpass filter 508 The intensity detector 509 is provided.

第4の実施の形態では、強度検波器509の出力によって信号発生器502の出力信号の位相を制御し、信号発生器502を、例えば発振器と電気増幅器を用いて構成することができる。   In the fourth embodiment, the phase of the output signal of the signal generator 502 is controlled by the output of the intensity detector 509, and the signal generator 502 can be configured using, for example, an oscillator and an electric amplifier.

また、変調光源503は、第1〜第3の実施の形態のように、直接変調光源又は連続光源と外部変調器を用いて構成することができる。また、光検波器505は、第3の実施の形態のように、光検波器の代わりに差動受信型光検波器を用いて構成することができる。   The modulated light source 503 can be configured using a direct modulation light source or a continuous light source and an external modulator as in the first to third embodiments. Further, the optical detector 505 can be configured using a differential reception type optical detector instead of the optical detector as in the third embodiment.

第4の実施の形態における動作原理は、クロック位相同期回路の動作が第1の実施の形態の場合と同様であり、光時分割多重信号の多重分離動作が従来技術の場合と同様である。 第4の実施の形態のような構成とすることにより、強度検波器509の出力によって信号発生器の出力信号の位相を制御するので、クロック位相同期動作と光時分割多重信号の多重分離動作を、信号速度に比べ比較的低周波な部品を用いて、同時に実現することが可能となる。   The operation principle of the fourth embodiment is the same as that of the first embodiment in the operation of the clock phase synchronization circuit, and the demultiplexing operation of the optical time division multiplexed signal is the same as that in the prior art. By adopting the configuration as in the fourth embodiment, the phase of the output signal of the signal generator is controlled by the output of the intensity detector 509, so that the clock phase synchronization operation and the demultiplexing operation of the optical time division multiplexed signal are performed. This can be realized simultaneously using components having a relatively low frequency compared to the signal speed.

また、信号発生器502、変調光源503、光結合器504及び光検波器505をクロック位相同期動作と光時分割多重信号の多重分離動作で共用して行うことが可能となるため、経済的な構成により光受信器を構成することができる。   Further, since the signal generator 502, the modulation light source 503, the optical coupler 504, and the optical detector 505 can be shared by the clock phase synchronization operation and the optical time division multiplexed signal demultiplexing operation, it is economical. An optical receiver can be configured according to the configuration.

図6は、本発明の第5の実施の形態に係わる光受信器の構成を示す図である。第5の実施形態に係わる光受信器601は、図6に示すように、信号発生手段としての信号発生器602と、信号発生器602の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段としての変調光源603と、光受信器601の光信号入力部から入力された光時分割多重信号と変調光源603から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段としての光結合器604と、光結合器604で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第1の光受信手段としての光検波器605と、光検波器605の出力の一部を透過する第1の透過手段としての電気バンドパスフィルタ606と、電気バンドパスフィルタ606の出力を復調する復調手段としての復調回路607と、光結合器604で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第2の光受信手段としての光検波器608と、光検波器608の出力の一部を透過する第2の透過手段としての電気バンドパスフィルタ609と、電気バンドパスフィルタ609の出力を強度検波する強度検波手段としての強度検波器610を具える。   FIG. 6 is a diagram showing a configuration of an optical receiver according to the fifth embodiment of the present invention. As shown in FIG. 6, the optical receiver 601 according to the fifth embodiment includes a signal generator 602 serving as a signal generating unit, and light that is frequency-shift modulated or phase-shift modulated by the output of the signal generator 602. A modulated light source 603 serving as an optical signal output means for outputting a signal; an optical time-division multiplexed signal input from the optical signal input unit of the optical receiver 601; and a frequency shift modulated signal or phase shift output from the modulated light source 603. An optical coupler 604 as optical multiplexing means for multiplexing the modulation signal, and an optical time-division multiplexed signal combined with the optical coupler 604 and a part of the frequency shift keying signal or phase shift keying signal are optical heterodyne. An optical detector 605 as a first optical receiving means for receiving, an electric bandpass filter 606 as a first transmitting means for transmitting a part of the output of the optical detector 605, and an electric bandpass filter 606. A demodulating circuit 607 as a demodulating means for demodulating the power, and a second optical heterodyne receiving optical time division multiplexed signal combined with the optical coupler 604 and a part of the frequency shift keying signal or phase shift keying signal. An optical detector 608 as an optical receiving means, an electric bandpass filter 609 as a second transmission means that transmits a part of the output of the optical detector 608, and an intensity detection that detects the output of the electric bandpass filter 609 in intensity. An intensity detector 610 is provided as a means.

第5の実施の形態では、強度検波器610の出力によって信号発生器602の出力信号の位相を制御し、信号発生器602を、例えば発振器と電気増幅器を用いて構成することができる。   In the fifth embodiment, the phase of the output signal of the signal generator 602 is controlled by the output of the intensity detector 610, and the signal generator 602 can be configured using, for example, an oscillator and an electric amplifier.

また、変調光源603は、第1〜第4の実施の形態のように、直接変調光源又は連続光源と外部変調器を用いて構成することができる。また、光検波器605,608は、第3の実施の形態のように、光検波器の代わりに差動受信型光検波器を用いて構成することができる。   The modulated light source 603 can be configured using a direct modulation light source or a continuous light source and an external modulator as in the first to fourth embodiments. Moreover, the optical detectors 605 and 608 can be configured using a differential reception type optical detector instead of the optical detector, as in the third embodiment.

第5の実施の形態における動作原理は、クロック位相同期回路の動作が第1の実施の形態の場合と同様であり、光時分割多重信号の多重分離動作が従来技術の場合と同様である。 第5の実施の形態のような構成とすることにより、クロック位相同期動作と光時分割多重信号の多重分離動作を、信号速度に比べ比較的低周波な部品を用いて、同時に実現することが可能となる。   The operation principle in the fifth embodiment is the same as that of the first embodiment in the operation of the clock phase synchronization circuit, and the demultiplexing operation of the optical time division multiplexed signal is the same as in the case of the prior art. By adopting the configuration as in the fifth embodiment, the clock phase synchronization operation and the demultiplexing operation of the optical time division multiplexed signal can be realized at the same time by using relatively low frequency components compared to the signal speed. It becomes possible.

また、信号発生器502、変調光源503及び光結合器504をクロック位相同期動作と光時分割多重信号の多重分離動作で共用して行うことが可能となるため、経済的な構成により光受信器を構成することができる。   Further, since the signal generator 502, the modulation light source 503, and the optical coupler 504 can be shared by the clock phase synchronization operation and the demultiplexing operation of the optical time division multiplexed signal, the optical receiver has an economical configuration. Can be configured.

さらに、光検波器を複数配置することで、光検波器の特性を信号の多重分離動作とクロック位相同期動作に個別に最適化することが可能となり、より受信特性の高い光受信器を構成することが可能となる。   Furthermore, by arranging a plurality of optical detectors, it is possible to individually optimize the characteristics of the optical detectors for the signal demultiplexing operation and the clock phase synchronization operation, thereby configuring an optical receiver with higher reception characteristics. It becomes possible.

図7は、本発明の第6の実施の形態に係わる光受信器の構成を示す図である。第6の実施形態に係わる光受信器701は、図7に示すように、光受信器701から入力された光時分割多重信号を分岐する第1の光分岐手段としての光分岐器702と、信号発生手段としての信号発生器703と、信号発生器703の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段としての変調光源704と、変調光源704の出力光信号を分岐する第2の光信号分岐手段としての光分岐器705と、光分岐器705の出力光信号に光遅延を与える光遅延手段としての複数の光遅延器706−2〜706−4と、光分岐器702の出力光信号と光分岐器705の出力光信号とを合波する第1の光合波手段としての光結合器707−1と、光分岐器702の出力光信号と光遅延器706−2〜706−4のそれぞれの出力光信号とを合波する第2の光合波手段としての光結合器707−2〜707−4と、光結合器707−1〜707−4の出力を受信し、信号を復調する復調手段としての光受信部708−1〜708−4と、光結合器707−1〜707−4の出力のいずれかを受信し、位相制御信号を抽出する位相制御信号抽出手段としての位相制御部709とを具える。   FIG. 7 is a diagram showing a configuration of an optical receiver according to the sixth embodiment of the present invention. As shown in FIG. 7, an optical receiver 701 according to the sixth embodiment includes an optical splitter 702 as a first optical branching unit that branches the optical time division multiplexed signal input from the optical receiver 701, A signal generator 703 as a signal generation unit, a modulation light source 704 as an optical signal output unit that outputs an optical signal that is frequency-shift-modulated or phase-shift-modulated by the output of the signal generator 703, and an output of the modulation light source 704 An optical branching unit 705 as a second optical signal branching unit for branching the optical signal, and a plurality of optical delay units 706-2 to 706-4 as an optical delaying unit for giving an optical delay to the output optical signal of the optical branching unit 705. An optical coupler 707-1 as first optical multiplexing means for combining the output optical signal of the optical splitter 702 and the output optical signal of the optical splitter 705, and the output optical signal and light of the optical splitter 702 Delay devices 706-2 to 706-4 Receiving the outputs of the optical couplers 707-2 to 707-4 and the optical couplers 707-1 to 707-4 as second optical multiplexing means for multiplexing the respective output optical signals, the signals are demodulated. Phase control as phase control signal extraction means for receiving one of the outputs of optical receiving sections 708-1 to 708-4 as demodulation means and optical couplers 707-1 to 707-4 and extracting a phase control signal Part 709.

第6の実施の形態では、位相制御部709の出力によって信号発生器703の出力信号の位相を制御し、信号発生器703を、例えば発振器と電気増幅器を用いて構成することができる。   In the sixth embodiment, the phase of the output signal of the signal generator 703 is controlled by the output of the phase control unit 709, and the signal generator 703 can be configured using, for example, an oscillator and an electric amplifier.

また、変調光源704は、第1〜第3の実施の形態のように、直接変調光源又は連続光源と外部変調器を用いて構成することができる。また、光受信部708−1〜708−4は、第4又は第5の実施例のように、光検波器と電気バンドパスフィルタと中間周波信号復調器又は差動受信型光検波器と電気バンドパスフィルタと中間周波信号復調器を用いて構成することができ、位相制御部709は、第1〜第5の実施例のように、光検波器と電気バンドパスフィルタと強度検波器又は差動受信型光検波器と電気バンドパスフィルタと強度検波器を用いて構成することができる。   The modulated light source 704 can be configured using a direct modulation light source or a continuous light source and an external modulator as in the first to third embodiments. In addition, as in the fourth or fifth embodiment, the optical receivers 708-1 to 708-4 include an optical detector, an electric bandpass filter, an intermediate frequency signal demodulator, a differential reception type optical detector, and an electric detector. The phase control unit 709 can be configured by using a bandpass filter and an intermediate frequency signal demodulator, and the phase control unit 709 can be configured by using an optical detector, an electric bandpass filter, an intensity detector, or a difference as in the first to fifth embodiments. It can be configured using a dynamic reception type optical detector, an electric bandpass filter, and an intensity detector.

また、図7においては、光結合器707−4の出力に位相制御部709を接続しているが、光結合器707−1〜707−3のいずれに接続しても同様の効果が得られる。   In FIG. 7, the phase control unit 709 is connected to the output of the optical coupler 707-4, but the same effect can be obtained by connecting to any of the optical couplers 707-1 to 707-3. .

さらに、第5の実施例のように、光検波器を光受信部708と位相制御部709で共有することもできる。この場合、第6の実施の形態における動作原理は、クロック位相同期回路の動作は第1の実施の形態の場合と同様であり、光時分割多重信号の多重分離動作は従来技術の場合と同様である。   Further, as in the fifth embodiment, the optical detector can be shared by the optical receiver 708 and the phase controller 709. In this case, the operation principle of the sixth embodiment is that the operation of the clock phase synchronization circuit is the same as that of the first embodiment, and the demultiplexing operation of the optical time division multiplexed signal is the same as that of the prior art. It is.

光信号を受信する際に、複数の受信部に信号を分岐し、光遅延器706−2〜706−4を用いて受信したい信号チャネルに局部発振光の周波数変動のタイミングを一致させることで、複数の信号チャネルを同時に受信することが可能であり、さらに、クロック位相同期回路部は、全ての信号チャネルの受信部で一つのみ用意すればよいため、クロック位相同期回路部を共有可能であり、経済的な光受信器を構成することができる。   When receiving an optical signal, the signal is branched to a plurality of receiving units, and the timing of frequency fluctuation of the local oscillation light is made to coincide with the signal channel to be received using the optical delay units 706-2 to 706-4. Multiple signal channels can be received at the same time. Furthermore, only one clock phase synchronization circuit unit needs to be prepared for all signal channel reception units, so the clock phase synchronization circuit unit can be shared. An economical optical receiver can be constructed.

上述のように、本発明は、光時分割多重信号受信時におけるクロック位相同期回路を、光領域と電気領域の信号処理を両方用いることで、部品点数の削減を可能とし、さらに、光時分割多重信号の多重分離回路と部品を共有することも可能であるため、クロック位相同期回路を含む光受信器を経済的な構成により実現することができる。   As described above, the present invention makes it possible to reduce the number of parts by using both the optical domain and electrical domain signal processing in the clock phase synchronization circuit at the time of optical time division multiplexed signal reception. Since it is possible to share parts with the demultiplexing circuit of the multiplexed signal, the optical receiver including the clock phase synchronization circuit can be realized with an economical configuration.

上記第1〜第3の実施の形態のクロック位相同期回路又は上記第4〜第7の実施の形態の光受信器において、図2B(c)、図2C(c)に示すように、クロック位相同期回路に含まれる電気バンドパスフィルタの透過帯域を、f−fLO±f/2の周波数成分を透過するように設定する。 In the clock phase synchronization circuit of the first to third embodiments or the optical receiver of the fourth to seventh embodiments, as shown in FIGS. 2B (c) and 2C (c), the clock phase The transmission band of the electric bandpass filter included in the synchronization circuit is set so as to transmit the frequency component of f S −f LO ± f B / 2.

ここで、多重分離動作が可能な場合、つまり、図2Bにあるように、光時分割多重信号の目的の信号チャネルと局部発振光の周波数変動が+Δfになるタイミングが一致した場合には、f−fLO±f/2の周波数成分が他の周波数成分よりも大きく出力され、多重分離動作が不可能な場合、つまり、光時分割多重信号の目的の信号チャネルと局部発振光の周波数変動が+Δfになるタイミングが時間的にf/2ずれている場合には、f−fLO±f/2の周波数成分が他の周波数成分よりも小さく出力される。 Here, when the demultiplexing operation is possible, that is, as shown in FIG. 2B, when the target signal channel of the optical time division multiplexed signal and the timing at which the frequency fluctuation of the local oscillation light becomes + Δf coincide, When the frequency component of S −f LO ± f B / 2 is output larger than the other frequency components and demultiplexing operation is impossible, that is, the target signal channel of the optical time division multiplexed signal and the frequency of the local oscillation light when the timing change is + Delta] f it is temporally shifted f B / 2 is, f S -f LO ± f B / 2 of the frequency components are smaller output than the other frequency components.

そのため、f−fLO±f/2の周波数成分を電気バンドパスフィルタで透過することで、多重分離動作が可能となる場合と不可能となる場合の位相誤差信号の強度差を、他の周波数成分を透過する場合と比較し大きくとることができることから、高感度なクロック位相同期回路を実現することが可能となる。 Therefore, by transmitting the frequency component of f S −f LO ± f B / 2 with an electric bandpass filter, the difference in intensity of the phase error signal between when the demultiplexing operation is possible and when it is impossible can be obtained. Therefore, it is possible to realize a highly sensitive clock phase synchronization circuit.

従来技術を示す図である。It is a figure which shows a prior art. 従来技術の動作原理を説明する図である。It is a figure explaining the operation principle of a prior art. 本発明の第1の実施例を示す図である。It is a figure which shows the 1st Example of this invention. 第1の実施例の動作原理を説明する図である。It is a figure explaining the principle of operation of the 1st example. 第1の実施例の動作原理を説明する図である。It is a figure explaining the principle of operation of the 1st example. 本発明の第2の実施例を示す図である。It is a figure which shows the 2nd Example of this invention. 本発明の第3の実施例を示す図である。It is a figure which shows the 3rd Example of this invention. 本発明の第4の実施例を示す図である。It is a figure which shows the 4th Example of this invention. 本発明の第5の実施例を示す図である。It is a figure which shows the 5th Example of this invention. 本発明の第6の実施例を示す図である。It is a figure which shows the 6th Example of this invention.

符号の説明Explanation of symbols

101,501,601,701 光受信器
102,202,303,402,502,602,703 信号発生器
103,203,403 直接変調光源
104,204,305,404,504,604,707−1,707−2,707−3,707−4 光結合器
105,205,306,405,505,605,608 光検波器
106,206,307,406,506,508,606,609 電気バンドパスフィルタ
107,507,607 中間周波信号復調器
201,301,401 クロック位相同期回路
207,308,407,509,610 強度検波器
302 光源
304 外部変調器
503,603,704 変調光源
702,705 光分岐器
706−2,706−3,706−4 光遅延器
708−1,708−2,708−3,708−4 光受信部
709 位相制御部
101, 501, 601, 701 Optical receivers 102, 202, 303, 402, 502, 602, 703 Signal generators 103, 203, 403 Directly modulated light sources 104, 204, 305, 404, 504, 604, 707-1, 707-2, 707-3, 707-4 Optical couplers 105, 205, 306, 405, 505, 605, 608 Optical detectors 106, 206, 307, 406, 506, 508, 606, 609 Electric bandpass filter 107 , 507, 607 Intermediate frequency signal demodulator 201, 301, 401 Clock phase synchronization circuit 207, 308, 407, 509, 610 Intensity detector 302 Light source 304 External modulator 503, 603, 704 Modulated light source 702, 705 Optical splitter 706 -2, 706-3, 706-4 Optical delay devices 708-1, 708-2 708-3,708-4 optical receiver 709 phase controller

Claims (8)

光時分割多重信号を多重分離受信する際に用いるクロック位相同期回路において、
前記クロック位相同期回路で位相同期される信号を発生する信号発生手段と、
前記信号発生手段により直接周波数偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された直接周波数偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と直接周波数偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する透過手段と、
前記透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記透過手段が透過する、前記光時分割多重信号の中心周波数と光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とするクロック位相同期回路。
In the clock phase synchronization circuit used when demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal phase-synchronized by the clock phase synchronization circuit;
An optical signal output means for outputting an optical signal directly frequency shift modulated by the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the direct frequency shift keying signal output from the optical signal output means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal and direct frequency shift keying signal combined by the optical multiplexing means;
Of the signals output from the optical receiving means, the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical signal output means is only ½ of the signal speed of the optical time division multiplexed signal. Transmission means for transmitting signals of shifted electrical frequencies;
Comprising intensity detection means for intensity detection of the output of the transmission means,
Based on the difference between the center frequency of the optical time division multiplexed signal transmitted by the transmission means and the center frequency of the optical signal output by the optical signal output means, the signal speed of the optical time division multiplexed signal is transmitted by the output of the intensity detection means. A clock phase synchronization circuit, wherein the phase of an output signal of the signal generating means is controlled so that a signal having an electrical frequency shifted by ½ is maximized.
光時分割多重信号を多重分離受信する際に用いるクロック位相同期回路において、
連続光を出力する光出力手段と、
前記クロック位相同期回路で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により、前記光出力手段から出力された連続光を周波数偏移変調又は位相偏移変調する光変調手段と、
前記光時分割多重信号と前記光変調手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と光出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する透過手段と、
前記透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記透過手段が透過する、前記光時分割多重信号の中心周波数と光出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とするクロック位相同期回路。
In the clock phase synchronization circuit used when demultiplexing and receiving optical time division multiplexed signals,
Light output means for outputting continuous light;
Signal generating means for generating a signal phase-synchronized by the clock phase synchronization circuit;
Light modulation means for frequency shift modulation or phase shift modulation of the continuous light output from the light output means by the output of the signal generation means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift modulation signal or phase shift modulation signal output from the optical modulation means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift modulation signal or phase shift modulation signal;
Of the signals output from the optical receiving means, the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical output means is shifted by 1/2 of the signal speed of the optical time division multiplexed signal. Transmitting means for transmitting a signal of electrical frequency,
Comprising intensity detection means for intensity detection of the output of the transmission means,
Based on the difference between the center frequency of the optical time division multiplexed signal transmitted by the transmission means and the center frequency of the optical signal output by the optical output means, the signal speed of the optical time division multiplexed signal is 1 by the output of the intensity detection means. A clock phase synchronization circuit, wherein the phase of the output signal of the signal generating means is controlled so that a signal having an electrical frequency shifted by / 2 is maximized.
請求項1又は2に記載のクロック位相同期回路において、前記光受信手段が差動受信型光検波器を有することを特徴とするクロック位相同期回路。   3. The clock phase synchronization circuit according to claim 1, wherein the optical receiving means includes a differential reception type optical detector. 光時分割多重信号を多重分離受信する光受信器において、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号を光ヘテロダイン受信する光受信手段と、
前記光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を透過する第1の透過手段と、
前記第1の透過手段の出力を復調する復調手段と、
前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する第2の透過手段と、
前記第2の透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記第2の透過手段が透過する、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする光受信器。
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift keying signal or phase shift keying signal output from the optical signal output means;
Optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift modulation signal or phase shift modulation signal;
First transmission means for transmitting a signal having a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the optical reception means;
Demodulation means for demodulating the output of the first transmission means;
1/2 from the difference between the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal out of the signal output from the light receiving means of the signal speed of the optical time division multiplex signal A second transmission means for transmitting a signal having an electrical frequency shifted by
Comprising intensity detecting means for intensity detecting the output of the second transmitting means,
The optical time division multiplex signal is obtained from the difference between the center frequency of the optical time division multiplex signal transmitted by the second transmission means and the center frequency of the optical signal output from the optical signal output means by the output of the intensity detection means. An optical receiver characterized in that the phase of the output signal of the signal generating means is controlled so that a signal with an electrical frequency shifted by ½ of the signal speed is maximized.
光時分割多重信号を多重分離受信する光受信器において、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光時分割多重信号と前記光信号出力手段から出力された周波数偏移変調信号又は位相偏移変調信号とを合波する光合波手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第1の光受信手段と、
前記第1の光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を透過する第1の透過手段と、
前記第1の透過手段の出力を復調する復調手段と、
前記光合波手段で合波された光時分割多重信号と周波数偏移変調信号又は位相偏移変調信号の一部を光ヘテロダイン受信する第2の光受信手段と、
前記第2の光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を透過する第2の透過手段と、
前記第2の透過手段の出力を強度検波する強度検波手段とを具え、
前記強度検波手段の出力により、前記第2の透過手段が透過する、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする光受信器。
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Optical multiplexing means for multiplexing the optical time division multiplexed signal and the frequency shift keying signal or phase shift keying signal output from the optical signal output means;
First optical receiving means for optical heterodyne reception of the optical time division multiplexed signal combined with the optical multiplexing means and a part of the frequency shift keying signal or phase shift keying signal;
First transmission means for transmitting a signal having a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the first optical reception means;
Demodulation means for demodulating the output of the first transmission means;
Second optical receiving means for optically heterodyne receiving a part of the optical time division multiplexed signal combined with the optical multiplexing means and the frequency shift keying signal or phase shift keying signal;
From the difference between the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal of the signal output from the second light receiving means of the signal speed of the optical time division multiplex signal A second transmission means for transmitting a signal having an electrical frequency shifted by ½,
Comprising intensity detecting means for intensity detecting the output of the second transmitting means,
The optical time division multiplex signal is obtained from the difference between the center frequency of the optical time division multiplex signal transmitted by the second transmission means and the center frequency of the optical signal output from the optical signal output means by the output of the intensity detection means. An optical receiver characterized in that the phase of the output signal of the signal generating means is controlled so that a signal with an electrical frequency shifted by ½ of the signal speed is maximized.
光時分割多重信号を多重分離受信する光受信器において、
前記光時分割多重信号を分岐する第1の光分岐手段と、
前記光受信器で位相同期される信号を発生する信号発生手段と、
前記信号発生手段の出力により周波数偏移変調又は位相偏移変調された光信号を出力する光信号出力手段と、
前記光信号出力手段の出力光信号を分岐する第2の光分岐手段と、
前記第2の光分岐手段の出力光信号に光遅延を与える少なくとも1つの光遅延手段と、
前記第2の光分岐手段の出力光信号と、前記第1の光分岐手段の出力光信号とを合波する第1の光結合手段と、
前記光遅延手段に対応して設けられ、前記光遅延手段の出力光信号と、前記第1の光分岐手段の出力光信号とを合波する少なくとも1つの第2の光結合手段と、
前記第1および第2の光結合手段に対応して設けられ、前記第1および第2の光結合手段で合波された出力光信号を光ヘテロダイン受信する複数の光受信手段と、
前記複数の光受信手段に対応して設けられ、前記光受信手段から出力された中間周波信号のうち多重分離しようとする信号に相当する周波数の信号を用いて復調する複数の復調手段と、
前記複数の光受信手段のいずれか1つに接続され、前記光受信手段から出力された信号のうち前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号を用いて位相制御信号を抽出する位相制御信号抽出手段とを具え、
前記位相制御信号抽出手段が出力する前記位相制御信号により、前記光時分割多重信号の中心周波数と前記光信号出力手段が出力する光信号の中心周波数の差から前記光時分割多重信号の信号速度の1/2だけずれた電気周波数の信号が最大となるように前記信号発生手段の出力信号の位相を制御することを特徴とする光受信器。
In an optical receiver for demultiplexing and receiving optical time division multiplexed signals,
First optical branching means for branching the optical time division multiplexed signal;
Signal generating means for generating a signal synchronized in phase with the optical receiver;
An optical signal output means for outputting an optical signal subjected to frequency shift keying or phase shift keying by the output of the signal generating means;
Second optical branching means for branching the output optical signal of the optical signal output means;
At least one optical delay means for providing an optical delay to the output optical signal of the second optical branching means;
First optical coupling means for combining the output optical signal of the second optical branching means and the output optical signal of the first optical branching means;
Provided corresponding to the optical delay means, and at least one second optical coupling means for multiplexing the output optical signal of the optical delay means and the output optical signal of the first optical branching means;
A plurality of optical receiving means provided corresponding to the first and second optical coupling means, for optically heterodyne-receiving the output optical signal combined by the first and second optical coupling means;
A plurality of demodulation means that are provided corresponding to the plurality of optical receiving means and demodulate using a signal of a frequency corresponding to a signal to be demultiplexed among the intermediate frequency signals output from the optical receiving means;
Is connected to one of said plurality of light receiving means, the center frequency of the optical signal output from the central frequency and the optical signal output means of the optical time division multiplex signal of the signal output from the light receiving means Phase control signal extraction means for extracting a phase control signal using a signal having an electrical frequency shifted from the difference by 1/2 of the signal speed of the optical time division multiplexed signal,
Due to the phase control signal output from the phase control signal extraction means, the signal speed of the optical time division multiplexed signal is calculated from the difference between the center frequency of the optical time division multiplexed signal and the center frequency of the optical signal output from the optical signal output means. The phase of the output signal of the signal generating means is controlled so that the signal of the electrical frequency shifted by ½ is maximized.
請求項4または6に記載の光受信器において、前記光受信手段が差動受信型光検波器を有することを特徴とする光受信器。 7. The optical receiver according to claim 4 , wherein the optical receiving means includes a differential reception type optical detector. 請求項5に記載の光受信器において、前記第1および第2の光受信手段が差動受信型光検波器を有することを特徴とする光受信器。6. The optical receiver according to claim 5, wherein the first and second optical receiving means include a differential reception type optical detector.
JP2007287735A 2007-11-05 2007-11-05 Clock phase synchronization circuit and optical receiver Expired - Fee Related JP5009130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287735A JP5009130B2 (en) 2007-11-05 2007-11-05 Clock phase synchronization circuit and optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287735A JP5009130B2 (en) 2007-11-05 2007-11-05 Clock phase synchronization circuit and optical receiver

Publications (2)

Publication Number Publication Date
JP2009118089A JP2009118089A (en) 2009-05-28
JP5009130B2 true JP5009130B2 (en) 2012-08-22

Family

ID=40784736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287735A Expired - Fee Related JP5009130B2 (en) 2007-11-05 2007-11-05 Clock phase synchronization circuit and optical receiver

Country Status (1)

Country Link
JP (1) JP5009130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864822B2 (en) * 2007-07-03 2012-02-01 日本電信電話株式会社 Optical receiver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976673B2 (en) * 2002-12-06 2007-09-19 富士通株式会社 Optical time division demultiplexer

Also Published As

Publication number Publication date
JP2009118089A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
US9559771B2 (en) Optical transmission device, node device, optical transmission method, and optical transmission system
JP5696461B2 (en) Control circuit, communication system and control method
JP5707981B2 (en) Sampling clock synchronization apparatus, digital coherent reception apparatus, and sampling clock synchronization method
US7742699B2 (en) Method and arrangement for the optical transmission of data signals via differential phase modulation in a polarization multiplex method
US9419724B2 (en) Coherent optical receiver and optical receiving method
JP2008135992A (en) Optical ofdm receiving circuit, optical ofdm receiver, optical ofdm transmission system, optical ofcdm receiving circuit, optical ofcdm receiver and optical ofcdm transmission system
JP5009130B2 (en) Clock phase synchronization circuit and optical receiver
JP3512580B2 (en) Optical transmitting apparatus and optical receiving apparatus for optical time division multiplex transmission, and optical time division multiplex optical transmission apparatus equipped with the same
JP5931759B2 (en) Optical transmission system and optical transmission method
JP6739073B2 (en) Optical transmission method and optical transmission device
JPH05344095A (en) Wavelength-clock synchronization system in optical communication network and wavelength multiplex optical communication network using the system
JP5095834B2 (en) Optical OFCDM transmission system
JPH0918422A (en) Optical transmitter and receiver
JP5492118B2 (en) WDM signal batch coherent receiver and method
JP4864822B2 (en) Optical receiver
JP2006005615A (en) Single-frequency network digital terrestrial broadcasting system, synchronization system for single-frequency network, and transmitting device
JP3199099B2 (en) Optical frame synchronization signal generation circuit
JP3843322B2 (en) Optical wavelength division multiplexing FSK modulation method
JP5269697B2 (en) Optical receiver and optical transmission system
JP2006246031A (en) Device and system for coherent light communication
JP4664896B2 (en) Information distribution system and method, transmitting apparatus and receiving apparatus
JP2006276874A (en) Light wavelength multiplex fsk modulation system using light phase modulation and light fsk modulation
JP3293747B2 (en) Optical WDM transmission system
JP2567776B2 (en) Optical transmission system
CN103107851B (en) Apparatus for transmitting signal and method and signal receiver and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees