JP5008345B2 - Battery solution for storage battery or its replenisher - Google Patents

Battery solution for storage battery or its replenisher Download PDF

Info

Publication number
JP5008345B2
JP5008345B2 JP2006167924A JP2006167924A JP5008345B2 JP 5008345 B2 JP5008345 B2 JP 5008345B2 JP 2006167924 A JP2006167924 A JP 2006167924A JP 2006167924 A JP2006167924 A JP 2006167924A JP 5008345 B2 JP5008345 B2 JP 5008345B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
lead
electrolytic solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006167924A
Other languages
Japanese (ja)
Other versions
JP2007335322A (en
Inventor
明 米丸
Original Assignee
中本 明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中本 明 filed Critical 中本 明
Priority to JP2006167924A priority Critical patent/JP5008345B2/en
Priority to KR1020060103407A priority patent/KR20070120011A/en
Priority to KR1020070123321A priority patent/KR20070122430A/en
Publication of JP2007335322A publication Critical patent/JP2007335322A/en
Application granted granted Critical
Publication of JP5008345B2 publication Critical patent/JP5008345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、蓄電池用電解液に関し、特に、海洋深層水を原料とし精製された硫酸イオン水および石炭を原料とするマイクロカーボン水を利用した蓄電池用バッテリー液またはその補充液に関する。   The present invention relates to an electrolytic solution for a storage battery, and more particularly to a battery solution for a storage battery using sulfate ion water purified from deep ocean water and microcarbon water as a raw material or a replenisher thereof.

自動車、船舶や建設機械などの幅広い分野で鉛蓄電池を利用したバッテリーが使用されている。しかしながら、バッテリーは、充電と放電を繰り返すことで、バッテリー機能が徐々に低下し、いずれは使用できなくなってしまう。こうした問題を解決するため、バッテリー機能の低下を抑え、より長い期間使用できるような鉛蓄電池が提案されている。   Batteries using lead-acid batteries are used in a wide range of fields such as automobiles, ships and construction machinery. However, when the battery is repeatedly charged and discharged, the battery function gradually deteriorates and eventually becomes unusable. In order to solve such a problem, a lead storage battery has been proposed that can suppress a decrease in battery function and can be used for a longer period of time.

例えば特許文献1は、電圧降下が少なく、放置することにより自然に電圧が回復する鉛蓄電池に関するものである。カルシウム塩の微粒子を含み、pH調整剤の非存在下で9以上のpHを示す分散液、および希硫酸を含み、電極として二酸化鉛および鉛を用いる鉛蓄電池である。   For example, Patent Document 1 relates to a lead storage battery in which the voltage drop is small and the voltage recovers naturally when left unattended. A lead acid battery containing fine particles of calcium salt, a dispersion exhibiting a pH of 9 or more in the absence of a pH adjusting agent, and dilute sulfuric acid, and using lead dioxide and lead as electrodes.

特開平2005−19350JP 2005-19350

バッテリーである鉛蓄電池は、電極板である鉛と希硫酸水溶液を用いた電解液との化学反応により起電力が発生する二次電池である。一般的な鉛蓄電池は、10年程度使用できるように設計されるが、通常4〜5年、早いものは2年も経たずに廃棄されているのが現状である。鉛蓄電池が充電と放電を繰り返すことで、電解液中の硫酸と電極板の鉛が化学反応により結晶化(以下、サルフェーション)した硫酸鉛(PbSo)が電極板に付着する。これにより、鉛蓄電池は、内部抵抗を増大させ、充電不可能な状態になり、廃棄される。 A lead acid battery as a battery is a secondary battery in which an electromotive force is generated by a chemical reaction between lead as an electrode plate and an electrolytic solution using a dilute sulfuric acid aqueous solution. General lead-acid batteries are designed to be usable for about 10 years, but the current situation is that the old ones are usually discarded for 4 to 5 years and less than 2 years. As the lead storage battery repeats charging and discharging, lead sulfate (PbSo 4 ) obtained by crystallization (hereinafter referred to as sulfation) of sulfuric acid in the electrolyte and lead of the electrode plate is attached to the electrode plate. As a result, the lead storage battery increases the internal resistance, becomes unchargeable, and is discarded.

このような鉛蓄電池には、次のような課題がある。
1.硫酸電解液を使用するため、電解液は腐食性および毒性が強いため環境への負荷が大きい。
2.硫酸電解液は、使用しない場合(在庫等)、定期的に補充液を必要とし、長期間保存したものはすぐに使用することができない。
3.充放電時ににおいて、硫酸電解液は金属部分に有害な酸性ガスを発生させ、その近くにいる人体に悪影響を及ぼす。
4.硫酸電解液は、過放電、充電不足、高温度といった過酷な使用条件下においては、通常能力を発揮できない場合がある。
5.硫酸電解液は、イオンの流れが安定せず、そのために自己放電量が多くなる。
6.硫酸電解液によって腐食した極板は、内部短縮を発生し易く、自己放電の増大につながる。
7.完全充電する場合の電力は、充電しようとする蓄電池容量の5倍以上を必要とする。
Such a lead storage battery has the following problems.
1. Since a sulfuric acid electrolytic solution is used, the electrolytic solution is highly corrosive and toxic, so the load on the environment is large.
2. When the sulfuric acid electrolyte is not used (inventory, etc.), a replenisher is required periodically, and those stored for a long time cannot be used immediately.
3. At the time of charging / discharging, the sulfuric acid electrolyte generates harmful acid gas in the metal part, and adversely affects the human body nearby.
4). Sulfuric acid electrolytes may not be able to perform their normal ability under severe use conditions such as overdischarge, insufficient charge, and high temperature.
5. In the sulfuric acid electrolyte, the flow of ions is not stable, and the amount of self-discharge increases accordingly.
6). The electrode plate corroded by the sulfuric acid electrolyte easily causes internal shortening, leading to an increase in self-discharge.
7). The power required for full charging requires at least five times the capacity of the storage battery to be charged.

本発明は、上記従来の課題を解決し、環境に易しく、長時間の使用が可能な蓄電池用の電解液およびその補充液を提供することを目的としている。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide an electrolytic solution for a storage battery that is easy for the environment and can be used for a long time, and a replenisher thereof.

本発明による電解液と従来の硫酸電解液との大きな相違点は、本発明による電解液が海水から物理的に精製された硫酸イオンを使用している点である。本発明は、こうした新規な電解液を用いることで、蓄電池の電極の極板を劣化させずに、かつ、蓄電池の電解液としての能力を最大限引き出すことに成功した。さらに、本発明の電解液が何よりも優れていることは、化学的に作られた硫酸液ではなく、自然な成分の硫酸イオンから作られている。このため、有害性(毒性)がない。   The major difference between the electrolytic solution according to the present invention and the conventional sulfuric acid electrolytic solution is that the electrolytic solution according to the present invention uses sulfate ions that are physically purified from seawater. The present invention succeeded in maximizing the capacity of the storage battery as an electrolyte without deteriorating the electrode plate of the storage battery by using such a novel electrolyte. Further, the superiority of the electrolytic solution of the present invention is made from a natural component of sulfate ion, not a chemically prepared sulfuric acid solution. For this reason, there is no harm (toxicity).

本発明による電解液は、蓄電池に注液された後、極板と接触し、通常、鱗型を形成しているマイクロカーボンを高速水流にて特殊加工されたマイクロカーボン水により極板を保護し、振動、ショック、衝撃に対して強い抵抗力を発揮する。   The electrolyte according to the present invention, after being poured into a storage battery, comes into contact with the electrode plate, and usually protects the electrode plate with microcarbon water specially processed with high-speed water flow from the microcarbon forming a scale. Exhibits strong resistance to vibration, shock and impact.

本発明に係る蓄電池に用いられる電解液は、海水を原料に精製された硫酸イオン水および石炭を原料とするマイクロカーボン粒子を含むものである。好ましくは、硫酸イオン水は、海水を遠心分離することにより生成された強硫酸水を含む。硫酸イオン水は、ミネラルを含むことができる。また、マイクロカーボン粒子は、蓄電池の電極への結晶化物質の付着を抑制する。さらに電解液は希硫酸を含むものであってもよい。本発明の電解液は、蓄電池に最初から注液されてもよいし、充電不可能または性能が劣化した蓄電池に対して補充液として注液されてもよい。   The electrolytic solution used in the storage battery according to the present invention includes sulfate ionized water purified from seawater and microcarbon particles derived from coal. Preferably, the sulfate ion water includes strong sulfate water generated by centrifuging seawater. Sulfate ionized water can contain minerals. Further, the microcarbon particles suppress the adhesion of the crystallized substance to the electrode of the storage battery. Further, the electrolytic solution may contain dilute sulfuric acid. The electrolytic solution of the present invention may be injected into the storage battery from the beginning, or may be injected as a replenisher for a storage battery that cannot be charged or whose performance has deteriorated.

本発明の電解液には次のような効果がある。
1.充放電(使用中)において、酸性ミストおよび危険ガスを発生せず、これにより使用者に安全性を確保することができ、環境を悪化させることがない。
2.特殊加工されたマイクロカーボン水が極板を保護することにより、極板の長寿命を確立することができる。
3.蓄電池の熱、振動、サルフェージョン、および腐食等により発生する損傷を軽減することができる。
4.自己放電量は、1ヶ月全容量の0.5%で、一定期間内であれば、補充液なしで使用することができる。
5.完全充電する電力量を、35%〜40%低減することが可能となり、従来の硫酸電解液に比較して、急速充電が可能である。
6.完全充電に必要な電力量は、蓄電池全容量の約1.4倍となった。
7.蓄電池電圧が3.0V(完全放電)以下になった場合でも、通常方法での再充電をすることができる。
8.比重調整なしで、−40℃〜70℃までの使用が可能である。
9.負荷をかけたときの電圧降下が少なく、無負荷にした場合、電圧リカバリーが非常に速くなった。
The electrolytic solution of the present invention has the following effects.
1. During charging / discharging (in use), acid mist and dangerous gas are not generated, thereby ensuring safety for the user and not deteriorating the environment.
2. The specially processed micro-carbon water protects the electrode plate, so that the long life of the electrode plate can be established.
3. Damage caused by heat, vibration, sulphation, corrosion, etc. of the storage battery can be reduced.
4). The self-discharge amount is 0.5% of the total capacity per month, and can be used without a replenisher within a certain period.
5. It is possible to reduce the amount of electric power to be completely charged by 35% to 40%, and quick charging is possible as compared with a conventional sulfuric acid electrolyte.
6). The amount of power required for full charge was about 1.4 times the total capacity of the storage battery.
7). Even when the storage battery voltage becomes 3.0 V (complete discharge) or less, recharging can be performed by a normal method.
8). It can be used from -40 ° C to 70 ° C without adjusting the specific gravity.
9. When the load is applied, the voltage drop is small, and when no load is applied, the voltage recovery is very fast.

本発明の最良の実施の形態について図面を参照して詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は一般的な鉛蓄電池の構成を示す図である。鉛蓄電池10は、二酸化鉛(PbO)を用いた正電極12と、鉛(Pb)を用いた負電極14と、希硫酸(HSO)を用いた電解液16によって構成される。鉛蓄電池10は、正電極12と負電極14との間に負荷を設けることにより、電流が流れ、起電力が発生する。電解液16は、希硫酸(HSO)水溶液であり、H+イオンとSO 2−イオンを含んでいる。 FIG. 1 is a diagram showing a configuration of a general lead-acid battery. The lead storage battery 10 includes a positive electrode 12 using lead dioxide (PbO 2 ), a negative electrode 14 using lead (Pb), and an electrolytic solution 16 using dilute sulfuric acid (H 2 SO 4 ). In the lead storage battery 10, by providing a load between the positive electrode 12 and the negative electrode 14, a current flows and an electromotive force is generated. The electrolytic solution 16 is a dilute sulfuric acid (H 2 SO 4 ) aqueous solution, and contains H + ions and SO 4 2− ions.

電子は、電解液16中のSO 2−イオンが負電極14に移動し、負電極14Pbと化学反応することで発生し、負電極14から負荷に流れる。また正電極12PbOは、負荷から流れてきた電子と電解液16中のH+イオンと化学反応することで、正電極12と負電極14の間に起電力が発生する。 Electrons are generated when SO 4 2− ions in the electrolytic solution 16 move to the negative electrode 14 and chemically react with the negative electrode 14Pb, and flow from the negative electrode 14 to the load. The positive electrode 12PbO 2 generates an electromotive force between the positive electrode 12 and the negative electrode 14 by chemically reacting with electrons flowing from the load and H + ions in the electrolytic solution 16.

鉛蓄電池10は、長期間繰り返し使用することにより、正電極12と負電極14の表面に化学反応によりサルフェーションした硫酸化鉛(PbSO)が付着する。この硫酸化鉛(PbSO)が、正電極12、負電極14と電解液16との化学反応の妨げとなり、鉛蓄電池10のバッテリー機能低下の原因となる。 When the lead storage battery 10 is used repeatedly for a long time, lead sulfate (PbSO 4 ) sulfated by a chemical reaction adheres to the surfaces of the positive electrode 12 and the negative electrode 14. This lead sulfate (PbSO 4 ) hinders the chemical reaction between the positive electrode 12, the negative electrode 14 and the electrolytic solution 16, and causes the battery function of the lead storage battery 10 to deteriorate.

本発明に係るバッテリー液(電解液)または補充液は、海水、特に海洋深層水を原料とした精製された硫酸イオン水と、石炭を原料としたマイクロカーボン水によって構成される。硫酸イオン水は、海水を、例えば、極低温の環境下で、約180分間、遠心分離し、海水から塩素イオンを除去し、精製される。   The battery solution (electrolyte) or replenisher according to the present invention is composed of purified sulfate ion water made from seawater, particularly deep sea water, and microcarbon water made from coal. Sulfate ion water is purified by centrifuging seawater, for example, in a cryogenic environment for about 180 minutes to remove chloride ions from the seawater.

図2は、海水により精製された硫酸イオン水の化学組成を示している。硫酸イオン水は、ほぼPHがゼロの強酸性水である、硫酸イオンの他、多数のミネラルを含んでいる。硫酸イオン水に含まれる硫酸イオンが、電解液としての役割を持ち、電極に使用されている鉛および二酸化鉛と化学反応することで鉛蓄電池に起電力が発生する。海洋深層水を用いると、一般の海洋水が含むカルシウムとマグネシウムの比率が異なり、カルシウムの濃度が高く、マグネシウムの濃度が低くなる。   FIG. 2 shows the chemical composition of sulfate ion water purified by seawater. Sulfate ion water contains a large number of minerals in addition to sulfate ion, which is a strongly acidic water having almost zero PH. Sulfate ions contained in sulfate ion water have a role as an electrolytic solution, and an electromotive force is generated in the lead storage battery by chemically reacting with lead and lead dioxide used in the electrodes. When deep ocean water is used, the ratio of calcium and magnesium contained in general ocean water is different, the calcium concentration is high, and the magnesium concentration is low.

また、マイクロカーボン水は、円形若しくは球形状のマイクロカーボンを0.005%、水分を99.995%を含んで構成される。本実施例の電解液は、硫酸イオン水とマイクロカーボン水とを、好ましくは約1対100の割合で含んでいる。   The microcarbon water contains 0.005% of circular or spherical microcarbon and 99.995% of water. The electrolytic solution of this example preferably contains sulfate ion water and microcarbon water in a ratio of about 1: 100.

図1で示す鉛蓄電池10の電解液16に本発明に係る電解液を注液する。鉛蓄電池が繰り返し充放電されても、バッテリー電解液は、負電極14の表面に付着する硫酸化鉛(PbSO)のサルフェーションを抑え、バッテリー機能を長い期間維持する。また、鉛蓄電池が長い期間使用されずにいると、自己放電により残存容量が低下するが、本発明に係る電解液を用いることで自己放電量も抑えることができる。さらに完全充電に必要な電気量は、蓄電池全容量の1.4倍となり、比重調整なしで−40〜+70℃まで使用できる。 The electrolytic solution according to the present invention is injected into the electrolytic solution 16 of the lead storage battery 10 shown in FIG. Even if the lead storage battery is repeatedly charged and discharged, the battery electrolyte suppresses sulfation of lead sulfate (PbSO 4 ) adhering to the surface of the negative electrode 14 and maintains the battery function for a long period of time. In addition, if the lead storage battery is not used for a long period of time, the remaining capacity decreases due to self-discharge, but the amount of self-discharge can also be suppressed by using the electrolytic solution according to the present invention. Furthermore, the amount of electricity required for complete charging is 1.4 times the total capacity of the storage battery, and can be used up to -40 to + 70 ° C without adjusting the specific gravity.

本発明の電解液は、海水から物理的に精製された硫酸イオン水とマイクロカーボン水により構成されているため、従来の電解液である硫酸水溶液よりも人体や環境に対して有害性が低く、さらにマイクロカーボン水は電極板を保護し、振動やショック衝撃に対して強い抵抗力を持つ。   Since the electrolyte solution of the present invention is composed of sulfate ion water and microcarbon water physically purified from seawater, it is less harmful to the human body and the environment than the conventional sulfuric acid aqueous solution, Furthermore, microcarbon water protects the electrode plate and has a strong resistance to vibrations and shocks.

図3は、本発明の実施例に係る電解液(以下、本発明品という)と従来の硫酸バッテリー液との能力を比較する表である。これらの表からも明らかなように、従来品よりも性能が向上していることがわかる。   FIG. 3 is a table comparing the capacities of an electrolytic solution according to an embodiment of the present invention (hereinafter referred to as a product of the present invention) and a conventional sulfuric acid battery solution. As is clear from these tables, it can be seen that the performance is improved over the conventional products.

次に、本発明品と従来の硫酸バッテリー液とを比較した実験例を説明する。図4は、硫酸バッテリー液と本実施例の電解液の充電性能比較を示すグラフである。横軸は、時間を示し、縦軸はターミナル電圧を示している。●は、本発明品を示し、■は、従来のバッテリー液を示している。本発明品は、従来の硫酸バッテリー液よりも迅速に充電でき、高い充電性能を有することが分かる。   Next, an experimental example comparing the product of the present invention with a conventional sulfuric acid battery solution will be described. FIG. 4 is a graph showing a comparison of charging performance between the sulfuric acid battery solution and the electrolyte solution of this example. The horizontal axis represents time, and the vertical axis represents terminal voltage. ● indicates a product of the present invention, and ■ indicates a conventional battery fluid. It can be seen that the product of the present invention can be charged more rapidly than the conventional sulfuric acid battery solution and has a high charging performance.

図5は、本発明品と硫酸バッテリー液の放電性能比較を示すグラフである。横軸は時間を示し、縦軸はターミナル電圧を示している。本発明品は、硫酸バッテリー液よりも放電効率が高く、高い放電性能を有することが分かる。   FIG. 5 is a graph showing a comparison of discharge performance between the product of the present invention and a sulfuric acid battery solution. The horizontal axis represents time, and the vertical axis represents terminal voltage. It can be seen that the product of the present invention has higher discharge efficiency and higher discharge performance than the sulfuric acid battery solution.

図6は、本発明品と硫酸バッテリー液の自己放電性能比較を示すグラフである。横軸は時間を示し、残存容量を示している。本発明品は、硫酸バッテリー液よりも自己放電を抑え、長期間使用ような状況下であっても、残存容量を維持できることが確認できる。   FIG. 6 is a graph showing a comparison of self-discharge performance between the product of the present invention and a sulfuric acid battery solution. The horizontal axis represents time and the remaining capacity. It can be confirmed that the product of the present invention suppresses self-discharge more than the sulfuric acid battery solution and can maintain the remaining capacity even under long-term use conditions.

次に、本発明の実施例に係る電解液を、寿命が終わったバッテリー電解液に注入して廃バッテリーの再生過程を観察した。ここでは、海水として海洋深層水を用いている。   Next, the electrolytic solution according to the example of the present invention was injected into the battery electrolytic solution whose life was over, and the regeneration process of the waste battery was observed. Here, deep sea water is used as seawater.

本実施例の電解液を、30mlずつ、6等分して、鉛バッテリーの電解液注入口から注液をおこなった。電解液を注入後、比重の変化を測定したが比重およびセル当り起電力に変化は見られなかった。次に、低電流充電法により鉛バッテリーを2時間ほど充電した。その結果、鉛バッテリーから12.6V以上の起電力が発生した。   The electrolyte solution of the present example was divided into 6 equal portions of 30 ml and injected from the electrolyte solution inlet of the lead battery. After injecting the electrolyte, the change in specific gravity was measured, but no change was found in specific gravity and electromotive force per cell. Next, the lead battery was charged for about 2 hours by the low current charging method. As a result, an electromotive force of 12.6 V or more was generated from the lead battery.

このように海水から精製された硫酸イオンを含む電解液は、蓄電池の電極板の表面に付着する硫酸化鉛(PbSO)のサルフェーションを抑え、バッテリー機能を長期間維持できる。また使用中において、酸性ミストおよび危険ガスが発生しないため、使用者の安全性を確保し、環境汚染を軽減することができる。また、電解液を微量添加するだけで、廃バッテリーを再生することができる。 Thus, the electrolytic solution containing sulfate ions purified from seawater suppresses sulfation of lead sulfate (PbSO 4 ) adhering to the surface of the electrode plate of the storage battery, and can maintain the battery function for a long period of time. Moreover, since acid mist and dangerous gas are not generated during use, the safety of the user can be ensured and environmental pollution can be reduced. Moreover, a waste battery can be regenerated only by adding a small amount of electrolyte.

以上、本発明の好ましい実施の形態について詳述したが、本発明に係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments according to the present invention, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation / change is possible.

本発明に係る蓄電池用の電解液は、自動車、電気自動車、船舶、軍事関係、鉄道、アラームシステム、据え置き型バッテリー、通信機関系、掘削機械、建設機械/重機、コンピュータ、農機具、電動リフト、家電製品等において利用することができる。   The electrolyte for a storage battery according to the present invention includes automobiles, electric cars, ships, military relations, railways, alarm systems, stationary batteries, communication systems, excavating machines, construction machinery / heavy machinery, computers, agricultural equipment, electric lifts, home appliances. It can be used in products.

一般的な鉛蓄電池の構成を示す図である。It is a figure which shows the structure of a general lead acid battery. 本発明の実施例に係る電解液の化学的組成を示す図である。It is a figure which shows the chemical composition of the electrolyte solution which concerns on the Example of this invention. 本発明品と硫酸バッテリー液の能力比較表である。It is a capability comparison table | surface of this invention product and a sulfuric acid battery solution. 本発明品と硫酸バッテリー液の充電性能比較を示すグラフである。It is a graph which shows the charge performance comparison of this invention goods and a sulfuric acid battery liquid. 本発明品と硫酸バッテリー液の放電性能比較を示すグラフである。It is a graph which shows the discharge performance comparison of this invention product and a sulfuric acid battery solution. 本発明品と硫酸バッテリー液の自己放電性能比較を示すグラフである。It is a graph which shows the self-discharge performance comparison of this invention product and a sulfuric acid battery solution.

符号の説明Explanation of symbols

10:鉛蓄電池 12:正電極
14:負電極 16:電解液
10: Lead acid battery 12: Positive electrode 14: Negative electrode 16: Electrolytic solution

Claims (7)

蓄電池に用いられる電解液であって、
海水から物理的に精製された硫酸イオン水とマイクロカーボン水により構成され、
前記マイクロカーボン水は、円形若しくは球形状のマイクロカーボンを含んで構成される、電解液。
An electrolyte used for lead acid batteries,
Consists of sulfate ion water and microcarbon water physically purified from seawater ,
The microcarbon water is an electrolytic solution including a circular or spherical microcarbon .
前記硫酸イオン水は、海水を遠心分離することにより生成された強硫酸水を含む、請求項1に記載の電解液。 The electrolyte solution according to claim 1, wherein the sulfate ion water includes strong sulfate water generated by centrifuging seawater. 前記硫酸イオン水は、ミネラルを含む、請求項1または2に記載の電解液。 The sulfate ion water comprises a mineral electrolyte as claimed in claim 1 or 2. 海水は、海洋深層水である、請求項1ないし3いずれか1つに記載の電解液。 The electrolyte according to any one of claims 1 to 3, wherein the seawater is deep seawater. 前記マイクロカーボン粒子は、蓄電池の電極への結晶化物質の付着を抑制する、請求項1または2に記載の電解液。 The micro carbon particles, inhibits adhesion of crystallization agent on the lead-acid battery electrodes, the electrolyte solution according to claim 1 or 2. 前記電解液はさらに希硫酸を含む、請求項1ないし5いずれか1つに記載の電解液。 The electrolytic solution according to claim 1, wherein the electrolytic solution further contains dilute sulfuric acid. 請求項1ないし6いずれか1つに記載の電解液を用意し、
電解液を蓄電池用のバッテリー補充液として加える、蓄電池の再生方法。
An electrolyte solution according to any one of claims 1 to 6 is prepared,
A method for regenerating a lead acid battery, wherein the electrolyte is added as a battery replenisher for the lead acid battery.
JP2006167924A 2006-06-16 2006-06-16 Battery solution for storage battery or its replenisher Active JP5008345B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006167924A JP5008345B2 (en) 2006-06-16 2006-06-16 Battery solution for storage battery or its replenisher
KR1020060103407A KR20070120011A (en) 2006-06-16 2006-10-24 Additives for electrolyte solution of storage battery, and method for preparing the same
KR1020070123321A KR20070122430A (en) 2006-06-16 2007-11-30 Additives for electrolyte solution of storage battery, and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167924A JP5008345B2 (en) 2006-06-16 2006-06-16 Battery solution for storage battery or its replenisher

Publications (2)

Publication Number Publication Date
JP2007335322A JP2007335322A (en) 2007-12-27
JP5008345B2 true JP5008345B2 (en) 2012-08-22

Family

ID=38934574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167924A Active JP5008345B2 (en) 2006-06-16 2006-06-16 Battery solution for storage battery or its replenisher

Country Status (2)

Country Link
JP (1) JP5008345B2 (en)
KR (2) KR20070120011A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153206A (en) * 2008-12-25 2010-07-08 Hosoda Denki:Kk Electrolyte for battery and the battery
EP2549548A4 (en) * 2010-03-19 2014-05-21 Tokyo Inst Tech Solar cell having porous structure in which metal nanoparticles are carried in pores
CN102340037B (en) * 2011-09-30 2013-10-16 河南超威电源有限公司 Method and device for preparing colloidal acid of lead-acid storage battery
CN103545561A (en) * 2013-09-29 2014-01-29 青岛盛嘉信息科技有限公司 Additive of lead battery electrolyte
TWI583043B (en) 2014-03-31 2017-05-11 長興材料工業股份有限公司 Electrolyte composition
KR20160126580A (en) 2015-04-24 2016-11-02 김이환 Battery electrolyte composition and a method of manufacturing the same
US10985059B2 (en) 2018-11-01 2021-04-20 Northrop Grumman Systems Corporation Preclean and dielectric deposition methodology for superconductor interconnect fabrication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547134A (en) * 1977-06-18 1979-01-19 Shigeyuki Yasuda Electrolyte for lead storage battery
JP2736243B2 (en) * 1995-04-22 1998-04-02 賢一 藤田 Electrolytic solution for lead-acid battery, lead-acid battery using the same, and method of determining whether lead-acid battery can be regenerated
JP2002142722A (en) * 2000-11-14 2002-05-21 Tanpei Seiyaku Kk Nutritional food
JP2002164060A (en) * 2000-11-22 2002-06-07 Koken Kk Power generating method using sea water
JP2002292248A (en) * 2001-03-30 2002-10-08 Kochi Prefecture Mineral solution obtained from seawater and its manufacturing method
JP4293587B2 (en) * 2002-10-29 2009-07-08 高明 宮薗 Lead-acid battery regeneration method and apparatus used therefor
JP4361761B2 (en) * 2003-06-06 2009-11-11 室戸海洋深層水株式会社 Salt making equipment
JP2005019350A (en) * 2003-06-30 2005-01-20 Kanji Hosokawa Lead acid battery
JP2005063876A (en) * 2003-08-19 2005-03-10 Tanaka Yasutaka Storage battery regenerant, and regeneration method of deteriorated storage battery using it
JP2007087787A (en) * 2005-09-22 2007-04-05 Yukinobu Mori Renewable battery and power generation system using the same

Also Published As

Publication number Publication date
JP2007335322A (en) 2007-12-27
KR20070122430A (en) 2007-12-31
KR20070120011A (en) 2007-12-21

Similar Documents

Publication Publication Date Title
JP5008345B2 (en) Battery solution for storage battery or its replenisher
KR102139516B1 (en) Degradation protection of solid alkali ion conductive electrolyte membrane
CN101091282A (en) Lead storage battery and process for producing the same
JP2008536271A (en) Lithium rechargeable battery with surplus LiFePO4 based cathode relative to Li4Ti5O12 based anode
WO2009026500A1 (en) Alkali metal battery
EP2323213A1 (en) Lead-zinc battery
US20060035145A1 (en) Lead-zinc battery
US20130045415A1 (en) Lead-zinc battery
WO2007002160A2 (en) Lead-alkaline battery
CN104067436B (en) Lead accumulator
US9147912B2 (en) Method of producing an electrical potential
JP2008041299A (en) Lead-acid battery
US20200303716A1 (en) Systems and Methods for Potassium Enhancing Silicon-Containing Anodes For Improved Cyclability
US20040018427A1 (en) Battery life extender additives
WO2005011042A1 (en) Additive for electrolyte solution of lead acid battery and lead acid battery
CN100541876C (en) A kind of hermetic lead accumulator method in useful life that prolongs
KR102213399B1 (en) Battery charge transfer mechanisms
WO2003041195A1 (en) Lead battery
KR20160032773A (en) Electrolyte solution comprising sulfur dioxide based gallium inorganic electrolyte and sodium-sulfur dioxide secondary battery having the same
US20120258372A1 (en) Battery life extender
JP2008084804A (en) Life extension agent for lead storage battery, life extension method of lead storage battery, electrolyte of lead storage battery and lead storage battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
JP2005294142A (en) Lead storage battery
WO2016152055A1 (en) Transition metal cyanometallate cathode battery with metal plating anode
JP2005063876A (en) Storage battery regenerant, and regeneration method of deteriorated storage battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250