JP5007142B2 - Resin nut and sliding screw device - Google Patents

Resin nut and sliding screw device Download PDF

Info

Publication number
JP5007142B2
JP5007142B2 JP2007097691A JP2007097691A JP5007142B2 JP 5007142 B2 JP5007142 B2 JP 5007142B2 JP 2007097691 A JP2007097691 A JP 2007097691A JP 2007097691 A JP2007097691 A JP 2007097691A JP 5007142 B2 JP5007142 B2 JP 5007142B2
Authority
JP
Japan
Prior art keywords
nut
resin
screw shaft
analysis
resin nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007097691A
Other languages
Japanese (ja)
Other versions
JP2008256049A (en
Inventor
卓哉 石井
工 林
徳次 梅原
裕之 上坂
大輔 平井
友晴 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007097691A priority Critical patent/JP5007142B2/en
Publication of JP2008256049A publication Critical patent/JP2008256049A/en
Application granted granted Critical
Publication of JP5007142B2 publication Critical patent/JP5007142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transmission Devices (AREA)

Description

本発明は、樹脂製ナットおよびこれを用いたすべりねじ装置に関し、特にナットの肉厚を、構造解析に基づいてねじ接触面での接触圧力分布を均一化できる厚みとした樹脂製ナットおよびこれを用いたすべりねじ装置に関する。   The present invention relates to a resin nut and a sliding screw device using the same, and in particular, the thickness of the nut is set to a thickness capable of uniforming the contact pressure distribution on the screw contact surface based on structural analysis, and the nut The present invention relates to the sliding screw device used.

回転運動を直線運動に変換するすべりねじ装置は、ボールねじ装置に較べてコンパクトに設計できるという利点がある。ナットを用いたすべりねじ装置は、ねじ軸を回転駆動して、ナットのフランジに直線駆動力が伝達される移動テーブル等の被駆動体を取り付ける場合が多く、各種産業機械の送り装置や位置決め装置等に多用されている。そのなかで樹脂製ナットを用いたすべりねじ装置は、近年光学測定機器、半導体製造装置、医療機器など用途が拡大するとともに、それぞれの装置に応じた仕様や特性が要求されるようになってきている。   A slide screw device that converts rotational motion into linear motion has the advantage that it can be designed more compactly than a ball screw device. Sliding screw devices using nuts often attach driven bodies such as moving tables that rotate the screw shaft and transmit linear driving force to the flanges of the nuts. Etc. Among them, sliding screw devices using resin nuts have recently been used for optical measuring equipment, semiconductor manufacturing equipment, medical equipment, etc., and specifications and characteristics according to each equipment have been required. Yes.

すべりねじ装置用の樹脂製ナットとしては、切削加工や射出成形によって全体が樹脂で形成され、このナットを形成する樹脂として、熱可塑性ポリイミド樹脂を用いたもの(特許文献1参照)、ポリフェニレンサルファイド樹脂を用いたもの(特許文献2参照)、ポリフェニレンサルファイド樹脂に四フッ化エチレン樹脂や高温で非溶融の有機樹脂粉末を配合したもの(特許文献3参照)等が開示されている。   As a resin nut for a sliding screw device, the whole is formed of a resin by cutting or injection molding, and a resin using a thermoplastic polyimide resin as a resin for forming this nut (see Patent Document 1), polyphenylene sulfide resin (Refer to Patent Document 2), and polyphenylene sulfide resin blended with tetrafluoroethylene resin or organic resin powder not melted at high temperature (refer to Patent Document 3).

しかしながら、樹脂製ナットは、ねじ山が偏摩耗しやすく位置決め精度が低下するため、高面圧条件下では長寿命化することができなかった。また、耐荷重を向上させるべくナット肉厚を厚くし過ぎると、この偏摩耗がより顕著になるという問題があった。
特開平6−193701号公報 特開2001−116102号公報 特開2003−239932号公報
However, since the screw nut is likely to be unevenly worn and the positioning accuracy is lowered, the resin nut cannot be extended in life under high surface pressure conditions. Further, if the nut thickness is increased too much in order to improve the load resistance, there is a problem that this uneven wear becomes more remarkable.
JP-A-6-193701 JP 2001-116102 A JP 2003-239932 A

本発明はこのような問題に対処するためになされたものであり、ねじ山の偏摩耗を低減させることができ、高面圧条件下でも長寿命である樹脂製ナット、および、該ナットを用いたすべりねじ装置を提供することを目的とする。   The present invention has been made to deal with such problems, and can reduce uneven wear of a screw thread and has a long life even under high surface pressure conditions, and uses the nut. An object of the present invention is to provide a sliding screw device.

本発明の樹脂製ナットは、ねじ軸に螺合され、ねじ軸と軸方向に相対移動する所定肉厚を有する樹脂製ナットであって、上記所定肉厚は、上記樹脂製ナットの軸方向断面において、該樹脂製ナットに荷重を加えたときの該樹脂製ナットと上記ねじ軸との接触面における軸方向の接触圧力分布を略均一とできる厚さであり、上記接触圧力分布は、上記樹脂製ナットの二次元軸対称モデルを用いて有限要素法による解析により求めたものであることを特徴とする。   The resin nut of the present invention is a resin nut having a predetermined thickness that is screwed onto a screw shaft and moves relative to the screw shaft in the axial direction, and the predetermined thickness is an axial section of the resin nut. The contact pressure distribution in the axial direction on the contact surface between the resin nut and the screw shaft when a load is applied to the resin nut is substantially uniform, and the contact pressure distribution is It is obtained by analysis by a finite element method using a two-dimensional axisymmetric model of a nut made.

上記有限要素法による解析は、上記ねじ軸と上記樹脂製ナットとの摺動時における上記ねじ軸と樹脂製ナット内部の温度分布を求めた後、該温度分布と、所定の負荷荷重とを拘束条件として上記接触圧力分布の解析を行なう伝熱−構造連成解析であることを特徴とする。   In the analysis by the finite element method, the temperature distribution inside the screw shaft and the resin nut during the sliding between the screw shaft and the resin nut is obtained, and then the temperature distribution and a predetermined load are constrained. It is a heat transfer-structure coupled analysis that analyzes the contact pressure distribution as a condition.

上記所定肉厚は、(所定肉厚)/(樹脂製ナットの軸方向長さ)の値が、0.1 〜 0.24 の範囲となる厚さであることを特徴とする。   The predetermined thickness is characterized in that a value of (predetermined thickness) / (axial length of resin nut) is in a range of 0.1 to 0.24.

上記樹脂製ナットは、フランジが形成されていることを特徴とする。   The resin nut is characterized in that a flange is formed.

本発明のすべりねじ装置は、ねじ軸にナットを螺合して、ナットをねじ軸と軸方向に相対移動させるすべりねじ装置であって、このナットが上記本発明の樹脂製ナットであることを特徴とする。   The sliding screw device of the present invention is a sliding screw device in which a nut is screwed onto a screw shaft and the nut is moved relative to the screw shaft in the axial direction, and the nut is the resin nut of the present invention. Features.

本発明の樹脂製ナットはその肉厚を、所定のモデルを用いた有限要素法による伝熱−構造連成解析により、ナットのねじ山が受けるねじ軸との接触圧力分布を正確に解析し、該解析結果に基づいて上記接触圧力分布が概ね均一化できる厚さとするので、高面圧条件下でもねじ山の偏摩耗が少なくなり、ナットの長寿命化が図れる。
特にこの肉厚を、(所定肉厚)/(樹脂製ナットの軸方向長さ)の値が、0.1 〜 0.24 の範囲となる厚さとすることで、接触圧力分布を均一化させるとともに最大接触圧力を低減させることができ、すべりねじ装置の耐荷重の上限の引き上げ、および高面圧条件下での長寿命化を図れる。
The resin nut of the present invention accurately analyzes the contact pressure distribution with the screw shaft received by the screw thread of the nut by the heat transfer-structure coupled analysis by the finite element method using a predetermined model, Since the thickness of the contact pressure distribution is made substantially uniform based on the analysis result, uneven wear of the screw thread is reduced even under high surface pressure conditions, and the life of the nut can be extended.
In particular, by setting this thickness to a value that (predetermined thickness) / (axial length of resin nut) is in the range of 0.1 to 0.24, the contact pressure distribution is made uniform and the maximum contact pressure is achieved. The upper limit of the load resistance of the sliding screw device can be increased, and the life can be extended under high surface pressure conditions.

本発明のすべりねじ装置は、ねじ軸にナットを螺合して、ナットをねじ軸と軸方向に相対移動させるすべりねじ装置において、ねじ山の偏摩耗の少ない上記樹脂製ナットを用いるので、高面圧条件下において長寿命となる。   The sliding screw device according to the present invention uses the above resin nut with less uneven wear of the thread in the sliding screw device in which the nut is screwed onto the screw shaft and the nut is moved relative to the screw shaft in the axial direction. Long life under surface pressure conditions.

本発明の樹脂製ナットおよびこれを用いたすべりねじ装置を図1および図2に基づいて説明する。図1はすべりねじ装置の斜視図を、図2は樹脂製ナットの軸方向断面図をそれぞれ示す。
すべりねじ装置2は、ねじ軸1と、このねじ軸1のねじ溝に螺合し、このねじ軸上を摺動しながら移動する樹脂製ナット3とから構成され、ねじ軸1の回転運動が樹脂製ナット3の直線運動に変換される。その他に、樹脂製ナット3を同じ位置で回転させることによりねじ軸1に直線運動を付与する使い方もできる。樹脂製ナット3は、樹脂組成物を射出成形等することで成型される。
A resin nut and a sliding screw device using the same according to the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a sliding screw device, and FIG. 2 is an axial sectional view of a resin nut.
The sliding screw device 2 includes a screw shaft 1 and a resin nut 3 that is screwed into the screw groove of the screw shaft 1 and moves while sliding on the screw shaft 1. It is converted into a linear motion of the resin nut 3. In addition, it is also possible to apply a linear motion to the screw shaft 1 by rotating the resin nut 3 at the same position. The resin nut 3 is molded by injection molding of a resin composition.

図2に示すように、樹脂製ナット3は所定の肉厚tを有し、その内径面には、ねじ軸1(図1参照)に螺合される雌ねじ3aが形成されている。本発明において樹脂製ナット3の肉厚tとは、図2に示すようにねじ部分を除く円筒形状ナットの円筒厚みである。肉厚tの決定方法については後述する。また、樹脂製ナット3のフランジ4には、移動テーブル等の被駆動体が取り付けられる。
樹脂製ナット3の内径面の雌ねじ3aは射出成形時の金型によって形成される。また、雌ねじ3aは射出成形後に機械加工で形成することもでき、ねじ山の形状は特に限定されず、台形、ゴシックアーク、三角、矩形等いずれの形状であってもよい。
As shown in FIG. 2, the resin nut 3 has a predetermined thickness t, and an internal thread 3 a that is screwed to the screw shaft 1 (see FIG. 1) is formed on the inner diameter surface thereof. In the present invention, the wall thickness t of the resin nut 3 is the cylindrical thickness of the cylindrical nut excluding the threaded portion as shown in FIG. A method for determining the wall thickness t will be described later. A driven body such as a moving table is attached to the flange 4 of the resin nut 3.
The internal thread 3a on the inner diameter surface of the resin nut 3 is formed by a mold during injection molding. The internal thread 3a can also be formed by machining after injection molding, and the shape of the thread is not particularly limited, and may be any shape such as a trapezoid, a gothic arc, a triangle, and a rectangle.

樹脂製ナット3を形成するための樹脂組成物としては、熱可塑性ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリアミドイミド樹脂、フェノール樹脂、およびこれらをブレンドしたもの等を主成分として、四フッ化エチレン(PTFE)樹脂を 10〜40 体積%程度配合した樹脂組成物が挙げられる。なお、PPS樹脂としては、分子の架橋状態により架橋型、半架橋型、直鎖型、分岐型等のものがあるが、いずれも使用でき、これらをブレンドしたものであってもよい。   The resin composition for forming the resin nut 3 is mainly composed of thermoplastic polyimide resin, polyether ether ketone resin, polyphenylene sulfide (PPS) resin, polyamideimide resin, phenol resin, and blends thereof. The resin composition which mix | blended about 10-40 volume% of tetrafluoroethylene (PTFE) resin is mentioned. The PPS resin includes a cross-linked type, a semi-cross-linked type, a linear type, a branched type, and the like depending on the cross-linked state of the molecule, and any of them can be used, or a blend of these may be used.

上記主成分となる樹脂としては、PPS樹脂が好ましい。主成分をPPS樹脂とすることにより、十分実用的で使用温度範囲(摺動部温度が−5℃〜150℃)が広く、かつ安価に樹脂製ナットが得られる。また、PPS樹脂は耐薬品性に優れているため、水中、薬液中などの環境下でも使用可能となる。また、PPS樹脂に、PTFE樹脂を配合することにより、安定した低摩擦特性が得られ、騒音がなく、起動摩擦係数も低くなり、耐摩耗性も向上する。   As the resin as the main component, a PPS resin is preferable. By using a PPS resin as the main component, a resin nut can be obtained at a low cost and sufficiently practical, with a wide operating temperature range (sliding portion temperature of −5 ° C. to 150 ° C.). Moreover, since the PPS resin is excellent in chemical resistance, it can be used even in an environment such as water or chemicals. Further, by blending PTFE resin with PPS resin, stable low friction characteristics can be obtained, there is no noise, the starting friction coefficient is lowered, and the wear resistance is improved.

これらの樹脂には、その潤滑性を阻害しない程度で、炭素粉末、酸化鉄、酸化チタン等の着色剤、黒鉛、金属粉末、金属酸化物粉末、炭素粉末等の熱伝導性向上剤、およびガラス繊維、炭素繊維、アラミド繊維、ウィスカ等の耐摩耗性向上材を配合してもよい   These resins include colorants such as carbon powder, iron oxide, and titanium oxide, thermal conductivity improvers such as graphite, metal powder, metal oxide powder, and carbon powder, and glass, so long as the lubricity is not impaired. Wear resistance improving materials such as fiber, carbon fiber, aramid fiber, whisker, etc. may be blended.

上述したように樹脂製ナットは、ねじ山が偏摩耗しやすく位置決め精度が低下するという問題があった。この偏摩耗の原因を探るべく、ナットの二次元軸対称モデルを用いて有限要素法による構造解析を行なったところ、ナットの軸方向断面において、ナットの雌ねじと、ねじ軸の雄ねじとの接触面における軸方向の接触圧力分布が摩耗量の偏りに合わせて偏っていることが分かった。これに対し、ナットの肉厚の影響について種々検討・解析した結果、肉厚が薄すぎる場合や、厚すぎる場合では、ねじ接触面での上記接触圧力分布が偏るが、所定の範囲内とすることで、該接触圧力分布を略均一にできるとともに、最大接触圧力を低減させることができることを見出した。本発明の樹脂製ナットは、構造解析に基づいてナット肉厚を決定するという製造工程において特徴を有するものである。   As described above, the resin nut has a problem in that the screw thread is likely to be unevenly worn and the positioning accuracy is lowered. In order to investigate the cause of this uneven wear, structural analysis was carried out by the finite element method using a two-dimensional axisymmetric model of the nut, and in the axial section of the nut, the contact surface between the female screw of the nut and the male screw of the screw shaft It was found that the axial contact pressure distribution was uneven in proportion to the wear amount. On the other hand, as a result of various examinations and analysis on the influence of the nut thickness, when the thickness is too thin or too thick, the contact pressure distribution on the screw contact surface is biased, but within a predetermined range. Thus, it was found that the contact pressure distribution can be made substantially uniform and the maximum contact pressure can be reduced. The resin nut of the present invention is characterized in the manufacturing process of determining the nut thickness based on the structural analysis.

樹脂製ナット3の所定肉厚tは、樹脂製ナット3の軸方向断面(図2参照)において、該樹脂製ナットに荷重を加えたときの樹脂製ナットとねじ軸との接触面における軸方向の接触圧力分布を略均一とできる厚さであればよい。
本発明において接触圧力分布とは、樹脂製ナット3の任意の軸方向断面において、ピッチ数と同数だけある摩擦接触面の接触圧力(ピーク値)を軸方向に見た分布であり、該接触圧力分布が略均一であるとは、この各接触面における接触圧力(ピーク値)の分布の偏りが小さく略均一であることをいう。
また、本発明における上記略均一とは、接触圧力分布において、各接触面における接触圧力(ピーク値)の最小値(非接触を除く)と最大値との比が 10 以下であることをいう。
The predetermined thickness t of the resin nut 3 is the axial direction at the contact surface between the resin nut and the screw shaft when a load is applied to the resin nut in the axial cross section of the resin nut 3 (see FIG. 2). Any thickness may be used as long as the contact pressure distribution can be made substantially uniform.
In the present invention, the contact pressure distribution is a distribution in which the contact pressure (peak value) of the friction contact surface that is the same as the number of pitches in an arbitrary axial section of the resin nut 3 is viewed in the axial direction. The distribution being substantially uniform means that the distribution of the contact pressure (peak value) on each contact surface is small and substantially uniform.
In the present invention, the term “substantially uniform” means that, in the contact pressure distribution, the ratio between the minimum value (excluding non-contact) and the maximum value of the contact pressure (peak value) at each contact surface is 10 or less.

所定肉厚tは、(所定肉厚t)/(樹脂製ナットの軸方向長さL)の値が、0.1 〜 0.24 の範囲となる厚さであることが好ましい(図2参照)。例えば、軸方向長さLが 25 mmの場合は、肉厚tは、2.5 mm 〜 6.0 mmとすることが好ましい。樹脂製ナット3の所定肉厚tを、この範囲内とすることで、上記接触圧力分布を均一化でき、最大接触圧力も低減できる。   The predetermined thickness t is preferably such that the value of (predetermined thickness t) / (axial length L of the resin nut) is in the range of 0.1 to 0.24 (see FIG. 2). For example, when the axial length L is 25 mm, the wall thickness t is preferably 2.5 mm to 6.0 mm. By setting the predetermined thickness t of the resin nut 3 within this range, the contact pressure distribution can be made uniform, and the maximum contact pressure can also be reduced.

上記接触圧力分布を有限要素法により求める手順を以下に説明する。有限要素法による解析手段としては、既存の解析ソフト等を使用できる。以下実施例に示す解析結果等は、米国アンシス社製の解析ソフト「ANSYS」バージョン 8.0 を使用した結果である。
図3に示すような二次元軸対称(図中y軸で対称)のモデルを用いて解析を行なった。該簡略化モデルとしたのは、ナット構造がほぼ軸対称であることと、計算時間を短縮できるためである。簡略化しているため若干実際とは異なる構造部分があるが、全体の構造の中で大きな影響を及ぼす要素であるとは考え難い。また、実際は回転することで接触面に摩擦発熱が生じるのであるが、モデルが二次元のため、回転が考慮できない。そこで、摩擦面については、回転の摩擦によって起こる摩擦熱を算出し、接触面に熱流束という形で熱の供給を設定することで解析を行なった。
The procedure for obtaining the contact pressure distribution by the finite element method will be described below. As analysis means by the finite element method, existing analysis software or the like can be used. The analysis results and the like shown in the following examples are the results of using analysis software “ANSYS” version 8.0 manufactured by Ansys, USA.
Analysis was performed using a two-dimensional axially symmetric model (symmetrical with respect to the y-axis in the figure) as shown in FIG. The simplified model is because the nut structure is substantially axisymmetric and the calculation time can be shortened. Although it is simplified, there are structural parts that are slightly different from the actual ones, but it is difficult to consider that they are elements that have a great influence on the overall structure. Moreover, in fact, frictional heat is generated on the contact surface by rotating, but the rotation cannot be considered because the model is two-dimensional. Therefore, the frictional surface was analyzed by calculating the frictional heat generated by rotational friction and setting the heat supply to the contact surface in the form of heat flux.

樹脂製ナットを用いたすべりねじ装置において、ナットの破断が起きたときの負荷荷重は材料強度のみから想定される荷重より低い値であることが多い。これは、摩擦発熱に起因する温度分布によって、樹脂に熱膨張が生じ、ねじ軸とナットとの接触に特徴が生まれ、その接触形態が、摩擦面の温度や接触圧力の偏りを生むために、小さな荷重でも破断が起きてしまう原因になっていると考えられる。
よって、本発明では有限要素法による解析において、まず、伝熱解析によりねじ軸とナットとの摺動時におけるナット内部等の温度分布を求めた後、構造解析により該温度に起因する温度荷重と、所定の負荷荷重とから接触圧力分布を求める、熱の影響を考慮した伝熱−構造連成解析を行なっている。
In a sliding screw device using a resin nut, the load applied when the nut breaks is often lower than the load assumed from the material strength alone. This is because thermal expansion occurs in the resin due to the temperature distribution due to frictional heat generation, and the characteristics of the contact between the screw shaft and the nut are born, and the contact form generates a bias in the temperature and contact pressure of the friction surface. It is considered that the breakage occurs even under load.
Therefore, in the present invention, in the analysis by the finite element method, first, the temperature distribution inside the nut or the like when sliding between the screw shaft and the nut is obtained by heat transfer analysis, and then the temperature load caused by the temperature is determined by structural analysis. The contact pressure distribution is obtained from a predetermined load, and a heat transfer-structure coupled analysis is performed in consideration of the influence of heat.

[伝熱解析]
以上の解析では、実際にナットがねじ軸を摺動することを想定した解析ができない静的状態での解析となっている。このため、摩擦面に摩擦発熱を与えるのであるが、そのまま解析を行なうと、ねじ軸の固定された位置でナットが摺動しているような条件の解析になる。よって、モデル中、ナットとねじ軸の動かない接触部のみが温度上昇し続け、摩擦面からの熱流入と、熱伝達面からの熱流出が平衡状態となったときに結果として得られる温度分布は、一部のみが実際の温度よりも随分と高い値となってしまう。一方、実機等によれば、ある一定距離以上すべりねじ装置のナットを摺動移動させると、熱流入と熱流出が平衡と考えられる状態となり、ナット、ねじ軸ともに温度が収束する。また、構造解析においてもこの温度平衡状態でのナットとねじ軸の温度分布を利用する。
よって、伝熱解析手順としては、まずねじ軸の温度を導き、その後ねじ軸の温度も用いてナットの温度分布を求める。
[Heat transfer analysis]
The above analysis is an analysis in a static state in which an analysis assuming that the nut actually slides on the screw shaft cannot be performed. For this reason, frictional heat is applied to the friction surface. However, if the analysis is performed as it is, the analysis is performed under such a condition that the nut slides at the position where the screw shaft is fixed. Therefore, in the model, only the contact part where the nut and screw shaft do not move continues to rise in temperature, and the resulting temperature distribution when the heat inflow from the friction surface and the heat outflow from the heat transfer surface are in equilibrium Only a part of the temperature is much higher than the actual temperature. On the other hand, according to an actual machine or the like, when the nut of the slide screw device is slid and moved more than a certain distance, the heat inflow and the heat outflow are considered to be in equilibrium, and the temperature of both the nut and the screw shaft converges. In the structural analysis, the temperature distribution of the nut and screw shaft in this temperature equilibrium state is also used.
Therefore, as a heat transfer analysis procedure, first, the temperature of the screw shaft is derived, and then the temperature distribution of the nut is also determined using the temperature of the screw shaft.

[構造解析]
次に構造解析では、以上の伝熱解析の結果の温度分布と、その他負荷等の諸条件を拘束条件として入力して解析を行なう。条件設定を図4に示す
(1)まず伝熱解析より得られたねじ軸とナットの温度分布を、構造解析の条件設定として読み込み、温度拘束条件としてモデルに負荷する。
(2)摩擦によって生じる熱のほかに、移動テーブル等の被駆動体により負荷荷重が加わるため、(1)の温度荷重に加えて、図4に示すようにナットのフランジ部に面圧荷重として負荷する。
(3)以上の二つの荷重を入力し、剛体運動が起こらないように、ねじ軸下部に拘束条件を加えて解析を実行する。結果としては、温度分布による材質の熱膨張による影響と、面圧荷重による影響が組み合わされた構造上の変化を観察できる。
[Structural analysis]
Next, in the structural analysis, the temperature distribution as a result of the above heat transfer analysis and other conditions such as loads are input as constraint conditions for the analysis. FIG. 4 shows the condition setting. (1) First, the temperature distribution of the screw shaft and nut obtained from the heat transfer analysis is read as the condition setting for the structural analysis, and is loaded on the model as the temperature constraint condition.
(2) In addition to the heat generated by friction, a load is applied by a driven body such as a moving table. Therefore, in addition to the temperature load of (1), as shown in FIG. To load.
(3) Input the above two loads, and execute the analysis by adding a constraint condition to the lower part of the screw shaft so that rigid body motion does not occur. As a result, it is possible to observe a structural change in which the influence of the thermal expansion of the material due to the temperature distribution and the influence of the surface pressure load are combined.

二次元軸対称のモデルを用いて上記伝熱解析および構造解析からなる伝熱−構造連成解析により、以下の諸条件におけるナットとねじ軸間に生じている接触圧力分布を求めた。
ねじ軸は、オーステナイト系ステンレス鋼SUS303を材質とするステンレス 30 度台形ねじであり、山径が 12.0mm 、谷径が 9.5mm、 ピッチが 2.0mmのものを用いた。
樹脂製ナットはPPS樹脂を材質とし、谷径が12.5mm、山径が 10.0mm、ピッチが 2mmのものを用いた。ナットの移動ストロークは300mmである。外形寸法は、図5に示す形状を標準モデル(肉厚3mm)とし、該標準モデルの厚みを表1に示すd mm だけ変化させて解析を行なった。ねじ軸との接触部の形態は、ねじ軸と同じで、成形に容易な30度台形ねじである。SUS303、PPS樹脂の物性値を下記表1に示す。なお、該解析ではヤング率の温度依存性、熱膨張係数の方向性を考慮した。
The contact pressure distribution generated between the nut and the screw shaft under the following conditions was determined by a heat transfer-structure coupled analysis consisting of the above heat transfer analysis and structural analysis using a two-dimensional axisymmetric model.
The screw shaft was a stainless steel 30 degree trapezoidal screw made of austenitic stainless steel SUS303, with a crest diameter of 12.0 mm, a trough diameter of 9.5 mm, and a pitch of 2.0 mm.
The resin nut was made of PPS resin and had a valley diameter of 12.5 mm, a crest diameter of 10.0 mm, and a pitch of 2 mm. The moving stroke of the nut is 300mm. The external dimensions were analyzed with the shape shown in FIG. 5 as a standard model (thickness 3 mm), and the thickness of the standard model was changed by d mm shown in Table 1. The shape of the contact portion with the screw shaft is the same as that of the screw shaft, and is a 30 degree trapezoidal screw that is easy to form. The physical properties of SUS303 and PPS resin are shown in Table 1 below. In the analysis, the temperature dependence of the Young's modulus and the directionality of the thermal expansion coefficient were considered.

解析条件は、ナットへ軸方向下方向に図4に示す位置に負荷荷重として 1200 N を与え、ねじ軸の回転数を 100 rpmとした。雰囲気温度は30℃である。
また伝熱解析では、上記各材質の物性値等の他に技術的係数として、それぞれの材質と雰囲気流体との間の熱の受け渡しの大きさを表す値として熱伝達率を入力する必要がある。この値に関しては、明確なものが得られておらず、暫定的な値を入力した。固体表面と自然対流の空気の間の熱伝達率がおよそ 100〜101強 W/m2/K であるので、SUSと空気間は 15 W/m2/K で与えた。PPSと空気間の値については、SUSと空気間のそれよりは小さい値であろうと考え、PPSと空気間は 5 W/m2/K で与えた。
伝熱解析で使用した設定値を下記表2に示す。
As analysis conditions, 1200 N was applied as a load at the position shown in FIG. 4 in the axially downward direction to the nut, and the rotational speed of the screw shaft was 100 rpm. The ambient temperature is 30 ° C.
Further, in the heat transfer analysis, it is necessary to input the heat transfer coefficient as a value representing the magnitude of heat transfer between each material and the atmospheric fluid as a technical coefficient in addition to the physical property values of each material. . Regarding this value, a clear one was not obtained, and a provisional value was entered. Since the heat transfer coefficient between the solid surface and the natural convection air is about 10 0 to 10 1 strong W / m 2 / K, the distance between SUS and air was 15 W / m 2 / K. The value between PPS and air was considered to be smaller than that between SUS and air, and the value between PPS and air was given by 5 W / m 2 / K.
The set values used in the heat transfer analysis are shown in Table 2 below.

以上の解析により得られたナットとねじ軸間に生じている接触圧力分布における最大接触圧力を表3に示す。
Table 3 shows the maximum contact pressure in the contact pressure distribution generated between the nut and the screw shaft obtained by the above analysis.

また、表3のd=-1mm、+1mm、+3mm、+5mmの場合における接触圧力分布図を図6〜図9に示す。これらの図では、接触圧力分布をナット上部から溝に沿って座標軸(x軸)をとり、その座標に沿った圧力を示したもの(y軸)を示す。各図においてx軸は、溝に沿った距離を1ピッチ分の距離で割ってあるため、1ピッチで1増加する表記になっている。また、解析条件のナットは、図5に示すように12ピッチ存在するため、接触圧力のピークも12箇所存在する。各図では、d=0mm (肉厚3mm)の標準モデルと比較して図示している。   Also, contact pressure distribution diagrams in the case of d = -1 mm, +1 mm, +3 mm, and +5 mm in Table 3 are shown in FIGS. In these drawings, the contact pressure distribution is shown by taking the coordinate axis (x axis) along the groove from the top of the nut and showing the pressure along the coordinate (y axis). In each figure, since the distance along the groove is divided by the distance corresponding to one pitch, the x-axis is described as increasing by one at one pitch. Further, as shown in FIG. 5, there are 12 pitches of the analysis condition nuts, and therefore, there are 12 contact pressure peaks. In each figure, it is shown in comparison with the standard model with d = 0mm (thickness 3mm).

図6に示すようにナットの肉厚が薄い場合(肉厚2mm)には、最大接触圧力は第三ピッチに発生し、15.7MPaと上昇してしまった。図9に示すようにナットの肉厚が厚い場合(肉厚8mm)には、最大接触圧力は13.5MPaに上昇し、その位置は第12ピッチに発生した。また、これらは各接触面における接触圧力(ピーク値)の最小値(非接触、0MPaを除く)と最大値との比が 10 をこえており、バラツキが大きかった。
これに対し、図7および図8に示す場合(肉厚4mm、6mm)では、接触圧力の最小値と最大値との比が 10 以下で略均一化できており、表3に示すようにこれらを含みナット肉厚が2.5mm〜6mmの場合には最大接触圧力が 12 MPa 以下とできた。
As shown in FIG. 6, when the nut was thin (thickness 2 mm), the maximum contact pressure was generated at the third pitch and increased to 15.7 MPa. As shown in FIG. 9, when the nut was thick (8 mm thick), the maximum contact pressure increased to 13.5 MPa, and the position occurred at the 12th pitch. In addition, the ratio between the minimum value (non-contact, excluding 0 MPa) and the maximum value of the contact pressure (peak value) on each contact surface exceeded 10, and the variation was large.
On the other hand, in the cases shown in FIGS. 7 and 8 (thickness 4 mm, 6 mm), the ratio between the minimum value and the maximum value of the contact pressure is 10 or less, which is substantially uniform. When the nut wall thickness is between 2.5mm and 6mm, the maximum contact pressure was 12 MPa or less.

接触圧力が大きくなると、その接触面付近で外力を大きな割合で受けることになり、破断につながる応力集中が起きる可能性が高くなると考えられる。また、ねじ山の偏摩耗が発生する。よって、所定の荷重をかけた場合において、生じる接触圧力分布を可能な限り均一にできるすべりねじ構造とすることで、接触圧力の増大に伴う応力集中とその値の増大を和らげることができると考えられる。
本発明の樹脂製ナットでは、上記解析に基づきナット肉厚を、例えば軸方向長さ25mmのナットにおいて2.5mm〜6mmとすることで、接触圧力分布を略均一化させるとともに最大接触圧力を低減させ、すべりねじ装置の耐荷重の上限の引き上げ、および高面圧条件下での長寿命化を図っている。
When the contact pressure increases, external force is received in a large proportion in the vicinity of the contact surface, and it is considered that the possibility of stress concentration leading to fracture increases. In addition, uneven wear of threads occurs. Therefore, it is considered that the stress concentration and the increase of the value accompanying the increase of the contact pressure can be eased by adopting the sliding screw structure that can make the contact pressure distribution generated as uniform as possible when a predetermined load is applied. It is done.
In the resin nut of the present invention, based on the above analysis, the nut wall thickness is set to 2.5 mm to 6 mm, for example, in a nut having an axial length of 25 mm, so that the contact pressure distribution is substantially uniform and the maximum contact pressure is reduced. The upper limit of the load resistance of the slide screw device is increased, and the life is extended under high surface pressure conditions.

本発明の樹脂製ナットおよびすべりねじ装置は、ねじ山の偏摩耗を低減させることができ、高面圧条件下でも長寿命であるので、光学測定器、半導体製造装置、医療機器等の各種装置等に好適に利用できる。   Since the resin nut and the sliding screw device of the present invention can reduce uneven wear of the screw thread and have a long life even under high surface pressure conditions, various devices such as an optical measuring instrument, a semiconductor manufacturing device, a medical device, etc. It can utilize suitably for etc.

本発明の樹脂製ナットを用いたすべりねじ装置の斜視図を示す。The perspective view of the slide screw apparatus using the resin-made nuts of this invention is shown. 本発明の樹脂製ナットの軸方向断面図である。It is an axial sectional view of the resin nut of the present invention. 解析で使用する二次元軸対称のモデルを示す図である。It is a figure which shows the two-dimensional axisymmetric model used by analysis. 条件設定例を示す図である。It is a figure which shows the example of a condition setting. 解析条件(寸法等)の設定を示す図である。It is a figure which shows the setting of analysis conditions (dimension etc.). 接触圧力分布の解析結果(d=-1mm)を示す図である。It is a figure which shows the analysis result (d = -1mm) of contact pressure distribution. 接触圧力分布の解析結果(d=+1mm)を示す図である。It is a figure which shows the analysis result (d = + 1mm) of contact pressure distribution. 接触圧力分布の解析結果(d=+3mm)を示す図である。It is a figure which shows the analysis result (d = + 3mm) of contact pressure distribution. 接触圧力分布の解析結果(d=+5mm)を示す図である。It is a figure which shows the analysis result (d = + 5mm) of contact pressure distribution.

符号の説明Explanation of symbols

1 ねじ軸
2 すべりねじ装置
3 樹脂製ナット
4 フランジ
1 Screw shaft 2 Sliding screw device 3 Plastic nut 4 Flange

Claims (2)

ねじ軸に螺合され、ねじ軸と軸方向に相対移動する、フランジが形成された所定肉厚を有する円筒形状の樹脂製ナットであって、
前記所定肉厚は、(所定肉厚)/(樹脂製ナットの軸方向長さ)の値が、0.1 〜 0.24 の範囲となる厚さであるとともに、前記樹脂製ナットの軸方向断面において、該樹脂製ナットの前記フランジに軸方向の荷重を加えたときの該樹脂製ナットと前記ねじ軸との接触面における軸方向の接触圧力分布を略均一とできる厚さであり、
前記接触圧力分布は、前記樹脂製ナットの二次元軸対称モデルを用いて有限要素法による解析により求めたものであり、
前記有限要素法による解析は、前記ねじ軸と前記樹脂製ナットとの摺動時における前記ねじ軸と樹脂製ナット内部の温度分布を求めた後、該温度分布と、所定の負荷荷重とを拘束条件として前記接触圧力分布の解析を行なう伝熱−構造連成解析であることを特徴とする樹脂製ナット。
A cylindrical resin nut having a predetermined thickness formed with a flange, which is screwed to the screw shaft and moves relative to the screw shaft in the axial direction,
The predetermined thickness is a thickness in which the value of (predetermined thickness) / (axial length of resin nut) is in a range of 0.1 to 0.24, and in the axial cross section of the resin nut, The thickness of the axial contact pressure distribution in the contact surface between the resin nut and the screw shaft when an axial load is applied to the flange of the resin nut;
The contact pressure distribution state, and are not determined by analysis using the finite element method using a two-dimensional axisymmetric model of the resin nut,
In the analysis by the finite element method, the temperature distribution inside the screw shaft and the resin nut during sliding between the screw shaft and the resin nut is obtained, and then the temperature distribution and a predetermined load are constrained. A resin nut characterized by being a heat transfer-structure coupled analysis for analyzing the contact pressure distribution as a condition .
ねじ軸にナットを螺合して、ナットをねじ軸と軸方向に相対移動させるすべりねじ装置であって、前記ナットが請求項1記載の樹脂製ナットであることを特徴とするすべりねじ装置。   A sliding screw device for screwing a nut onto a screw shaft and moving the nut relative to the screw shaft in the axial direction, wherein the nut is the resin nut according to claim 1.
JP2007097691A 2007-04-03 2007-04-03 Resin nut and sliding screw device Expired - Fee Related JP5007142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097691A JP5007142B2 (en) 2007-04-03 2007-04-03 Resin nut and sliding screw device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097691A JP5007142B2 (en) 2007-04-03 2007-04-03 Resin nut and sliding screw device

Publications (2)

Publication Number Publication Date
JP2008256049A JP2008256049A (en) 2008-10-23
JP5007142B2 true JP5007142B2 (en) 2012-08-22

Family

ID=39979816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097691A Expired - Fee Related JP5007142B2 (en) 2007-04-03 2007-04-03 Resin nut and sliding screw device

Country Status (1)

Country Link
JP (1) JP5007142B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5847981B1 (en) * 2015-07-10 2016-01-27 長島鋳物株式会社 Underground structure receiving frame height adjustment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210457A (en) * 1987-02-26 1988-09-01 Inoue Japax Res Inc Screw feeding device
JP3707805B2 (en) * 1993-05-31 2005-10-19 ソニー株式会社 Positioning device
JP2000074172A (en) * 1998-08-26 2000-03-07 Thk Co Ltd Molding nut, manufacture of molding nut, and linear guide device using molding nut
JP2004169739A (en) * 2002-11-18 2004-06-17 Ntn Corp Ball screw
JP2004204989A (en) * 2002-12-26 2004-07-22 Ntn Corp Sliding screw device

Also Published As

Publication number Publication date
JP2008256049A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
WO2015053348A1 (en) Holding device, rolling bearing, and liquefied gas pump
EP2006560B1 (en) Resin-made cage and bearing for cryogenic temperatures
JP2008133954A (en) Valve device-sliding member and sliding bearing using the same
JP5007142B2 (en) Resin nut and sliding screw device
JP5358871B2 (en) Cylinder roller bearing cage, cylindrical roller bearing
JP5007143B2 (en) Resin nut and sliding screw device
JP2014020491A (en) Angular ball bearing and pump device for liquid gas
JP2008256050A (en) Resin nut, and sliding screw device
JP2008256047A (en) Nut for sliding screw device, and sliding screw device
JP2006153181A (en) Linear motion device
CN102729090A (en) Ball screw device
JP5050201B2 (en) Polyacetal resin composite material, flat cam made of polyacetal resin composite material, and method of manufacturing the flat cam
JP2006138405A (en) Nut with flange and sliding screw device
JP2008302784A (en) Rack guide, and rack and pinion steering device provided with rack guide
McNier et al. Specifying, selecting and applying linear ball screw drives
Zhang et al. Transient motion of hydrostatic lead screws with continuous helical recesses
JP2011021743A (en) Sliding bearing
JP2009197820A (en) Resin ball bearing
JP2006200733A (en) Rolling bearing
JP2008188907A (en) Extrusion mold and molding method
JP6903353B2 (en) Resin nut and sliding screw device using it
JP5623852B2 (en) Plain bearing
JP3231944U (en) Resin nut and sliding screw device using it
JP2007039792A (en) Method for producing sintered product, method for producing driving guide apparatus, and driving guide apparatus produced by the method
JP2006046373A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5007142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees