JP5005317B2 - Translucent yttrium oxide sintered body and method for producing the same - Google Patents

Translucent yttrium oxide sintered body and method for producing the same Download PDF

Info

Publication number
JP5005317B2
JP5005317B2 JP2006292889A JP2006292889A JP5005317B2 JP 5005317 B2 JP5005317 B2 JP 5005317B2 JP 2006292889 A JP2006292889 A JP 2006292889A JP 2006292889 A JP2006292889 A JP 2006292889A JP 5005317 B2 JP5005317 B2 JP 5005317B2
Authority
JP
Japan
Prior art keywords
yttrium oxide
niobium
sintered body
less
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006292889A
Other languages
Japanese (ja)
Other versions
JP2007145702A (en
Inventor
光広 藤田
正樹 入江
陽介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006292889A priority Critical patent/JP5005317B2/en
Publication of JP2007145702A publication Critical patent/JP2007145702A/en
Application granted granted Critical
Publication of JP5005317B2 publication Critical patent/JP5005317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

この発明は、放電灯用管体、レーザ用ホスト材、半導体製造装置のプラズマ監視耐食窓材などに使用される透光性酸化イットリウム焼結体及びその製造方法に関するものである。   The present invention relates to a translucent yttrium oxide sintered body used for a discharge lamp tube, a laser host material, a plasma monitoring corrosion-resistant window material of a semiconductor manufacturing apparatus, and the like, and a method for manufacturing the same.

従来、透光性酸化イットリウム焼結体を作製する方法としては、(1)アルミニウム含有量を金属換算で5〜100wt ppm、珪素含有量を金属換算で10wt ppm以下とした成形体を、水素希ガス或いは水素希ガス混合雰囲気若しくは真空中で、1450℃以上1700℃以下で0.5時間以上焼結する技術が公知となっている(例えば、特許文献1参照。)。   Conventionally, as a method for producing a translucent yttrium oxide sintered body, (1) a molded body having an aluminum content of 5 to 100 wt ppm in terms of metal and a silicon content of 10 wt ppm or less in terms of metal is diluted with hydrogen. A technique of sintering at 1450 ° C. or higher and 1700 ° C. or lower for 0.5 hour or longer in a gas or hydrogen rare gas mixed atmosphere or vacuum is known (for example, see Patent Document 1).

また、酸化イットリウムに対して、熱分解で100ppmから4%の範囲の酸化カルシウムになるカルシウム化合物、或いは酸化イットリウムに対して、熱分解で200ppm〜10%の範囲の酸化ジルコニウムとなるジルコニウム化合物と、一次粒径が0.5μm以下の酸化イットリウムとの混合物を成形し焼成する技術が公知となっている(例えば、特許文献2参照。)。
特開2003−89578号公報(2頁、請求項7) 特許公報第2939535号(1頁、請求項1,2)
Further, a calcium compound that becomes a calcium oxide in a range of 100 ppm to 4% by thermal decomposition with respect to yttrium oxide, or a zirconium compound that becomes a zirconium oxide in a range of 200 ppm to 10% by thermal decomposition with respect to yttrium oxide; A technique for forming and firing a mixture with yttrium oxide having a primary particle size of 0.5 μm or less is known (for example, see Patent Document 2).
JP 2003-89578 A (page 2, claim 7) Patent Publication No. 2939535 (1 page, claims 1 and 2)

しかしながら、特許文献1に記載のアルミニウム含有量を金属換算で5〜100wt ppm以下とする方法では、確かに透光性酸化イットリウム焼結体が得られるものの、焼成中にアルミニウムが酸化イットリウム焼結粒界へ析出しやすく、これを防止するために焼成温度を1700℃以下にすることが必要である。1700℃以下の焼成温度は、高融点である酸化イットリウムに対しては低い焼成温度であり、この温度で充分に緻密化させるためには、例えば市販されている汎用の酸化イットリウム粉末ではなく、硫酸イットリウムや硝酸イットリウム、蓚酸イットリウムなどの水溶液を制御された温度及び速度で中和して水酸化イットリウムを生成させ、これを制御された雰囲気、温度にて焙焼し、解砕するなどの処理をして、焼結性のよい原料を特別に用意する必要があり、これは一般に容易なことではない。   However, in the method of setting the aluminum content described in Patent Document 1 to 5 to 100 wt ppm or less in terms of metal, although a translucent yttrium oxide sintered body is surely obtained, aluminum is sintered with yttrium oxide particles during firing. It is easy to precipitate on the boundary, and in order to prevent this, it is necessary to set the firing temperature to 1700 ° C. or lower. The firing temperature of 1700 ° C. or lower is a low firing temperature for yttrium oxide, which has a high melting point. In order to achieve sufficient densification at this temperature, for example, commercially available general-purpose yttrium oxide powder is used instead of sulfuric acid. Treatments such as yttrium hydroxide, yttrium nitrate, and yttrium oxalate are neutralized at a controlled temperature and speed to produce yttrium hydroxide, which is roasted and cracked at a controlled atmosphere and temperature. Thus, it is necessary to specially prepare a raw material having good sinterability, which is not generally easy.

また、特許文献2に記載の方法は、酸化イットリウムの一次粒径を0.5μm以下とすることが必要であり、微粉砕工程や、例えば厳密な条件管理などの特別な原料合成などが必要となり、汎用的な酸化イットリウム粉末を使用することはできないといった問題があった。   Further, the method described in Patent Document 2 requires that the primary particle diameter of yttrium oxide be 0.5 μm or less, which requires a fine pulverization process and special raw material synthesis such as strict condition management. There is a problem that general-purpose yttrium oxide powder cannot be used.

また、特許文献2では、厚さ1mmの透明酸化イットリウム焼結体の直線透過率は、波長500nmの光に対して40〜60%までしか得られておらず透明性は充分ではない。さらに、アルカリ土類金属であるカルシウムを含有する酸化イットリウムは汚染の問題から半導体製造装置用の窓材には適用することができないといった問題もあった。   In Patent Document 2, the linear transmittance of a transparent yttrium oxide sintered body having a thickness of 1 mm is only 40 to 60% with respect to light having a wavelength of 500 nm, and the transparency is not sufficient. Further, yttrium oxide containing calcium, which is an alkaline earth metal, has a problem that it cannot be applied to a window material for a semiconductor manufacturing apparatus due to the problem of contamination.

この発明は、酸化イットリウム焼結粒界へ析出し易いアルミニウムを用いずに、しかも珪素含有量を特に低減した特殊な原料を使用したり、或いは原料を微粉砕するなどの必要もなく、汎用の原料を用いて厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上となる透光性酸化イットリウム焼結体を得ようとするものである。さらには、脈理のない透光性酸化イットリウム焼結体を得ようとするものである。   The present invention does not require the use of a special raw material with a particularly reduced silicon content, or the use of a general-purpose material without using aluminum that tends to precipitate at yttrium oxide sintered grain boundaries. A raw material is used to obtain a light-transmitting yttrium oxide sintered body having a linear transmittance of 60% or more at a visible light band wavelength of 400 to 800 nm at a thickness of 1 mm. Furthermore, an object is to obtain a translucent yttrium oxide sintered body having no striae.

この発明は、酸化イットリウムを主成分とし、金属単体換算で0.05wt%以上0.5wt%以下のニオブを含有し、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上であることを特徴とする透光性酸化イットリウム焼結体(請求項1)、酸化イットリウム粉末に対して、ニオブ、ニオブ化合物の中の少なくとも1種以上を添加混合し、添加する前記ニオブ、ニオブ化合物量が、酸化イットリウムに対して金属単体換算で0.1wt%以上1.0wt%以下であり、これを成形してニオブを含有する酸化イットリウム成形体を作製し、これを1700℃以上2000℃以下の真空、水素、または希ガス雰囲気下において焼成することを特徴とする透光性セラミックス焼結体の製造方法(請求項2)、酸化イットリウム粉末が比表面積が5m /g以上50m /g以下で、ニオブ、ニオブ化合物のいずれか1種以上を金属単体換算で0.1wt%以上1.0wt%以下添加混合することを特徴とする請求項2記載の透光性酸化セラミックス焼結体の製造方法(請求項3)、ニオブを金属単体換算で0.05wt%以上0.2wt%以下含有し、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上で脈理がないことを特徴とする請求項1記載の透光性酸化イットリウム焼結体(請求項4)である。 This invention contains yttrium oxide as a main component, contains 0.05 wt% or more and 0.5 wt% or less of niobium in terms of a simple metal , and has a linear transmittance of 60% at a visible light band wavelength of 400 to 800 nm at a thickness of 1 mm. The above- described niobium added by mixing and mixing at least one of niobium and a niobium compound with respect to the light-transmitting yttrium oxide sintered body (claim 1) and the yttrium oxide powder, The amount of the niobium compound is 0.1 wt% or more and 1.0 wt% or less in terms of a single metal with respect to yttrium oxide, and this is molded to produce an yttrium oxide compact containing niobium, which is 1700 ° C. or more and 2000 A method for producing a light-transmitting ceramic sintered body characterized by firing in vacuum, hydrogen or a rare gas atmosphere at a temperature of 0 ° C. or lower (claim 2), oxidation Ttoriumu powder specific surface area of at 5 m 2 / g or more 50 m 2 / g or less, and wherein niobium, admixing 0.1 wt% or more 1.0 wt% or less of any one or more of a metal simple substance in terms of niobium compound The method for producing a translucent oxide ceramics sintered body according to claim 2 , wherein niobium is contained in an amount of 0.05 wt% or more and 0.2 wt% or less in terms of a metal simple substance, and a visible light band at a thickness of 1 mm. The translucent yttrium oxide sintered body according to claim 1, wherein the linear transmittance at a wavelength of 400 to 800 nm is 60% or more and has no striae ( claim 4 ).

この発明によれば、焼成中にアルミニウムが酸化イットリウム結晶粒界に析出することがなく、しかも厚さ1mmでの可視光帯域波長400〜800nmにおける直線透過率を60%以上とすることができる。さらに言えば、 可視光帯域波長400〜800nmにおける殆どの領域において80%以上の直線透過率を得ることが可能である。また、この発明によると、珪素含有量を10wt ppmとした特殊な原料を使用しなくてもよい。さらに、原料の酸化イットリウムの粒径を0.5μm以下としなくとも厚さ1mmのときの可視光帯域波長400〜800nmにおける直線透過率を60%以上とすることができる。さらに、必要があれば、脈理のない焼結体を得ることができる。   According to this invention, aluminum does not precipitate at the yttrium oxide crystal grain boundary during firing, and the linear transmittance at a visible light band wavelength of 400 to 800 nm with a thickness of 1 mm can be 60% or more. Furthermore, it is possible to obtain a linear transmittance of 80% or more in most regions in the visible light band wavelength of 400 to 800 nm. Further, according to the present invention, it is not necessary to use a special raw material having a silicon content of 10 wt ppm. Furthermore, even if the particle diameter of the raw material yttrium oxide is not set to 0.5 μm or less, the linear transmittance at a visible light band wavelength of 400 to 800 nm when the thickness is 1 mm can be set to 60% or more. Furthermore, if necessary, a sintered body having no striae can be obtained.

この発明の透光性酸化イットリウム焼結体は、主成分を酸化イットリウムとし、これにタンタル若しくはニオブのいずれか一方又は双方を含有したもので、厚さ1mmのときの可視光帯域波長400〜800nmにおける直線透過率が60%以上であるものである。   The translucent yttrium oxide sintered body of the present invention has yttrium oxide as a main component and contains one or both of tantalum and niobium, and has a visible light wavelength band of 400 to 800 nm when the thickness is 1 mm. The linear transmittance at is 60% or more.

そして、タンタルを含有した場合、タンタルが金属単体換算で0.1wt%以上1.3wt%以下では、厚さ1mmのときの可視光帯域波長400〜800nmにおける直線透過率が60%以上である。また、ニオブを含有した場合は、ニオブが金属単体換算で0.05wt%以上0.5wt%以下で、厚さ1mmのときの可視光帯域波長400〜800nmにおける直線透過率が60%以上である。   When tantalum is contained, when the tantalum is 0.1 wt% or more and 1.3 wt% or less in terms of a single metal, the linear transmittance at a visible light band wavelength of 400 to 800 nm when the thickness is 1 mm is 60% or more. When niobium is contained, niobium is 0.05 wt% or more and 0.5 wt% or less in terms of a metal simple substance, and the linear transmittance at a visible light wavelength of 400 to 800 nm when the thickness is 1 mm is 60% or more. .

この発明において、タンタル、ニオブが酸化イットリウム焼結体の透光性向上に寄与する理由は明らかでないが、タンタル、ニオブが酸化イットリウムに固溶することにより、酸化イットリウム中のイオン欠陥の拡散を促進して結晶構造の均質化を促すこと、及びタンタル、ニオブの添加が酸化イットリウムの粒成長を遅らせる働きをし、焼成時の気孔排出を助成するためなどと考えられる。これらの作用により、得られる酸化イットリウム焼結体の厚さ1mmときの可視光帯域波長400〜800nmにおける直線透過率は60%以上とすることが可能となる。   In this invention, the reason why tantalum and niobium contribute to the improvement of translucency of yttrium oxide sintered body is not clear, but tantalum and niobium are dissolved in yttrium oxide to promote diffusion of ion defects in yttrium oxide. It is considered that the homogenization of the crystal structure is promoted, and the addition of tantalum and niobium serves to delay the grain growth of yttrium oxide, thereby promoting pore discharge during firing. With these actions, the linear transmittance at a visible light band wavelength of 400 to 800 nm when the thickness of the obtained yttrium oxide sintered body is 1 mm can be 60% or more.

この発明において、タンタル、ニオブを添加した場合、透光性酸化イットリウム焼結体を得るために特に平均粒径が小さな酸化イットリウム原料を用いる必要はなく、汎用的な粉末でよいが、焼結体中に気孔を残留させないようにするためには、焼結前の成形体段階における気孔径が小さい方が好ましい。このような小さな気孔径を有する成形体とするためには、平均粒径2μm以下の酸化イットリウム原料粉末を用いることが好ましい。   In the present invention, when tantalum and niobium are added, it is not necessary to use a yttrium oxide raw material having a particularly small average particle diameter in order to obtain a light-transmitting yttrium oxide sintered body. In order to prevent the pores from remaining therein, it is preferable that the pore diameter in the molded body stage before sintering is small. In order to obtain a molded body having such a small pore diameter, it is preferable to use a yttrium oxide raw material powder having an average particle diameter of 2 μm or less.

酸化イットリウム原料粉末のアルミニウム、珪素含有量も厳密に制御する必要はないが、アルミニウムは焼成中に酸化イットリウム結晶粒界へ析出して異相を形成しやすいために透光性向上の妨げになり、また、珪素は酸化イットリウムの粒成長を助長する働きがあるため、タンタル、ニオブの粒成長抑制作用を減殺し易い。このために、酸化イットリウム成形体中のアルミニウム濃度、珪素濃度はともに20ppm以下とすることが好ましい。   Although it is not necessary to strictly control the aluminum and silicon content of the yttrium oxide raw material powder, aluminum is likely to precipitate in the yttrium oxide crystal grain boundary during firing and form a heterogeneous phase. Further, since silicon has a function of promoting the grain growth of yttrium oxide, it can easily reduce the grain growth suppressing action of tantalum and niobium. For this reason, it is preferable that both the aluminum concentration and the silicon concentration in the yttrium oxide compact are 20 ppm or less.

この発明では、タンタル、ニオブを含有させることにより、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率は60%以上とすることが可能となるが、特に、タンタルを金属単体換算で0.1wt%以上1.3wt%以下の範囲、ニオブを金属単体換算で0.05wt%以上0.5wt%以下の範囲で含有させた場合、酸化イットリウム焼結体の厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率は、低波長側の一部(400〜500nm)で80%に満たない場合もあるが、実質的に可視光帯域において80%以上の直線透過率を得ることが可能であり、極めて透光性の高い酸化イットリウム焼結体を得ることができる。   In the present invention, by including tantalum and niobium, the linear transmittance at a visible light band wavelength of 400 to 800 nm at a thickness of 1 mm can be set to 60% or more. Visible light when the thickness of the yttrium oxide sintered body is 1mm when containing niobium in the range of 0.1wt% to 1.3wt% and niobium in the range of 0.05wt% to 0.5wt% Although the linear transmittance at a band wavelength of 400 to 800 nm may be less than 80% in a part of the low wavelength side (400 to 500 nm), a linear transmittance of 80% or more is substantially obtained in the visible light band. Therefore, it is possible to obtain a yttrium oxide sintered body with extremely high translucency.

タンタルが金属換算で0.1wt%未満、ニオブが金属単体換算で0.05wt%未満ではタンタル、ニオブの酸化イットリウムに与える作用が十分でないため、厚さ1mm時の可視光帯域波長400〜800nm全域において直線透過率で60%を超えるような透光性の高い酸化イットリウム焼結体を得ることができない。一方、タンタルが金属換算で1.3wt%を超える、或いはニオブが金属単体換算で0.5wt%を超える場合は、酸化イットリウムに固溶しきれないタンタル、ニオブが生じ、パイロクロア構造の異相として酸化イットリウム焼結体中に分散存在することになり、この場合も透光性が低下して厚さ1mmときの可視光帯域波長400〜800nm全域における直線透過率で60%を超えるような透光性の高い酸化イットリウム焼結体とすることができない。   When tantalum is less than 0.1 wt% in terms of metal and niobium is less than 0.05 wt% in terms of metal alone, the effect of tantalum and niobium on yttrium oxide is not sufficient, so the visible light wavelength range is 400 to 800 nm when the thickness is 1 mm. In this case, it is not possible to obtain a yttrium oxide sintered body having a high translucency such that the linear transmittance exceeds 60%. On the other hand, when tantalum exceeds 1.3 wt% in terms of metal, or niobium exceeds 0.5 wt% in terms of single metal, tantalum and niobium that cannot be completely dissolved in yttrium oxide are generated and oxidized as a heterophase of the pyrochlore structure. It will be dispersed in the yttrium sintered body. In this case as well, the translucency is lowered and the translucency exceeds 60% in the linear transmissivity in the visible light wavelength range of 400 to 800 nm when the thickness is 1 mm. High yttrium oxide sintered body cannot be obtained.

焼成温度は1700℃以上とする。焼成温度が1700℃未満であると焼結体を緻密化することが出来ず、内部に気孔を多数含有する焼結体となり、透光性の高い酸化イットリウム焼結体とすることができない。   The firing temperature is 1700 ° C. or higher. When the firing temperature is less than 1700 ° C., the sintered body cannot be densified, and a sintered body containing a large number of pores is formed, and thus a highly translucent yttrium oxide sintered body cannot be obtained.

一方、焼成温度が2000℃を超えると、添加したタンタル化合物、ニオブ化合物に含まれるタンタル、ニオブの揮発速度が極めて早くなり、焼結体中残留させるタンタル、ニオブ量を制御することが極めて困難になる。また、このような高温下においては、酸化イットリウムの粒成長速度をタンタル、ニオブによって抑えることが困難となるために酸化イットリウムが過度に粒成長し、添加されたタンタル、ニオブや微量不純物に由来する異相が周辺に析出しやすくなり、透光性の高い酸化イットリウム焼結体を得ることが出来ない。焼成温度の好ましい温度範囲は、酸化イットリウム結晶中イオン欠陥の拡散促進による結晶構造の均一化及び過度の粒成長に伴う結晶粒界への異相析出防止の理由から1800℃以上1950℃以下の範囲である。また、焼成時の雰囲気は、希ガスを用いる場合は、ヘリウムが最も好ましい。ヘリウムは拡散速度が速く、焼結体中に気泡が最も残り難いからである。   On the other hand, if the firing temperature exceeds 2000 ° C., the volatilization rate of the added tantalum compound, tantalum contained in the niobium compound, and niobium becomes extremely fast, making it extremely difficult to control the amount of tantalum and niobium remaining in the sintered body. Become. In addition, at such high temperatures, it becomes difficult to suppress the grain growth rate of yttrium oxide with tantalum and niobium, so that yttrium oxide grows excessively and is derived from added tantalum, niobium and trace impurities. A heterogeneous phase is likely to precipitate in the periphery, and a highly translucent yttrium oxide sintered body cannot be obtained. The preferred temperature range of the firing temperature is in the range of 1800 ° C. or higher and 1950 ° C. or lower because of the homogenization of the crystal structure by promoting the diffusion of ion defects in the yttrium oxide crystal and the prevention of heterogeneous precipitation at the grain boundaries due to excessive grain growth. is there. Moreover, helium is most preferable as the atmosphere during firing when a rare gas is used. This is because helium has a high diffusion rate, and bubbles hardly remain in the sintered body.

なお、本発明の範囲内であっても、焼結体中に残留するタンタルやニオブの量が多いと、可視光の直線透過率は十分であっても脈理が発生する傾向がある。脈理が好ましくない用途に用いる場合は、脈理を無くすためにタンタルやニオブの量を減らす必要がある。タンタルやニオブが減ると可視光の直線透過率も低下する傾向があるが、これを酸化イットリウムの比表面積を大きくすることにより、補うことができることも見出した。 すなわち、請求項7、8の製法により請求項9、10の焼結体を得るものである。   Even within the scope of the present invention, if the amount of tantalum or niobium remaining in the sintered body is large, striae tend to occur even if the linear transmittance of visible light is sufficient. When used in applications where striae is not desirable, it is necessary to reduce the amount of tantalum and niobium in order to eliminate striae. As tantalum and niobium decrease, the linear transmittance of visible light tends to decrease, but it has also been found that this can be compensated by increasing the specific surface area of yttrium oxide. That is, the sintered bodies of claims 9 and 10 are obtained by the manufacturing methods of claims 7 and 8.

(実施例および比較例 その1)
平均粒径1μm、比表面積2.1m/g、純度99.9%(アルミニウム濃度1ppm、珪素濃度18ppm)の酸化イットリウム粉末にエタノール、アクリル系バインダ、及び表1に示すタンタル化合物もしくはニオブ化合物を添加し、酸化ジルコニウムボールを用いたボールミルによって12時間の混合を行った。これによって得られたスラリーからスプレードライヤを用いて平均粒径40μmの造粒粉を作製した。この造粒粉を用いて20MPaで一軸成形を行った後、これを150MPaで静水圧成形(CIP)を行って成形体とし、これを大気中で脱脂処理を行った。この脱脂体を表1に示す温度、雰囲気で焼成を行い焼結体とした。この焼結体を直径20mm、厚さ1mmで両面光学研磨品へと加工した。これを分光光度計を用いて400〜800nmにおける直線透過率を測定した。この測定結果は、一例としての600nmにおける直線透過率と400〜800μmの領域における評価を表1に示した。表1の評価の欄で、◎は400〜800nmにおいて直線透過率が実質的に80%以上のもの、○は400〜800nmにおいて直線透過率が80%未満で60%以上、×は400〜800nmにおいて直線透過率が60%未満の部分があるものを表している。また、測定後の焼結体は、洗浄を行ってからICP発光分光分析法でタンタル濃度、ニオブ濃度、アルミニウム濃度、珪素濃度を測定した。測定結果は表1に併せて示した。
(Example and Comparative Example 1)
An yttrium oxide powder having an average particle size of 1 μm, a specific surface area of 2.1 m 2 / g, and a purity of 99.9% (aluminum concentration 1 ppm, silicon concentration 18 ppm) is mixed with ethanol, an acrylic binder, and the tantalum compound or niobium compound shown in Table 1. The mixture was added and mixed for 12 hours by a ball mill using zirconium oxide balls. A granulated powder having an average particle size of 40 μm was prepared from the slurry obtained by using a spray dryer. After performing uniaxial molding at 20 MPa using this granulated powder, this was subjected to isostatic pressing (CIP) at 150 MPa to obtain a molded product, which was degreased in the atmosphere. This degreased body was fired at the temperature and atmosphere shown in Table 1 to obtain a sintered body. This sintered body was processed into a double-sided optically polished product having a diameter of 20 mm and a thickness of 1 mm. The linear transmittance in 400-800 nm was measured for this using the spectrophotometer. As a result of this measurement, Table 1 shows the linear transmittance at 600 nm and the evaluation in the region of 400 to 800 μm as an example. In the evaluation column of Table 1, ◎ indicates that the linear transmittance is substantially 80% or more at 400 to 800 nm, ○ indicates that the linear transmittance is less than 80% and is 60% or more at 400 to 800 nm, and × indicates 400 to 800 nm. In FIG. 4, the linear transmittance is shown in a portion having a portion of less than 60%. Further, the sintered body after the measurement was washed, and then the tantalum concentration, niobium concentration, aluminum concentration, and silicon concentration were measured by ICP emission spectroscopic analysis. The measurement results are also shown in Table 1.

Figure 0005005317
Figure 0005005317

表1から明らかなように、この発明による酸化イットリウム焼結体は、アルミニウム含有量を金属換算で5〜100wtppm、珪素含有量を金属換算で10wtppmとしなくとも、厚さ1mmのときの可視帯域波長400〜800nmにおける直線透過率を60%とすることができる。また、従来、酸化カルシウムや酸化ジルコニウム添加によって透光性を高める場合に必要とされる酸化イットリウムの粒径を0.5μm以下としなくとも、厚さ1mmのときの可視光帯域波長400〜800nmにおける直線透過率を60%以上とすることができる。   As is apparent from Table 1, the yttrium oxide sintered body according to the present invention has a visible band wavelength when the thickness is 1 mm even if the aluminum content is 5-100 wtppm in terms of metal and the silicon content is not 10 wtppm in terms of metal. The linear transmittance at 400 to 800 nm can be set to 60%. Conventionally, the yttrium oxide particle size required for enhancing translucency by adding calcium oxide or zirconium oxide is 0.5 μm or less, and the visible light band wavelength is 400 to 800 nm when the thickness is 1 mm. The linear transmittance can be 60% or more.

(実施例および比較例 その2)
平均粒径1.2μmで比表面積5.4m/g、平均粒径1.1μmで比表面積46m/g、平均粒径1.4μmで比表面積4.3m/g、純度99.9%(アルミニウム濃度1wtppm、珪素濃度11wtppm)の3種の酸化イットリウム粉末にエタノール、アクリル系バインダ、及び表2に示すタンタル化合物もしくはニオブ化合物を添加し、酸化ジルコニウムボールを用いたボールミルによって12時間の混合を行った。これによって得られたスラリーからスプレードライヤを用いて平均粒径40μmの造粒粉を作製した。この造粒粉を用いて20MPaで一軸成形を行った後、これを150MPaで静水圧成形(CIP)を行って成形体とし、これを大気中1000℃で脱脂処理を行った。この脱脂体を表2に示す温度、雰囲気で焼成を行い焼結体とした。この焼結体を直径20mm、厚さ1mmで両面光学研磨品へと加工した。これを分光光度計を用いて400〜800nmにおける直線透過率を測定した。この測定結果は表2に示した。表2の評価の欄で、◎は400〜800nmにおいて直線透過率が実質的に80%以上のもの、○は400〜800nmにおいて直線透過率が80%未満で60%以上、×は400〜800nmにおいて直線透過率が60%未満の部分があるものを表している。また、脈理の有無を外観観察によって実施した。表2の評価の欄で、◎は脈理なし、×は脈理ありを表している。さらに、測定後の焼結体は、洗浄を行ってからICP発光分光分析法でタンタル濃度、ニオブ濃度を測定した。測定結果は表2に併せて示した。
(Example and Comparative Example 2)
The average particle size is 1.2 μm, the specific surface area is 5.4 m 2 / g, the average particle size is 1.1 μm, the specific surface area is 46 m 2 / g, the average particle size is 1.4 μm, the specific surface area is 4.3 m 2 / g, and the purity is 99.9. % (Aluminum concentration: 1 wtppm, silicon concentration: 11 wtppm) Ethanol, acrylic binder, and tantalum compound or niobium compound shown in Table 2 were added to three types of yttrium oxide powder, and mixed for 12 hours by a ball mill using zirconium oxide balls. Went. A granulated powder having an average particle size of 40 μm was prepared from the slurry obtained by using a spray dryer. After performing uniaxial molding at 20 MPa using this granulated powder, this was subjected to isostatic pressing (CIP) at 150 MPa to obtain a molded product, which was degreased at 1000 ° C. in the atmosphere. This degreased body was fired at the temperature and atmosphere shown in Table 2 to obtain a sintered body. This sintered body was processed into a double-sided optically polished product having a diameter of 20 mm and a thickness of 1 mm. The linear transmittance in 400-800 nm was measured for this using the spectrophotometer. The measurement results are shown in Table 2. In the column of evaluation in Table 2, ◎ indicates that the linear transmittance is substantially 80% or more at 400 to 800 nm, ○ indicates that the linear transmittance is less than 80% at 400 to 800 nm and 60% or more, and × indicates 400 to 800 nm. In FIG. 4, the linear transmittance is shown in a portion having a portion of less than 60%. In addition, the presence or absence of striae was observed by appearance observation. In the evaluation column of Table 2, ◎ indicates no striae and × indicates striae. Further, the sintered body after the measurement was washed, and then the tantalum concentration and niobium concentration were measured by ICP emission spectroscopic analysis. The measurement results are also shown in Table 2.

Figure 0005005317
Figure 0005005317

表2から明らかなように、この発明による酸化イットリウム焼結体は、比表面積とタンタル、ニオブの含有量を制御することにより、脈理のない焼結体を得ることができる。   As can be seen from Table 2, the yttrium oxide sintered body according to the present invention can obtain a sintered body without striae by controlling the specific surface area and the contents of tantalum and niobium.

Claims (4)

酸化イットリウムを主成分とし、金属単体換算で0.05wt%以上0.5wt%以下のニオブを含有し、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上であることを特徴とする透光性酸化イットリウム焼結体。 It contains yttrium oxide as the main component, contains 0.05 wt% or more and 0.5 wt% or less niobium in terms of simple metal , and has a linear transmittance of 60% or more at a visible light band wavelength of 400 to 800 nm at a thickness of 1 mm. A translucent yttrium oxide sintered body characterized by the above. 酸化イットリウム粉末に対して、ニオブ、ニオブ化合物の中の少なくとも1種以上を添加混合し、添加する前記ニオブ、ニオブ化合物量が、酸化イットリウムに対して金属単体換算で0.1wt%以上1.0wt%以下であり、これを成形してニオブを含有する酸化イットリウム成形体を作製し、これを1700℃以上2000℃以下の真空、水素、または希ガス雰囲気下において焼成することを特徴とする透光性セラミックス焼結体の製造方法。 At least one or more of niobium and niobium compounds are added to and mixed with the yttrium oxide powder, and the amount of the niobium and niobium compounds to be added is 0.1 wt% or more and 1.0 wt% in terms of a simple metal with respect to yttrium oxide. %, Which is molded to produce a yttrium oxide compact containing niobium , which is fired in a vacuum, hydrogen, or rare gas atmosphere at 1700 ° C. or higher and 2000 ° C. or lower. Method for producing a ceramic sintered body. 酸化イットリウム粉末が比表面積が5m/g以上50m/g以下で、ニオブ、ニオブ化合物のいずれか1種以上を金属単体換算で0.1wt%以上1.0wt%以下添加混合することを特徴とする請求項2記載の透光性酸化セラミックス焼結体の製造方法。 The yttrium oxide powder has a specific surface area of 5 m 2 / g or more and 50 m 2 / g or less, and any one or more of niobium and niobium compounds are added and mixed in an amount of 0.1 wt% or more and 1.0 wt% or less in terms of simple metal. The manufacturing method of the translucent oxide-ceramics sintered compact of Claim 2 . ニオブを金属単体換算で0.05wt%以上0.2wt%以下含有し、厚さ1mm時の可視光帯域波長400〜800nmにおける直線透過率が60%以上で脈理がないことを特徴とする請求項1記載の透光性酸化イットリウム焼結体。 Niobium containing less 0.2 wt% to 0.05 wt% of a metal simple substance terms linear transmittance in the visible light band wavelength 400~800nm at 1mm thick is characterized in that there is no striae in 60% claims Item 2. The translucent yttrium oxide sintered body according to Item 1 .
JP2006292889A 2005-10-31 2006-10-27 Translucent yttrium oxide sintered body and method for producing the same Active JP5005317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292889A JP5005317B2 (en) 2005-10-31 2006-10-27 Translucent yttrium oxide sintered body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005317297 2005-10-31
JP2005317297 2005-10-31
JP2006292889A JP5005317B2 (en) 2005-10-31 2006-10-27 Translucent yttrium oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007145702A JP2007145702A (en) 2007-06-14
JP5005317B2 true JP5005317B2 (en) 2012-08-22

Family

ID=38207549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292889A Active JP5005317B2 (en) 2005-10-31 2006-10-27 Translucent yttrium oxide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5005317B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080264564A1 (en) 2007-04-27 2008-10-30 Applied Materials, Inc. Method of reducing the erosion rate of semiconductor processing apparatus exposed to halogen-containing plasmas
JP4783636B2 (en) * 2006-01-17 2011-09-28 コバレントマテリアル株式会社 Translucent lutetium oxide sintered body and method for producing the same
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US8367227B2 (en) * 2007-08-02 2013-02-05 Applied Materials, Inc. Plasma-resistant ceramics with controlled electrical resistivity
JP5189928B2 (en) * 2008-08-18 2013-04-24 日本碍子株式会社 Method for producing ceramic member and electrostatic chuck
JP2012036053A (en) * 2010-08-10 2012-02-23 Covalent Materials Corp Anticorrosive member
JP5458053B2 (en) * 2011-03-31 2014-04-02 コバレントマテリアル株式会社 Translucent ceramics and method for producing the same
CN114956821A (en) * 2022-06-24 2022-08-30 中国科学院上海硅酸盐研究所 High-transmittance yttrium oxide transparent ceramic and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421671A (en) * 1982-06-18 1983-12-20 General Electric Company Rare-earth-doped yttria-gadolinia ceramic scintillators
JP2773193B2 (en) * 1989-03-03 1998-07-09 住友電気工業株式会社 Method for producing translucent yttria sintered body
JPH03218963A (en) * 1989-11-11 1991-09-26 Kurosaki Refract Co Ltd Production of transparent yttrium-aluminumgarvent-ceramics
JP2001322871A (en) * 2000-03-07 2001-11-20 Shin Etsu Chem Co Ltd Oxide sintered body containing rare earth element and method for manufacturing the same
JP4033451B2 (en) * 2001-07-05 2008-01-16 神島化学工業株式会社 Translucent rare earth oxide sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2007145702A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP5005317B2 (en) Translucent yttrium oxide sintered body and method for producing the same
US7608552B2 (en) Dental material or product and method of forming a dental product
KR100910261B1 (en) Transparent rare-earth oxide sintered body manufacturing method thereof
JP4910750B2 (en) Translucent alumina sintered body and method for producing the same
KR102382726B1 (en) Method for producing transparent alumina sintered body
EP2546212B1 (en) Method for producing porous aluminum magnesium titanate
JP5381844B2 (en) In-Ga-Zn-based composite oxide sintered body and method for producing the same
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JP5458552B2 (en) Highly tough and translucent colored alumina sintered body, method for producing the same, and use
JP6044552B2 (en) Tin oxide refractory and method for producing the same
JP6772592B2 (en) Translucent zirconia sintered body, its manufacturing method, and its application
WO2020262433A1 (en) Oxide sintered body
JP4783654B2 (en) Translucent ceramic sintered body and manufacturing method thereof
WO2020090867A1 (en) Sintered body
JP2009084060A (en) Translucent oxidized yttrium aluminum garnet sintered compact and its producing method
JP4783636B2 (en) Translucent lutetium oxide sintered body and method for producing the same
JP2011102227A (en) High-strength transparent zirconia sintered body
JP2007254186A (en) Translucent yttrium oxide sintered compact and method of manufacturing the same
JP4783655B2 (en) Translucent ytterbium oxide sintered body
TWI557091B (en) Composite oxide sintered object and oxide transparent conductive film
JP2008195570A (en) Translucent yttrium aluminum oxide garnet sintered compact and its producing method
JP5458053B2 (en) Translucent ceramics and method for producing the same
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2013100071A1 (en) Tin-oxide refractory
JP2010120796A (en) High toughness and translucent colored alumina sintered compact, method for producing the same and its use

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250