JP5001918B2 - Fluid control valve - Google Patents

Fluid control valve Download PDF

Info

Publication number
JP5001918B2
JP5001918B2 JP2008215290A JP2008215290A JP5001918B2 JP 5001918 B2 JP5001918 B2 JP 5001918B2 JP 2008215290 A JP2008215290 A JP 2008215290A JP 2008215290 A JP2008215290 A JP 2008215290A JP 5001918 B2 JP5001918 B2 JP 5001918B2
Authority
JP
Japan
Prior art keywords
valve
downstream
seat surface
valve seat
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008215290A
Other languages
Japanese (ja)
Other versions
JP2010048391A (en
Inventor
晃 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2008215290A priority Critical patent/JP5001918B2/en
Publication of JP2010048391A publication Critical patent/JP2010048391A/en
Application granted granted Critical
Publication of JP5001918B2 publication Critical patent/JP5001918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)

Description

この発明は、例えば、エンジンの吸気系や排気系に設けられ、流体の流れを制御するために使用される流体制御弁に関する。   The present invention relates to a fluid control valve that is provided, for example, in an intake system or an exhaust system of an engine and used to control the flow of fluid.

従来、この種の技術として、例えば、下記の特許文献1に記載される吸気装置の流体制御弁が知られている。図18に概念的構成を断面図により示すように、この流体制御弁は、ハウジング51を備え、そのハウジング51の吸気通路52の中にこれを横断して貫通するように弁軸53が軸受54を介して回転可能に設けられる。弁軸53上には、バタフライ弁55が設けられる。ハウジング51における、弁軸53を挟んだ一方の半周部の上流側には、バタフライ弁55の全閉時に、バタフライ弁55の下流側外周面55aに対面する一方の上流側弁座面56が設けられる。一方、ハウジング51における、弁軸53を挟んだ他方の半周部の下流側には、バタフライ弁55の全閉時に、バタフライ弁55の上流側外周面55bに対面する他方の下流側弁座面57が設けられる。そして、両弁座面56,57の傾斜角度がバタフライ弁55の全閉時の傾斜角度よりも大きく設定され、両弁座面56,57の両端部がバタフライ弁55と弁軸53から離間して設けられる。また、この種の流体制御弁では、初期状態において弁軸53の中心軸線L1が軸受30の中心軸線L2と整合するように位置し、弁軸53の外周面と軸受30の内周面との間には、弁軸53の回動を許容するために微細な軸受隙間Gbが設けられている。   Conventionally, as this type of technology, for example, a fluid control valve of an intake device described in Patent Document 1 below is known. As shown in the sectional view of the conceptual configuration in FIG. 18, the fluid control valve includes a housing 51, and the valve shaft 53 is a bearing 54 so as to penetrate through the intake passage 52 of the housing 51. It is provided rotatably via the. A butterfly valve 55 is provided on the valve shaft 53. One upstream valve seat surface 56 that faces the downstream outer peripheral surface 55a of the butterfly valve 55 when the butterfly valve 55 is fully closed is provided on the upstream side of one half circumference of the housing 51 with the valve shaft 53 interposed therebetween. It is done. On the other hand, on the downstream side of the other half circumference of the housing 51 across the valve shaft 53, the other downstream valve seat surface 57 that faces the upstream outer circumferential surface 55 b of the butterfly valve 55 when the butterfly valve 55 is fully closed. Is provided. The inclination angles of both valve seat surfaces 56 and 57 are set larger than the inclination angle when the butterfly valve 55 is fully closed, and both end portions of both valve seat surfaces 56 and 57 are separated from the butterfly valve 55 and the valve shaft 53. Provided. In this type of fluid control valve, the central axis L1 of the valve shaft 53 is positioned so as to be aligned with the central axis L2 of the bearing 30 in the initial state, and the outer peripheral surface of the valve shaft 53 and the inner peripheral surface of the bearing 30 are located. A fine bearing gap Gb is provided between them to allow the valve shaft 53 to rotate.

特開2000−18055号公報JP 2000-18055 A

ところが、特許文献1に記載の流体制御弁では、実際に吸気装置に使用された場合、図19に示すように、バタフライ弁55が全閉状態となるときに、吸気通路52を空気が流れると、その空気の圧力を受けてバタフライ弁55が弁軸53と共に押圧されて軸受隙間Gbの分だけ下流側へ変位することになる。この場合、バタフライ弁55の上流側外周面55bと下流側弁座面57との間に隙間ができ、その隙間から空気が洩れるおそれがあった。このため、全閉状態にもかかわらず、流体制御弁が空気の流れを完全に規制することができなくなってしまう。   However, in the fluid control valve described in Patent Document 1, when actually used in the intake device, as shown in FIG. 19, when the air flows through the intake passage 52 when the butterfly valve 55 is fully closed, as shown in FIG. In response to the pressure of the air, the butterfly valve 55 is pressed together with the valve shaft 53 to be displaced downstream by the bearing gap Gb. In this case, there is a gap between the upstream outer peripheral surface 55b of the butterfly valve 55 and the downstream valve seat surface 57, and there is a possibility that air leaks from the gap. For this reason, in spite of the fully closed state, the fluid control valve cannot completely regulate the air flow.

この発明は上記事情に鑑みてなされたものであって、その目的は、全閉時にバタフライ弁と下流側弁座面及び上流側弁座面との間から流体が洩れるのを防止することを可能とした流体制御弁を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to prevent fluid from leaking from between the butterfly valve, the downstream valve seat surface, and the upstream valve seat surface when fully closed. An object of the present invention is to provide a fluid control valve.

上記目的を達成するために、請求項1に記載の発明は、ハウジングと、ハウジングに形成された少なくとも1つの流体通路と、流体通路を横断し貫通して設けられた弁軸と、流体通路を開閉するために弁軸に設けられたバタフライ弁と、弁軸を回動可能に支持するためにハウジングに設けられた軸受と、初期状態において弁軸の中心軸線が軸受の中心軸線に整合し、弁軸の外周面と軸受の内周面との間に弁軸の回動を許容する微細な軸受隙間が設けられることと、弁軸を挟んで分けられるバタフライ弁の一方の半部分の上流側周縁部と接触可能に流体通路に設けられた下流側弁座面と、弁軸を挟んで分けられるバタフライ弁の他方の半部分の下流側周縁部と接触可能に流体通路に設けられた上流側弁座面とを備え、弁軸と共にバタフライ弁を回動させることにより流体通路を開閉するようにした流体制御弁であって、流体通路に流体が供給されない状態でバタフライ弁が全閉状態となるとき、一方の半部分の上流側周縁部が下流側弁座面に接触し、他方の半部分の下流側周縁部と上流側弁座面との間に微細な弁座隙間が設けられ、流体通路に流体が供給される状態でバタフライ弁が全閉状態となるとき、軸受隙間の分だけ弁軸が下流側へ変位すると共に、一方の半部分の上流側周縁部が下流側弁座面に接触したまま、他方の半部分が弁座隙間の分だけ下流側へ変位することで、他方の半部分の下流側周縁部が上流側弁座面に接触するように構成したことを趣旨とする。   In order to achieve the above object, an invention according to claim 1 includes a housing, at least one fluid passage formed in the housing, a valve shaft provided so as to traverse the fluid passage, and a fluid passage. A butterfly valve provided on the valve shaft for opening and closing; a bearing provided on the housing for rotatably supporting the valve shaft; and the central axis of the valve shaft in the initial state is aligned with the central axis of the bearing; A fine bearing gap that allows the rotation of the valve shaft is provided between the outer peripheral surface of the valve shaft and the inner peripheral surface of the bearing, and upstream of one half of the butterfly valve that is divided across the valve shaft A downstream valve seat surface provided in the fluid passage so as to be in contact with the peripheral portion, and an upstream side provided in the fluid passage so as to be in contact with the downstream peripheral portion of the other half portion of the butterfly valve that is divided across the valve shaft And a butterfly valve together with the valve stem A fluid control valve that opens and closes the fluid passage by moving the fluid passage so that when the butterfly valve is fully closed without fluid being supplied to the fluid passage, the upstream peripheral portion of one half is on the downstream side A butterfly valve is fully closed with a small valve seat clearance between the downstream peripheral edge of the other half and the upstream valve seat surface, and fluid is supplied to the fluid passage. In this state, the valve shaft is displaced downstream by the amount of the bearing clearance, while the upstream peripheral edge of one half is in contact with the downstream valve seat surface and the other half is the amount of the valve seat clearance. It is intended that the downstream peripheral portion of the other half is in contact with the upstream valve seat surface by being displaced only downstream.

上記発明の構成によれば、弁軸の回動を許容するために弁軸の外周面と軸受の内周面との間に微細な軸受隙間が設けられることから、その軸受隙間の分だけ弁軸及びバタフライ弁が変位可能な状態にある。ここで、流体通路に流体が供給される状態でバタフライ弁が全閉状態となるときは、流体の圧力によって、軸受隙間の分だけ弁軸が下流側へ変位すると共に、一方の半部分の上流側周縁部が下流側弁座面に接触したまま、他方の半部分が弁座隙間の分だけ下流側へ変位することで、他方の半部分の下流側周縁部が上流側弁座面に接触することとなる。従って、流体通路に流体が供給される状態でバタフライ弁が全閉状態となっても、バタフライ弁と上流側弁座面及び下流側弁座面との間に隙間ができることがない。   According to the configuration of the above invention, since a fine bearing gap is provided between the outer peripheral surface of the valve shaft and the inner peripheral surface of the bearing in order to allow rotation of the valve shaft, the valve is provided by the amount corresponding to the bearing gap. The shaft and butterfly valve are in a displaceable state. Here, when the butterfly valve is fully closed when fluid is supplied to the fluid passage, the valve shaft is displaced downstream by the bearing clearance due to the pressure of the fluid, and the upstream of one half portion While the side peripheral edge is in contact with the downstream valve seat surface, the other half is displaced downstream by the valve seat clearance, so that the downstream peripheral edge of the other half contacts the upstream valve seat surface. Will be. Therefore, even when the butterfly valve is fully closed in a state where fluid is supplied to the fluid passage, there is no gap between the butterfly valve and the upstream valve seat surface and the downstream valve seat surface.

上記目的を達成するために、請求項2に記載の発明は、請求項1に記載の発明において、より具体的には、バタフライ弁の中心が弁軸の中心軸線に整合するように配置され、上流側弁座面と下流側弁座面の流体通路における流体流れ方向の位置を互いに軸受の中心軸線に整合する同じ位置に配置した状態を基準として、下流側弁座面のみが基準とした位置よりも下流側へ所定値だけ変位して配置されたことと構成することができる。   In order to achieve the above object, the invention according to claim 2 is the invention according to claim 1, more specifically, the center of the butterfly valve is arranged so as to be aligned with the center axis of the valve shaft, The position where only the downstream valve seat surface is the reference, with the positions of the upstream and downstream valve seat surfaces in the fluid flow direction in the fluid passages being aligned at the same position aligned with the center axis of the bearing. Further, it can be configured that it is arranged by being displaced by a predetermined value further downstream.

上記目的を達成するために、請求項3に記載の発明は、請求項2に記載の発明において、下流側へ変位させる所定値は、軸受隙間の大きさと同じであることとするのが望ましい。   In order to achieve the above object, it is desirable that the invention described in claim 3 is the invention described in claim 2, wherein the predetermined value to be displaced downstream is the same as the size of the bearing gap.

上記目的を達成するために、請求項4に記載の発明は、請求項1に記載の発明において、より具体的には、上流側弁座面と下流側弁座面の流体通路における流体流れ方向の位置が互いに軸受の中心軸線に整合する同じ位置に配置され、バタフライ弁の中心が弁軸の中心軸線よりも上流側へ所定値だけ変位して配置されたことと構成することができる。   To achieve the above object, according to a fourth aspect of the present invention, in the first aspect of the present invention, more specifically, a fluid flow direction in a fluid passage between the upstream valve seat surface and the downstream valve seat surface. And the center of the butterfly valve is displaced upstream from the center axis of the valve shaft by a predetermined value.

上記目的を達成するために、請求項5に記載の発明は、請求項4に記載の発明において、上流側へ変位させる所定値は、軸受隙間の大きさと同じであることとするのが望ましい。   In order to achieve the above object, in the invention described in claim 5, in the invention described in claim 4, it is desirable that the predetermined value to be displaced upstream is the same as the size of the bearing gap.

上記目的を達成するために、請求項6に記載の発明は、請求項1に記載の発明において、より具体的には、上流側弁座面と下流側弁座面の流体通路における流体流れ方向の位置が互いに軸受の中心軸線に整合する同じ位置に配置され、バタフライ弁の中心が弁軸の中心軸線に整合するように配置され、下流側弁座面に接触可能な一方の半部分が上流側へ向けて弁軸に沿って所定角度だけ折り曲げられたことと構成することができる。   To achieve the above object, according to a sixth aspect of the present invention, in the first aspect of the present invention, more specifically, a fluid flow direction in a fluid passage between the upstream valve seat surface and the downstream valve seat surface. Are located at the same position where they are aligned with the center axis of the bearing, the center of the butterfly valve is aligned with the center axis of the valve shaft, and one half that can contact the downstream valve seat is upstream. It can be constituted that it is bent by a predetermined angle along the valve shaft toward the side.

上記目的を達成するために、請求項7に記載の発明は、請求項1に記載の発明において、より具体的には、上流側弁座面と下流側弁座面の流体通路における流体流れ方向の位置が互いに軸受の中心軸線に整合する同じ位置に配置され、バタフライ弁は、その板厚が弁軸の外径より小さく弁軸の外径の半分より大きく構成されると共に、バタフライ弁の中心が弁軸の中心軸線よりも上流側へ所定値だけ変位して配置されたことと構成することができる。   In order to achieve the above object, the invention according to claim 7 is the invention according to claim 1, more specifically, the fluid flow direction in the fluid passages of the upstream valve seat surface and the downstream valve seat surface. The butterfly valve is configured so that its plate thickness is smaller than the outer diameter of the valve shaft and larger than half of the outer diameter of the valve shaft, and the center of the butterfly valve Can be configured to be displaced by a predetermined value upstream from the central axis of the valve shaft.

請求項1乃至7の何れかに記載の発明によれば、全閉時にバタフライ弁と下流側弁座面及び上流側弁座面との間から流体が洩れるのを防止することができる。   According to the invention of any one of claims 1 to 7, it is possible to prevent fluid from leaking from between the butterfly valve, the downstream valve seat surface and the upstream valve seat surface when fully closed.

[第1実施形態]
以下、本発明の流体制御弁を具体化した第1実施形態につき図面を参照して詳細に説明する。この実施形態では、本発明の流体制御弁をEGRクーラ付きEGR装置におけるEGRクーラバイパスバルブに具体化して説明する。
[First Embodiment]
Hereinafter, a first embodiment of the fluid control valve of the present invention will be described in detail with reference to the drawings. In this embodiment, the fluid control valve according to the present invention will be described as an EGR cooler bypass valve in an EGR device with an EGR cooler.

図1に、ディーゼルエンジン1に設けられたEGRクーラ付きEGR装置2を概略構成図により示す。このEGR装置2は、エンジン1から排気マニホールド3に排出される排気ガスの一部をEGRガスとして吸気マニホールド4に再循環させるためのものである。このEGR装置2は、EGRガスが流れるEGR通路5と、EGRガス流量を調節するためのEGRバルブ6と、EGRガスを冷却するためのEGRクーラ7と、EGRクーラ7を迂回するようにEGR通路5に設けられたEGRクーラバイパス通路8と、このバイパス通路8とEGR通路5との間に設けられたEGRクーラバイパスバルブ(以下、単に「バイパスバルブ」と言う。)9とを備える。この実施形態で、バイパスバルブ9は、EGRガスの流路を、EGRクーラ7を流れる流路と、バイパス通路8を流れる流路とに選択的に切り替えるようになっている。   In FIG. 1, the EGR apparatus 2 with an EGR cooler provided in the diesel engine 1 is shown with a schematic block diagram. The EGR device 2 is for recirculating a part of exhaust gas discharged from the engine 1 to the exhaust manifold 3 to the intake manifold 4 as EGR gas. The EGR device 2 includes an EGR passage 5 through which EGR gas flows, an EGR valve 6 for adjusting the EGR gas flow rate, an EGR cooler 7 for cooling the EGR gas, and an EGR passage so as to bypass the EGR cooler 7. 5 and an EGR cooler bypass valve (hereinafter simply referred to as “bypass valve”) 9 provided between the bypass passage 8 and the EGR passage 5. In this embodiment, the bypass valve 9 selectively switches the EGR gas flow path between a flow path that flows through the EGR cooler 7 and a flow path that flows through the bypass path 8.

EGRクーラ7には、エンジン1の冷却水を循環させるために冷却水循環用の配管(図示略)が接続される。EGRクーラ7は、高温のEGRガスを冷却水と熱交換させて冷却するようになっている。バイパスバルブ9は、バルブ本体10と、ダイアフラム式のアクチュエータ11とを備える。アクチュエータ11には、負圧ポンプ12から負圧配管13を通じて負圧が供給される。この負圧配管13の途中には、バキューム・スイッチング・バルブ(VSV)14が設けられる。VSV14を開閉させてアクチュエータ11への負圧の供給を制御することにより、バイパスバルブ9が動作するようになっている。EGRバルブ6及びVSV14は、電子制御装置(ECU)15により、エンジン運転状態に基づいて制御される。ECU15は、エンジン運転状態として、各種センサ(図示略)により検出されるエンジン1の冷却水温、エンジン回転速度及びスロットル開度をそれぞれ入力し、それらパラメータからエンジン運転状態を判断し、必要に応じてEGRバルブ6及びVSV14を制御するようになっている。この制御によりVSV14を開閉させることにより、アクチュエータ11への負圧の供給が制御され、アクチュエータ11が動作してバイパスバルブ9の流路が切り替えられる。   A cooling water circulation pipe (not shown) is connected to the EGR cooler 7 in order to circulate the cooling water of the engine 1. The EGR cooler 7 cools high-temperature EGR gas by exchanging heat with cooling water. The bypass valve 9 includes a valve body 10 and a diaphragm actuator 11. Negative pressure is supplied to the actuator 11 from the negative pressure pump 12 through the negative pressure pipe 13. A vacuum switching valve (VSV) 14 is provided in the middle of the negative pressure pipe 13. The bypass valve 9 is operated by opening and closing the VSV 14 to control the supply of negative pressure to the actuator 11. The EGR valve 6 and the VSV 14 are controlled by an electronic control unit (ECU) 15 based on the engine operating state. The ECU 15 inputs the engine 1 cooling water temperature, engine speed, and throttle opening detected by various sensors (not shown) as engine operating states, determines the engine operating state from these parameters, and if necessary. The EGR valve 6 and the VSV 14 are controlled. By opening and closing the VSV 14 by this control, the supply of negative pressure to the actuator 11 is controlled, and the actuator 11 operates to switch the flow path of the bypass valve 9.

次に、バイパスバルブ9の詳しい構成を説明する。図2に、バイパスバルブ9を正面図により示す。図3に、バイパスバルブ9を平面図により示す。図4に、バイパスバルブ9を図2の右側面図により示す。   Next, a detailed configuration of the bypass valve 9 will be described. FIG. 2 is a front view of the bypass valve 9. FIG. 3 is a plan view of the bypass valve 9. FIG. 4 is a right side view of the bypass valve 9 shown in FIG.

図2〜4に示すように、バイパスバルブ9は、バルブ本体10とアクチュエータ11を備える。バルブ本体10は、ハウジング21と、ハウジング21に形成された2つの流体流路としての第1のガス通路22及び第2のガス通路23と、各ガス通路22,23を横断し貫通してハウジング21に設けられた弁軸24と、各ガス通路22,23をそれぞれ開閉するために弁軸24上に設けられた第1のバタフライ弁25及び第2のバタフライ弁26とを備える。アクチュエータ11は、ブラケット27を介してハウジング21に固定される。弁軸24の一端部は、レバー28を介してアクチュエータ11のロッド29に接続される。   As shown in FIGS. 2 to 4, the bypass valve 9 includes a valve body 10 and an actuator 11. The valve body 10 includes a housing 21, a first gas passage 22 and a second gas passage 23 as two fluid passages formed in the housing 21, and the gas passages 22, 23. And a first butterfly valve 25 and a second butterfly valve 26 provided on the valve shaft 24 in order to open and close the gas passages 22 and 23, respectively. The actuator 11 is fixed to the housing 21 via the bracket 27. One end of the valve shaft 24 is connected to a rod 29 of the actuator 11 via a lever 28.

図5に、ハウジング21を底面図により示す。図6に、ハウジング21を図5のA−A線断面図により示す。ハウジング21は、例えば、アルミニウムを主材料として形成される。ハウジング21には、弁軸24を回動可能に支持するために孔状に形成された3つの軸受30が設けられる。   FIG. 5 shows the housing 21 in a bottom view. FIG. 6 shows the housing 21 by a cross-sectional view taken along line AA of FIG. The housing 21 is formed using, for example, aluminum as a main material. The housing 21 is provided with three bearings 30 formed in a hole shape so as to rotatably support the valve shaft 24.

図7に、弁軸24を正面図により示す。図8に、弁軸24を図7の状態から90°回転した状態を正面図により示す。図9に、各バタフライ弁25,26を平面図により示す。弁軸24は、例えば、ステンレスを主材料として形成される。各バタフライ弁25,26は、略四角形状をなし、例えば、フェライト系やオーステナイト系のステンレス材料を主体として板状に構成される。図7,8に示すように、弁軸24上には、2つの凹部24a,24bが形成される。これら凹部24a,24bは、弁軸24の中心軸線L1を中心に90°位置を変えて形成される。各凹部24a,24bには、各バタフライ弁25,26が組み付けられ固定される。従って、各バタフライ弁25,26は、弁軸24の中心軸線L1を中心に90°向きが異なる。   FIG. 7 is a front view of the valve shaft 24. FIG. 8 is a front view showing a state in which the valve shaft 24 is rotated by 90 ° from the state shown in FIG. FIG. 9 is a plan view showing the butterfly valves 25 and 26. The valve shaft 24 is formed, for example, using stainless steel as a main material. Each butterfly valve 25, 26 has a substantially quadrangular shape, and is configured in a plate shape mainly composed of, for example, a ferritic or austenitic stainless material. As shown in FIGS. 7 and 8, two recesses 24 a and 24 b are formed on the valve shaft 24. These recesses 24a and 24b are formed by changing the position of 90 ° around the central axis L1 of the valve shaft 24. The butterfly valves 25 and 26 are assembled and fixed to the recesses 24a and 24b. Accordingly, the butterfly valves 25 and 26 have different 90 ° directions around the central axis L1 of the valve shaft 24.

アクチュエータ11は、内部にダイヤフラムを設けたダイヤフラム室を有し、ダイヤフラム室には負圧管11aを通じて負圧が供給されるようになっている。このアクチュエータ11に負圧が供給されることで、ダイアフラムと共にロッド29が図4中の矢印Q1の方向へ動かされる。また、アクチュエータ11から負圧をパージした大気圧のときは、ダイアフラムと共にロッド29が矢印Q2の方向へ動かされる。これロッド29の動きにより、弁軸24がレバー28を介して回動される。   The actuator 11 has a diaphragm chamber provided with a diaphragm inside, and negative pressure is supplied to the diaphragm chamber through a negative pressure tube 11a. By supplying negative pressure to the actuator 11, the rod 29 is moved in the direction of the arrow Q1 in FIG. 4 together with the diaphragm. When the atmospheric pressure is obtained by purging the negative pressure from the actuator 11, the rod 29 is moved in the direction of the arrow Q2 together with the diaphragm. The valve shaft 24 is rotated via the lever 28 by the movement of the rod 29.

ここで、ハウジング21の第1のガス通路22は、EGR通路5に接続され、第2のガス通路23はバイパス通路8に接続される。各ガス通路22,23において各バタフライ弁25,26の弁軸24上の向きが90°異なることから、図3に示すように、第1のバタフライ弁25により第1のガス通路22が開かれたときは、第2のバタフライ弁26により第2のガス通路23が閉じられる。その逆に、第1のバタフライ弁25により第1のガス通路22が閉じられたときは、第2のバタフライ弁26により第2のガス通路23が開かれる。   Here, the first gas passage 22 of the housing 21 is connected to the EGR passage 5, and the second gas passage 23 is connected to the bypass passage 8. Since the orientation of the butterfly valves 25 and 26 on the valve shaft 24 differs by 90 ° in the gas passages 22 and 23, the first gas passage 22 is opened by the first butterfly valve 25 as shown in FIG. The second gas passage 23 is closed by the second butterfly valve 26. Conversely, when the first gas passage 22 is closed by the first butterfly valve 25, the second gas passage 23 is opened by the second butterfly valve 26.

ここで、この実施形態のバイパスバルブ9の特徴的な構成について説明する。図10,11に、図3のB−B線に沿った断面図をそれぞれ概念的に示す。図10は、第2のガス通路23にEGRガスが供給されない状態であって第2のバタフライ弁26の全閉状態を示す。図11は、第2のガス通路23にEGRガスが供給される状態であって第2のバタフライ弁26の全閉状態を示す。第1のバタフライ弁25については、第2のバタフライ弁26と配置が異なるのみで構成は同じであることから、以下には説明を省略する。   Here, a characteristic configuration of the bypass valve 9 of this embodiment will be described. 10 and 11 conceptually show cross-sectional views along the line BB in FIG. FIG. 10 shows a state where the EGR gas is not supplied to the second gas passage 23 and the second butterfly valve 26 is fully closed. FIG. 11 shows a state in which the EGR gas is supplied to the second gas passage 23 and the second butterfly valve 26 is fully closed. Since the configuration of the first butterfly valve 25 is the same as the second butterfly valve 26 except for the arrangement, the description thereof will be omitted below.

この実施形態では、図10に示すように、初期状態において弁軸24の中心軸線L1が軸受30の中心軸線L2に整合し、弁軸24の外周面と軸受30の内周面との間に弁軸24の回動を許容する微細な軸受隙間Gbが設けられる。この軸受隙間Gbは、便宜上、誇張して実際よりも大きく表されている。ガス通路23には、弁軸24を挟んで分けられるバタフライ弁26の一方の半部分26aの上流側周縁部Ueと接触可能に下流側弁座面31が設けられる。また、ガス通路23には、弁軸24を挟んで分けられるバタフライ弁26の他方の半部分26bの下流側周縁部Deと接触可能に上流側弁座面32が設けられる。そして、弁軸24と共にバタフライ弁26を回動させることにより、図10に2点鎖線及び実線で示すように、バタフライ弁26がガス通路23を開閉するようになっている。   In this embodiment, as shown in FIG. 10, in the initial state, the center axis L1 of the valve shaft 24 is aligned with the center axis L2 of the bearing 30, and between the outer peripheral surface of the valve shaft 24 and the inner peripheral surface of the bearing 30. A fine bearing gap Gb that allows rotation of the valve shaft 24 is provided. The bearing gap Gb is exaggerated and shown larger than actual for convenience. A downstream valve seat surface 31 is provided in the gas passage 23 so as to be in contact with the upstream peripheral edge Ue of one half portion 26a of the butterfly valve 26 divided with the valve shaft 24 interposed therebetween. Further, an upstream valve seat surface 32 is provided in the gas passage 23 so as to be in contact with the downstream peripheral edge De of the other half portion 26b of the butterfly valve 26 divided with the valve shaft 24 interposed therebetween. Then, by rotating the butterfly valve 26 together with the valve shaft 24, the butterfly valve 26 opens and closes the gas passage 23 as shown by a two-dot chain line and a solid line in FIG.

この実施形態では、図10に示すように、ガス通路23にEGRガスが供給されない状態でバタフライ弁26が全閉状態となるときは、バタフライ弁26の一方の半部分26aの上流側周縁部Ueが下流側弁座面31に接触し、他方の半部分26bの下流側周縁部Deと上流側弁座面32との間に微細な弁座隙間Gsが設けられるように構成される。この弁座隙間Gsは、便宜上、誇張して実際よりも大きく表されている。そして、この実施形態では、図11に示すように、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態となるときは、軸受隙間Gbの分だけ弁軸24が下流側へ変位すると共に、バタフライ弁26の一方の半部分26aの上流側周縁部Ueが下流側弁座面31に接触したまま、他方の半部分26bが弁座隙間Gsの分だけ下流側へ変位することで、他方の半部分26bの下流側周縁部Deが上流側弁座面32に接触するように構成される。   In this embodiment, as shown in FIG. 10, when the butterfly valve 26 is fully closed in a state where the EGR gas is not supplied to the gas passage 23, the upstream peripheral portion Ue of one half portion 26 a of the butterfly valve 26. Is in contact with the downstream valve seat surface 31, and a fine valve seat gap Gs is provided between the downstream peripheral edge De of the other half portion 26b and the upstream valve seat surface 32. The valve seat gap Gs is exaggerated and shown larger for the sake of convenience. In this embodiment, as shown in FIG. 11, when the butterfly valve 26 is fully closed in a state where the EGR gas is supplied to the gas passage 23, the valve shaft 24 is positioned downstream by the bearing gap Gb. And the other half portion 26b is displaced downstream by the valve seat gap Gs while the upstream peripheral edge portion Ue of one half portion 26a of the butterfly valve 26 is in contact with the downstream valve seat surface 31. Thus, the downstream peripheral edge De of the other half portion 26 b is configured to contact the upstream valve seat surface 32.

この実施形態では、より具体的には、バタフライ弁26の中心C1が弁軸24の中心軸線L1に整合するように配置される。また、下流側弁座面31と上流側弁座面32のガス通路23におけるEGRガス流れ方向の位置を互いに軸受30の中心軸線L2に整合する同じ位置に配置した状態を基準として(図10,11では、2点鎖線で示す下流側弁座面31の位置と上流側弁座面32の位置とが互いに整合して基準となる。)、下流側弁座面31のみが上記基準とした位置よりも下流側へ所定値αだけ変位して配置される。ここでは、下流側弁座面31を下流側へ変位させる所定値αは、上記した軸受隙間Gbの大きさと同じに設定されている。   More specifically, in this embodiment, the center C1 of the butterfly valve 26 is disposed so as to be aligned with the center axis L1 of the valve shaft 24. Further, the positions of the downstream valve seat surface 31 and the upstream valve seat surface 32 in the gas passage 23 in the EGR gas flow direction are arranged at the same position aligned with the central axis L2 of the bearing 30 (see FIG. 10, 11, the position of the downstream valve seat surface 31 indicated by the two-dot chain line and the position of the upstream valve seat surface 32 are aligned with each other as a reference), and only the downstream valve seat surface 31 is set as the reference. Further, it is displaced downstream by a predetermined value α. Here, the predetermined value α for displacing the downstream valve seat surface 31 to the downstream side is set to be the same as the size of the bearing gap Gb described above.

以上説明したこの実施形態のバイパスバルブ9によれば、弁軸24の回動を許容するために、図10に示すように、弁軸24の外周面と軸受30の内周面との間に微細な軸受隙間Gbが設けられることから、その軸受隙間Gbの分だけ弁軸24及びバタフライ弁26が変位可能な状態にある。ここで、図11に示すように、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態になるときは、EGRガスの圧力によって、軸受隙間Gbの分だけ弁軸24が下流側へ変位するが、その変位と共にバタフライ弁26の一方の半部分26aの上流側周縁部Ueが下流側弁座面31に接触したまま、他方の半部分26bが弁座隙間Gsの分だけ下流側へ変位することで、他方の半部分26bの下流側周縁部Deが上流側弁座面32に接触することとなる。   According to the bypass valve 9 of this embodiment described above, in order to allow the rotation of the valve shaft 24, as shown in FIG. 10, between the outer peripheral surface of the valve shaft 24 and the inner peripheral surface of the bearing 30. Since the minute bearing gap Gb is provided, the valve shaft 24 and the butterfly valve 26 are displaceable by the bearing gap Gb. Here, as shown in FIG. 11, when the butterfly valve 26 is fully closed while the EGR gas is supplied to the gas passage 23, the valve shaft 24 is moved by the bearing gap Gb by the pressure of the EGR gas. Although it is displaced to the downstream side, the upstream peripheral edge portion Ue of one half portion 26a of the butterfly valve 26 is in contact with the downstream valve seat surface 31 with the displacement, and the other half portion 26b is the amount corresponding to the valve seat gap Gs. By displacing to the downstream side, the downstream peripheral edge De of the other half portion 26 b comes into contact with the upstream valve seat surface 32.

ここで、ガス通路23にEGRガスが供給されたときに、その圧力によってバタフライ弁26の両方の半部分26a,26bが下流側へ同じように変位するのではなく、他方の半部分26bのみが下流側へ変位する。これは、各半部分26a,26bの上流側面においてEGRガスの圧力を受ける受圧面積が異なることによるものである。すなわち、図10に示すように、一方の半部分26aは受圧面積S1は、上流側周縁部Ueが下流側弁座面31と重なる分だけ、他方の半部分26bの受圧面積S2よりも少なくなっている。この受圧面積S1,S2の違いから、他方の半部分26bの下流側周縁部DeのみがEGRガスの圧力を受けて下流側へ変位するのである。   Here, when the EGR gas is supplied to the gas passage 23, the two halves 26a, 26b of the butterfly valve 26 are not displaced in the same way downstream by the pressure, but only the other half 26b. Displaces downstream. This is because the pressure receiving areas for receiving the pressure of the EGR gas are different on the upstream side surfaces of the half portions 26a and 26b. That is, as shown in FIG. 10, the pressure receiving area S1 of one half 26a is smaller than the pressure receiving area S2 of the other half 26b by the amount that the upstream peripheral edge Ue overlaps the downstream valve seat surface 31. ing. Due to the difference between the pressure receiving areas S1 and S2, only the downstream peripheral edge De of the other half portion 26b receives the pressure of the EGR gas and is displaced downstream.

従って、この実施形態によれば、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態となっても、バタフライ弁26と下流側弁座面31及び上流側弁座面32との間に隙間ができることはない。このため、全閉時にバタフライ弁26と下流側弁座面31及び上流側弁座面32との間からEGRガスが洩れるのを防止することができる。このバイパスバルブ9において、第1のガス通路22と第1のバタフライ弁25についても上記と同様の作用効果を得ることができる。   Therefore, according to this embodiment, even if the butterfly valve 26 is fully closed while EGR gas is supplied to the gas passage 23, the butterfly valve 26, the downstream valve seat surface 31, and the upstream valve seat surface 32. There is no gap between them. For this reason, EGR gas can be prevented from leaking from between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32 when fully closed. In the bypass valve 9, the same effects as described above can be obtained for the first gas passage 22 and the first butterfly valve 25.

この実施形態では、バイパスバルブ9につき上記のような効果が得られることから、EGR装置2において、EGRクーラ7によるEGRガスの冷却効果を損なうことがない。すなわち、バイパスバルブ9によりバイパス通路8を閉鎖し、EGRクーラ7下流のEGR通路5を開放した場合、第1のガス通路22が第1のバタフライ弁25により全開状態となり、第2のガス通路23が第2のバタフライ弁26により全閉状態となる。このとき、EGRクーラ7を通って冷却されたEGRガスは第1のガス通路22を流れるが、EGRクーラ7を通らずにバイパス通路8に達したEGRガスは、第2のガス通路23にて第2のバタフライ弁26により遮断されることとなる。ここで、この実施形態では、上記したように、全閉時に第2のバタフライ弁26と下流側弁座面31及び上流側弁座面32との間におけるEGRガスの洩れが防止できることから、EGRクーラ7を通らずにバイパス通路8に達した冷却されないEGRガスが、バイパスバルブ9の下流側に洩れて冷却されたEGRガスと混ざり合うことがなく、EGRクーラ7によるEGRガスの冷却効果を損なうことがない。このため、EGRガスをEGRクーラ7により狙い通りの温度に冷却することができる。   In this embodiment, since the above-described effect is obtained for the bypass valve 9, the EGR gas cooling effect by the EGR cooler 7 is not impaired in the EGR device 2. That is, when the bypass passage 8 is closed by the bypass valve 9 and the EGR passage 5 downstream of the EGR cooler 7 is opened, the first gas passage 22 is fully opened by the first butterfly valve 25, and the second gas passage 23 Is fully closed by the second butterfly valve 26. At this time, the EGR gas cooled through the EGR cooler 7 flows through the first gas passage 22, but the EGR gas that has reached the bypass passage 8 without passing through the EGR cooler 7 passes through the second gas passage 23. It will be shut off by the second butterfly valve 26. In this embodiment, as described above, EGR gas leakage between the second butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32 can be prevented when fully closed. The uncooled EGR gas that has reached the bypass passage 8 without passing through the cooler 7 does not mix with the EGR gas that has leaked and cooled to the downstream side of the bypass valve 9, thereby impairing the cooling effect of the EGR gas by the EGR cooler 7. There is nothing. For this reason, the EGR gas can be cooled to a target temperature by the EGR cooler 7.

[第2実施形態]
次に、本発明の流体制御弁をEGRクーラバイパスバルブに具体化した第2実施形態につき図面を参照して詳細に説明する。
[Second Embodiment]
Next, a second embodiment in which the fluid control valve of the present invention is embodied as an EGR cooler bypass valve will be described in detail with reference to the drawings.

なお、以下に説明する各実施形態において、第1実施形態と同様の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に説明するものとする。   In each embodiment described below, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described.

図12に、図10に準ずるバイパスバルブ9の概念的構成を断面図により示す。図13に、図11に準ずるバイパスバルブ9の概念的構成を断面図により示す。この実施形態では、第1実施形態と異なり、上流側弁座面32と下流側弁座面31のガス通路23におけるEGRガス流れ方向の位置が互いに軸受30の中心軸線L2に整合する同じ位置に配置される。また、第1実施形態と異なり、バタフライ弁26の中心C1が弁軸24の中心軸線L1よりも上流側へ所定値βだけ変位して配置される。このようにバタフライ弁26を変位させるために、弁軸24に形成される凹部24bが、第1実施形態のそれよりも浅く形成される。更に、第1実施形態と異なり、この実施形態では、バタフライ弁26の外周縁が下流側弁座面31及び上流側弁座面32に接触可能となっている。この実施形態では、バタフライ弁26を上流側へ変位させる所定値βは、軸受隙間Gbの大きさと同じに設定されている。   FIG. 12 is a sectional view showing the conceptual configuration of the bypass valve 9 according to FIG. FIG. 13 is a sectional view showing a conceptual configuration of the bypass valve 9 according to FIG. In this embodiment, unlike the first embodiment, the positions of the upstream side valve seat surface 32 and the downstream side valve seat surface 31 in the gas passage 23 in the EGR gas flow direction are aligned at the same position aligned with the central axis L2 of the bearing 30. Be placed. Further, unlike the first embodiment, the center C1 of the butterfly valve 26 is arranged to be displaced by a predetermined value β upstream of the center axis L1 of the valve shaft 24. In order to displace the butterfly valve 26 in this way, the recess 24b formed in the valve shaft 24 is formed shallower than that of the first embodiment. Furthermore, unlike the first embodiment, in this embodiment, the outer peripheral edge of the butterfly valve 26 can contact the downstream valve seat surface 31 and the upstream valve seat surface 32. In this embodiment, the predetermined value β for displacing the butterfly valve 26 upstream is set to be the same as the size of the bearing gap Gb.

従って、この実施形態でも、図12に示すように、ガス通路23にEGRガスが供給されない状態でバタフライ弁26が全閉状態となるときは、バタフライ弁26の他方の半部分26bの下流側周縁部Deと上流側弁座面32との間に弁座隙間Gsが存在する。しかし、図13に示すように、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態となるときは、EGRガスの圧力によって、軸受隙間Gbの分だけ弁軸24が下流側へ変位するが、その変位と共にバタフライ弁26の一方の半部分26aの上流側周縁部Ueが下流側弁座面31に接触したまま、他方の半部分26bが弁座隙間Gsの分だけ下流側へ変位することで、他方の半部分26bの下流側周縁部Deが上流側弁座面32に接触する。これにより、バタフライ弁26と下流側弁座面31及び上流側弁座面32との間に隙間ができることはない。このため、全閉時にバタフライ弁26と下流側弁座面31及び上流側弁座面31との間からEGRガスが洩れることを防止することができる。第1のガス通路22と第1のバタフライ弁25についても上記と同様である。   Therefore, also in this embodiment, as shown in FIG. 12, when the butterfly valve 26 is fully closed in a state where the EGR gas is not supplied to the gas passage 23, the downstream peripheral edge of the other half portion 26b of the butterfly valve 26 A valve seat gap Gs exists between the portion De and the upstream valve seat surface 32. However, as shown in FIG. 13, when the butterfly valve 26 is fully closed while the EGR gas is supplied to the gas passage 23, the valve shaft 24 is moved downstream by the bearing gap Gb due to the pressure of the EGR gas. With the displacement, the upstream peripheral edge portion Ue of one half portion 26a of the butterfly valve 26 is in contact with the downstream valve seat surface 31 and the other half portion 26b is downstream by the valve seat gap Gs. By displacing to the side, the downstream peripheral edge De of the other half portion 26 b contacts the upstream valve seat surface 32. Thereby, there is no gap between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32. For this reason, it is possible to prevent EGR gas from leaking from between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 31 when fully closed. The same applies to the first gas passage 22 and the first butterfly valve 25.

[第3実施形態]
次に、本発明の流体制御弁をEGRクーラバイパスバルブに具体化した第3実施形態につき図面を参照して詳細に説明する。
[Third Embodiment]
Next, a third embodiment in which the fluid control valve of the present invention is embodied as an EGR cooler bypass valve will be described in detail with reference to the drawings.

図14に、図10に準ずるバイパスバルブ9の概念的構成を断面図により示す。図15に、図11に準ずるバイパスバルブ9の概念的構成を断面図により示す。この実施形態では、第1実施形態と異なり、下流側弁座面31と上流側弁座面32のガス通路23におけるEGRガス流れ方向の位置が互いに軸受30の中心軸線L2に整合する同じ位置に配置される。また、この実施形態では、第1実施形態と同様、バタフライ弁26の中心C1が弁軸24の中心軸線L1に整合するように配置され、第1実施形態と異なり、下流側弁座面31に接触可能な一方の半部分26aが上流側へ向けて弁軸24に沿って所定角度θだけ折り曲げられている。更に、第1実施形態と異なり、この実施形態では、バタフライ弁26の外周縁が下流側弁座面31及び上流側弁座面32に接触可能となっている。   FIG. 14 is a sectional view showing a conceptual configuration of the bypass valve 9 according to FIG. FIG. 15 is a sectional view showing a conceptual configuration of the bypass valve 9 according to FIG. In this embodiment, unlike the first embodiment, the positions of the downstream side valve seat surface 31 and the upstream side valve seat surface 32 in the gas passage 23 in the EGR gas flow direction are aligned at the same position aligned with the central axis L2 of the bearing 30. Be placed. Further, in this embodiment, similarly to the first embodiment, the center C1 of the butterfly valve 26 is arranged so as to be aligned with the center axis L1 of the valve shaft 24. Unlike the first embodiment, the center C1 of the butterfly valve 26 is arranged on the downstream valve seat surface 31. One half 26a that can be contacted is bent by a predetermined angle θ along the valve shaft 24 toward the upstream side. Furthermore, unlike the first embodiment, in this embodiment, the outer peripheral edge of the butterfly valve 26 can contact the downstream valve seat surface 31 and the upstream valve seat surface 32.

従って、この実施形態でも、図14に示すように、ガス通路23にEGRガスが供給されない状態でバタフライ弁26が全閉状態となるときは、バタフライ弁26の他方の半部分26bの下流側周縁部Deと上流側弁座面32との間に弁座隙間GSが存在する。しかし、図15に示すように、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態となるときは、EGRガスの圧力によって、軸受隙間Gbの分だけ弁軸24が下流側へ変位するが、その変位と共にバタフライ弁26の一方の半部分26bの上流側周縁部Ueが下流側弁座面31に接触したまま、他方の半部分26bが弁座隙間Gsの分だけ下流側へ変位することで、他方の半部分26bの下流側周縁部Deが上流側弁座面32に接触する。これにより、バタフライ弁26と下流側弁座面31及び上流側弁座面32との間に隙間ができることはない。このため、全閉時にバタフライ弁26と下流側弁座面31及び上流側弁座面32との間からEGRガスが洩れることを防止することができる。第1のガス通路22と第1のバタフライ弁25についても上記と同様である。   Therefore, also in this embodiment, as shown in FIG. 14, when the butterfly valve 26 is fully closed in a state where the EGR gas is not supplied to the gas passage 23, the downstream peripheral edge of the other half portion 26 b of the butterfly valve 26. A valve seat gap GS exists between the portion De and the upstream valve seat surface 32. However, as shown in FIG. 15, when the butterfly valve 26 is fully closed while the EGR gas is supplied to the gas passage 23, the valve shaft 24 is moved downstream by the bearing gap Gb due to the pressure of the EGR gas. With the displacement, the upstream peripheral edge portion Ue of one half portion 26b of the butterfly valve 26 is in contact with the downstream valve seat surface 31, and the other half portion 26b is downstream by the valve seat gap Gs. By displacing to the side, the downstream peripheral edge De of the other half portion 26 b contacts the upstream valve seat surface 32. Thereby, there is no gap between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32. For this reason, it is possible to prevent EGR gas from leaking from between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32 when fully closed. The same applies to the first gas passage 22 and the first butterfly valve 25.

[第4実施形態]
次に、本発明の流体制御弁をEGRクーラバイパスバルブに具体化した第4実施形態につき図面を参照して詳細に説明する。
[Fourth Embodiment]
Next, a fourth embodiment in which the fluid control valve of the present invention is embodied as an EGR cooler bypass valve will be described in detail with reference to the drawings.

図16に、図10に準ずるバイパスバルブ9の概念的構成を断面図により示す。図17に、図11に準ずるバイパスバルブ9の概念的構成を断面図により示す。この実施形態では、第1実施形態と異なり、下流側弁座面31と上流側弁座面32のガス通路23におけるEGRガス流れ方向の位置が互いに軸受30の中心軸線L2に整合する同じ位置に配置される。また、この実施形態では、第1実施形態と異なり、バタフライ弁26は、その板厚が弁軸24の外径より小さく弁軸24の外径の半分より大きく構成されると共に、バタフライ弁26の中心C1が弁軸24の中心軸線L1よりも上流側へ所定値γだけ変位して配置されている。   FIG. 16 is a sectional view showing a conceptual configuration of the bypass valve 9 according to FIG. FIG. 17 is a sectional view showing a conceptual configuration of the bypass valve 9 according to FIG. In this embodiment, unlike the first embodiment, the positions of the downstream side valve seat surface 31 and the upstream side valve seat surface 32 in the gas passage 23 in the EGR gas flow direction are aligned at the same position aligned with the central axis L2 of the bearing 30. Be placed. Further, in this embodiment, unlike the first embodiment, the butterfly valve 26 is configured such that its plate thickness is smaller than the outer diameter of the valve shaft 24 and larger than half the outer diameter of the valve shaft 24, and the butterfly valve 26 The center C1 is displaced by a predetermined value γ upstream from the center axis L1 of the valve shaft 24.

従って、この実施形態でも、図16に示すように、ガス通路23にEGRガスが供給されない状態でバタフライ弁26が全閉状態となるときは、バタフライ弁26の他方の半部分26bの下流側周縁部Deと上流側弁座面32との間に弁座隙間Gsが存在する。しかし、図17に示すように、ガス通路23にEGRガスが供給される状態でバタフライ弁26が全閉状態となるときは、EGRガスの圧力によって、軸受隙間Gbの分だけ弁軸24が下流側へ変位するが、その変位と共にバタフライ弁26の一方の半部分26aの上流側周縁部Ueが下流側弁座面31に接触したまま、他方の半部分26bが弁座隙間Gsの分だけ下流側へ変位することで、他方の半部分26bの下流側周縁部Deが上流側弁座面32に接触する。これにより、バタフライ弁26と下流側弁座面31及び上流側弁座面32との間に隙間ができることはない。このため、全閉時にバタフライ弁26と下流側弁座面31及び上流側弁座面32との間からEGRガスが洩れることを防止することができる。第1のガス通路22と第1のバタフライ弁25についても上記と同様である。   Accordingly, also in this embodiment, as shown in FIG. 16, when the butterfly valve 26 is fully closed in a state where the EGR gas is not supplied to the gas passage 23, the downstream peripheral edge of the other half portion 26b of the butterfly valve 26 A valve seat gap Gs exists between the portion De and the upstream valve seat surface 32. However, as shown in FIG. 17, when the butterfly valve 26 is fully closed while the EGR gas is supplied to the gas passage 23, the valve shaft 24 is moved downstream by the bearing gap Gb due to the pressure of the EGR gas. With the displacement, the upstream peripheral edge portion Ue of one half portion 26a of the butterfly valve 26 is in contact with the downstream valve seat surface 31 and the other half portion 26b is downstream by the valve seat gap Gs. By displacing to the side, the downstream peripheral edge De of the other half portion 26 b contacts the upstream valve seat surface 32. Thereby, there is no gap between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32. For this reason, it is possible to prevent EGR gas from leaking from between the butterfly valve 26 and the downstream valve seat surface 31 and the upstream valve seat surface 32 when fully closed. The same applies to the first gas passage 22 and the first butterfly valve 25.

なお、この発明は前記各実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。   Note that the present invention is not limited to the above-described embodiments, and a part of the configuration can be changed as appropriate without departing from the spirit of the invention.

例えば、前記各実施形態では、流体通路としての2つのガス体通路22,23と2つのバタフライ弁25,26を備えたEGRクーラバイパスバルブ9に具体化したが、流体通路とバタフライ弁の数がそれぞれ一つのものであってもよい。   For example, in each of the above-described embodiments, the EGR cooler bypass valve 9 including the two gas body passages 22 and 23 and the two butterfly valves 25 and 26 as the fluid passages is embodied. There may be one each.

また、前記各実施形態では、本発明の流体制御弁をEGRクーラバイパスバルブ9に具体化したが、流体の流量を制御するものであればEGRクーラバイパスバルブに限定されるものではない。   Further, in each of the above embodiments, the fluid control valve of the present invention is embodied in the EGR cooler bypass valve 9, but is not limited to the EGR cooler bypass valve as long as it controls the flow rate of the fluid.

更に、前記各実施形態では、弁軸24を回動させるためにダイアフラム式のアクチュエータ11を設けたが、電動機や電磁ソレノイドなどの電動式のアクチュエータを用いることもできる。   Further, in each of the above embodiments, the diaphragm type actuator 11 is provided to rotate the valve shaft 24. However, an electric type actuator such as an electric motor or an electromagnetic solenoid can also be used.

第1実施形態に係り、ディーゼルエンジンに設けられたEGRクーラ付きEGR装置を示す概略構成図。The schematic block diagram which shows the EGR apparatus with an EGR cooler provided in the diesel engine according to the first embodiment. 第1実施形態に係り、バイパスバルブを示す正面図。The front view which concerns on 1st Embodiment and shows a bypass valve. 第1実施形態に係り、バイパスバルブを示す平面図。The top view which concerns on 1st Embodiment and shows a bypass valve. 第1実施形態に係り、バイパスバルブを示す図2の右側面図。The right view of FIG. 2 which concerns on 1st Embodiment and shows a bypass valve. 第1実施形態に係り、ハウジングを示す底面図。The bottom view which concerns on 1st Embodiment and shows a housing. 第1実施形態に係り、ハウジングを示す図5のA−A線断面図。FIG. 6 is a cross-sectional view taken along line AA of FIG. 第1実施形態に係り、弁軸を示す正面図。The front view which concerns on 1st Embodiment and shows a valve stem. 第1実施形態に係り、弁軸を図7の状態から90°回転した状態を示す正面図。The front view which shows the state which concerns on 1st Embodiment and rotated the valve stem 90 degrees from the state of FIG. 第1実施形態に係り、各バタフライ弁を示す平面図。The top view which concerns on 1st Embodiment and shows each butterfly valve. 第1実施形態に係り、流体通路にEGRガスが供給されない状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。FIG. 4 is a cross-sectional view illustrating a conceptual configuration of a bypass valve in a fully closed state in a state where EGR gas is not supplied to a fluid passage according to the first embodiment. 第1実施形態に係り、流体通路にEGRガスが供給される状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。FIG. 3 is a cross-sectional view illustrating a conceptual configuration of a bypass valve in a fully closed state in a state where EGR gas is supplied to a fluid passage according to the first embodiment. 第2実施形態に係り、流体通路にEGRガスが供給されない状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 2nd Embodiment and is a state by which EGR gas is not supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 第2実施形態に係り、流体通路にEGRガスが供給される状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 2nd Embodiment and is a state by which EGR gas is supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 第3実施形態に係り、流体通路にEGRガスが供給されない状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 3rd Embodiment and is a state by which EGR gas is not supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 第3実施形態に係り、流体通路にEGRガスが供給される状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 3rd Embodiment and is a state by which EGR gas is supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 第4実施形態に係り、流体通路にEGRガスが供給されない状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 4th Embodiment and is a state by which EGR gas is not supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 第4実施形態に係り、流体通路にEGRガスが供給される状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which concerns on 4th Embodiment and is a state by which EGR gas is supplied to a fluid channel | path, and shows the conceptual structure of the bypass valve in a fully closed state. 従来例に係り、流体通路にEGRガスが供給されない状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。FIG. 10 is a cross-sectional view showing a conceptual configuration of a bypass valve in a fully closed state in a state where EGR gas is not supplied to a fluid passage according to a conventional example. 従来例に係り、流体通路にEGRガスが供給される状態であって全閉状態におけるバイパスバルブの概念的構成を示す断面図。Sectional drawing which shows the conceptual structure of the bypass valve in a state which concerns on a prior art example, and is a state in which EGR gas is supplied to a fluid channel | path, and is fully closed.

符号の説明Explanation of symbols

9 EGRクーラバイパスバルブ
21 ハウジング
22 第1のガス通路(流体通路)
23 第2のガス通路(流体通路)
24 弁軸
25 第1のバタフライ弁
26 第2のバタフライ弁
26a 一方の半部分
26b 他方の半部分
30 軸受
31 下流側弁座面
32 上流側弁座面
L1 弁軸の中心軸線
L2 軸受の中心軸線
C1 弁体の中心
Gb 軸受隙間
Gs 弁座隙間
Ue 上流側周縁部
De 下流側周縁部
9 EGR cooler bypass valve 21 housing 22 first gas passage (fluid passage)
23 Second gas passage (fluid passage)
24 Valve shaft 25 First butterfly valve 26 Second butterfly valve 26a One half portion 26b The other half portion 30 Bearing 31 Downstream valve seat surface 32 Upstream valve seat surface L1 Central axis L2 of the valve shaft Central axis of the bearing C1 Center of valve body Gb Bearing gap Gs Valve seat gap Ue Upstream peripheral edge De Downstream peripheral edge

Claims (7)

ハウジングと、
前記ハウジングに形成された少なくとも1つの流体通路と、
前記流体通路を横断し貫通して設けられた弁軸と、
前記流体通路を開閉するために前記弁軸に設けられたバタフライ弁と、
前記弁軸を回動可能に支持するために前記ハウジングに設けられた軸受と、
初期状態において前記弁軸の中心軸線が前記軸受の中心軸線に整合し、前記弁軸の外周面と前記軸受の内周面との間に前記弁軸の回動を許容する微細な軸受隙間が設けられることと、
前記弁軸を挟んで分けられる前記バタフライ弁の一方の半部分の上流側周縁部と接触可能に前記流体通路に設けられた下流側弁座面と、
前記弁軸を挟んで分けられる前記バタフライ弁の他方の半部分の下流側周縁部と接触可能に前記流体通路に設けられた上流側弁座面と
を備え、前記弁軸と共に前記バタフライ弁を回動させることにより前記流体通路を開閉するようにした流体制御弁であって、
前記流体通路に流体が供給されない状態で前記バタフライ弁が全閉状態となるとき、前記一方の半部分の前記上流側周縁部が前記下流側弁座面に接触し、前記他方の半部分の前記下流側周縁部と前記上流側弁座面との間に微細な弁座隙間が設けられ、前記流体通路に流体が供給される状態で前記バタフライ弁が全閉状態となるとき、前記軸受隙間の分だけ前記弁軸が下流側へ変位すると共に、前記一方の半部分の前記上流側周縁部が前記下流側弁座面に接触したまま、前記他方の半部分が前記弁座隙間の分だけ下流側へ変位することで、前記他方の半部分の前記下流側周縁部が前記上流側弁座面に接触するように構成したことを特徴とする流体制御弁。
A housing;
At least one fluid passage formed in the housing;
A valve shaft provided across and through the fluid passage;
A butterfly valve provided on the valve shaft to open and close the fluid passage;
A bearing provided in the housing for rotatably supporting the valve shaft;
In the initial state, the center axis of the valve shaft is aligned with the center axis of the bearing, and a fine bearing gap that allows the valve shaft to rotate is provided between the outer peripheral surface of the valve shaft and the inner peripheral surface of the bearing. Being provided,
A downstream valve seat surface provided in the fluid passage so as to be in contact with an upstream peripheral portion of one half of the butterfly valve divided across the valve shaft;
An upstream valve seat surface provided in the fluid passage so as to be in contact with a downstream peripheral edge of the other half of the butterfly valve divided across the valve shaft, and the butterfly valve is rotated together with the valve shaft. A fluid control valve configured to open and close the fluid passage by being moved;
When the butterfly valve is fully closed when no fluid is supplied to the fluid passage, the upstream peripheral edge of the one half is in contact with the downstream valve seat surface, and the other half is the When a minute valve seat gap is provided between the downstream peripheral edge and the upstream valve seat surface and the butterfly valve is fully closed in a state where fluid is supplied to the fluid passage, the bearing gap The valve shaft is displaced downstream by the amount, and the upstream peripheral edge of the one half is in contact with the downstream valve seat surface, while the other half is downstream by the valve seat clearance. The fluid control valve is configured so that the downstream peripheral portion of the other half is in contact with the upstream valve seat surface by being displaced to the side.
前記バタフライ弁の中心が前記弁軸の中心軸線に整合するように配置され、
前記上流側弁座面と前記下流側弁座面の前記流体通路における流体流れ方向の位置を互いに前記軸受の中心軸線に整合する同じ位置に配置した状態を基準として、前記下流側弁座面のみが前記基準とした位置よりも下流側へ所定値だけ変位して配置されたことを特徴とする請求項1に記載の流体制御弁。
The butterfly valve is arranged so that the center thereof is aligned with the central axis of the valve shaft,
Only the downstream valve seat surface is based on a state in which the positions of the upstream valve seat surface and the downstream valve seat surface in the fluid flow direction in the fluid passage are aligned at the same position aligned with the central axis of the bearing. The fluid control valve according to claim 1, wherein the fluid control valve is displaced by a predetermined value downstream from the reference position.
前記下流側へ変位させる所定値は、前記軸受隙間の大きさと同じであることを特徴とする請求項2に記載の流体制御弁。 The fluid control valve according to claim 2, wherein the predetermined value displaced to the downstream side is the same as the size of the bearing gap. 前記上流側弁座面と前記下流側弁座面の前記流体通路における流体流れ方向の位置が互いに前記軸受の中心軸線に整合する同じ位置に配置され、
前記バタフライ弁の中心が前記弁軸の中心軸線よりも上流側へ所定値だけ変位して配置されたことを特徴とする請求項1に記載の流体制御弁。
The upstream valve seat surface and the downstream valve seat surface in the fluid flow direction in the fluid passage are arranged at the same position aligned with the center axis of the bearing;
2. The fluid control valve according to claim 1, wherein the center of the butterfly valve is displaced by a predetermined value upstream from the center axis of the valve shaft.
前記上流側へ変位させる所定値は、前記軸受隙間の大きさと同じであることを特徴とする請求項4に記載の流体制御弁。 The fluid control valve according to claim 4, wherein the predetermined value displaced to the upstream side is the same as the size of the bearing gap. 前記上流側弁座面と前記下流側弁座面の前記流体通路における流体流れ方向の位置が互いに前記軸受の中心軸線に整合する同じ位置に配置され、
前記バタフライ弁の中心が前記弁軸の中心軸線に整合するように配置され、
前記下流側弁座面に接触可能な前記一方の半部分が上流側へ向けて前記弁軸に沿って所定角度だけ折り曲げられたことを特徴とする請求項1に記載の流体制御弁。
The upstream valve seat surface and the downstream valve seat surface in the fluid flow direction in the fluid passage are arranged at the same position aligned with the center axis of the bearing;
The butterfly valve is arranged so that the center thereof is aligned with the central axis of the valve shaft,
2. The fluid control valve according to claim 1, wherein the one half portion that can contact the downstream valve seat surface is bent toward the upstream side by a predetermined angle along the valve shaft.
前記上流側弁座面と前記下流側弁座面の前記流体通路における流体流れ方向の位置が互いに前記軸受の中心軸線に整合する同じ位置に配置され、
前記バタフライ弁は、その板厚が前記弁軸の外径より小さく前記弁軸の外径の半分より大きく構成されると共に、前記バタフライ弁の中心が前記弁軸の中心軸線よりも上流側へ所定値だけ変位して配置されたことを特徴とする請求項1に記載の流体制御弁。
The upstream valve seat surface and the downstream valve seat surface in the fluid flow direction in the fluid passage are arranged at the same position aligned with the center axis of the bearing;
The butterfly valve is configured such that its plate thickness is smaller than the outer diameter of the valve shaft and larger than half of the outer diameter of the valve shaft, and the center of the butterfly valve is predetermined upstream of the central axis of the valve shaft. The fluid control valve according to claim 1, wherein the fluid control valve is arranged by being displaced by a value.
JP2008215290A 2008-08-25 2008-08-25 Fluid control valve Active JP5001918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215290A JP5001918B2 (en) 2008-08-25 2008-08-25 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215290A JP5001918B2 (en) 2008-08-25 2008-08-25 Fluid control valve

Publications (2)

Publication Number Publication Date
JP2010048391A JP2010048391A (en) 2010-03-04
JP5001918B2 true JP5001918B2 (en) 2012-08-15

Family

ID=42065635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215290A Active JP5001918B2 (en) 2008-08-25 2008-08-25 Fluid control valve

Country Status (1)

Country Link
JP (1) JP5001918B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131235B2 (en) 2018-12-07 2021-09-28 Polaris Industries Inc. System and method for bypassing a turbocharger of a two stroke engine
US11174779B2 (en) 2018-12-07 2021-11-16 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11236668B2 (en) 2018-12-07 2022-02-01 Polaris Industries Inc. Method and system for controlling pressure in a tuned pipe of a two stroke engine
US11280258B2 (en) 2018-12-07 2022-03-22 Polaris Industries Inc. Exhaust gas bypass valve system for a turbocharged engine
US11352935B2 (en) 2018-12-07 2022-06-07 Polaris Industries Inc. Exhaust system for a vehicle
US11384697B2 (en) 2020-01-13 2022-07-12 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger
US11639684B2 (en) 2018-12-07 2023-05-02 Polaris Industries Inc. Exhaust gas bypass valve control for a turbocharger for a two-stroke engine
US11725573B2 (en) 2018-12-07 2023-08-15 Polaris Industries Inc. Two-passage exhaust system for an engine
US11781494B2 (en) 2020-01-13 2023-10-10 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes
US11788432B2 (en) 2020-01-13 2023-10-17 Polaris Industries Inc. Turbocharger lubrication system for a two-stroke engine
US11815037B2 (en) 2018-12-07 2023-11-14 Polaris Industries Inc. Method and system for controlling a two stroke engine based on fuel pressure
US11828239B2 (en) 2018-12-07 2023-11-28 Polaris Industries Inc. Method and system for controlling a turbocharged two stroke engine based on boost error
US12031494B2 (en) 2023-07-05 2024-07-09 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962185B1 (en) * 2010-06-30 2013-08-23 Valeo Sys Controle Moteur Sas FLUID CIRCULATION VALVE
DE112011105111T5 (en) * 2011-03-30 2014-01-23 Mitsubishi Electric Corp. butterfly valve
JP5904528B2 (en) * 2011-11-10 2016-04-13 三輪精機株式会社 Butterfly valve
FR2996620B1 (en) * 2012-10-10 2015-01-09 Valeo Sys Controle Moteur Sas VALVE WITH PIVOTING SHUTTER
JP6353791B2 (en) * 2015-01-13 2018-07-04 株式会社三五 Valve device
JP6460012B2 (en) * 2016-03-03 2019-01-30 株式会社デンソー Valve device
KR102419935B1 (en) * 2020-07-13 2022-07-11 고갑석 Cooling water treatment device for treatment-liquid supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069339U (en) * 1983-10-18 1985-05-16 いすゞ自動車株式会社 Internal combustion engine exhaust shutter
JPH03286152A (en) * 1990-04-02 1991-12-17 Toyota Motor Corp Exhaust control valve for internal combustion engine
JPH05171960A (en) * 1991-12-25 1993-07-09 Hitachi Ltd Throttle valve body
JP3712533B2 (en) * 1998-06-30 2005-11-02 愛三工業株式会社 Intake control valve device for internal combustion engine
JP2001152880A (en) * 1999-11-30 2001-06-05 Jidosha Buhin Kogyo Co Ltd Exhaust gas shutter
JP4578923B2 (en) * 2004-10-08 2010-11-10 トヨタ自動車株式会社 Pipe opening and closing structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815037B2 (en) 2018-12-07 2023-11-14 Polaris Industries Inc. Method and system for controlling a two stroke engine based on fuel pressure
US11828239B2 (en) 2018-12-07 2023-11-28 Polaris Industries Inc. Method and system for controlling a turbocharged two stroke engine based on boost error
US12018611B2 (en) 2018-12-07 2024-06-25 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11280258B2 (en) 2018-12-07 2022-03-22 Polaris Industries Inc. Exhaust gas bypass valve system for a turbocharged engine
US11725573B2 (en) 2018-12-07 2023-08-15 Polaris Industries Inc. Two-passage exhaust system for an engine
US12006860B2 (en) 2018-12-07 2024-06-11 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11174779B2 (en) 2018-12-07 2021-11-16 Polaris Industries Inc. Turbocharger system for a two-stroke engine
US11131235B2 (en) 2018-12-07 2021-09-28 Polaris Industries Inc. System and method for bypassing a turbocharger of a two stroke engine
US11236668B2 (en) 2018-12-07 2022-02-01 Polaris Industries Inc. Method and system for controlling pressure in a tuned pipe of a two stroke engine
US11352935B2 (en) 2018-12-07 2022-06-07 Polaris Industries Inc. Exhaust system for a vehicle
US11639684B2 (en) 2018-12-07 2023-05-02 Polaris Industries Inc. Exhaust gas bypass valve control for a turbocharger for a two-stroke engine
US11788432B2 (en) 2020-01-13 2023-10-17 Polaris Industries Inc. Turbocharger lubrication system for a two-stroke engine
US11781494B2 (en) 2020-01-13 2023-10-10 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes
US11434834B2 (en) 2020-01-13 2022-09-06 Polaris Industries Inc. Turbocharger system for a two-stroke engine having selectable boost modes
US11384697B2 (en) 2020-01-13 2022-07-12 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger
US11725599B2 (en) 2020-01-13 2023-08-15 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger
US12031494B2 (en) 2023-07-05 2024-07-09 Polaris Industries Inc. System and method for controlling operation of a two-stroke engine having a turbocharger

Also Published As

Publication number Publication date
JP2010048391A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5001918B2 (en) Fluid control valve
JP2004263723A (en) Flow control valve
US11098808B2 (en) Control valve
JP2007064277A (en) Fluid control valve
CA2730125C (en) Exhaust gas recirculation butterfly valve
JP2015537167A (en) Valves, especially valves for internal combustion engines
JP6133418B2 (en) Engine control valve with improved operation
JP2007040488A (en) Flow control valve
JP2019002303A (en) EGR cooler bypass valve
JP2011231877A (en) Fluid control valve
JPH11343857A (en) Actuator for turbocharger
JP2015094335A (en) Flow control valve
JP4900230B2 (en) Butterfly valve control device
JP2013079589A (en) Air cooler for internal combustion engine
JP2011064138A (en) Engine intake control device
JP2015059625A (en) Butterfly valve device, internal combustion engine, and method of manufacturing butterfly valve device
KR20110062589A (en) Intake system of engine
JP2005256779A (en) Variable intake device
JP2013096364A (en) Gas flow rate control valve for internal combustion engine
JP4767232B2 (en) Exhaust flow path valve
JPS6136742Y2 (en)
JP2018040373A (en) valve
JP2021156262A (en) Throttle valve device
JP2010210092A (en) Fluid control valve
JP2023023165A (en) valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120518

R150 Certificate of patent or registration of utility model

Ref document number: 5001918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250