JP4997662B2 - Shut-off valve - Google Patents

Shut-off valve Download PDF

Info

Publication number
JP4997662B2
JP4997662B2 JP2000347801A JP2000347801A JP4997662B2 JP 4997662 B2 JP4997662 B2 JP 4997662B2 JP 2000347801 A JP2000347801 A JP 2000347801A JP 2000347801 A JP2000347801 A JP 2000347801A JP 4997662 B2 JP4997662 B2 JP 4997662B2
Authority
JP
Japan
Prior art keywords
valve
shut
moving body
valve body
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347801A
Other languages
Japanese (ja)
Other versions
JP2002147636A (en
Inventor
正樹 山口
行則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000347801A priority Critical patent/JP4997662B2/en
Publication of JP2002147636A publication Critical patent/JP2002147636A/en
Application granted granted Critical
Publication of JP4997662B2 publication Critical patent/JP4997662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外部状況によって作動する安全弁(国際特許分類F16K 17/36)で操作手段として電動機を使用したもの(国際特許分類F16K 31/04)、特に、ガスの事故を未然に防ぐガス遮断装置の遮断機構として使用される遮断弁に関するものであり、さらに詳しくは流路に形成された弁座に対し弁体を前進または後退移動させることによって流路の遮断復帰動作を行うモータを動力源とした遮断弁に関するものである。
【0002】
【従来の技術】
ガス事故を未然に防ぐため、従来より種種の安全装置が利用されており、中でもガスメータに内蔵され流量センサによりガスの流量を監視しマイクロコンピュータによりガスの使用状態を異常使用と判断した場合や、地震センサ、ガス圧力センサ、ガス警報器、一酸化炭素センサなどのセンサの状況を監視し危険状態と判断した場合は、ガスメータに内蔵された遮断弁によりガスを遮断する電池電源によるマイクロコンピュータ搭載ガス遮断装置内蔵ガスメータ(以下マイコンメータと省略する)は、安全性、ガス配管の容易性、低価格等の優位性のため、普及が促進され、近年ほぼ全世帯普及が実施されるに至っている。また、流量センサによって計測されたガス流量情報を電話回線などを利用して集中監視するテレメータ機能を有した、集中監視型マイコンメータの比率も増加し、ますます、情報端末として利便性の向上が求められている。この集中監視型マイコンメータなどにおいては、簡単な電気スイッチ操作や電話回線などによる遠隔操作でガスの遮断、復帰が可能なよう、マイコンメータに搭載した電池による電気エネルギーでガス遮断もガス復帰も可能で開弁状態と閉弁状態の保持はエネルギーを必要としない遮断弁が要求されている。
【0003】
この遮断弁の駆動方式としては、従来電磁ソレノイドを使用したものが主流であったが、近年比較的強い閉止力、復帰力を実現でき、非通電時は状態保持可能なPM型ステッピングモータを駆動源とする遮断弁が注目されており、なかでもロータをガス流路内、ステータをガス流路外とする気密隔壁を持った遮断弁が、ガス流路への取り付けが容易なため主流である。
【0004】
以下に従来の遮断弁について説明する。
【0005】
従来のこの種の遮断弁は、特開平9−210237号公報、特開平11−2353号公報に示すようなものが一般的であった。この特開平11−2353号公報記載の遮断弁は図7に示されているように、鍔付きカップ状のケーシング6を有し、このケーシング6の外周にステータ4を装着し、ケーシング6の開口部に合成樹脂製のアウターブッシュ3を嵌着し、このアウターブッシュ3にスタッド5を一体成形することで偏心させて前方に突設し、ケーシング6内にインナーブッシュ12を挿設し、アウターブッシュ3およびインナーブッシュ12にリードスクリュー17をその先端の雄ネジ部17aが当該アウターブッシュ3より前方に突出した状態で正逆方向に回転自在に支持し、このリードスクリュー17にロータ16をステータ4に対向する形で取り付け、このロータ16とアウターブッシュ3との間にスラスト荷重用ころがり軸受18を介挿し、スタッド5に係合し雄ネジ部17aに螺合して弁体25を配されている。弾性シール部材8とアウターブッシュ3とケーシング6は、段付きフランジ2と平板フランジ7とで挟み込まれていて、段付きフランジ2と平板フランジ7とはかしめによって固着されている。
【0006】
以上のように構成された遮断弁について、以下その動作について説明する。
【0007】
ガスの異常使用時などには、図示していない制御部からの通電により、ロータ16を正転させ、リードスクリュー17が正方向に回転し、スタッド5が弁体25の回転を拘束することで回転運動を直線運動に変換し、弁体25がリードスクリュー17側から弁座26側に前進して弁座26に当接することにより、流体経路を閉塞して流体を遮断する。また、これを復元するときには、外部入力によってリードスクリュー17を逆方向に回転させ、スタッド5が弁体25の回転を拘束することで回転運動を直線運動に変換し、弁体25を弁座26側からリードスクリュー17側に弁体25の短がアウターブッシュ3に当接するまで後退させ、流体経路を開放して流体の供給を再開していた。
【0008】
また、特開平9−210237号公報記載の遮断弁を図8に示した。この遮断弁も図7の遮断弁とほぼ同様の構成であるが、異なる点は、スタッド35がフランジ32に圧入されて配されている点である。
【0009】
この遮断弁の動作に関しては、図7の遮断弁と同様であるため説明を省略する。
【0010】
【発明が解決しようとする課題】
この種の遮断弁は、一般的に屋外に設置されるガスメータに取り付けられ、夏の直射日光下での50℃を超過する温度から、厳冬期の−20℃を下回る温度までの厳しい温度変化にさらされることになり、また、特に弁体25、アウターブッシュ3、スタッド5などガス室側の部品は、低分子炭化水素である燃料用ガスや、ガス中に微少に含まれる水分、硫化水素、二酸化硫黄などの精製不純物である活性ガスなどの有機物環境内で前記過酷な温度変化にさらされることになる。そして、その中で、ガスメータの使用期間(一般に10年間)中特にメンテナンスしなくても、緊急事に動作可能であるよう高い信頼性が要求されている。
【0011】
上記従来の遮断弁では、閉弁状態、開弁状態においてスタッド5、35を回転拘束ガイドとしてリードスクリュー17と弁体25とのねじ締め付けが行われるため、比較的強いトルクがスタッド5、35に繰り返し印加され、そのトルクはてこの原理でスタッド5、35の根元に伝達され、スタッド5、35の根元には大きな応力集中が発生する。この箇所に有機物や水分、活性ガスの攻撃が集中すると、樹脂がマイクロクラックの進展による破壊を起こしたり、かしめなどの金属・金属の接合部が異常腐食することによって、スタッド5、35が破壊し動作不良になる可能性があった。
【0012】
また、この種の回転運動を直線運動に変換するリニア変換装置において、リードスクリューと回転拘束ガイドとの軸の平行度が大きくずれた場合、リードナット移動に伴ってくさびの効果のような噛み込みが発生し、回転拘束ガイドとリードナットがロックし動作不能になる可能性がある。
【0013】
上記従来の遮断弁においては、スタッド5、35がフランジ2、32から棒状に突出し外力を受けやすい形状であるので、部品状態、組立途中段階で部品同士の接触や、組立治具の接触などでスタッド5、35とフランジ2、32との垂直が変形しリードスクリュー17との平行がずれて、弁体25とスタッド5、35がロックし動作不能になる可能性を有していた。
【0014】
さらに遮断弁完成品状態でも弁体25に加わった回転力などの外力でスタッド5、35が変形しやすいという課題を有していた。
【0015】
また、上記従来の遮断弁においては、開弁状態における弁体25の円周ふれおよび角度の位置規制はリードスクリュー17によってなされているが、ラジアル方向のクリアランスによるリードスクリュー17自身の円周ふれ、角度ふれ、および、弁体25のリードナットとリードスクリュー25間のクリアランスによる円周ふれ、角度ふれによって、てこの原理で比較的弱い外力などによって比較的大きなふれが発生する。この結果、ガス流れによる動圧などの影響で弁体25が大きくふれ、動作や閉弁性能に影響を及ぼすといった課題があった。
【0016】
また、上記従来の遮断弁においては、組み立て時に、弁体25に形成された穴にスタッド5、35を挿入するため、弁体25の回転方向の位置決めをしてそこに回転動作をさせながらリードスクリュー17を挿入する必要があるため、ロボットなどの機械装置による弁体25の組み付けが困難で、量産性が低いという課題があった。
【0017】
本発明はかかる従来の課題に鑑み、組み立て時のトラブルや、長期使用における温度ストレス、化学物質のストレス、荷重ストレスによって回転拘束ガイドが破壊したり平行度がずれたりすることなく、ガス流れによる動圧などの影響で弁体が大きくふれることがないといった高い信頼性を有し、また、ロボットなどの機械装置による弁体の組み付け容易で量産性の高い遮断弁を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明の遮断弁は、励磁コイルを有するステータと、前記ステータの内側に同軸に配設され貫通穴のないなべ状に成形された金属製の隔壁と、前記隔壁の開放端側に底面を嵌挿された中心孔を有する概ねなべ状で側面円筒部内側に中心軸に平行な凸状リブを形成した合成樹脂製の軸受けと、前記隔壁の内側に前記ステータに対向して配設したロータと、前記軸受けに回転可能に緩挿された前記ロータの回転軸と、前記軸受けから外側に突出した前記回転軸の端に配された送りネジと、中心孔が前記送りネジに螺合可能な移動体と、前記移動体に形成され外周部に前記凸状リブに係合可能な凹状部が形成された円盤状のバネ受けと、前記移動体に係合された弁体と、前記バネ受けと前記弁体との間に圧縮状態で保持されたコイルスプリングとを備え、前記凹状部には、前記送りネジが前記移動体に螺合して前記弁体を開弁側に移動させる方向に回転する際に前記凸状リブに当接して前記移動体の回転を規制する側に突起を設けたものである。
【0019】
本発明によれば隔壁の開放端側の軸受けの側面円筒部内側に中心軸に平行な凸状リブを回転防止手段として形成しているため、スタッド状の回転防止手段と比較して応力集中が極めて小さく、通常使用状態や部品状態、組み立て途中段階で繰り返し荷重や外力を受けた場合でも破壊に至る可能性が小さい。このため、ガスメータの使用期間中特にメンテナンスしなくても、緊急事にも動作可能な高い信頼性を持った遮断弁を提供することができる。
【0020】
【発明の実施の形態】
本発明の遮断弁は、励磁コイルを有するステータと、前記ステータの内側に同軸に配設され貫通穴のないなべ状に成形された金属製の隔壁と、前記隔壁の開放端側に底面を嵌挿された中心孔を有する概ねなべ状で側面円筒部内側に中心軸に平行な凸状リブを形成した合成樹脂製の軸受けと、前記隔壁の内側に前記ステータに対向して配設したロータと、前記軸受けに回転可能に緩挿された前記ロータの回転軸と、前記軸受けから外側に突出した前記回転軸の端に配された送りネジと、中心孔が前記送りネジに螺合可能な移動体と、前記移動体に形成され外周部に前記凸状リブに係合可能な凹状部が形成された円盤状のバネ受けと、前記移動体に係合された弁体と、前記バネ受けと前記弁体との間に圧縮状態で保持されたコイルスプリングとを備え、前記凹状部には、前記送りネジが前記移動体に螺合して前記弁体を開弁側に移動させる方向に回転する際に前記凸状リブに当接して前記移動体の回転を規制する側に突起を設けたものである。
【0021】
そして、隔壁の開放端側の軸受けの側面円筒部内側に中心軸に平行な凸状リブを回転防止手段として形成しているために、スタッド状の回転防止手段と比較して応力集中が極めて小さく、通常使用状態や部品状態、組み立て途中段階で繰り返し荷重や外力を受けた場合でも破壊に至る可能性が小さい。また、軸受け成形段階で精度を確保すれば、それ以降、軸受けの中心穴と回転防止手段の凸状リブまたは凹状溝の平行が狂うことなく、このため、回転防止手段と移動体がロックし動作不能になる可能性がきわめて小さく、高い信頼性を持った遮断弁を提供することができる。
【0022】
また、本発明の遮断弁は、上記特徴に加え、弁体は移動ストロークの下死点において軸受けの側面円筒部開放端に当接可能なよう構成されたものである。
【0023】
そして、開弁状態において弁体は軸受けの側面円筒部開放端と平行に保持され、ロータ自身の円周ふれ、角度ふれや、送り手段と移動体とのクリアランスによる円周ふれ、角度ふれが弁体に影響を及ぼしにくい。この結果、ガス流れによる動圧などの影響で弁体が大きくふれ、動作や閉弁性能に影響を及ぼすといった課題を解決し、高い信頼性を持った遮断弁を提供することができる。
【0024】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0025】
(実施例1)
図1、図2及び図3はそれぞれ本発明の実施例1の遮断弁の開弁状態、遮断動作中、閉弁状態の断面図、図4は本発明の実施例1の遮断弁の回転防止手段と移動体の形状を示す斜視図である。
【0026】
図1および図4において、概ね糸巻き状のコイルボビン41に導線42が巻線された励磁コイル43と、外周に円筒部を有し内周に櫛歯状の磁極を持った第1の電磁ヨーク44と、この電磁ヨーク44との間で励磁コイル43を挟持するように配された概ね円盤状で内周に櫛歯状の磁極を持った第2の電磁ヨーク45とのセットが2組、互いの第2の電磁ヨーク45の円盤部を接触させて配されステータ46を形成している。コイルボビン41は合成樹脂製でポリブチレンテレフタレート(PBT)のような耐熱性があり電気絶縁性の良好なものが望ましい。第1の電磁ヨーク44および第2の電磁ヨーク45は、低炭素鋼板、電磁軟鉄板または硅素鋼板製などの鋼板製で、表面に亜鉛メッキやアルミニウムメッキ、クロム酸処理膜等の防錆処理を施されているか、もしくは電磁ステンレス鋼板製で、経済的には亜鉛メッキ鋼鈑などのプリメッキ鋼鈑が望ましい。第1の電磁ヨーク44と第2の電磁ヨーク45の櫛歯状の磁極は所定の隙間を持って噛合し、また2組のセットの櫛歯は、回転方向に他のセットの櫛歯のほぼ隙間部に位置するよう配置されている。
【0027】
ステータ46の内側に同軸に、2段の底47a、47bと、大小の円筒部47c、47d、大径の円筒部47cの開放端につば47eを有するなべ状に絞り成形された嵌通孔のない金属性の隔壁47が配されている。隔壁47の材料は、非磁性ステンレス鋼鈑、銅合金、アルミニウム合金、合成樹脂、セラミックスなどの剛体が選択可能であるが、耐腐食性、強度、耐クリープ、薄肉加工性などの理由から、オーステナイト系ステンレス鋼鈑を絞り加工したものが最適であり、絞り加工後固溶化熱処理を施し、残留する内部応力と結晶粒の微細化を除去したものが望ましい。
【0028】
隔壁47の小径の円筒部47dなべ側面内側には、中心孔48aを有する合成樹脂製の第1の軸受48が嵌挿されている。隔壁47の円筒部47dと第1の軸受48は締まり嵌めで嵌合している。第1の軸受48の嵌挿部48bと中心孔48aとの間には、薄肉化した波紋状の応力緩和部48cが形成されている。また、隔壁47の底47aに当接するようストッパ48dが形成されている。この第1の軸受48の材料は、ポリアセタール(POM)、ポリアミド(PA)およびポリテトラフルオロエチレン(PTFE)粉末や黒鉛粒子を配合された各種合成樹脂などの、自己潤滑性を有する合成樹脂が選択可能であるが、摩擦係数の低さや経済的理由からポリアセタールが最適である。このポリアセタールは応力クリープが比較的大きく軟質であるため、締まり嵌めの嵌め合いを設定する場合は、比較的大きな締め代を設定する必要があり、例えば隔壁47の円筒部47dの内径が8mmである場合は第1の軸受48の嵌挿部48bの外径は8.05〜8.1mm程度が適切である。
【0029】
隔壁47の大径の円筒部47cのなべ側面の開放端側には、第2の軸受け49aと、側面に中心軸と垂直な開放端49gを持つ円筒部49bと、外周につば部49cとを同軸に有する合成樹脂製のふた49が、つば部49cを隔壁47のつば47eに当接して嵌挿されている。隔壁47の円筒部47cとふた49の嵌挿部49eは締まり嵌めで嵌合している。ふた49の嵌挿部49eと第2の軸受け49aとの間には、薄肉化した波紋状の応力緩和部49dが形成されている。このふた49の材料としては第1の軸受48同様ポリアセタールが最適である。隔壁47の円筒部47cとふた49の嵌挿部49eとの締まり嵌めの嵌め合いは、後述する別の固定手段があるため、また円盤部49fの波打ちを防止するために比較的ゆるめでよく、例えば隔壁47の円筒部47cの内径が18mmである場合はふた49の嵌挿部49eの外径は18.02〜18.08程度が適切である。ふた49の円筒部49bの内面には中心軸に平行な凸状のリブ50が、円周上で180°離れた2カ所に形成されている(図1、2、3においては、視覚的に簡単にするためにリブ50は180°よりも狭角に図示し、同時に2本のリブ50が見えるように表した)。
【0030】
隔壁47の内側には、円周方向に分極着磁された円筒形の永久磁石51と、一方の端に送りネジ52を形成された回転軸53と永久磁石51と回転軸53を同軸に保持するスリーブ54とで構成されたロータ55が、回転軸53の送りネジ52側端をふた49の第2の軸受け49aに、逆の端を第1の軸受48の中心孔48aに回転可能に緩挿されて配されている。
【0031】
流体室56に取り付け可能な取り付け板57は、中央に中心孔57aと隔壁47の大径の円筒部47cの外径より若干大きな内径を持った円筒状段差部57bを形成され、外周部の2カ所に爪状の嵌合部57cを形成されている。段差部57bには隔壁47の大径の円筒部47cの端部が挿入され、ふた49の円筒部49bが中心孔57aを貫通して流体室56側に突出し、円筒部47cの外周と段差部57bの内周との間には、合成ゴム製Oリングなどの弾性体シール部材58が隔壁47の中心軸に対して円周方向に圧縮されて配されている。ふた49のつば部49cは、取り付け板57の段差部57bの底面57dと隔壁47のつば47eとに挟まれて保持されている。
【0032】
取り付け板57の隔壁47側平面にはステータ46が当接して配されていて、このステータ46と隔壁47を押しつけて取り付け板57との間に挟み込んで、両端を取り付け板57の嵌合部57cに嵌合されて、概ねコの字形状の支持フレーム59が配されている。支持フレーム59にはステータ46に係合可能な係合部59bが形成され、ステータ46の回転を防止している。なお、この例では係合部59bは背面から見ると凸字形状であり、先端部を電磁ヨーク44に開口した孔に差し込んで係合し、凸字の段差部で電磁ヨーク44を取り付け板57側へ付勢している。ステータ46とシール部材58との間には、シール部材58が取り付け板57の段差部57bから脱落することを防止するバックアップリング60が配されている。取り付け板57、支持フレーム59の材質は表面処理された鋼板、ステンレス鋼板、銅合金板、アルミニウム合金板など耐ガス性、耐腐食性と、強度を持った剛体材料であり、経済的理由から表面処理された鋼板が選択しやすい。
【0033】
流体室56内に配された移動体61は、中心孔61aが回転軸53の送りネジ52に螺合し、ステータ46側に概ね円盤状のバネ受け61bを形成され、他端に径の太い係合リング部61cを形成され、それらの間に径の細い円筒部61dを形成されている。バネ受け61bの外周には、ふた49のリブ50と係合可能な凹状部61eが、円周上で90°の間隔に4カ所に成形されている。この凹状部61eがリブ50と係合することで、移動体61と軸受49との回転が防止され、送りネジ52の回転動作が移動体61の前後動作に変換される。移動体61の材料は、ポリアセタール(POM)、ポリアミド(PA)およびポリテトラフルオロエチレン(PTFE)粉末や黒鉛粒子を配合された各種合成樹脂などの、自己潤滑性を有する合成樹脂が選択可能であるが、摩擦係数の低さや経済的理由からポリアセタールが最適である。
【0034】
弁体62は、流体室56内に形成された弁座65に当接可能な概ね円盤状で合成ゴムなどの可撓体性の弁シート63と、弁シート63のステータ46側の面に当接して配された合成樹脂など剛体製の弁シート保持部材64とで構成されている。弁シート63は貫通孔がなく、外周に係合リング部63aを形成し、弁シート保持部材64を抱き込むようにして遊嵌している。弁シート保持部材64は、ステータ46側に突出し、内径が移動体61の係合リング部61cの外径とほぼ等しく軸方向に縦割り64aが形成された円筒部64bを有し、この円筒部64bの端に、内径が移動体61の係合リング部61c外径より細く移動体61の円筒部61d外径とほぼ等しい、内側に突出した係合爪64cを有し、移動体61と係合して配されている。弁シート保持部材64の円筒部64b先端と移動体61のバネ受け61bとの間には隙間69が設けられている。弁シート保持部材64の材料は、ポリアセタール(POM)、ポリアミド(PA)、ポリブチレンテレフタレート(PBT)といった、耐ガス性を有する合成樹脂材料が望ましい。
【0035】
移動体61と弁シート保持部材64との間には、弁シート保持部材64の円筒部64b外径とほぼ等しい内径を有するコイルスプリング66が圧縮して保持されている。
【0036】
そして、この移動体61と弁体62とで弁機構を構成しており、開弁側の移動下死点においてはふた49の開放端49gと、弁シート保持部材64の裏面64dが当接し、かつ、ふた49と移動体61の間には隙間を有するよう軸方向の長さを設定されている。
【0037】
ロータ55のスリーブ54と第1の軸受48、ふた49との間には、ポリテトラフルオロエチレン(PTFE)や黒鉛粒子を配合したポリアミド(PA)などの自己潤滑性を有する合成樹脂製のスラストワッシャ67、68が配されている。
【0038】
次にこの実施例1の遮断弁の動作、作用について説明する。
【0039】
ガスの使用状態が異常でなく、各種センサーからの信号が危険を示していない時、マイコンメータの制御部(図示せず)からの通電はなく、遮断弁は図1に示したように移動体61はステータ46側にあり、弁体62は弁座65から離れた開弁状態を保持し、ガスが流通可能である。
【0040】
ガスの使用状態が異常であるか、各種センサーからの信号が危険を示している時、マイコンメータの制御部は励磁コイル43の各導線42に位相差を持ったパルス状電流を印加し、ロータ55を正回転させる。移動体61は凹状部61eがリブ50と係合し回転を防止されているため、ロータ55に連動した送りネジ52の回転動作は移動体61の前後動作に変換され、移動体61と係合している弁体62は、弁シート63が弁座65に当接する位置に移動し、図2に示した状態になる。さらに移動体61が弁座65側に前進すると、コイルスプリング66がより圧縮され、弁シート保持部材64の円筒部64b先端と移動体61のバネ受け61bとが当接し、弁シート63が撓み、圧縮され、ついに移動体61の反発力が送りネジ52の推力より大きくなり、ロータ55の回転が停止する。こうして、弁体62は弁座65にコイルスプリング66で付勢され、ガスが遮断される。この閉弁状態の遮断弁を図3に示した。
【0041】
この後、マイコンメータの制御部が通電を停止しても、ロータ55は保持トルクのため状態を保持し、したがって弁体62は弁座65にコイルスプリング66で付勢された閉弁状態を保持する。
【0042】
各種センサーからの信号から危険が解除され復帰可能とマイコンメータの制御部が判断した場合や、ガス利用者が危険状態を復旧し、メータやリモートコントロール盤に設けられた復帰スイッチを操作した場合、ガス供給業者などが通信による遠隔復帰命令を発信した場合などには、マイコンメータの制御部は励磁コイル43の各導線42に逆位相差を持ったパルス状電流を印加し、ロータ55を逆回転させる。すると送りネジ52に送られて移動体61はステータ46側に移動し、弁体62は弁座65から離脱し、ガスが流通可能になる。移動体61はさらにステータ46側に移動し、ついに弁体62の弁シート保持部材64の裏面64dがふた49の円筒部49bの開放端49gに当接し移動下死点となってロータ55の回転が停止する。この後マイコンメータの制御部が通電を停止しても、ロータ55は保持トルクのため状態を保持し、図1に示した開弁状態を保持する。
【0043】
さて、この種の遮断弁は、一般的に屋外に設置されるガスメータに取り付けられ、夏の直射日光下での50℃を超過する温度から、厳冬期の−20℃を下回る温度までの厳しい温度変化にさらされることになり、また、特に弁体や直動機構、回転防止手段などガス室側の部品は、低分子炭化水素である燃料用ガスや、ガス中に微少に含まれる水分、硫化水素、二酸化硫黄などの精製不純物である活性ガスなどの有機物環境内で前記過酷な温度変化にさらされることになる。そして、その中で、ガスメータの使用期間(一般に10年間)中特にメンテナンスしなくても、緊急事に動作可能であるよう高い信頼性が要求されている。
【0044】
本実施例の遮断弁は、概ねなべ状のふた49の円筒部49bに形成された中心軸に平行な2本の凸状のリブ50と、移動体61の円盤状のバネ受け61bの外周部4カ所に形成された凹状部61eとで、回転防止手段を形成しているため、従来例におけるスタッドの根元のように極度の応力集中が発生する可能性のある箇所がない。このため、通常使用状態や部品状態、組み立て途中段階で繰り返し荷重や外力を受けた場合でもリブ50および凹状部61eは応力集中が少なく充分な強度を保ち、ガス中の有機物や水分、活性ガスの攻撃、設置環境の温度変化を受けた場合でも破壊に至る可能性が小さく、高い信頼性を持った遮断弁を提供することができる。
【0045】
また、ふた49の中心には第2の軸受け49aがリブ50と平行に一体的に形成されているために、ふた49の成形段階で平行度を確保すれば、それ以降、軸受け49aとリブ50の平行が狂うことがない。このため、軸受け49aとリブ50とで構成される回転防止手段の平行度が組立上のトラブルや外力などで狂った場合に想定されるくさびの効果のような両者の噛み込みの可能性がなく、リブ50と移動体61がロックし動作不能になる可能性がきわめて小さく、高い信頼性を持った遮断弁を提供することができる。
【0046】
また、開弁側の移動下死点において、ふた49と移動体61は接触せず、ふた49の開放端49gと、弁シート保持部材64の裏面64dが当接するよう形成されているため、開弁状態ではより広い外径で弁体62を保持することになり、弁体62の角度ふれに対する抗力のモーメントが大きく、ずれに抗する摩擦力の作用する面積が広くなり、弁体62はふた49の開放端49gと平行に保持され、ロータ46自身の円周ふれ、角度ふれや、送りネジ52と移動体61とのクリアランスによる円周ふれ、角度ふれが弁体62の開弁時の角度に影響を及ぼしにくい。このため、ガス流れによる動圧などの影響で弁体62が大きくふれ、動作や閉弁性能に影響を及ぼすといったことがなく、高い信頼性を持った遮断弁を提供することができる。
【0047】
また、180°の間隔で2箇所に配された凸状のリブ50と、移動体61の円盤状のバネ受け61bの外周部に90°の間隔で4カ所に形成された凹状部61eとで、回転防止手段を形成しているため、移動体61が90°回転する毎に凸状リブ50と係合する機会が発生し、それ以外の箇所では移動体61の円状のバネ受け61bが凸状リブ50と干渉し、また、凸状リブ50は回転対象に2本配置されているため移動体61が挿入時に斜めになりにくく、移動体61が想定されていない係合が発生しにくい。一方で、挿入後の、凸状のリブ50と凹状部61eとの係合箇所は180°の間隔の2カ所になるため接触面積が比較的小さく摩擦抵抗の比較的小さい回転防止手段を形成できる。
【0048】
このように、係合頻度が高く摩擦抵抗が小さい直動機構を形成でき、弁体62の回転方向を位置決めすることなく回転動作をさせるだけで弁体62を組み立てやすくなり、それによる摩擦抵抗の増大も抑制することができる。すなわち、送り手段である送りネジ52に回転動作をさせると、送りネジ52の締め付け方向に弁体62自身が若干回転することによって容易に凸状リブ50と凹状部61eが係合し、組み付けが自動的におこなえる。そして、ロボットなどの機械装置による弁体の組み付け容易で量産性の高い遮断弁を提供することができる。
【0049】
なお、図1において、ふた49にリブ50を設け、移動体61に凹状部61eを設けるとしたが、第2の軸受に溝を設け、移動体に凸状部を設けて係合させ回転防止手段としてもよい。また、励磁コイル43、第1の電磁ヨーク44、第2の電磁ヨーク45のセットは2セットとしたが、3セットでも、より多数でもよい。また、ステータ46、隔壁47は支持フレーム59で取り付け板57に嵌着するとしたが、支持フレームがなく相互に溶接で固定されていてもよい。
【0050】
ただし、この場合はふた49のつば部49cが熱ストレスによる膨張を吸収してクリープ変形するので注意が必要である。また、シール部材58は径方向に圧縮されて配されるとしたが、軸方向の圧縮でも良い。ただし、この場合はふた49のつば49cがクリープ変形することによってシール部材58の圧縮率が小さくなる可能性が大きいので、シール部材58の軸方向の圧縮率を左右する部分にはつば49c等の合成樹脂を介在させないよう形成することが必要である。また、スラスト軸受は滑り軸受であるスラストワッシャ67、68としたが、ボールベアリングなどの転がり軸受でもよい。ただし、マイコンメータの遮断弁の場合は、長期間にわたって開弁静止状態で放置されることが多いため、潤滑油の使用は好ましくない。また、弁体62と移動体61とは別部品としたが、一体的に構成されてもよい。
【0051】
弁シート63は弁シート保持部材64を抱き込んでいるとしたが、中央で嵌合してもよく、弁シート保持部材に中心軸を形成して弁シートを気密に貫通させ別の固定部材で締結してもよい。
【0052】
(実施例2)
図5は本発明の実施例2の遮断弁の回転防止手段と移動体の形状を示す斜視図である。
【0053】
図5において、移動体1は、中心孔1aが回転軸53の送りネジ52に螺合し、ステータ46側に概ね円盤状のバネ受け1bを形成され、他端に径の太い係合リング部1cを形成され、それらの間に径の細い円筒部1dを形成されている。バネ受け1bの外周には、ふた49のリブ50と係合可能な凹状部1eが、円周上で90°の間隔に4カ所に成形されている。送りネジ52は反時計回り方向にねじ込まれるネジとなっている。図5の上方から見た場合、凹状部1eの時計回り方向側のふちの裏面に突起72が形成されている。すなわち移動体1を回動させた場合、送りネジ52のねじ込み方向(反時計回り方向)に対して規制が大きく緩み方向に対して規制が少ないよう突起72が形成されている。
【0054】
その他の部分は、実施例1の遮断弁と同等であるので説明を省略する。
【0055】
実施例2の遮断弁の動作、作用についても、実施例1の遮断弁と同等であるので説明を省略する。
【0056】
さて、この遮断弁の移動体1を回転軸53に取りつける場合には、回転軸53を回転運動させて中心孔1aを送りネジ52と螺合させ、さらに、凹状部1eとリブ50とを係合させる必要がある。
【0057】
実施例2の遮断弁において、移動体1を回転軸53に取りつける場合には、回転軸53を垂直上向きにしてねじ込み方向(反時計回り方向)に回転運動させる。次に、回転軸53を移動体1の中心孔1aに挿入すると中心孔1aと送りネジ52が螺合し、移動体1は若干締まりながら回転軸53と同方向に回転を始める。やがて、重力によって移動体1が下方に移動し、まず、突起72がリブ50に当接する。すると、自動的に凹状部1eとリブ50とが係合し、移動体1が送りネジ52のピッチ道理に下方に移動して、移動体1を回転軸53との取付が完了する。
【0058】
このように本実施例の遮断弁は、移動体1(すなわち弁体)の回転方向を位置決めすることなく回転軸53を回転動作させるだけで、送りネジ52の締め付け方向に移動体自身が若干回転し、凹状部1eの突起が先行してリブ50に係合することによって、容易にリブ50と移動体1が係合し、組み付けが自動的におこなえる。そして、ロボットなどの機械装置による弁体の組み付け容易で量産性の高い遮断弁を提供することができる。
【0059】
なお、図5において、突起72は同方向の傾斜でも良く、また移動体1とふた49の凹凸が同時に入れ替わっても良い。ただし、この場合は突起または傾斜も凹側、すなわちふた側に形成される必要がある。また、突起と傾斜は最低一本づつでも最低限の効果は有するが、突起の本数が回転対称位置に複数ある方が移動体が傾かず、スムースな組み立てが可能である。また、移動体1は弁体(図示せず)と一体的に形成されていても良い。
【0060】
(実施例3)
図6は本発明の実施例3の遮断弁の開弁状態における部分断面図である。
【0061】
図6において、モータやロータリーソレノイド等からなる回転駆動機構81と、回転駆動機構81の回転軸82に配された送りネジ83と、送りネジ83の外側に同軸に配された概ね円筒状で内面に送りネジ83に平行な凹状溝を形成された回転防止リング84と、中心孔87aが送りネジ83に螺合可能で、外周部に回転防止リング84の凹状溝85に係合可能な凸状部86を形成された移動体87と、移動体87に配された弁ゴム88とで遮断弁が構成されている。
【0062】
回転駆動機構81は取り付け板89に溶接もしくはかしめなどの手段で固定されており、回転防止リング84も凹凸嵌合等(図示せず)によって取り付け板89に回転を規制されて取り付けられている。移動体87の弁ゴム88側には弁ゴム88とほぼ同径の弁ゴム受け部87cが形成されている。弁ゴム88は中心孔88aが形成され、移動体87の端には突起87dが形成され、この突起87dが中心孔88aを貫通し、中心孔を持った円盤状の弁ゴム押さえ90を貫通して熱かしめなどの手段で弁ゴム88を保持している。
【0063】
実施例3の遮断弁の動作については、実施例1の遮断弁と概ね同等であるので説明を省略する。
【0064】
図6において、回転防止手段は円筒形の回転防止リング84に凹状溝85を形成したものであるため、スタッド状の回転防止手段と比較して応力集中が極めて小さく、通常使用状態や部品状態、組み立て途中段階で繰り返し荷重や外力を受けた場合でも破壊に至る可能性が小さい。このため、ガスメータの使用期間中特にメンテナンスしなくても、緊急事に動作可能であるよう高い信頼性を持った遮断弁を提供することができる。
【0065】
なお、図6において凹状溝85と凸状部86はそれぞれ一箇所であるように図示したが、複数箇所でもよく、組立時の挿入製を考慮すると、回転対象位置の複数箇所に設けるのが望ましい。
【0066】
また、実施例1から3において、送り手段は送りねじとしたが円筒カムなどでもよい。また、送り手段と移動体は雄ネジと雌ネジとしたが、ウォームとラックの組み合わせでもよい。
【0067】
【発明の効果】
以上のように本発明によれば、励磁コイルを有するステータと、前記ステータの内側に同軸に配設され貫通穴のないなべ状に成形された金属製の隔壁と、前記隔壁の開放端側に底面を嵌挿された中心孔を有する概ねなべ状で側面円筒部内側に中心軸に平行な凸状リブを形成した合成樹脂製の軸受けと、前記隔壁の内側に前記ステータに対向して配設したロータと、前記軸受けに回転可能に緩挿された前記ロータの回転軸と、前記軸受けから外側に突出した前記回転軸の端に配された送りネジと、中心孔が前記送りネジに螺合可能な移動体と、前記移動体に形成され外周部に前記凸状リブに係合可能な凹状部が形成されたバネ受けと、前記移動体に係合された弁体と、前記バネ受けと前記弁体との間に圧縮状態で保持されたコイルスプリングとを備えているために、スタッド状の回転防止手段と比較して応力集中が極めて小さく、通常使用状態や部品状態、組み立て途中段階で繰り返し荷重や外力を受けた場合でも破壊に至る可能性が小さい。また、軸受け成形段階で精度を確保すれば、それ以降、軸受けの中心穴と回転防止手段としての凸状リブの平行が狂うことなく、このため、凸状リブと移動体がロックし動作不能になる可能性がきわめて小さく、高い信頼性を持った遮断弁を提供することができるといった有利な効果を有する。
【0068】
また、上記特徴に加え、弁体は移動ストロークの下死点において軸受けの側面円筒部開放端に当接可能なよう遮断弁を構成し、そして、開弁状態において弁体は軸受けの側面円筒部開放端と平行に保持され、ロータ自身の円周ふれ、角度ふれや、送り手段と移動体とのクリアランスによる円周ふれ、角度ふれが弁体に影響を及ぼしにくい。この結果、ガス流れによる動圧などの影響で弁体が大きくふれ、動作や閉弁性能に影響を及ぼすといった課題を解決し、高い信頼性を持った遮断弁を提供することができるといった有利な効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施例1の遮断弁の開弁状態の断面図
【図2】 同遮断弁の遮断動作中の断面図
【図3】 同遮断弁の閉弁状態の断面図
【図4】 同遮断弁の回転防止手段と移動体の形状を示す斜視図
【図5】 本発明の実施例2の遮断弁の回転防止手段と移動体の形状を示す斜視図
【図6】 本発明の実施例3の遮断弁の開弁状態における部分断面図
【図7】 従来の遮断弁の開弁状態の断面図
【図8】 従来の遮断弁の他の開弁状態の断面図
【符号の説明】
43 励磁コイル(回転駆動機構)
46 ステータ(回転駆動機構)
47 隔壁
49 ふた(軸受け)
50 リブ(回転防止手段)
55 ロータ(回転駆動機構)
52、83 送りネジ(送り手段)
53、82 回転軸
61、71、87 移動体
62 弁体
72 突起
81 回転駆動機構
84 回転防止リング(回転防止手段)
85 凹状溝(回転防止手段)
86 凸状部(移動体)
88 弁ゴム(弁体)
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a safety valve (international patent classification F16K 17/36) that operates according to an external situation and uses an electric motor as an operation means (international patent classification F16K 31/04), in particular, a gas shut-off device that prevents a gas accident in advance. More specifically, the present invention relates to a shutoff valve used as a shutoff mechanism, and more specifically, a motor that performs a shutoff return operation of the flow path by moving the valve body forward or backward relative to a valve seat formed in the flow path is used as a power source. It relates to the shut-off valve.
[0002]
[Prior art]
In order to prevent gas accidents, various types of safety devices have been used in the past.In particular, when the flow rate sensor built in the gas meter monitors the gas flow rate and the microcomputer determines that the gas usage status is abnormal, Microcomputer-equipped gas with a battery power source that shuts off the gas with a shut-off valve built in the gas meter when the status of sensors such as earthquake sensors, gas pressure sensors, gas alarms, carbon monoxide sensors, etc. The gas meter with built-in shut-off device (hereinafter abbreviated as microcomputer meter) has been promoted for its advantages such as safety, ease of gas piping, and low price, and in recent years, almost all households have become popular. In addition, the ratio of centralized monitoring micrometers that have a telemeter function that centrally monitors the gas flow rate information measured by the flow sensor using a telephone line will increase, and the convenience of information terminals will increase. It has been demanded. In this central monitoring type microcomputer meter, etc., gas can be shut off and restored by electric energy from the battery installed in the microcomputer meter so that gas can be shut off and restored by simple electric switch operation or remote operation by telephone line etc. On the other hand, a shut-off valve that does not require energy is required to maintain the open and closed states.
[0003]
As the drive system for this shut-off valve, the one that used an electromagnetic solenoid has been the mainstream. However, in recent years, a relatively strong closing force and return force can be realized. A shut-off valve with a gas-tight partition with the rotor inside the gas flow path and the stator outside the gas flow path is the mainstream because it is easy to attach to the gas flow path. .
[0004]
A conventional shut-off valve will be described below.
[0005]
Conventional shut-off valves of this type are generally shown in Japanese Patent Application Laid-Open Nos. 9-210237 and 11-2353. As shown in FIG. 7, the shut-off valve described in Japanese Patent Laid-Open No. 11-2353 has a cup-shaped casing 6 with a hook, and a stator 4 is mounted on the outer periphery of the casing 6, and the opening of the casing 6 is opened. The outer bush 3 made of synthetic resin is fitted into the portion, and the stud 5 is integrally formed on the outer bush 3 so as to be eccentric and projecting forward, and the inner bush 12 is inserted into the casing 6, and the outer bush 3 and the inner bush 12 are supported by the lead screw 17 so that the front end of the male screw portion 17a protrudes forward from the outer bush 3 so that the lead screw 17 can rotate in the forward and reverse directions. A thrust bearing roller bearing 18 is inserted between the rotor 16 and the outer bush 3 so as to face each other. It is arranged a valve body 25 screwed into engagement with the male threaded portion 17a on. The elastic seal member 8, the outer bush 3 and the casing 6 are sandwiched between the stepped flange 2 and the flat plate flange 7, and the stepped flange 2 and the flat plate flange 7 are fixed by caulking.
[0006]
The operation of the shut-off valve configured as described above will be described below.
[0007]
When the gas is abnormally used, the rotor 16 is rotated forward by energization from a control unit (not shown), the lead screw 17 rotates in the forward direction, and the stud 5 restrains the rotation of the valve body 25. The rotary motion is converted into a linear motion, and the valve body 25 advances from the lead screw 17 side to the valve seat 26 side and comes into contact with the valve seat 26, thereby closing the fluid path and blocking the fluid. Further, when restoring this, the lead screw 17 is rotated in the reverse direction by an external input, and the stud 5 constrains the rotation of the valve body 25 to convert the rotational motion into a linear motion. The valve body 25 is retracted from the side to the lead screw 17 side until the short side of the valve body 25 comes into contact with the outer bush 3 to open the fluid path and resume the supply of fluid.
[0008]
FIG. 8 shows a shutoff valve described in Japanese Patent Laid-Open No. 9-210237. This shut-off valve has a configuration substantially similar to that of the shut-off valve in FIG. 7 except that the stud 35 is press-fitted into the flange 32.
[0009]
The operation of this shut-off valve is the same as that of the shut-off valve in FIG.
[0010]
[Problems to be solved by the invention]
This type of shut-off valve is generally attached to a gas meter installed outdoors, and is subject to severe temperature changes from temperatures exceeding 50 ° C under direct sunlight in summer to temperatures below -20 ° C in severe winter season. In particular, the parts on the gas chamber side such as the valve body 25, the outer bush 3 and the stud 5 are low-molecular hydrocarbon fuel gas, moisture contained in the gas, hydrogen sulfide, It will be exposed to the severe temperature changes in an organic substance environment such as active gas which is a purified impurity such as sulfur dioxide. Among them, high reliability is required so that the gas meter can be operated in an emergency even if it is not particularly maintained during the service period (generally 10 years) of the gas meter.
[0011]
In the conventional shut-off valve, since the lead screw 17 and the valve body 25 are screw-tightened using the studs 5 and 35 as rotation constraint guides in the closed state and the open state, relatively strong torque is applied to the studs 5 and 35. The torque is repeatedly applied and the torque is transmitted to the roots of the studs 5 and 35 by the lever principle, and a large stress concentration is generated at the roots of the studs 5 and 35. If attacks of organic matter, moisture, or active gas concentrate on this location, the resin may be destroyed due to the development of microcracks, or the metal / metal joints such as caulking may be abnormally corroded, causing the studs 5 and 35 to break. There was a possibility of malfunction.
[0012]
Also, in a linear conversion device that converts this type of rotational motion into linear motion, if the parallelism of the shafts of the lead screw and the rotation restraint guide deviates greatly, the biting effect such as the wedge effect as the lead nut moves May occur, and the rotation restraint guide and the lead nut may lock and become inoperable.
[0013]
In the above-described conventional shutoff valve, the studs 5 and 35 protrude from the flanges 2 and 32 in a bar shape and are easily subjected to external force. The verticality of the studs 5 and 35 and the flanges 2 and 32 is deformed and the parallelism with the lead screw 17 is shifted, so that the valve body 25 and the studs 5 and 35 may be locked and become inoperable.
[0014]
Further, even when the shut-off valve is in a finished product state, there is a problem that the studs 5 and 35 are easily deformed by an external force such as a rotational force applied to the valve body 25.
[0015]
Further, in the above-described conventional shut-off valve, the circumferential deflection of the valve body 25 and the angular position regulation in the valve open state are made by the lead screw 17, but the circumferential deflection of the lead screw 17 itself due to the radial clearance, Due to the angular deflection and the circumferential deflection and angular deflection due to the clearance between the lead nut 25 and the lead screw 25 of the valve body 25, a relatively large deflection is generated by a relatively weak external force or the like on the lever principle. As a result, there has been a problem that the valve body 25 is greatly touched due to the influence of the dynamic pressure due to the gas flow, which affects the operation and valve closing performance.
[0016]
Further, in the above-described conventional shut-off valve, the studs 5 and 35 are inserted into the holes formed in the valve body 25 at the time of assembly. Therefore, the valve body 25 is positioned in the rotational direction and is rotated while rotating there. Since it is necessary to insert the screw 17, it is difficult to assemble the valve body 25 by a mechanical device such as a robot, and there is a problem that mass productivity is low.
[0017]
In view of such conventional problems, the present invention eliminates the movement caused by the gas flow without causing the rotation restraint guide to break or the parallelism to shift due to trouble during assembly, temperature stress in long-term use, chemical stress, or load stress. An object of the present invention is to provide a shut-off valve that has high reliability such that the valve body does not largely touch due to pressure and the like, and that can be easily assembled by a mechanical device such as a robot and has high mass productivity.
[0018]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the shut-off valve of the present invention includes a stator having an exciting coil, a metal partition wall that is coaxially disposed inside the stator and is shaped like a pan without a through-hole. A synthetic resin bearing having a central hole with a bottom hole fitted on the open end side of the partition wall and a convex rib parallel to the center axis inside the side cylindrical portion; and inside the partition wall A rotor disposed opposite to the stator, a rotating shaft of the rotor loosely inserted into the bearing, a feed screw disposed at an end of the rotating shaft protruding outward from the bearing, and a center A movable body in which a hole can be screwed to the feed screw, a disk-shaped spring receiver formed in the movable body and having a concave portion engageable with the convex rib on an outer peripheral portion, and a movable body Compressed between the combined valve body and the spring receiver and the valve body In a coil spring which is held in the concave portion is screwed the feed screw to the movable body In the direction to move the valve body to the valve opening side A protrusion is provided on the side that restricts the rotation of the moving body by contacting the convex rib when rotating.
[0019]
According to the present invention, since the convex rib parallel to the central axis is formed as the rotation preventing means inside the side cylindrical portion of the bearing on the open end side of the partition wall, the stress concentration is smaller than that of the stud-shaped rotation preventing means. It is extremely small and is less likely to break even when it is subjected to repeated loads or external forces during normal use, parts, or during assembly. Therefore, it is possible to provide a highly reliable shut-off valve that can be operated even in an emergency without requiring maintenance during the period of use of the gas meter.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The shut-off valve of the present invention includes a stator having an exciting coil, a metal partition wall coaxially disposed inside the stator and formed in a pan shape without a through hole, and a bottom surface fitted on the open end side of the partition wall. A synthetic resin bearing having a generally pan-like shape with a central hole inserted and formed with a convex rib parallel to the central axis inside the side cylindrical portion, and a rotor disposed inside the partition and facing the stator A rotating shaft of the rotor loosely inserted into the bearing, a feed screw disposed at an end of the rotating shaft protruding outward from the bearing, and a movement in which a central hole can be screwed to the feed screw A disc-shaped spring receiver formed on the outer periphery of the movable body and having a concave portion engageable with the convex rib; a valve body engaged with the movable body; and the spring receiver. A coil spring held in a compressed state between the valve body and For example, wherein the concave portion, and the feed screw is screwed into the movable body In the direction to move the valve body to the valve opening side A protrusion is provided on the side that restricts the rotation of the moving body by contacting the convex rib when rotating.
[0021]
Further, since a convex rib parallel to the central axis is formed as an anti-rotation means on the inside of the side cylindrical portion of the bearing on the open end side of the partition wall, the stress concentration is extremely small compared to the stud-like anti-rotation means. Even when subjected to repeated loads and external forces during normal use, parts, and during assembly, the possibility of destruction is small. If accuracy is ensured in the bearing molding stage, the center hole of the bearing and the convex ribs or concave grooves of the anti-rotation means will not be misaligned thereafter, so the anti-rotation means and the moving body will lock and operate. It is possible to provide a highly reliable shut-off valve with a very low possibility of being impossible.
[0022]
In addition to the above features, the shut-off valve of the present invention is configured such that the valve element can come into contact with the open end of the side cylindrical portion of the bearing at the bottom dead center of the moving stroke.
[0023]
In the valve open state, the valve body is held parallel to the open end of the side cylindrical portion of the bearing, and the circumferential runout and angle runout of the rotor itself, and the circumferential runout and angle runout due to the clearance between the feeding means and the moving body are the valve. Hard to affect the body. As a result, it is possible to provide a highly reliable shut-off valve by solving the problem that the valve body largely fluctuates due to the influence of the dynamic pressure due to the gas flow and affects the operation and valve closing performance.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
Example 1
1, 2, and 3 are cross-sectional views of the shut-off valve according to the first embodiment of the present invention in the open state, during the shut-off operation, and the closed state, respectively, and FIG. It is a perspective view which shows the shape of a means and a moving body.
[0026]
1 and 4, an exciting coil 43 in which a conducting wire 42 is wound around a substantially bobbin-shaped coil bobbin 41, and a first electromagnetic yoke 44 having a cylindrical portion on the outer periphery and a comb-shaped magnetic pole on the inner periphery. And two sets of a second electromagnetic yoke 45 having a generally disc shape and a comb-like magnetic pole on the inner periphery, which are arranged so as to sandwich the exciting coil 43 between the electromagnetic yoke 44 and each other. The second electromagnetic yoke 45 is placed in contact with the disk portion to form a stator 46. The coil bobbin 41 is preferably made of synthetic resin and has heat resistance such as polybutylene terephthalate (PBT) and good electrical insulation. The first electromagnetic yoke 44 and the second electromagnetic yoke 45 are made of a steel plate such as a low-carbon steel plate, an electromagnetic soft iron plate, or a silicon steel plate, and are subjected to rust prevention treatment such as galvanization, aluminum plating, and chromic acid treatment film on the surface. Economically, a pre-plated steel plate such as a galvanized steel plate is desirable. The comb-shaped magnetic poles of the first electromagnetic yoke 44 and the second electromagnetic yoke 45 mesh with a predetermined gap, and the two sets of comb teeth are substantially the same as the other sets of comb teeth in the rotation direction. It arrange | positions so that it may be located in a clearance gap part.
[0027]
Coaxially inside the stator 46, there are two stages of bottom holes 47a and 47b, large and small cylindrical portions 47c and 47d, and a large diameter cylindrical portion 47c with a flange 47e at the open end of the large diameter cylindrical portion 47c. There is no metallic partition 47. The material of the partition wall 47 can be selected from rigid bodies such as non-magnetic stainless steel plates, copper alloys, aluminum alloys, synthetic resins, and ceramics, but for reasons such as corrosion resistance, strength, creep resistance, and thin wall workability, austenite A stainless steel plate drawn by drawing is optimal, and a solution obtained by applying a solution heat treatment after drawing to remove residual internal stress and crystal grain refinement is desirable.
[0028]
A first bearing 48 made of synthetic resin having a center hole 48a is fitted into the inside of the side surface of the small-diameter cylindrical portion 47d of the partition wall 47. The cylindrical portion 47d of the partition wall 47 and the first bearing 48 are fitted with an interference fit. Between the fitting portion 48b of the first bearing 48 and the center hole 48a, a thin rippled stress relaxation portion 48c is formed. Further, a stopper 48d is formed so as to contact the bottom 47a of the partition wall 47. The material of the first bearing 48 is selected from synthetic resins having self-lubricating properties such as various synthetic resins in which polyacetal (POM), polyamide (PA) and polytetrafluoroethylene (PTFE) powder and graphite particles are blended. Although possible, polyacetal is the best because of its low coefficient of friction and economic reasons. Since this polyacetal has a relatively large stress creep and is soft, when setting an interference fit, it is necessary to set a relatively large allowance. For example, the inner diameter of the cylindrical portion 47d of the partition wall 47 is 8 mm. In this case, the outer diameter of the fitting portion 48b of the first bearing 48 is appropriately about 8.05 to 8.1 mm.
[0029]
On the open end side of the pan side surface of the large-diameter cylindrical portion 47c of the partition wall 47, a second bearing 49a, a cylindrical portion 49b having an open end 49g perpendicular to the central axis on the side surface, and a collar portion 49c on the outer periphery are provided. A synthetic resin lid 49 having the same axis is fitted into the flange 47 e of the partition wall 47 in contact with the flange 47 e. The cylindrical portion 47c of the partition wall 47 and the fitting insertion portion 49e of the lid 49 are fitted with an interference fit. Between the fitting portion 49e of the lid 49 and the second bearing 49a, a thin rippled stress relaxation portion 49d is formed. As the material of the lid 49, polyacetal is optimal as in the first bearing 48. The interference fit between the cylindrical portion 47c of the partition wall 47 and the fitting insertion portion 49e of the lid 49 may be relatively loose because there is another fixing means described later, and to prevent the disk portion 49f from wavy. For example, when the inner diameter of the cylindrical portion 47c of the partition wall 47 is 18 mm, the outer diameter of the fitting insertion portion 49e of the lid 49 is appropriately about 18.02 to 18.08. On the inner surface of the cylindrical portion 49b of the lid 49, convex ribs 50 parallel to the central axis are formed at two positions 180 ° apart on the circumference (in FIGS. For the sake of simplicity, the rib 50 is shown at a narrower angle than 180 °, and the two ribs 50 are shown at the same time.
[0030]
Inside the partition wall 47, a cylindrical permanent magnet 51 polarized in the circumferential direction, a rotating shaft 53 having a feed screw 52 formed at one end, the permanent magnet 51, and the rotating shaft 53 are held coaxially. A rotor 55 composed of a sleeve 54 that rotates is loosened so that the end of the rotary shaft 53 on the side of the feed screw 52 can be rotated to the second bearing 49a of the lid 49 and the opposite end can be rotated to the center hole 48a of the first bearing 48. It is inserted and arranged.
[0031]
A mounting plate 57 that can be attached to the fluid chamber 56 is formed with a cylindrical stepped portion 57b having an inner diameter slightly larger than the outer diameter of the central hole 57a and the large-diameter cylindrical portion 47c of the partition wall 47 at the center. A claw-like fitting part 57c is formed at the place. The end of the large-diameter cylindrical portion 47c of the partition wall 47 is inserted into the stepped portion 57b, and the cylindrical portion 49b of the lid 49 passes through the center hole 57a and protrudes toward the fluid chamber 56, and the outer periphery of the cylindrical portion 47c and the stepped portion Between the inner periphery of 57 b, an elastic seal member 58 such as a synthetic rubber O-ring is compressed in the circumferential direction with respect to the central axis of the partition wall 47. The flange portion 49 c of the lid 49 is held between the bottom surface 57 d of the stepped portion 57 b of the attachment plate 57 and the flange 47 e of the partition wall 47.
[0032]
A stator 46 is disposed in contact with the partition plate 47 side surface of the mounting plate 57. The stator 46 and the partition wall 47 are pressed against each other and sandwiched between the mounting plate 57 and both ends thereof are fitted portions 57c of the mounting plate 57. A generally U-shaped support frame 59 is disposed. The support frame 59 is formed with an engaging portion 59 b that can be engaged with the stator 46 to prevent the stator 46 from rotating. In this example, the engaging portion 59b has a convex shape when viewed from the back, and the front end portion is inserted into and engaged with a hole opened in the electromagnetic yoke 44, and the electromagnetic yoke 44 is attached to the mounting plate 57 by the convex stepped portion. It is energizing to the side. Between the stator 46 and the seal member 58, a backup ring 60 for preventing the seal member 58 from dropping from the stepped portion 57b of the mounting plate 57 is disposed. The material of the mounting plate 57 and the support frame 59 is a rigid material having gas resistance, corrosion resistance and strength, such as surface-treated steel plate, stainless steel plate, copper alloy plate and aluminum alloy plate. A treated steel plate is easy to select.
[0033]
The moving body 61 disposed in the fluid chamber 56 has a center hole 61a screwed into the feed screw 52 of the rotating shaft 53, a substantially disk-shaped spring receiver 61b formed on the stator 46 side, and a large diameter at the other end. An engagement ring portion 61c is formed, and a cylindrical portion 61d having a small diameter is formed between them. On the outer periphery of the spring receiver 61b, concave portions 61e that can engage with the ribs 50 of the lid 49 are formed at four locations at intervals of 90 ° on the circumference. When the concave portion 61 e is engaged with the rib 50, the rotation of the moving body 61 and the bearing 49 is prevented, and the rotation operation of the feed screw 52 is converted into the front-rear operation of the moving body 61. The material of the moving body 61 can be selected from synthetic resins having self-lubricating properties such as polyacetal (POM), polyamide (PA), polytetrafluoroethylene (PTFE) powder, and various synthetic resins blended with graphite particles. However, polyacetal is optimal because of its low friction coefficient and economic reasons.
[0034]
The valve body 62 is in contact with the valve seat 65 formed in the fluid chamber 56 and is substantially disc-shaped and is made of a flexible valve seat 63 such as synthetic rubber, and the surface of the valve seat 63 on the stator 46 side. The valve seat holding member 64 is made of a rigid body such as a synthetic resin disposed in contact therewith. The valve seat 63 does not have a through hole, and an engagement ring portion 63 a is formed on the outer periphery, and the valve seat 63 is loosely fitted so as to embrace the valve seat holding member 64. The valve seat holding member 64 has a cylindrical portion 64b that protrudes toward the stator 46 and has an inner diameter that is substantially equal to the outer diameter of the engagement ring portion 61c of the moving body 61 and is formed with a longitudinal division 64a in the axial direction. At the end of 64 b, there is an engaging claw 64 c projecting inward that has an inner diameter smaller than the outer diameter of the engaging ring portion 61 c of the moving body 61 and substantially equal to the outer diameter of the cylindrical portion 61 d of the moving body 61. It is arranged together. A gap 69 is provided between the tip of the cylindrical portion 64 b of the valve seat holding member 64 and the spring receiver 61 b of the moving body 61. The material of the valve seat holding member 64 is preferably a synthetic resin material having gas resistance such as polyacetal (POM), polyamide (PA), polybutylene terephthalate (PBT).
[0035]
A coil spring 66 having an inner diameter substantially equal to the outer diameter of the cylindrical portion 64 b of the valve seat holding member 64 is compressed and held between the moving body 61 and the valve seat holding member 64.
[0036]
The moving body 61 and the valve body 62 constitute a valve mechanism, and the open end 49g of the lid 49 abuts the back surface 64d of the valve seat holding member 64 at the moving bottom dead center on the valve opening side, In addition, the axial length is set so that there is a gap between the lid 49 and the moving body 61.
[0037]
Between the sleeve 54 of the rotor 55 and the first bearing 48 and the lid 49, a thrust washer made of a synthetic resin having self-lubricating properties such as polytetrafluoroethylene (PTFE) or polyamide (PA) blended with graphite particles. 67 and 68 are arranged.
[0038]
Next, the operation and action of the shutoff valve of the first embodiment will be described.
[0039]
When the gas usage state is not abnormal and the signals from various sensors do not indicate danger, there is no power supply from the control unit (not shown) of the microcomputer meter, and the shut-off valve is a moving body as shown in FIG. 61 is on the side of the stator 46, and the valve body 62 is kept open from the valve seat 65 so that gas can flow therethrough.
[0040]
When the usage state of the gas is abnormal or the signals from various sensors indicate danger, the control unit of the microcomputer meter applies a pulsed current having a phase difference to each conductive wire 42 of the exciting coil 43, and the rotor 55 is rotated forward. Since the moving body 61 is prevented from rotating by the concave portion 61e engaging with the rib 50, the rotation operation of the feed screw 52 interlocked with the rotor 55 is converted into the front-rear operation of the moving body 61 and is engaged with the moving body 61. The valve body 62 is moved to a position where the valve seat 63 abuts on the valve seat 65, and is in the state shown in FIG. When the moving body 61 further advances toward the valve seat 65, the coil spring 66 is further compressed, the tip of the cylindrical portion 64b of the valve seat holding member 64 and the spring receiver 61b of the moving body 61 come into contact, and the valve seat 63 bends. The repulsive force of the moving body 61 finally becomes larger than the thrust of the feed screw 52, and the rotation of the rotor 55 stops. Thus, the valve body 62 is urged against the valve seat 65 by the coil spring 66 and the gas is shut off. The shut-off valve in the closed state is shown in FIG.
[0041]
Thereafter, even if the control unit of the microcomputer meter stops energization, the rotor 55 maintains the state due to the holding torque, and therefore the valve body 62 maintains the closed state in which the valve seat 65 is urged by the coil spring 66. To do.
[0042]
When the controller of the microcomputer meter determines that the danger is released from the signals from the various sensors and can be restored, or when the gas user recovers the dangerous condition and operates the return switch provided on the meter or remote control panel, When a gas supplier or the like sends a remote return command by communication, the control unit of the microcomputer meter applies a pulsed current having an opposite phase difference to each conducting wire 42 of the exciting coil 43 and rotates the rotor 55 in the reverse direction. Let Then, it is sent to the feed screw 52 and the moving body 61 moves to the stator 46 side, the valve body 62 is detached from the valve seat 65, and the gas can flow. The moving body 61 further moves to the stator 46 side, and finally, the back surface 64d of the valve seat holding member 64 of the valve body 62 comes into contact with the open end 49g of the cylindrical portion 49b of the lid 49 and becomes a moving bottom dead center. Stops. Thereafter, even if the control unit of the microcomputer meter stops energization, the rotor 55 maintains the state due to the holding torque, and maintains the valve open state shown in FIG.
[0043]
Now, this kind of shut-off valve is generally attached to a gas meter installed outdoors, and it is a severe temperature from a temperature exceeding 50 ° C. under direct sunlight in summer to a temperature lower than −20 ° C. in the severe winter season. The parts on the gas chamber side such as the valve body, linear motion mechanism, and rotation prevention means are used for fuel gas that is low-molecular hydrocarbons, moisture contained in the gas, It is exposed to the severe temperature change in an organic substance environment such as active gas which is a purified impurity such as hydrogen and sulfur dioxide. Among them, high reliability is required so that the gas meter can be operated in an emergency even if it is not particularly maintained during the service period (generally 10 years) of the gas meter.
[0044]
The shut-off valve of the present embodiment includes two convex ribs 50 parallel to the central axis formed in the cylindrical portion 49b of the pan-like lid 49, and the outer peripheral portion of the disc-shaped spring receiver 61b of the moving body 61. Since the rotation preventing means is formed by the concave portions 61e formed at four places, there is no place where extreme stress concentration may occur like the root of the stud in the conventional example. For this reason, even when a repeated load or external force is applied during normal use, parts, or during assembly, the rib 50 and the concave portion 61e maintain a sufficient strength with little stress concentration, and the organic matter, moisture, and active gas in the gas Even when subjected to attacks and temperature changes in the installation environment, the possibility of destruction is small, and a highly reliable shut-off valve can be provided.
[0045]
Further, since the second bearing 49a is integrally formed in the center of the lid 49 in parallel with the rib 50, if the parallelism is ensured in the molding stage of the lid 49, the bearing 49a and the rib 50 are thereafter processed. The parallelism of the will not go mad. For this reason, there is no possibility of biting of both of them due to the wedge effect assumed when the parallelism of the rotation preventing means constituted by the bearing 49a and the rib 50 is deviated due to an assembly trouble or an external force. The possibility that the rib 50 and the moving body 61 are locked and become inoperable is extremely small, and a shut-off valve with high reliability can be provided.
[0046]
In addition, the lid 49 and the moving body 61 do not come into contact with each other at the moving bottom dead center on the valve opening side, and the open end 49g of the lid 49 and the back surface 64d of the valve seat holding member 64 are in contact with each other. In the valve state, the valve body 62 is held with a wider outer diameter, the moment of the resistance against the angular deflection of the valve body 62 is large, the area where the frictional force resists the displacement is widened, and the valve body 62 is covered with the lid. 49 is held in parallel with the open end 49 g of the rotor 46, and the circumferential deflection and angular deflection of the rotor 46 itself, and the circumferential deflection and angular deflection due to the clearance between the feed screw 52 and the moving body 61 are the angles when the valve body 62 is opened. It is hard to affect. For this reason, the valve body 62 is largely touched by the influence of the dynamic pressure due to the gas flow and the operation and the valve closing performance are not affected, and a highly reliable shut-off valve can be provided.
[0047]
Further, convex ribs 50 arranged at two positions at intervals of 180 °, and concave portions 61e formed at four locations at intervals of 90 ° on the outer periphery of the disc-shaped spring receiver 61b of the moving body 61. Since the rotation preventing means is formed, there is an opportunity to engage with the convex rib 50 every time the moving body 61 rotates 90 °, and the circular spring receiver 61b of the moving body 61 is provided at other locations. Interfering with the convex ribs 50, and since the two convex ribs 50 are arranged on the object to be rotated, the moving body 61 is unlikely to be inclined when inserted, and engagement where the moving body 61 is not supposed to occur is unlikely to occur. . On the other hand, after insertion, there are two places where the convex rib 50 and the concave portion 61e are engaged with each other at an interval of 180 °, so that it is possible to form a rotation preventing means with a relatively small contact area and a relatively small frictional resistance. .
[0048]
In this way, a linear motion mechanism having a high engagement frequency and a low frictional resistance can be formed, and the valve body 62 can be easily assembled only by rotating the valve body 62 without positioning the rotational direction, thereby reducing the frictional resistance. The increase can also be suppressed. That is, when the feed screw 52 as the feed means is rotated, the feed screw 52 Tighten When the valve body 62 is slightly rotated in the direction, the convex rib 50 and the concave portion 61e are easily engaged, and the assembly can be automatically performed. Further, it is possible to provide a shut-off valve that is easy to assemble a valve body by a mechanical device such as a robot and has high mass productivity.
[0049]
In FIG. 1, the rib 50 is provided on the lid 49 and the concave portion 61e is provided on the moving body 61. However, the second bearing has a groove, and the movable body is provided with a convex portion to engage and prevent rotation. It may be a means. In addition, the set of the exciting coil 43, the first electromagnetic yoke 44, and the second electromagnetic yoke 45 is two sets, but may be three sets or more. Further, the stator 46 and the partition wall 47 are fitted to the mounting plate 57 by the support frame 59, but they may be fixed to each other by welding without the support frame.
[0050]
However, in this case, care must be taken because the collar portion 49c of the lid 49 absorbs expansion due to thermal stress and undergoes creep deformation. Further, although the seal member 58 is arranged to be compressed in the radial direction, it may be compressed in the axial direction. However, in this case, there is a high possibility that the compression rate of the seal member 58 is reduced by the creep deformation of the collar 49c of the lid 49. It is necessary to form so as not to interpose a synthetic resin. The thrust bearings are thrust washers 67 and 68 which are sliding bearings, but may be rolling bearings such as ball bearings. However, in the case of a shutoff valve of a microcomputer meter, since it is often left in a valve open stationary state for a long period of time, the use of lubricating oil is not preferable. Further, although the valve body 62 and the moving body 61 are separate parts, they may be configured integrally.
[0051]
The valve seat 63 includes the valve seat holding member 64. However, the valve seat 63 may be fitted at the center, and the valve seat holding member 64 is formed with a central axis so that the valve seat is air-tightly penetrated by another fixing member. You may fasten.
[0052]
(Example 2)
FIG. 5 is a perspective view showing the shape of the rotation preventing means of the shutoff valve and the moving body according to the second embodiment of the present invention.
[0053]
In FIG. 5, the moving body 6 1 is the center hole 6 1a is screwed to the feed screw 52 of the rotating shaft 53, and a substantially disc-shaped spring support is provided on the stator 46 side. 6 1b is formed and the other end has a large diameter engaging ring part 6 1c is formed, and a cylindrical portion with a small diameter between them 6 1d is formed. Spring holder 6 On the outer periphery of 1b, there is a concave portion that can be engaged with the rib 50 of the lid 49. 6 1e is formed at four locations at intervals of 90 ° on the circumference. Lead screw 52 is counterclockwise Around The screw is screwed in the direction. When viewed from above in FIG. 6 1e watch Direction of rotation A protrusion 72 is formed on the back surface of the side edge. Ie mobile 6 1 is rotated, the screwing direction of the feed screw 52 (counterclockwise Around The protrusion 72 is formed so that the restriction is large with respect to (direction) and less with respect to the loosening direction.
[0054]
Since other parts are the same as the shutoff valve of the first embodiment, description thereof is omitted.
[0055]
Since the operation and action of the shut-off valve of the second embodiment are the same as those of the shut-off valve of the first embodiment, the description thereof is omitted.
[0056]
Now, the moving body of this shut-off valve 6 1 is attached to the rotary shaft 53, the rotary shaft 53 is rotated to move the center hole. 6 1a is screwed with the feed screw 52, and the concave portion 6 1e and the rib 50 need to be engaged.
[0057]
In the shutoff valve of the second embodiment, the moving body 6 1 is attached to the rotating shaft 53, the rotating shaft 53 is vertically upward and the screwing direction (counterclockwise Around Direction). Next, the rotating shaft 53 is moved to the moving body. 6 1 center hole 6 Center hole when inserted in 1a 6 1a and the feed screw 52 are screwed together, and the moving body 6 1 starts to rotate in the same direction as the rotation shaft 53 while being slightly tightened. Eventually, the moving body by gravity 6 1 moves downward, and first, the protrusion 72 contacts the rib 50. Then, the concave part automatically 6 1e and the rib 50 are engaged, and the moving body 6 1 moves downward according to the pitch of the feed screw 52, and the moving body 6 1 is completed with the rotating shaft 53.
[0058]
Thus, the shut-off valve of this embodiment is a moving body. 6 1 (i.e., valve body) without rotating the rotational direction of the rotary shaft 53, the feed screw 52 Tighten The moving body rotates slightly in the direction, and the concave part 6 Since the protrusion 1e is engaged with the rib 50 in advance, the rib 50 and the moving body can be easily formed. 6 1 engages and assembly can be performed automatically. Further, it is possible to provide a shut-off valve that is easy to assemble a valve body by a mechanical device such as a robot and has high mass productivity.
[0059]
In FIG. 5, the protrusion 72 may be inclined in the same direction, and the moving body 6 The unevenness of 1 and the lid 49 may be switched at the same time. In this case, however, the protrusions or slopes must also be formed on the concave side, that is, the lid side. Further, even if there is at least one protrusion and one inclination, the minimum effect is obtained. However, when there are a plurality of protrusions at rotationally symmetric positions, the moving body is not inclined, and smooth assembly is possible. Also mobile 6 1 may be formed integrally with a valve body (not shown).
[0060]
(Example 3)
FIG. 6 is a partial cross-sectional view of the shutoff valve according to the third embodiment of the present invention in the opened state.
[0061]
In FIG. 6, a rotation drive mechanism 81 composed of a motor, a rotary solenoid, etc., a feed screw 83 arranged on a rotation shaft 82 of the rotation drive mechanism 81, and a substantially cylindrical inner surface arranged coaxially outside the feed screw 83. The rotation prevention ring 84 formed with a concave groove parallel to the feed screw 83 and the center hole 87a can be screwed to the feed screw 83, and the convex shape can be engaged with the concave groove 85 of the rotation prevention ring 84 on the outer periphery. The moving body 87 formed with the portion 86 and the valve rubber 88 disposed on the moving body 87 constitute a shut-off valve.
[0062]
The rotation drive mechanism 81 is fixed to the attachment plate 89 by means such as welding or caulking, and the rotation prevention ring 84 is also attached to the attachment plate 89 with its rotation restricted by uneven fitting or the like (not shown). A valve rubber receiving portion 87 c having substantially the same diameter as the valve rubber 88 is formed on the valve rubber 88 side of the moving body 87. A central hole 88a is formed in the valve rubber 88, and a protrusion 87d is formed at the end of the moving body 87. The protrusion 87d passes through the central hole 88a and passes through a disc-shaped valve rubber retainer 90 having a central hole. The valve rubber 88 is held by means such as heat caulking.
[0063]
Since the operation of the shut-off valve of the third embodiment is substantially the same as that of the shut-off valve of the first embodiment, the description thereof is omitted.
[0064]
In FIG. 6, since the rotation preventing means is a cylindrical anti-rotation ring 84 formed with a concave groove 85, the stress concentration is extremely small compared to the stud-like rotation preventing means. Even when repeated loads or external forces are applied during assembly, the possibility of destruction is small. Therefore, it is possible to provide a highly reliable shut-off valve so that it can be operated in an emergency even if maintenance is not particularly performed during the period of use of the gas meter.
[0065]
In FIG. 6, the concave groove 85 and the convex portion 86 are illustrated as being one place, but a plurality of places may be provided, and in consideration of insertion at the time of assembly, it is desirable to provide at a plurality of positions of the rotation target position. .
[0066]
In the first to third embodiments, the feed means is a feed screw, but it may be a cylindrical cam. Further, although the feeding means and the moving body are male and female screws, a combination of a worm and a rack may be used.
[0067]
【Effect of the invention】
As described above, according to the present invention, a stator having an exciting coil, a metal partition wall coaxially disposed inside the stator and formed in a pan shape without a through hole, and an open end side of the partition wall A synthetic resin bearing having a central hole with a bottom hole inserted and formed with a convex rib parallel to the central axis inside the side cylindrical portion, and disposed inside the partition opposite the stator The rotor, the rotation shaft of the rotor loosely inserted into the bearing, a feed screw disposed at the end of the rotation shaft protruding outward from the bearing, and a center hole screwed into the feed screw Movable body, a spring receiver formed in the movable body and having a concave portion engageable with the convex rib on the outer periphery, a valve body engaged with the movable body, and the spring receiver A coil spring held in a compressed state between the valve body and For comprises, stress concentration is extremely small as compared with the stud-like anti-rotation means, the normal use state and parts state, is less likely to lead to destruction even when subjected to repeated load or an external force in assembling the middle stage. If accuracy is ensured in the bearing molding stage, the center hole of the bearing and the convex rib as the rotation preventing means will not be out of parallel with each other. Therefore, there is an advantageous effect that it is possible to provide a highly reliable shut-off valve.
[0068]
Further, in addition to the above features, the valve body constitutes a shut-off valve so as to be able to come into contact with the open end of the side cylindrical part of the bearing at the bottom dead center of the moving stroke, and in the open state, the valve body is the side cylindrical part of the bearing. The rotor is held in parallel with the open end, and the circumferential deflection and angular deflection of the rotor itself, and the circumferential deflection and angular deflection due to the clearance between the feeding means and the moving body hardly affect the valve body. As a result, it is advantageous in that it is possible to provide a highly reliable shut-off valve by solving the problem that the valve body largely fluctuates due to the influence of the dynamic pressure due to the gas flow and affects the operation and valve closing performance. Has an effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a shut-off valve according to a first embodiment of the present invention in an open state.
FIG. 2 is a cross-sectional view of the shut-off valve during shut-off operation
FIG. 3 is a sectional view of the shut-off valve in a closed state
FIG. 4 is a perspective view showing the shape of the rotation prevention means and the moving body of the shut-off valve
FIG. 5 is a perspective view showing the shape of a rotation preventing means and a moving body of a shutoff valve according to a second embodiment of the present invention
FIG. 6 is a partial cross-sectional view of the shut-off valve according to the third embodiment of the present invention in the opened state
FIG. 7 is a sectional view of a conventional shut-off valve in an open state.
FIG. 8 is a cross-sectional view of another open state of a conventional shut-off valve
[Explanation of symbols]
43 Excitation coil (rotary drive mechanism)
46 Stator (Rotary drive mechanism)
47 Bulkhead
49 Lid (bearing)
50 ribs (rotation prevention means)
55 Rotor (rotary drive mechanism)
52, 83 Feed screw (feeding means)
53, 82 Rotating shaft
61, 71, 87 Mobile
62 Disc
72 Protrusions
81 Rotation drive mechanism
84 Rotation prevention ring (rotation prevention means)
85 concave groove (rotation prevention means)
86 Convex part (moving body)
88 Valve rubber (valve)

Claims (2)

励磁コイルを有するステータと、前記ステータの内側に同軸に配設され貫通穴のないなべ状に成形された金属製の隔壁と、前記隔壁の開放端側に底面を嵌挿された中心孔を有する概ねなべ状で側面円筒部内側に中心軸に平行な凸状リブを形成した合成樹脂製の軸受けと、前記隔壁の内側に前記ステータに対向して配設したロータと、前記軸受けに回転可能に緩挿された前記ロータの回転軸と、前記軸受けから外側に突出した前記回転軸の端に配された送りネジと、中心孔が前記送りネジに螺合可能な移動体と、前記移動体に形成され外周部に前記凸状リブに係合可能な凹状部が形成された円盤状のバネ受けと、前記移動体に係合された弁体と、前記バネ受けと前記弁体との間に圧縮状態で保持されたコイルスプリングとを備え、
前記凹状部には、前記送りネジが前記移動体に螺合して前記弁体を開弁側に移動させる方向に回転する際に前記凸状リブに当接して前記移動体の回転を規制する側に突起を設けたことを特徴とする遮断弁。
A stator having an exciting coil; a metallic partition coaxially disposed inside the stator and shaped like a pan without a through-hole; and a central hole having a bottom surface inserted into the open end of the partition Synthetic resin bearings that are generally pan-shaped and have convex ribs formed on the inner side of the side cylindrical portion parallel to the central axis, a rotor disposed opposite to the stator inside the partition, and rotatable on the bearings A rotating shaft of the rotor that is loosely inserted, a feed screw disposed at an end of the rotating shaft that protrudes outward from the bearing, a moving body in which a center hole can be screwed to the feed screw, and a moving body A disc-shaped spring receiver formed on the outer peripheral portion with a concave portion engageable with the convex rib, a valve body engaged with the movable body, and between the spring receiver and the valve body A coil spring held in a compressed state,
The concave portion abuts against the convex rib to regulate the rotation of the moving body when the feed screw is screwed into the moving body and rotates in a direction to move the valve body to the valve opening side. A shut-off valve characterized in that a protrusion is provided on the side.
前記弁体は移動ストロークの下死点において前記軸受けの側面円筒部開放端に当接可能な請求項1の遮断弁。  The shut-off valve according to claim 1, wherein the valve body is capable of coming into contact with an open end of a side cylindrical portion of the bearing at a bottom dead center of a moving stroke.
JP2000347801A 2000-11-15 2000-11-15 Shut-off valve Expired - Fee Related JP4997662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347801A JP4997662B2 (en) 2000-11-15 2000-11-15 Shut-off valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347801A JP4997662B2 (en) 2000-11-15 2000-11-15 Shut-off valve

Publications (2)

Publication Number Publication Date
JP2002147636A JP2002147636A (en) 2002-05-22
JP4997662B2 true JP4997662B2 (en) 2012-08-08

Family

ID=18821478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347801A Expired - Fee Related JP4997662B2 (en) 2000-11-15 2000-11-15 Shut-off valve

Country Status (1)

Country Link
JP (1) JP4997662B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125113A (en) 2002-10-04 2004-04-22 Matsushita Electric Ind Co Ltd Cut-off valve and cut-off valve block incorporating the same
JP2008175417A (en) * 2007-01-16 2008-07-31 Calsonic Kansei Corp Expansion valve
US11204104B2 (en) * 2019-05-16 2021-12-21 Tapcoenpro, Llc Systems and methods for torque isolation valve actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443665B2 (en) * 1999-04-14 2010-03-31 パナソニック株式会社 Fluid control valve

Also Published As

Publication number Publication date
JP2002147636A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
KR100936561B1 (en) Shut off valve and assembling method thereof
EP0004428B1 (en) Ball and valve with readily removable ball and seats for high temperature environment
US6700255B1 (en) Bearing system with flexible bearing bracket
US20060071190A1 (en) Linear valve actuator
JP4997662B2 (en) Shut-off valve
KR20070108516A (en) Electric motor driven valve assembly having stator sealing
JP4449945B2 (en) Shut-off valve
JP4449207B2 (en) Shut-off valve
JP4461539B2 (en) Shut-off valve
JP4547751B2 (en) Shut-off valve
JPH0213192B2 (en)
JP4701489B2 (en) Shut-off valve
JP4417181B2 (en) Motor bearing holding structure
JP4626051B2 (en) Shut-off valve
JP2003222259A (en) Shutoff valve
JP4449944B2 (en) Shut-off valve
JP4821063B2 (en) Shut-off valve
JP2002039240A (en) Motor for electric brake device
JP2006258300A (en) Shut-off valve
JP2004347021A (en) Cut-off valve
JPH112353A (en) Outer bush for bidirectional fluid valve motor
CN218955819U (en) Rotor mounting structure and rotameter
US6385988B1 (en) Dustproof implement
CN109973678A (en) A kind of double-valve-seat regulation ball valve
JP3158344B2 (en) Shield structure of two-way fluid valve motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees