JP4997527B2 - Exhaust gas treatment method and treatment apparatus - Google Patents

Exhaust gas treatment method and treatment apparatus Download PDF

Info

Publication number
JP4997527B2
JP4997527B2 JP2006153731A JP2006153731A JP4997527B2 JP 4997527 B2 JP4997527 B2 JP 4997527B2 JP 2006153731 A JP2006153731 A JP 2006153731A JP 2006153731 A JP2006153731 A JP 2006153731A JP 4997527 B2 JP4997527 B2 JP 4997527B2
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorption
adsorbent
flow
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006153731A
Other languages
Japanese (ja)
Other versions
JP2007321678A (en
JP2007321678A5 (en
Inventor
恵一郎 吉田
雅章 大久保
俊昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2006153731A priority Critical patent/JP4997527B2/en
Publication of JP2007321678A publication Critical patent/JP2007321678A/en
Publication of JP2007321678A5 publication Critical patent/JP2007321678A5/ja
Application granted granted Critical
Publication of JP4997527B2 publication Critical patent/JP4997527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

本発明は、エンジンなどの排気ガスの処理方法及び処理装置に関するもので、特に排気ガス中にNOxを含むガスの処理方法及び処理装置に関する。   The present invention relates to a method and apparatus for treating exhaust gas such as an engine, and more particularly to a method and apparatus for treating gas containing NOx in exhaust gas.

内燃機関、ボイラ、ガスタービン等の燃焼装置で発生した燃焼ガスを排気系を経由して排出する際における排気ガスの規制強化が進められている。一つの方法としては、排気ガス中の有害成分あるいは被処理成分を乾式触媒処理装置を用いて除去処理することが行われている。   Regulations of exhaust gas are being strengthened when combustion gas generated in a combustion apparatus such as an internal combustion engine, a boiler, or a gas turbine is discharged via an exhaust system. As one method, a harmful component or a component to be treated in exhaust gas is removed using a dry catalyst treatment apparatus.

他方、排気ガス浄化、窒素酸化物(NOx)処理方法の一つとしては、非熱プラズマを用いたPPCP(Pulse Corona Induced Plasma chemical Process)方式、あるいは、湿式化学プロセス装置による窒素(N2)へ還元するハイブリッド方式がある(従来技術1:例えば、特許文献1参照)On the other hand, as one of exhaust gas purification and nitrogen oxide (NOx) treatment methods, PPCP (Pulse Corona Induced Plasma Chemical Process) method using non-thermal plasma or reduction to nitrogen (N2) by wet chemical process equipment (Prior Art 1: see, for example, Patent Document 1) .

従来、火力発電所などの大型固定発生源からの排気ガスに対して、集塵装置(粒子捕集)や脱硫装置(DeSOx)は比較的経済的な高性能除去技術を確立してきたが、従来式の選択触媒還元方式では、脱硝装置(DeNOx)には運転温度条件、除去効率、コスト面で大きな問題があった。Conventionally, dust collectors (particle collection) and desulfurization devices (DeSOx) have established relatively economical high-performance removal technology for exhaust gas from large fixed sources such as thermal power plants. In the selective catalytic reduction method, the denitration device (DeNOx) has significant problems in terms of operating temperature conditions, removal efficiency, and cost.
そのため、本発明者らにより、更に、大気圧非平衡低温プラズマ処理と化学反応プロセスを結合させ、プラズマによりまずNOを低電力で完全に酸化させ、生じたNOTherefore, the present inventors further combined the atmospheric pressure non-equilibrium low temperature plasma treatment and the chemical reaction process, and first completely oxidized NO with low power by the plasma, and generated NO. 22 をNaNa 22 SOSO 3Three により還元するハイブリッド法により、NN by the hybrid method reduced by 22 Oなどの副生成物の発生を抑制させつつ、選択的触媒還元法の1/4以下のコストとなる従来技術1としての高効率NOx除去法が開発された。A high-efficiency NOx removal method has been developed as Prior Art 1, which reduces the cost of 1/4 of the selective catalytic reduction method while suppressing the generation of by-products such as O.

また、主としてディーゼルエンジンの排気ガス処理を目的として、エンジンの排気ガス流路においてガス中の被処理成分を吸着剤に吸着後、窒素ガス又は低酸素ガスを吸着剤の存在する流路に流し、放電を発生させ前記窒素ガスの非熱プラズマを吸着剤に印加し、被処理成分の脱離処理及び吸着剤の再生及び下流での窒素プラズマによる被処理成分を行う高効率NOx除去の方式がある(従来技術2:例えば、特許文献2参照)。Further, mainly for the purpose of exhaust gas treatment of diesel engines, after adsorbing the component to be treated in the gas in the exhaust gas flow path of the engine to the adsorbent, the nitrogen gas or low oxygen gas is caused to flow through the flow path where the adsorbent exists, There is a high-efficiency NOx removal method in which discharge is generated and non-thermal plasma of nitrogen gas is applied to the adsorbent to desorb the processed component, regenerate the adsorbent, and perform the processed component with nitrogen plasma downstream. (Prior Art 2: see, for example, Patent Document 2).

特開2000−117049号公報Japanese Patent Application Laid-Open No. 2000-117049 PCT/JP2004/014737PCT / JP2004 / 014737

自動車の排出ガス中に含まれる生理的な影響を及ぼす有害物質には、一酸化炭素(CO),窒素酸化物(NOx),炭化水素(HC)など多種類の成分があるが、一酸化炭素に対して必要とする換気量で換気を行えば、その他の有害成分は安全な濃度になるとしている。   There are many kinds of harmful substances contained in automobile exhaust, such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC). If you ventilate at the required ventilation, other harmful components are said to be at a safe concentration.

自動車の排出ガス中には、燃料である炭化水素の燃焼生成物として二酸化炭素(CO2)および水分(H2O)が主成分として含まれるほか、複雑な燃焼過程における中間生成物、未燃焼成分、燃料に含まれる不純物の燃焼生成物、燃料および空気が高温・高圧下におかれるための反応生成物など極めて多種多様の成分が含まれる。 The exhaust gas of automobiles contains carbon dioxide (CO 2 ) and moisture (H 2 O) as the main components of combustion products of hydrocarbons as fuel, as well as intermediate products and unburned products in complex combustion processes. A very wide variety of components are included such as components, combustion products of impurities contained in fuel, and reaction products for placing fuel and air under high temperature and pressure.

これらのうち有害成分として問題となるものの内で、空気が高温・高圧下におかれるために窒素と酸素が反応して生じる窒素酸化物(NOx:NO,NO2など)および不純物からの生成物質としての硫黄酸化物(SOx)などである。 Among these, which are problematic as harmful components, nitrogen oxides (NOx: NO, NO 2 etc.) generated by the reaction of nitrogen and oxygen due to the high temperature and high pressure of air, and substances generated from impurities As sulfur oxide (SOx).

その中で、窒素酸化物の従来からの処理方式は、NOxを含む被処理成分を吸着剤に吸着させた後に化学処理を施して除去していたが、本発明は、非熱プラズマを吸着剤に印加して処理し、吸着剤に湿式処理などの複雑な化学処理をすることなく処理することを課題とする。   Among them, the conventional treatment method for nitrogen oxides was to remove the component to be treated containing NOx by adsorbing the adsorbent to the adsorbent and then performing a chemical treatment. It is an object of the present invention to treat the adsorbent without any complicated chemical treatment such as wet treatment.

かくして、本発明によれば、吸着剤を収容する吸着筐体及び吸着剤に接するように埋設された排気ガス管を有する吸着塔が備えられた排気ガス処理装置を用い、
吸着塔の吸着筐体内に排気ガスを第1の方向に流れるように流入させ、排気ガス中のNOxを含む被処理成分を吸着剤に吸着させる吸着工程と、
吸着塔の排気ガス管に排気ガスを前記第1の方向に流れるように流入させて熱交換により吸着剤に熱を付加すると共に、酸素濃度10vol%以下で純度90vol%以上の窒素ガスを前記第1の方向とは逆向きの第2の方向に流れるように吸着筐体内に流入させて、吸着剤に吸着した被処理成分を脱離させる脱離工程と、
吸着剤から脱離させた被処理成分を含む窒素ガスをプラズマ処理部に導いてプラズマ処理するプラズマ処理工程とを含み、
吸着塔において吸着工程と脱離工程とを切り換えて行なう排気ガス処理方法が提供される。
Thus, according to the present invention, an exhaust gas processing apparatus provided with an adsorption casing containing an adsorbent and an adsorption tower having an exhaust gas pipe embedded in contact with the adsorbent is used.
An adsorption step of causing exhaust gas to flow into the adsorption housing of the adsorption tower so as to flow in the first direction, and adsorbing a component to be treated containing NOx in the exhaust gas to the adsorbent;
The exhaust gas flows into the exhaust gas pipe of the adsorption tower so as to flow in the first direction , heat is added to the adsorbent by heat exchange, and nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more is added to the adsorbent . A desorption step of desorbing the component to be treated adsorbed on the adsorbent by flowing into the adsorption housing so as to flow in a second direction opposite to the direction of 1 ;
A plasma treatment step of conducting a plasma treatment by introducing a nitrogen gas containing a component to be treated desorbed from the adsorbent to the plasma treatment section,
An exhaust gas treatment method is provided in which an adsorption step and a desorption step are switched in an adsorption tower.

前記排気ガス処理方法は、次のようにしてもよい。
(1)前記プラズマ処理工程において、交流電圧による沿面放電方式を用いる。
(2)前記吸着塔は、排気ガス中の水分を除去する除湿剤およびこの除湿剤に前記排気ガス管が埋設されるように除湿剤を収容する除湿剤筐体をさらに備えており、
前記吸着工程において、前記除湿剤筐体内に排気ガスを前記第の方向に流れるように流入させた後、除湿剤筐体内から排出された排気ガスを前記吸着筐体内に流入させ、
前記脱離工程において、吸着塔の排気ガス管に排気ガスを前記第1の方向に流れるように流入させて熱交換により除湿剤に熱を付加すると共に、除湿剤筐体内に水分脱離用エアを前記第2の方向に流れるように流入させて前記除湿剤から水分を脱離させる。
(3)前記吸着塔が複数備えられ、複数の吸着塔を切り換えて排気ガス処理を行う。
The exhaust gas treatment method may be as follows.
(1) In the plasma treatment step, a creeping discharge method using an alternating voltage is used.
(2) The adsorption tower further includes a dehumidifying agent that removes moisture in the exhaust gas, and a dehumidifying agent housing that houses the dehumidifying agent so that the exhaust gas pipe is embedded in the dehumidifying agent,
In the adsorption step, exhaust gas is allowed to flow into the dehumidifying agent casing in the first direction, and then exhaust gas discharged from the dehumidifying agent casing is allowed to flow into the adsorption casing.
In the desorption step, the exhaust gas is caused to flow into the exhaust gas pipe of the adsorption tower so as to flow in the first direction to add heat to the dehumidifier by heat exchange, and the moisture desorption air is contained in the dehumidifier housing. To flow in the second direction to desorb moisture from the dehumidifying agent.
(3) A plurality of the adsorption towers are provided, and the plurality of adsorption towers are switched to perform the exhaust gas treatment.

また、本発明の別の観点によれば、吸着剤を収容する吸着筐体および吸着剤に接するように埋設された排気ガス管を有する吸着塔と、
NOx含有被処理成分を含む排気ガスを前記吸着筐体内に第1の方向に流れるように流入させて被処理成分を吸着剤に吸着させるための第1排気ガス流入部と、
被処理成分が吸着剤にて除去された処理済みの排気ガスを吸着筐体内から外部に排出するための第1排気ガス排出部と、
排気ガスを前記排気ガス管内に前記第1の方向に流れるように流入させて吸着筐体内の被処理成分を吸着した吸着剤に排気ガスの熱を付加するための第2排気ガス流入部と、
排気ガス管内を通った排気ガスを外部に排出させるための第2ガス排出部と、
吸着剤から被処理成分を脱離させる酸素濃度10vol%以下で純度90vol%以上の窒素ガスを前記第1の方向とは逆向きの第2の方向に流れるように吸着筐体内に流入させるための窒素ガス流入部と、
吸着剤から脱離した被処理成分を含む窒素ガスを吸着筐体内から外部に排出するための窒素ガス排出部と、
前記窒素ガス排出部から流入した被処理成分を含む窒素ガスをプラズマ処理して外部に排出するためのプラズマ処理部とを備え、
吸着剤に被処理成分を吸着させるための吸着筐体に対する排気ガスの流入・処理済みの排気ガスの排出と、吸着剤から被処理成分を脱離させるための吸着筐体に対する窒素ガスの流入・排出および排気ガス管に対する排気ガスの流入・排出とが、吸着塔において切り換わるように構成された排気ガス処理装置が提供される。
Further, according to another aspect of the present invention, an adsorption tower having an adsorbent housing containing an adsorbent and an exhaust gas pipe embedded so as to be in contact with the adsorbent,
A first exhaust gas inflow part for causing exhaust gas containing NOx-containing processed components to flow into the adsorption housing in a first direction so as to adsorb the processed components to the adsorbent;
A first exhaust gas discharge unit for discharging the treated exhaust gas from which the component to be treated has been removed by the adsorbent to the outside from the inside of the adsorption housing;
A second exhaust gas inflow portion for adding heat of the exhaust gas to the adsorbent that has caused the exhaust gas to flow into the exhaust gas pipe so as to flow in the first direction and adsorbs the component to be treated in the adsorption housing;
A second gas discharge part for discharging exhaust gas that has passed through the exhaust gas pipe to the outside;
Nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more that desorbs the component to be treated from the adsorbent is caused to flow into the adsorption housing so as to flow in a second direction opposite to the first direction . A nitrogen gas inlet,
A nitrogen gas discharge part for discharging the nitrogen gas containing the component to be treated desorbed from the adsorbent to the outside from the inside of the adsorption housing;
A plasma processing unit for plasma processing nitrogen gas containing a component to be processed that has flowed in from the nitrogen gas discharging unit and discharging the nitrogen gas to the outside;
Inflow of exhaust gas to the adsorption housing for adsorbing the component to be treated by the adsorbent, discharge of exhaust gas after treatment, and inflow of nitrogen gas to the adsorption case for desorbing the component to be treated from the adsorbent There is provided an exhaust gas processing apparatus configured to switch between exhaust and inflow / exhaust of exhaust gas to an exhaust gas pipe in an adsorption tower.

前記排気ガス処理装置は、次のように構成されてもよい。
(A)前記プラズマ処理部が、交流電圧による沿面放電素子を備える。
(B)前記吸着塔は、排気ガス中の水分を除去する除湿剤およびこの除湿剤に前記排気ガス管が埋設されるように除湿剤を収容する除湿剤筐体をさらに備えると共に、
水分脱離用エアを前記除湿剤筐体内に前記第2の方向に流れるように流入させる水分脱離用エア流入部と、水分を含む前記水分脱離用エアを除湿剤筐体内から外部に排出するための水分脱離用エア排出部とがさらに備えられる。
(C)前記吸着塔を複数備え、複数の吸着塔を切り換えて排気ガス処理を行なうように構成される。
The exhaust gas treatment device may be configured as follows.
(A) The said plasma processing part is provided with the creeping discharge element by an alternating voltage.
(B) The adsorption tower further includes a dehumidifying agent that removes moisture in the exhaust gas, and a dehumidifying agent housing that houses the dehumidifying agent so that the exhaust gas pipe is embedded in the dehumidifying agent.
Moisture desorption air inflow section for allowing moisture desorption air to flow into the dehumidifying agent housing in the second direction, and discharging the moisture desorption air containing moisture from the dehumidifying agent housing to the outside And a water desorption air discharging unit for performing the above operation.
(C) A plurality of the adsorption towers are provided, and the plurality of adsorption towers are switched to perform exhaust gas treatment.

本発明のガス処理方法及び処理装置は、要するに、排気ガス(以下、排気ガスという場合がある)の吸着工程の下流にプラズマ処理部を設け、排気ガス中のNOxなどを吸着剤に吸着させた後、吸着剤に排気ガスの熱を伝熱し、同時に窒素ガスを流しながら、NOxを吸着剤から脱離(脱着ともいう)させて下流のプラズマ処理部にて印加してNOxをN2に還元することを特徴とする。
さらに本発明では、排気ガス中に含まれる窒素酸化物(NOx)などの被処理成分を吸着剤に吸着(吸収とも言う)させる吸着工程と、被処理成分の脱離を排気ガスの熱を伝熱させて行う脱離工程と、窒素ガスを主成分とするガスにより吸着剤を再生する工程と、吸着工程の下流にあるプラズマ処理部(プラズマリアクタ)にて窒素酸化物を処理する工程とを組み合わせることにより、急速かつ高効率に行うシステムを順次に備えるようにしたことを特徴とする。
これにより被処理成分を高濃度化すると同時に、吸着剤の再生を行うガス処理方法、ならびにその下流でさらに、窒素ガスを主成分とするプラズマにより、排気ガスに含まれる窒素酸化物(NOx)などの被処理成分を高効率に除去して大気中に排出する排気ガス処理方法、ならびに以上の技術を利用し、吸着剤の切り替え、排気ガスの循環処理を行い、高効率、省エネルギーなガス処理方法と装置を提供し、地球環境の保全に資するものである。
In short, the gas processing method and the processing apparatus of the present invention are provided with a plasma processing section downstream of an exhaust gas (hereinafter sometimes referred to as exhaust gas) adsorption process, and adsorbing NOx and the like in the exhaust gas. After that, the heat of the exhaust gas is transferred to the adsorbent, and at the same time, nitrogen gas is allowed to flow, so that NOx is desorbed (also referred to as desorption) from the adsorbent and applied at the downstream plasma processing unit to reduce NOx to N2. It is characterized by that.
Further, in the present invention, heat and the adsorption step, the heat of the exhaust gas desorption of the component to be treated for the nitrogen oxides contained in the exhaust gas (also called absorption) adsorbed in the adsorbent the target components such as (NOx) A desorption step performed by heating, a step of regenerating the adsorbent with a gas containing nitrogen gas as a main component, and a step of processing nitrogen oxides in a plasma processing unit (plasma reactor) downstream of the adsorption step. By combining them, a system that performs rapidly and efficiently is sequentially provided.
As a result, the concentration of the component to be treated is increased, and at the same time, the gas treatment method for regenerating the adsorbent, and further downstream thereof, nitrogen oxide (NOx) contained in the exhaust gas, etc. by plasma mainly containing nitrogen gas Exhaust gas treatment method that efficiently removes the components to be treated and exhausts it into the atmosphere, and the above technology enables high-efficiency and energy-saving gas treatment method by switching the adsorbent and circulating exhaust gas And contribute to the conservation of the global environment.

前述したように、本発明のガス処理方法及び装置は、吸着に吸着したNO2等を化学的に処理して化学物質を処分するのではなく、電気的に処理して気体にして分解処理して大気に放出することにより、残留物質が残らない方式を提供できる。 As described above, the gas processing method and apparatus of the present invention, rather than to dispose of chemicals and chemical processes such as NO 2 adsorbed on the adsorbent, decomposed in the electrically treated to gas By releasing it to the atmosphere, it is possible to provide a system in which no residual material remains.

図1は本発明に係る排気ガス処理装置の一実施形態を示す概略図である。
吸着塔AとBは同じものである。吸着塔AとBは、NOx吸着剤1を充填した部分と、エンジン排ガスの水分を除去する除湿剤2を充填した部分と、からなる筐体3を備える。なお、筐体3におけるNOx吸着剤1を充填した部分が前記吸着筐体である。
以下、単に「吸着塔」という場合は、吸着塔AとBの両方について説明していることとする。
吸着塔内部には排気ガス管4が埋め込まれており、ここに排気ガスを流通させることで、除湿剤2、NO吸着剤1を加熱し、吸着した水分やNOxを脱離させ、吸着力を再生する。この吸着塔内に埋め込まれた排気ガス管4の内外では、ガス交換はされず、熱交換のみが生じる。
吸着塔AとBは、NOx吸着工程と吸着剤の再生工程を交互に繰り返す。図1では吸着塔Aが再生工程にあり、吸着塔BがNOx吸着工程にある。この状態では開閉バルブ5a:開、5b:閉となっている。
ディーゼルエンジンからの排気ガスは、まず、3方弁aを通って、流入口6(第2排気ガス流入部)から吸着塔Aの内部に埋め込まれた排気ガス管4を通り、吸着塔AのNOx吸着剤1と除湿剤2を加熱するとともに、自身は冷却される。なお、この排気ガスが吸着塔Aの排気ガス管4内を流れる方向は前記第1の方向である。
吸着塔Aを出た排気ガスは空冷熱交換器7で露点以下に冷却され、凝縮した水分はドレインポット8で捕集される。この工程である程度除湿された排気ガスはさらに、吸着塔Bの除湿剤2に流入して、さらに乾燥され、次に3方弁g,fと通って、第1排気ガス流入部からNOx吸着剤1に流入し、吸着剤1によってNOxを除去された後、第1排気ガス排出部から3方弁eを通って、排気口9から大気中に排出される。なお、この排気ガスが吸着塔Bの除湿剤2およびNOx吸着剤1を流れる方向も前記第1の方向である。
一方、再生工程にある吸着塔Aでは、まず、水分脱離用のエア10が、大気中からエアポンプ(図示なし)等によって供給ライン11から水分脱離用エア流入部の3方弁dを通って、除湿剤2に送り込まれている。加熱されて除湿剤2から脱離した水蒸気はこのエアによって運ばれ、水分脱離用エア排出部および開閉バルブ5aを通って、大気中に排出される。なお、この水分脱離用のエア10の除湿剤2を流れる方向は前記第2の方向である。
次に、NOx脱離用の窒素12はパイプライン13から3方弁bを通って、第1排気ガス流入部からNOx吸着剤1に流入し、加熱によって脱離されたNOxを含んで、第1排気ガス排出部から3方弁cを通ってプラズマ処理部としてのプラズマリアクタ14に流入する。プラズマリアクタ14ではNOxは窒素非熱プラズマによってN2に還元され、大気中に排出される。なお、このNOx脱離用の窒素12がNOx吸着剤1を流れる方向も前記第2の方向である。
FIG. 1 is a schematic view showing an embodiment of an exhaust gas treatment apparatus according to the present invention.
Adsorption towers A and B are the same. Adsorption towers A and B are provided with a housing 3 composed of a portion filled with NOx adsorbent 1 and a portion filled with dehumidifier 2 that removes moisture from engine exhaust gas. The portion filled with the NOx adsorbent 1 in the housing 3 is the adsorption housing.
Hereinafter, when simply referred to as “adsorption tower”, both adsorption towers A and B are described.
An exhaust gas pipe 4 is embedded inside the adsorption tower. By passing the exhaust gas there, the dehumidifying agent 2 and the NO adsorbent 1 are heated to desorb the adsorbed moisture and NOx, thereby increasing the adsorption power. Reproduce. Gas exchange is not performed inside and outside the exhaust gas pipe 4 embedded in the adsorption tower, and only heat exchange occurs.
Adsorption towers A and B alternately repeat the NOx adsorption process and the adsorbent regeneration process. In FIG. 1, the adsorption tower A is in the regeneration process, and the adsorption tower B is in the NOx adsorption process. In this state, the open / close valve 5a is open and 5b is closed.
Exhaust gas from the diesel engine first passes through the three-way valve a, passes through the exhaust gas pipe 4 embedded in the adsorption tower A from the inlet 6 (second exhaust gas inflow portion), and enters the adsorption tower A. While heating the NOx adsorbent 1 and the dehumidifying agent 2, it cools itself. The direction in which the exhaust gas flows through the exhaust gas pipe 4 of the adsorption tower A is the first direction.
The exhaust gas exiting the adsorption tower A is cooled below the dew point by the air cooling heat exchanger 7, and the condensed moisture is collected by the drain pot 8. The exhaust gas dehumidified to some extent in this process further flows into the dehumidifying agent 2 of the adsorption tower B, is further dried, and then passes through the three-way valves g and f, and then passes through the first exhaust gas inflow portion to the NOx adsorbent. 1, after NOx is removed by the adsorbent 1, the exhaust gas is discharged from the exhaust port 9 into the atmosphere through the three-way valve e from the first exhaust gas discharge unit. The direction in which the exhaust gas flows through the dehumidifying agent 2 and the NOx adsorbent 1 of the adsorption tower B is also the first direction.
On the other hand, in the adsorption tower A in the regeneration step, first, the water desorption air 10 passes from the atmosphere through the three-way valve d of the water desorption air inflow portion from the supply line 11 by an air pump (not shown) or the like. And sent to the dehumidifying agent 2. The water vapor that is heated and desorbed from the dehumidifying agent 2 is carried by this air, and is discharged into the atmosphere through the water desorption air discharge section and the opening / closing valve 5a. The direction in which the moisture desorption air 10 flows through the dehumidifying agent 2 is the second direction.
Next, nitrogen 12 for desorbing NOx flows from the pipeline 13 through the three-way valve b, flows into the NOx adsorbent 1 from the first exhaust gas inflow portion, and contains NOx desorbed by heating. From one exhaust gas discharge part, it flows into the plasma reactor 14 as a plasma processing part through the three-way valve c. In the plasma reactor 14, NOx is reduced to N2 by nitrogen non-thermal plasma and discharged into the atmosphere. The direction in which the NOx desorbing nitrogen 12 flows through the NOx adsorbent 1 is also the second direction.

図2は本発明の一実施形態における吸着塔A,Bの部分断面詳細図を示す。ここの例では、200ccのディーゼルエンジン排気ガスを処理するための吸着塔として示す。図2(1)上面図(平面図)では、NOx吸着剤1を充填した四角形筐体21を表しており、吸着剤1が充填される部分は、約L48×W12.7×H3.5 cmで構成された四角形枠体22であり、この上面中央部に、フランジ23−1を付けた四角形の開口部23を設け、球形またはシリンダー形の吸着剤ペレット1が枠体内に層状に充填され、蓋体24にて開口部フランジ23−1とでネジ止めされて、密封される。さらに、蓋体24の内面には吸着剤押材24−1が付設され、吸着剤ペレットが本体から出ないように施されている。この枠体22の中では図の左側から右側にかけて、排気ガスを導入するための別管、例えば複数の扁平管25が枠体22内部の吸着剤充填部分と独立して配置されている。この扁平管25は図2(3)左側面図及び(4)扁平管の長手方向から見た正面拡大図に示すように、導入した排気ガスによる吸着剤1の加熱が充分に活用できるように扁平状にされている。筒体の両側には補助枠体26、27が設けられている。補助枠体26、27は、扁平管と導入側との配管ジョイントや他の配管との接続用に用いられると共に、同じ筐体とのつなぎをなす。 FIG. 2 is a detailed partial cross-sectional view of the adsorption towers A and B in one embodiment of the present invention. In this example, it is shown as an adsorption tower for treating 200cc diesel engine exhaust gas. In FIG. 2 (1), a top view (plan view) shows a rectangular casing 21 filled with NOx adsorbent 1, and the portion filled with adsorbent 1 is approximately L48 × W12.7 × H3.5 cm. A rectangular frame body 22 having a rectangular opening 23 provided with a flange 23-1 at the center of the upper surface, and the spherical or cylinder-shaped adsorbent pellets 1 are layered in the frame body, The lid 24 is screwed with the opening flange 23-1 and sealed. Further, an adsorbent pressing member 24-1 is attached to the inner surface of the lid 24 so that the adsorbent pellet 1 does not come out of the main body. In this frame 22, another tube for introducing exhaust gas, for example, a plurality of flat tubes 25, is arranged independently from the adsorbent filling portion inside the frame 22 from the left side to the right side of the drawing. As shown in FIG. 2 (3) left side view and (4) enlarged front view seen from the longitudinal direction of the flat tube 25, the flat tube 25 can fully utilize the heating of the adsorbent 1 by the introduced exhaust gas. It is flat. Auxiliary frame bodies 26 and 27 are provided on both sides of the cylindrical body . Auxiliary frame 26 and 27, together with the used for connection to the pipe joints and other piping and flat tube and the introduction side, forms a joint with the same housing.

この実施形態において、排気ガスの加熱用伝熱流として排気ガス管内に流れる方向と窒素ガスの吸着剤中を流れる方向は対抗流とすることがよく、また、除湿剤の水分脱離用エアーの流れも排気ガスの加熱用伝熱流に対抗する流れがよい。即ち、NOxも水分も吸着剤や除湿剤の上流部分ほど多く蓄積されるので、加熱用排ガスも上流ほど高温になるため、再生時は上流部分ほど高温にした方が、熱エネルギーを有効に使えるようにしている。
また、脱離用窒素ガスやエアの流れの向きは、被処理ガスの流れの向きと対抗方向にすることが好ましい。もし、脱着用窒素ガスやエアの流れの向きを、被処理ガスと同一にすると、高温によって脱離したNOxまたは水分が、脱離ガスの下流部分で、再吸着しやすくなる。これは、窒素ガスやエアに運ばれたNOxや水分が、これら成分の蓄積量が少ない吸着剤の領域を通過するためである(蓄積量が少ないと吸着力は強くなる)。
しかし、装置の大きさや装備、配置場所によっては、必ずしも実施形態通りの流れとしなくても実施できる。
In this embodiment, the direction of flowing in the exhaust gas pipe as the heat transfer flow for heating the exhaust gas and the direction of flowing in the adsorbent of nitrogen gas are preferably counterflows, and the flow of dehumidifying moisture desorption air Also, the flow that opposes the heat transfer flow for heating the exhaust gas is good. That is, NOx and moisture are accumulated more in the upstream part of the adsorbent and dehumidifying agent, so the exhaust gas for heating becomes higher in the upstream, so that the heat in the upstream part can be used more effectively during the regeneration. I am doing so.
Further, it is preferable that the flow direction of the desorption nitrogen gas or air is opposite to the flow direction of the gas to be processed. If the flow direction of the desorption nitrogen gas or air is the same as that of the gas to be treated, NOx or moisture desorbed due to the high temperature is likely to be re-adsorbed in the downstream portion of the desorbed gas. This is because NOx and moisture carried by nitrogen gas and air pass through the adsorbent region where the accumulated amount of these components is small (the smaller the accumulated amount, the stronger the adsorption power).
However, depending on the size, equipment, and location of the apparatus, the present invention can be implemented without necessarily following the flow of the embodiment.

さらに、枠体の上面には開口部以外の側部に配管用の開口部28、29が付設されており、窒素ガス用配管、プラズマリアクタ用配管とジョイントされる。この開口部28,29の下側には金属メッシュ30,31が施設されて、吸着剤ペレットが塔外にあふれ出ることを防いでいる。   Further, piping openings 28 and 29 are attached to the upper surface of the frame on the side other than the opening, and are jointed with the nitrogen gas piping and the plasma reactor piping. Metal meshes 30 and 31 are provided below the openings 28 and 29 to prevent the adsorbent pellets from overflowing outside the tower.

除湿剤2についても、上記の吸着剤充填用枠体と同様の構成筐体3を用いて、この中には除湿剤としてはシリカゲルモレキュラシーブ5A,3Aを充填している。これらは排気ガスNOxの主成分であるNOをほとんど吸着せず水蒸気のみを吸着するので好適である
図1で示すように、吸着剤筐体と除湿剤筐体は直列につながり、吸着塔Aを構成し、図2の筐体および配管の上下左右は便宜的なものであり実際には筐体のどの面を上にするかは塔の配置によって設計できることである。
As for the dehumidifying agent 2, a casing 3 having the same configuration as the above-described adsorbent filling frame is used, and silica gel and molecular sieves 5A and 3A are filled therein as the dehumidifying agent. It hardly adsorbs the main component of the exhaust gas NOx NO, is preferred because it adsorbs only water vapor.
As shown in Figure 1, dehumidifying agents housing and the adsorbent housing leads in series, and an adsorbing tower A, the upper and lower left and right housing and the pipe of FIG. 2 is a matter of convenience, actually housing Which side of the body is facing up can be designed by the arrangement of the towers.

扁平管25は適当な径の金属管を圧縮して製作するか、凹面をなす金属短冊を2枚向き合わせ接合して製作することができる。また、扁平管25は、筐体内部には数箇の層状を構成し、ペレットの配置に適している。仕切り板32は、扁平管25にガスが入りやすいように設定されている。 The flat tube 25 can be manufactured by compressing a metal tube having an appropriate diameter, or can be manufactured by facing and joining two metal strips having a concave surface. Moreover, the flat tube 25 comprises several layer shape inside a housing | casing, and is suitable for arrangement | positioning of a pellet. The partition plate 32 is set so that gas can easily enter the flat tube 25 .

本発明の流れを図1、図2について説明すると、
加熱用の排気ガスは、図1、図2の左側の第2排気ガス流入部としての流入口6,33から入り、仕切り板32で一旦せき止められてから、扁平な複数の扁平管25に流入する。扁平管25を通る排気ガスは扁平管25の外側に充填された吸着剤ペレット1を加熱した後、扁平管25を出て、図の右側の第2排気ガス排出部としての流出口から、吸着塔外に出る。この時、加熱用の排気ガスは吸着剤ペレット1と触れることはない。扁平管25の管断面形状を扁平としたのは伝熱面積を大きくするためである。
NO脱離用窒素ガス12は図1の上方から、窒素ガス供給管13を経て窒素ガス流入部から吸着塔内の吸着筐体内に流入し、図2に示すように、開口部29から入り、メッシュ31を通って、吸着剤ペレット1の充填された領域に入る。NO脱離用窒素ガス12はペレット間の隙間を通って、ペレットに吸着されたNOx成分を脱離しながら、図の左方に進み、メッシュ30を通って、窒素ガス排出部から上方に出てプラズマリアクタ14に行く。
The flow of the present invention will be described with reference to FIGS.
The exhaust gas for heating enters through the inflow ports 6 and 33 as the second exhaust gas inflow portion on the left side of FIGS. 1 and 2, is temporarily blocked by the partition plate 32, and then flows into a plurality of flat flat tubes 25. To do. The exhaust gas passing through the flat tube 25 heats the adsorbent pellet 1 filled outside the flat tube 25, then exits the flat tube 25 and is adsorbed from the outlet as the second exhaust gas discharge unit on the right side of the figure. Get out of the tower. At this time, the exhaust gas for heating does not come into contact with the adsorbent pellet 1. The reason why the cross-sectional shape of the flat tube 25 is flat is to increase the heat transfer area.
The nitrogen gas 12 for NO desorption flows from the upper part of FIG. 1 through the nitrogen gas supply pipe 13 into the adsorption housing in the adsorption tower through the nitrogen gas inflow part, and enters through the opening 29 as shown in FIG. It passes through the mesh 31 and enters the region filled with the adsorbent pellets 1. The NO desorption nitrogen gas 12 passes through the gaps between the pellets , proceeds to the left in the figure while desorbing the NOx components adsorbed on the pellets, passes through the mesh 30 and exits upward from the nitrogen gas discharge unit. Go to the plasma reactor 14.

効率よく、本発明の排気ガス処理方法を実施するためには、吸着塔Aと同じ構成の吸着塔Bを直列に連結する。吸着塔Aを伝熱工程を経て出てきた排気ガスは、空冷熱交換器7によって、冷却されドレインポット8を通過して除水されて吸着塔Bの除湿剤2内に送られ、ここで除湿された後、3方弁g及び3方弁fを介して第1排気ガス流入部から吸着塔Bの吸着筐体内に流入してNOx吸着剤1にて排気ガス中のNOx成分が吸着され、第1排気ガス排出部から3方弁eを介して、排気口9から大気中に排出される。 Efficiently, in order to implement the exhaust gas treatment method of the present invention, it connected the adsorption tower B in the same configuration as the adsorption tower A in series. The exhaust gas that has exited the adsorption tower A through the heat transfer process is cooled by the air-cooling heat exchanger 7, passed through the drain pot 8, dehydrated, and sent into the dehumidifying agent 2 of the adsorption tower B, where After dehumidification, the NOx component in the exhaust gas is adsorbed by the NOx adsorbent 1 by flowing into the adsorption casing B of the adsorption tower B from the first exhaust gas inflow portion via the three-way valve g and the three-way valve f. The first exhaust gas discharge unit discharges the air from the exhaust port 9 through the three-way valve e.

吸着塔Aと吸着塔Bの構成を1つ塔内に備えることもできるし、吸着塔を2つ並列にして且つ直列につなげることで操作することもできる。いずれも、NOx吸着工程のラインとNOxの再生工程のラインを直列に接続する。   The structure of the adsorption tower A and the adsorption tower B can be provided in one tower, or can be operated by connecting two adsorption towers in parallel and in series. In either case, the NOx adsorption process line and the NOx regeneration process line are connected in series.

図1においては、吸着塔Aから排気ガスが伝熱工程に流入する排気ガスラインと窒素ガスライン及び水分脱離用エアラインが作動し、かつ吸着塔Bでの排気ガス中のNOx吸着工程作動しており(実線で示す)、吸着塔Bからの排気ガスラインなどは休止している(点線で示す)。
さらに詳しく説明すると、実線で示す工程では、吸着剤から被処理成分を脱離させるための吸着筐体に対する窒素ガスの流入・排出および排気ガス管に対する排気ガスの流入・排出を行う脱離工程が吸着塔Aで行われ、吸着剤に被処理成分を吸着させるための吸着筐体に対する排気ガスの流入・処理済みの排気ガスの排出を行う吸着工程が吸着塔Bで行われており、吸着塔Aと吸着塔Bは、脱離工程と吸着工程が切り替え可能に配置されている。
In FIG. 1, the exhaust gas line through which the exhaust gas flows from the adsorption tower A into the heat transfer process, the nitrogen gas line, and the moisture desorption air line are operated, and the NOx adsorption process in the exhaust gas in the adsorption tower B is performed. It is operating (indicated by a solid line) and the exhaust gas line from the adsorption tower B is at rest (indicated by a dotted line).
More specifically, in the process indicated by the solid line, there is a desorption process for inflowing / exhausting nitrogen gas to / from the adsorption housing for desorbing the component to be treated from the adsorbent and inflow / exhaust of exhaust gas to / from the exhaust gas pipe. An adsorption process is performed in the adsorption tower B, and an adsorption process is performed in the adsorption tower B for inflowing exhaust gas to the adsorption housing for adsorbing the component to be treated by the adsorbent and discharging the treated exhaust gas. A and the adsorption tower B are arranged so that the desorption process and the adsorption process can be switched.

図3は除湿剤2としてシリカゲルモレキュラシーブ5A,3Aを用いた結果を示すグラフである。図3(a-1)はシリカゲルペレットにSV(空間速度=処理流量/吸着剤の嵩)=7643 h-1で水蒸気1.2 vol%,NOx 300 ppmを含むエンジン排気ガスを流通させた場合の下流でのガス濃度を示している。図3(a-1)に示すように、300 ppmのNOxはほとんど吸着されていないことがわかる。また、図3(a-2)に示すように、水蒸気は50分間以上にわたり、吸着され、排気ガスは除湿されていることがわかる。これらは、排気ガスNOxの主成分であるNOをほとんど吸着せず、水蒸気のみを吸着するので好適であることを示している。 FIG. 3 is a graph showing the results of using silica gel and molecular sieves 5A and 3A as the dehumidifying agent 2 . Figure 3 (a-1) shows the downstream when the engine exhaust gas containing 1.2 vol% of water vapor and 300 ppm of NOx is circulated through the silica gel pellets with SV (space velocity = treatment flow rate / volume of adsorbent) = 7643 h -1 The gas concentration is shown. As shown in Fig. 3 (a-1) , it can be seen that 300 ppm of NOx is hardly adsorbed. Further, as shown in FIG. 3 (a-2) , it is understood that the water vapor is adsorbed over 50 minutes or more and the exhaust gas is dehumidified. These show that NO which is the main component of the exhaust gas NOx hardly adsorbs and adsorbs only water vapor, which is preferable.

NO吸着剤1にはモレキュラシーブ13Xを用いる。図3(b)はモレキュラシーブ13XペレットにNOx 350 ppmを含むエンジン排気ガスをSV=7643 h-1で流通させた結果である。図3(b)に示すように排気ガスの下流でのNOx濃度は660分間以上に渡り、低濃度に保たれていることがわかる。 For NO adsorbent 1, molecular sieve 13X is used. FIG. 3B shows the result of circulating engine exhaust gas containing NOx 350 ppm in molecular sieve 13X pellets at SV = 7643 h −1 . As shown in FIG. 3B, it can be seen that the NOx concentration downstream of the exhaust gas is kept at a low concentration over 660 minutes.

図4は、200ccのディーゼルエンジンのNOx処理用のプラズマリアクタを一実施形態として例示した説明図である図4(1)は、プラズマリアクタの面図であり、図4(2)は、同面図であり、図4(3)は、同正面図であり、図4(4)は沿面放電素子の正面図である。図4(1)〜(4)で示すように、沿面放電素子41、素子取付け板42、43に、6本づつ計12本取り付けられ、この取付け板42,43が組み合されて本体容器44には一体として取付けられ。本体容器44および取り付け板42,43はステンレスを用いるが、適度の強度と密閉性を持てばどのような素材でも良い。図4(2)の面図、図4(3)正面図からわかるように、沿面放電素子41は、上下から互い違いに本体内に配置されている。また、電極パターン45が印刷された面が、本体の中心を向くように素子が電極パターンの位置49のように配置されている。本体左側から流入した被処理ガスは、電極パターンが存在する表面接触し、本体右側から流出するように構成されている。
交流電圧による沿面放電素子41は、図4(4)に示すように、電極パターン45セラミック管46の外面に形成され、セラミック管の上部には取り付け用フランジ47が付設されている。例えば、直径13 mmのアルミナセラミック製の筒46の表面に電極パターン45が印刷され、同時に筒内に電極48が埋設されている。表面の電極パターン45と埋設された電極48間に交流高電圧(たとえば、12.5kHz,3.8 kV,(図5(1)の波形1参照)を印加すると、セラミック表面にプラズマが発生し、周囲のNOxをN2に還元する。素子1本あたりの放電電力は約12 Wである。
FIG. 4 is an explanatory diagram illustrating, as an embodiment, a plasma reactor for NOx treatment of a 200 cc diesel engine . 4 (1) is a side view of a plasma reactor, Fig. 4 (2) is the top view, FIG. 4 (3) is a front view thereof, FIG. 4 (4) is creeping It is a front view of a discharge element. As shown in FIGS. 4 (1) to (4) , 12 creeping discharge elements 41 are attached to the element mounting plates 42 and 43, six in total , and these mounting plates 42 and 43 are combined to form the main body. the container 44 Ru mounted integrally. The main body container 44 and the mounting plates 42 and 43 are made of stainless steel, but any material may be used as long as it has an appropriate strength and sealing property. Figure 4 top view of (2), as can be seen from FIG. 4 (3) a front view, surface discharge element 41 is arranged in staggered within the body from above and below. In addition, the element is arranged at a position 49 of the electrode pattern so that the surface on which the electrode pattern 45 is printed faces the center of the main body. The gas to be processed that flows in from the left side of the main body is configured to come into contact with the surface on which the electrode pattern exists and flow out from the right side of the main body.
Surface discharge element 41 by the AC voltage, as shown in FIG. 4 (4), the electrode pattern 45 is formed on the outer surface of the ceramic tube 46, mounting flange 47 is attached to the top of the ceramic tube. For example, an electrode pattern 45 is printed on the surface of a cylinder 46 made of alumina ceramic having a diameter of 13 mm, and at the same time, an electrode 48 is embedded in the cylinder. When an AC high voltage (for example, 12.5 kHz, 3.8 kV, (see waveform 1 in FIG. 5 (1) ) is applied between the electrode pattern 45 on the surface and the embedded electrode 48, plasma is generated on the ceramic surface, NOx is reduced to N 2. Discharge power per element is about 12 W.

プラズマリアクタ印加する電圧は、図5(1)に示す交流高電圧による波形1(AC)でもよく、図5(2)に示す波形2(パルス)のようなパルス状とすることもある。沿面放電素子41は取り付けフランジ47を備えるので、素子取り付け板42にネジ止めすることができる。また、電極パターン45はセラミック管46の半周分しか印刷されていない。図4(2)面図からわかるように電極パターン45を印刷された面が、本体の中心を向くように沿面放電素子41が配置されている。被処理ガスは、電極パターン45が存在する表面接触し、本体右側から流出する。このような配置とすることで、すべての流通ガスが、電極パターン45に接触し、効率的にNOx還元ができる。 Voltage applied to the plasma reactor, Fig. 5 may also waveform 1 by alternating high voltage shown in (1) (AC), sometimes a pulse shape as the waveform 2 shown in FIG. 5 (2) (pulses). Since the creeping discharge element 41 includes the attachment flange 47 , it can be screwed to the element attachment plate 42 . Further, the electrode pattern 45 is printed only for a half circumference of the ceramic tube 46 . 4 (2) As can be seen from the top view, printed side of the electrode pattern 45, surface discharge element 41 toward the center of the main body is disposed. The gas to be processed comes into contact with the surface on which the electrode pattern 45 is present and flows out from the right side of the main body. By adopting such an arrangement, all the circulating gases come into contact with the electrode pattern 45 , and NOx reduction can be performed efficiently.

4では沿面放電素子41が2列配列の場合を示したが、その他の可能な素子の配置パターンを図6に示す。沿面放電素子41の電極パターン45が、周囲のガスと触れる限り、特に限定はされない。配置例としては図6(1)に示す格子状、図6(2)に示す千鳥状が考えられ、これらの場合は、電極パターンの存在する面の向きや列数は限定されない。なお、波線はガスの流れ方向を示す。 FIG. 4 shows the case where the creeping discharge elements 41 are arranged in two rows, but other possible arrangement patterns of the elements are shown in FIG . There is no particular limitation as long as the electrode pattern 45 of the creeping discharge element 41 is in contact with the surrounding gas. As an arrangement example , a lattice shape shown in FIG. 6 (1) and a staggered shape shown in FIG. 6 (2) are conceivable. In these cases, the direction of the surface where the electrode pattern exists and the number of columns are not limited. The wavy line indicates the gas flow direction.

図7は、本発明の他の実施形態のヒーター付吸着塔の部分断面図を示し、実際に加熱によるNO吸着剤の再生と沿面放電素子による脱離NOxの還元を行う工程を端的に示している。このヒーター付吸着塔は、図7(A)に示すように、ガラス筒状容器76の内部にヒーター71を持ち、図4のエンジン排気ガスが通る扁平管の役割を模している。このヒーター71は、図7(B)に示すように、棒状ガラス管72の外周面の長手方向半分に巻かれたニクロム線73による発熱部を備えている。全体の構造としては、ガス入口74とガス出口75を有する耐熱性ガラス筒状容器76を用意し、ガラス筒状容器76のヒーター部分に対応する内部にはMS13Xペレット77が充填されている。
ヒーター部分には、ガラス容器の外周に断熱材78を囲繞させておく。なお、金属メッシュ79はMS13Xペレット77を落ちないように支持している。
FIG. 7 is a partial sectional view of an adsorption tower with a heater according to another embodiment of the present invention , and briefly shows the steps of actually regenerating NO adsorbent by heating and reducing desorbed NOx by creeping discharge elements. Yes. As shown in FIG. 7A, this adsorption tower with a heater has a heater 71 inside a glass cylindrical container 76 and simulates the role of a flat tube through which engine exhaust gas in FIG. 4 passes. As shown in FIG. 7B , the heater 71 includes a heat generating portion made of a nichrome wire 73 wound around the longitudinal half of the outer peripheral surface of the rod-shaped glass tube 72. As a whole structure, a heat-resistant glass cylindrical container 76 having a gas inlet 74 and a gas outlet 75 is prepared, and the inside corresponding to the heater portion of the glass cylindrical container 76 is filled with MS13X pellets 77 .
In the heater portion, a heat insulating material 78 is surrounded on the outer periphery of the glass container. It should be noted that the metal mesh 79 are supported so as not to fall a MS13X pellet 77.

図8は、本発明の他の実施形態におけるプラズマリアクタを示す部分断面図であり、図4の沿面放電素子41の1本をアルミ製容器81に収めて構成されている。このアルミ製容器81はガス入口82とガス出口83を有する。 Figure 8 is another partial cross-sectional view of a plasma rear pin definition in the embodiment of the present invention is constructed by housed in an aluminum container 81 a single surface discharge element 41 in FIG. 4. The aluminum container 81 has a gas inlet 82 and a gas outlet 83.

実施例として、350 ppmのNOx(内300 ppmがNO)2 L/minを60〜120分間吸着させ、再生工程では0.5 L/minのN2を吸着時とは逆方向に流して6〜9.5分間NOxを脱離させ脱離したガスのうち、0.1または0.2 L/minをプラズマリアクタ内に流入させて、下流ガスのNOxを測定した。その結果、NOx処理の濃度と時間のプロットとして図9に示す。なお、図9において、実験的に示すために、○印は吸着時、●は再生時、△は再生なし、の場合を表示する。 As an example, 350 ppm of NOx (of which 300 ppm is NO) 2 L / min is adsorbed for 60 to 120 minutes, and in the regeneration process, 0.5 L / min of N 2 is allowed to flow in a direction opposite to that during adsorption, and 6 to 9.5. the minutes NOx was leaving. Of desorbed gas, by flowing 0.1 or 0.2 L / min in the plasma reactor was measured NOx downstream gas. The results are shown in FIG. 9 as a plot of NOx treatment concentration versus time. In FIG. 9, for experimental purposes, ◯ indicates a case of adsorption, ● indicates a case of reproduction, and Δ indicates no reproduction.

図9より、プラズマリアクタを通さなかった場合の脱離したNOxの濃度は最高で17000 ppmとなる。脱離ガスのうち0.1または0.2 L/minをプラズマリアクタに流入させると、NOxの大部分が還元処理されることがわかる(瞬間的には0.1 L/minの場合、100 ppm前後、0.2 L/minでは5000 ppm前後が、未処理で、流出したが、量的にはほとんどが還元処理されている)。また、再生工程を行わない場合は、流通開始660分の時点で75 ppmのNOxが、吸着されずに流出したが、120分に1回再生を行うことで、18 ppm以下に保つことができた。以上より、加熱による再生とプラズマにより還元処理を組合わせて、NOx処理システムが、成立することが示された。 From FIG. 9, the concentration of desorbed the NOx when no through plasma reactor becomes up to 17000 ppm. It can be seen that when 0.1 or 0.2 L / min of the desorbed gas flows into the plasma reactor, most of the NOx is reduced (in the case of 0.1 L / min, about 100 ppm, 0.2 L / min. In min, about 5000 ppm was untreated and spilled out, but most of it was reduced in quantity). In addition, when the regeneration process is not performed, 75 ppm of NOx flows out without being adsorbed at the start of distribution at 660 minutes, but it can be maintained at 18 ppm or less by performing regeneration once every 120 minutes. It was. From the above, it was shown that a NOx treatment system is established by combining regeneration by heating and reduction treatment by plasma.

供給する窒素ガスの酸素濃度については、いままでの経験から、0%の時には、ほぼ0%のNOx残存率、言い換えると100%のNOx除去が達成できているが、酸素濃度が増加するにつれてNOx又はNO残存量は増加し、NO2あるいは少量のHNO3、N2O5、N2O等に変換される割合が大きくなる。酸素濃度が6%以上で10%に近づくとNOの減少量の大部分はNO2等に変換され、実質的な公害の処理はほとんど行われなくなる。
以上から、酸素濃度10vol%以下で純度90vol%以上の窒素ガスを用いた。
Regarding the oxygen concentration of the nitrogen gas to be supplied, from past experience, when it was 0%, almost 0% NOx residual rate, in other words, 100% NOx removal was achieved, but as the oxygen concentration increased, NOx Alternatively, the remaining amount of NO increases, and the rate of conversion to NO 2 or a small amount of HNO 3 , N 2 O 5 , N 2 O, etc. increases. When the oxygen concentration is 6% or more and approaches 10%, most of the decrease in NO is converted to NO 2 etc., and virtually no pollution treatment is performed.
From the above, nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more was used.

本発明に係る排気ガス処理装置の一実施形態を示す概略図である。 1 is a schematic view showing an embodiment of an exhaust gas treatment device according to the present invention. 本発明の一実施形態における吸着塔の部分断面詳細図を示す。The partial cross section detail drawing of the adsorption tower in one Embodiment of this invention is shown. 本発明に使用する、除湿剤の特性図(a)と吸着剤の特性図(b)を示す。The characteristic diagram (a) of the dehumidifying agent and the characteristic diagram (b) of the adsorbent used in the present invention are shown. 本発明の一実施形態におけるプラズマリアクタの説明図である。It is explanatory drawing of the plasma reactor in one Embodiment of this invention. 本発明におけるプラズマリアクタ印加する電圧の電圧波形を示す図である。Is a diagram illustrating voltage waveforms of the voltage applied to the definitive plasma reactor of the present invention. 本発明におけるその他の可能な沿面放電素子の配置パターンを示す上面図である。It is a top view which shows the arrangement pattern of the other possible creeping discharge element in this invention . 本発明の他の実施形態のヒーター付吸着塔の部分断面図である。It is a fragmentary sectional view of the adsorption tower with a heater of other embodiments of the present invention. 本発明の他の実施形態におけるプラズマリアクタの部分断面図である。It is a fragmentary sectional view of the plasma reactor in other embodiments of the present invention. 本発明の実施例における、NOx処理での濃度変化と経過時間を示すグラフである It is a graph which shows the density | concentration change and elapsed time by NOx process in the Example of this invention.

A,B 吸着塔
a,b,c,d,e,f,g, 3方弁
1 NO吸着剤(吸着剤ペレット)
2 除湿剤
3 筐体
4 管
5a,b 開閉弁
6 排気ガス流入口
7 空冷熱交換器
8 ドレインポット
9 排気口
10 水分脱離用エアー
11 エアー供給ライン
12 NO脱離用窒素ガス
13 窒素ガス供給ライン
14 プラズマリアクタ
21 四角形筐体
22 四角形枠体
23 開口部
24 蓋体
25 扁平管
26,27 補助枠体
28、29 配管用開口部
30、31 メッシュ
32 仕切り板
33 流入口
41 沿面放電素子
42,43 素子取付け板
44 本体容器
45 電極パターン
46 セラミック管
47 取付けフランジ
48 電極
49 電極パターン位置
71 ヒーター
72 ガラス管
73 ニクロム線
74 ガス入口
75 ガス出口
76 耐熱性ガラス管
77 ペレット
78 断熱材
79 金属メッシュ
81 アルミニウム容器
82 ガス入口
83 ガス出口
A, B Adsorption tower a, b, c, d, e, f, g, 3-way valve 1 NO x adsorbent (adsorbent pellet)
2 Dehumidifier 3 Housing 4 Tube 5a, b On-off valve 6 Exhaust gas inlet 7 Air cooling heat exchanger 8 Drain pot 9 Exhaust port 10 Moisture desorption air 11 Air supply line 12 NO desorption nitrogen gas 13 Nitrogen gas supply Line 14 Plasma reactor 21 Square housing 22 Square frame 23 Opening 24 Lid 25 Flat tube 26, 27 Auxiliary frame 28, 29 Piping opening 30, 31 Mesh 32 Partition plate 33 Inlet 41 Creeping discharge element 42, 43 element mounting plate 44 main body container 45 electrode pattern 46 ceramic tube 47 mounting flange 48 electrode 49 electrode pattern position 71 heater 72 glass tube 73 nichrome wire 74 gas inlet 75 gas outlet 76 heat resistant glass tube 77 pellet 78 heat insulating material 79 metal mesh 81 Aluminum container 82 Gas inlet 83 gas Exit

Claims (8)

吸着剤を収容する吸着筐体及び吸着剤に接するように埋設された排気ガス管を有する吸着塔が備えられた排気ガス処理装置を用い、
吸着塔の吸着筐体内に排気ガスを第1の方向に流れるように流入させ、排気ガス中のNOxを含む被処理成分を吸着剤に吸着させる吸着工程と、
吸着塔の排気ガス管に排気ガスを前記第1の方向に流れるように流入させて熱交換により吸着剤に熱を付加すると共に、酸素濃度10vol%以下で純度90vol%以上の窒素ガスを前記第1の方向とは逆向きの第2の方向に流れるように吸着筐体内に流入させて、吸着剤に吸着した被処理成分を脱離させる脱離工程と、
吸着剤から脱離させた被処理成分を含む窒素ガスをプラズマ処理部に導いてプラズマ処理するプラズマ処理工程とを含み、
吸着塔において吸着工程と脱離工程とを切り換えて行なうことを特徴とする排気ガス処理方法。
Using an exhaust gas treatment apparatus provided with an adsorption case having an adsorption casing containing an adsorbent and an exhaust gas pipe embedded in contact with the adsorbent,
An adsorption step of causing exhaust gas to flow into the adsorption housing of the adsorption tower so as to flow in the first direction, and adsorbing a component to be treated containing NOx in the exhaust gas to the adsorbent;
The exhaust gas flows into the exhaust gas pipe of the adsorption tower so as to flow in the first direction , heat is added to the adsorbent by heat exchange, and nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more is added to the adsorbent . A desorption step of desorbing the component to be treated adsorbed on the adsorbent by flowing into the adsorption housing so as to flow in a second direction opposite to the direction of 1 ;
A plasma treatment step of conducting a plasma treatment by introducing a nitrogen gas containing a component to be treated desorbed from the adsorbent to the plasma treatment section,
An exhaust gas treatment method characterized by switching between an adsorption step and a desorption step in an adsorption tower.
前記プラズマ処理工程において、交流電圧による沿面放電方式を用いる請求項1に記載の排気ガス処理方法。   2. The exhaust gas treatment method according to claim 1, wherein a creeping discharge method using an alternating voltage is used in the plasma treatment step. 前記吸着塔は、排気ガス中の水分を除去する除湿剤およびこの除湿剤に前記排気ガス管が埋設されるように除湿剤を収容する除湿剤筐体をさらに備えており、
前記吸着工程において、前記除湿剤筐体内に排気ガスを前記第の方向に流れるように流入させた後、除湿剤筐体内から排出された排気ガスを前記吸着筐体内に流入させ、
前記脱離工程において、吸着塔の排気ガス管に排気ガスを前記第1の方向に流れるように流入させて熱交換により除湿剤に熱を付加すると共に、除湿剤筐体内に水分脱離用エアを前記第2の方向に流れるように流入させて前記除湿剤から水分を脱離させる請求項1又は2に記載の排気ガス処理方法。
The adsorption tower further includes a dehumidifying agent that removes moisture in the exhaust gas and a dehumidifying agent housing that houses the dehumidifying agent so that the exhaust gas pipe is embedded in the dehumidifying agent,
In the adsorption step, exhaust gas is allowed to flow into the dehumidifying agent casing in the first direction, and then exhaust gas discharged from the dehumidifying agent casing is allowed to flow into the adsorption casing.
In the desorption step, the exhaust gas is caused to flow into the exhaust gas pipe of the adsorption tower so as to flow in the first direction to add heat to the dehumidifier by heat exchange, and the moisture desorption air is contained in the dehumidifier housing. The exhaust gas treatment method according to claim 1 or 2, wherein water is desorbed from the dehumidifying agent by flowing in the gas so as to flow in the second direction.
前記吸着塔が複数備えられ、複数の吸着塔を切り換えて排気ガス処理を行う請求項1〜3のいずれか1つに記載の排気ガス処理方法。   The exhaust gas processing method according to any one of claims 1 to 3, wherein a plurality of the adsorption towers are provided, and exhaust gas treatment is performed by switching the plurality of adsorption towers. 吸着剤を収容する吸着筐体および吸着剤に接するように埋設された排気ガス管を有する吸着塔と、
NOx含有被処理成分を含む排気ガスを前記吸着筐体内に第1の方向に流れるように流入させて被処理成分を吸着剤に吸着させるための第1排気ガス流入部と、
被処理成分が吸着剤にて除去された処理済みの排気ガスを吸着筐体内から外部に排出するための第1排気ガス排出部と、
排気ガスを前記排気ガス管内に前記第1の方向に流れるように流入させて吸着筐体内の被処理成分を吸着した吸着剤に排気ガスの熱を付加するための第2排気ガス流入部と、
排気ガス管内を通った排気ガスを外部に排出させるための第2ガス排出部と、
吸着剤から被処理成分を脱離させる酸素濃度10vol%以下で純度90vol%以上の窒素ガスを前記第1の方向とは逆向きの第2の方向に流れるように吸着筐体内に流入させるための窒素ガス流入部と、
吸着剤から脱離した被処理成分を含む窒素ガスを吸着筐体内から外部に排出するための窒素ガス排出部と、
前記窒素ガス排出部から流入した被処理成分を含む窒素ガスをプラズマ処理して外部に排出するためのプラズマ処理部とを備え、
吸着剤に被処理成分を吸着させるための吸着筐体に対する排気ガスの流入・処理済みの排気ガスの排出と、吸着剤から被処理成分を脱離させるための吸着筐体に対する窒素ガスの流入・排出および排気ガス管に対する排気ガスの流入・排出とが、吸着塔において切り換わるように構成されたことを特徴とする排気ガス処理装置。
An adsorption tower containing an adsorbent housing containing the adsorbent and an exhaust gas pipe embedded so as to be in contact with the adsorbent;
A first exhaust gas inflow part for causing exhaust gas containing NOx-containing processed components to flow into the adsorption housing in a first direction so as to adsorb the processed components to the adsorbent;
A first exhaust gas discharge unit for discharging the treated exhaust gas from which the component to be treated has been removed by the adsorbent to the outside from the inside of the adsorption housing;
A second exhaust gas inflow portion for adding heat of the exhaust gas to the adsorbent that has caused the exhaust gas to flow into the exhaust gas pipe so as to flow in the first direction and adsorbs the component to be treated in the adsorption housing;
A second gas discharge part for discharging exhaust gas that has passed through the exhaust gas pipe to the outside;
Nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more that desorbs the component to be treated from the adsorbent is caused to flow into the adsorption housing so as to flow in a second direction opposite to the first direction . A nitrogen gas inlet,
A nitrogen gas discharge part for discharging the nitrogen gas containing the component to be treated desorbed from the adsorbent to the outside from the inside of the adsorption housing;
A plasma processing unit for plasma processing nitrogen gas containing a component to be processed that has flowed in from the nitrogen gas discharging unit and discharging the nitrogen gas to the outside;
Inflow of exhaust gas to the adsorption housing for adsorbing the component to be treated by the adsorbent, discharge of exhaust gas after treatment, and inflow of nitrogen gas to the adsorption case for desorbing the component to be treated from the adsorbent An exhaust gas treatment apparatus configured to switch between exhaust and inflow / exhaust of exhaust gas to an exhaust gas pipe in an adsorption tower.
前記プラズマ処理部が、交流電圧による沿面放電素子を備えた請求項5に記載の排気ガス処理装置。   The exhaust gas processing apparatus according to claim 5, wherein the plasma processing unit includes a creeping discharge element using an alternating voltage. 前記吸着塔は、排気ガス中の水分を除去する除湿剤およびこの除湿剤に前記排気ガス管が埋設されるように除湿剤を収容する除湿剤筐体をさらに備えると共に、
水分脱離用エアを前記除湿剤筐体内に前記第2の方向に流れるように流入させる水分脱離用エア流入部と、水分を含む前記水分脱離用エアを除湿剤筐体内から外部に排出するための水分脱離用エア排出部とがさらに備えられた請求項5又は6に記載の排気ガス処理装置。
The adsorption tower further includes a dehumidifying agent that removes moisture in the exhaust gas, and a dehumidifying agent housing that houses the dehumidifying agent so that the exhaust gas pipe is embedded in the dehumidifying agent,
Moisture desorption air inflow section for allowing moisture desorption air to flow into the dehumidifying agent housing in the second direction, and discharging the moisture desorption air containing moisture from the dehumidifying agent housing to the outside The exhaust gas processing apparatus according to claim 5, further comprising a water desorption air discharge unit for performing the operation.
前記吸着塔を複数備え、複数の吸着塔を切り換えて排気ガス処理を行なうように構成された請求項5〜7のいずれか1つに記載の排気ガス処理装置。   The exhaust gas processing apparatus according to any one of claims 5 to 7, wherein a plurality of the adsorption towers are provided, and the plurality of adsorption towers are switched to perform exhaust gas processing.
JP2006153731A 2006-06-01 2006-06-01 Exhaust gas treatment method and treatment apparatus Expired - Fee Related JP4997527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153731A JP4997527B2 (en) 2006-06-01 2006-06-01 Exhaust gas treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153731A JP4997527B2 (en) 2006-06-01 2006-06-01 Exhaust gas treatment method and treatment apparatus

Publications (3)

Publication Number Publication Date
JP2007321678A JP2007321678A (en) 2007-12-13
JP2007321678A5 JP2007321678A5 (en) 2009-08-20
JP4997527B2 true JP4997527B2 (en) 2012-08-08

Family

ID=38854718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153731A Expired - Fee Related JP4997527B2 (en) 2006-06-01 2006-06-01 Exhaust gas treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4997527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031454A1 (en) * 2007-09-04 2009-03-12 Osaka Prefecture University Public Corporation Exhaust gas treating apparatus and treating method
JP5499489B2 (en) * 2009-02-27 2014-05-21 Jfeエンジニアリング株式会社 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154339A (en) * 1991-12-03 1993-06-22 Kobe Steel Ltd Removal of nitrogen oxide
JPH0771237A (en) * 1993-08-31 1995-03-14 Toyota Motor Corp Exhaust emission control device for internal combustion engine
EP1683565B1 (en) * 2003-10-21 2011-09-28 Osaka Prefecture University Public Corporation Method of treating exhaust gas and treating apparatus

Also Published As

Publication number Publication date
JP2007321678A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JP5266758B2 (en) Volatile organic compound processing equipment
JP2001512368A (en) Equipment for removing pollutants from gas streams
JP2016147012A (en) Decomposition apparatus, and operation method thereof
JP2008086942A (en) Apparatus and method for cleaning air
JP4997527B2 (en) Exhaust gas treatment method and treatment apparatus
JP2007000733A (en) Treatment method and treatment apparatus of gas
KR100889639B1 (en) Apparatus for destruction of volatile organic compounds
JP2007321678A5 (en)
CN206240331U (en) Vertical single hop modularization flue gas desulfurization and denitrification absorption/regenerating unit
JP2002263444A (en) Method and equipment for removing nox
RU2274485C2 (en) Method of cleaning air to remove carbon monoxide and filter module for removing carbon monoxide from air
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit
CN211864494U (en) Gas purification device
KR100410893B1 (en) Continuous Absorbing and Recycling Apparatus
JP4868617B2 (en) Exhaust gas treatment apparatus and treatment method
JP3321422B2 (en) Method and apparatus for removing trace amounts of carbon monoxide
CN110960972A (en) Environment-friendly exhaust treatment device
JP4295548B2 (en) Nitrogen oxide removing catalyst, denitration method and apparatus using the same
JPH07213859A (en) Waste gas treating device
CN213556226U (en) A integrated device that VOCs handled for spraying paint waste gas treatment
JPH07148415A (en) Method and apparatus for removing offensive odor component in exhaust gas
JPH08299758A (en) Method for removing nitrogen oxide and device therefor
JPH11267457A (en) Air cleaner
KR200241564Y1 (en) Air Pollution Control System Through Concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees