JP4997012B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4997012B2
JP4997012B2 JP2007193502A JP2007193502A JP4997012B2 JP 4997012 B2 JP4997012 B2 JP 4997012B2 JP 2007193502 A JP2007193502 A JP 2007193502A JP 2007193502 A JP2007193502 A JP 2007193502A JP 4997012 B2 JP4997012 B2 JP 4997012B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
decompressor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007193502A
Other languages
Japanese (ja)
Other versions
JP2009030840A (en
Inventor
亮佑 對比地
博之 齋
悟 今井
哲 ▲崎▼道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007193502A priority Critical patent/JP4997012B2/en
Publication of JP2009030840A publication Critical patent/JP2009030840A/en
Application granted granted Critical
Publication of JP4997012B2 publication Critical patent/JP4997012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Description

本発明は、冷凍装置に関し、特に安定した過熱度制御が得られる技術に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a technique capable of obtaining stable superheat control.

冷凍装置において、安定的に冷凍能力を確保するためには蒸発器出口の冷媒の過熱度を適切に制御することが重要である。このため、冷凍装置においては、蒸発器入口/出口温度を検出して過熱度を求め、求めた過熱度に応じて膨張弁の開度を調節する、いわゆる過熱度制御が行われている(例えば、特許文献1を参照)。
特開平7−98160号公報
In the refrigeration apparatus, it is important to appropriately control the degree of superheat of the refrigerant at the outlet of the evaporator in order to stably secure the refrigeration capacity. For this reason, in the refrigeration system, so-called superheat control is performed in which the evaporator inlet / outlet temperature is detected to determine the degree of superheat, and the opening of the expansion valve is adjusted according to the obtained degree of superheat (for example, , See Patent Document 1).
JP-A-7-98160

ところで、冷媒として二酸化炭素を用いる冷凍装置においては、上記過熱度制御を行っている場合でも、冷凍負荷の変動等の影響により過熱度が取れなくなる、いわゆる「寝込み」と呼ばれる状態に陥ることがある。この寝込みの状態に陥ると、膨張弁入口の冷媒温度(以下、膨張弁入口温度と称する。)の極端な低下やハンチング(周期的な変動)等が生じて過熱度が不安定となり、その結果、液圧縮や液バック、冷凍装置の冷凍能力低下といった不具合を生じることがある。   By the way, in a refrigeration apparatus using carbon dioxide as a refrigerant, even when the superheat control is performed, the so-called “sleeping” state may occur in which the superheat cannot be obtained due to the influence of fluctuations in the refrigeration load or the like. . When this stagnation occurs, the temperature of the refrigerant at the inlet of the expansion valve (hereinafter referred to as the temperature of the inlet of the expansion valve) is drastically reduced, hunting (periodic fluctuation), etc., and the degree of superheat becomes unstable. In some cases, problems such as liquid compression, liquid back, and a decrease in the refrigeration capacity of the refrigeration apparatus may occur.

図10には冷媒の圧縮部が1段圧縮の圧縮機11を採用した冷凍装置10を示し、図11には第1圧縮部11Aで圧縮された冷媒を更に第2圧縮部11Bで圧縮する2段圧縮の圧縮機11を採用した冷凍装置10を示している。これらにおいて、通常の安定サイクル状態では、膨張弁等の減圧器19の入口温度、及び蒸発器20の入口温度と出口温度は、図12に示すように安定した温度変化を呈する。   FIG. 10 shows a refrigeration apparatus 10 that employs a compressor 11 in which the refrigerant compression section is a one-stage compression. FIG. 11 shows that the refrigerant compressed by the first compression section 11A is further compressed by the second compression section 11B. The refrigerating apparatus 10 which employ | adopted the compressor 11 of the stage compression is shown. In these, in the normal stable cycle state, the inlet temperature of the decompressor 19 such as the expansion valve and the inlet temperature and outlet temperature of the evaporator 20 exhibit stable temperature changes as shown in FIG.

ここで、寝込みについて図11に示す冷凍装置10を参照して詳述する。図11に示す冷凍装置10は、冷媒として二酸化炭素を用いるもので、圧縮機11、放熱器15、内部熱交換器18、膨張弁等の減圧器19、減圧器19の入口温度を検出するためのセンサ34、蒸発器20、蒸発器入口の冷媒温度(以下、蒸発器入口温度と称する。)を検出するためのセンサ32、蒸発器出口の冷媒温度(以下、蒸発器出口温度と称する。)を検出するためのセンサ33、逆止弁21、及びセンサ32,33の検出値に応じて減圧器19の開度を制御する図示しない制御部等を含んで構成されている。   Here, sleeping will be described in detail with reference to the refrigeration apparatus 10 shown in FIG. The refrigeration apparatus 10 shown in FIG. 11 uses carbon dioxide as a refrigerant and detects the inlet temperature of the compressor 11, the radiator 15, the internal heat exchanger 18, the decompressor 19 such as an expansion valve, and the decompressor 19. , Sensor 32 for detecting the refrigerant temperature at the evaporator inlet (hereinafter referred to as the evaporator inlet temperature), the refrigerant temperature at the evaporator outlet (hereinafter referred to as the evaporator outlet temperature). Sensor 33, check valve 21, and a control unit (not shown) for controlling the opening degree of pressure reducer 19 according to the detection values of sensors 32 and 33.

上記構成からなる冷凍装置10において、過熱度制御が適正に行われて冷凍サイクルが安定状態にある場合、膨張弁入口温度、蒸発器入口温度、及び蒸発器出口温度の時間的な変化は、例えば、図12に示すように、安定状態では膨張弁入口の冷媒温度は、所定範囲内の温度(T1〜T2)に維持されている。   In the refrigeration apparatus 10 having the above configuration, when the superheat control is properly performed and the refrigeration cycle is in a stable state, temporal changes in the expansion valve inlet temperature, the evaporator inlet temperature, and the evaporator outlet temperature are, for example, As shown in FIG. 12, in the stable state, the refrigerant temperature at the inlet of the expansion valve is maintained at a temperature (T1 to T2) within a predetermined range.

一方、寝込みの状態に陥った場合、膨張弁入口温度、蒸発器入口温度、及び蒸発器出口温度の時間的な変化は、例えば、図13示すように、膨張弁入口温度が不安定となり、膨張弁入口温度が相当低温まで低下し(同図の例では安定動作時のプラス温度T1よりも大きく低下し、略マイナス温度T3近くまで下がる。)、これにより過熱度(蒸発器入口温度と蒸発器出口温度の差)が取れなくなってしまうことがわかる。   On the other hand, when falling into a stagnation state, the temporal change in the expansion valve inlet temperature, the evaporator inlet temperature, and the evaporator outlet temperature is, for example, as shown in FIG. The valve inlet temperature decreases to a considerably low temperature (in the example shown in the figure, it is greatly decreased from the positive temperature T1 at the time of stable operation and decreases to nearly the negative temperature T3), and thereby the superheat degree (evaporator inlet temperature and evaporator). It can be seen that the difference in the outlet temperature cannot be taken.

図10に示す冷凍装置10において、図11に示す冷凍装置10と同様の機能部については同一符号を付している。寝込みについては、図10に示す冷凍装置10についても同様の現象となる。   In the refrigeration apparatus 10 shown in FIG. 10, the same reference numerals are given to the same functional units as those in the refrigeration apparatus 10 shown in FIG. 11. The same phenomenon occurs in the refrigeration apparatus 10 shown in FIG.

なお、上記のような内部熱交換器18を有するタイプの冷凍装置10では、膨張弁入口温度が負荷変動の影響を受けやすく、寝込みの状態に陥り易い。また冷媒として用いる二酸化炭素は流動性が高く、膨張弁の入口では高圧となるため、開度変化に対する流量変化が大きく膨張弁の開度制御が非常に厳しく、アンモニア等を冷媒とする他の冷凍装置に比べて膨張弁の開度制御が難しい。   In the refrigeration apparatus 10 of the type having the internal heat exchanger 18 as described above, the expansion valve inlet temperature is likely to be affected by load fluctuations, and is likely to fall into a stagnation state. Carbon dioxide used as a refrigerant has high fluidity and a high pressure at the inlet of the expansion valve. Therefore, the flow rate change with respect to the change in the opening degree is large, and the opening degree control of the expansion valve is very strict. It is difficult to control the opening of the expansion valve as compared to the device.

本発明は、このような問題に鑑み、冷凍装置が寝込みの状態に陥るのを事前にキャッチして、寝込みの状態に陥る前に、冷凍装置に生じる温度変化をキャッチして、寝込みの状態に陥ることを防ぐことができる冷凍装置を提供することを目的とする。   In view of such a problem, the present invention catches in advance that the refrigeration apparatus falls into a sleeping state, and catches a temperature change that occurs in the refrigeration apparatus before falling into the sleeping state, so that the sleeping apparatus enters a sleeping state. It aims at providing the freezing apparatus which can prevent falling.

第1発明の冷凍装置は、圧縮機で圧縮されたガス冷媒は放熱器で放熱され、前記放熱器から流出した冷媒は、熱交換器の一次側冷媒通路を通過して減圧器で減圧され、蒸発器にて蒸発した後、前記熱交換器の二次側冷媒通路を通過して前記圧縮機へ帰還する冷媒路を流れ、前記蒸発器に流入する冷媒の温度である蒸発器入口温度と前記蒸発器から流出する冷媒の温度である蒸発器出口温度とに基づいて求めた過熱度に応じて前記減圧器の開度を制御する制御部を有し、前記放熱器から流出した冷媒が前記一次側冷媒通路から前記減圧器に流れるか前記一次側冷媒通路をバイパスするバイパス通路から前記減圧器に流れるかを切り替え制御する制御弁と、前記一次側冷媒通路を出で前記減圧器に流入する冷媒の温度である前記減圧器の入口温度を検出する温度センサを設け、所期の前記過熱度が取れなくなる寝込み状態へ陥る前兆として生じる前記減圧器の入口温度の低下によって前記温度センサの検出温度が所定温度以下またはこの所定温度より低い場合、前記制御部の動作に基づく前記制御弁の動作によって、前記放熱器から流出した冷媒が、前記一次側冷媒通路へ流れずに前記バイパス通路へ流れるように冷媒の通路を切り替えることを特徴とする。 In the refrigeration apparatus of the first invention, the gas refrigerant compressed by the compressor is radiated by the radiator, and the refrigerant flowing out of the radiator is reduced in pressure by the decompressor through the primary side refrigerant passage of the heat exchanger, After evaporating in the evaporator, it passes through the secondary refrigerant passage of the heat exchanger and flows through the refrigerant path returning to the compressor, and the evaporator inlet temperature, which is the temperature of the refrigerant flowing into the evaporator, and the A controller that controls the degree of opening of the decompressor according to the degree of superheat determined based on the evaporator outlet temperature that is the temperature of the refrigerant flowing out of the evaporator, and the refrigerant flowing out of the radiator is the primary A control valve that controls whether to flow from the side refrigerant passage to the decompressor or from the bypass passage that bypasses the primary side refrigerant passage to the decompressor, and the refrigerant that exits the primary refrigerant passage and flows into the decompressor The inlet temperature of the decompressor that is the temperature of When a temperature sensor to detect is provided, and the detected temperature of the temperature sensor is lower than the predetermined temperature or lower than the predetermined temperature due to a decrease in the inlet temperature of the decompressor generated as a precursor to falling into a sleeping state where the desired degree of superheat cannot be taken, According to the operation of the control valve based on the operation of the control unit, the refrigerant passage is switched so that the refrigerant flowing out of the radiator flows into the bypass passage without flowing into the primary refrigerant passage .

第2発明の冷凍装置は、圧縮機で圧縮されたガス冷媒は放熱器で放熱され、前記放熱器から流出した冷媒は、熱交換器の一次側冷媒通路を通過して減圧器で減圧され、蒸発器にて蒸発した後、前記熱交換器の二次側冷媒通路を通過して前記圧縮機へ帰還する冷媒路を流れ、前記蒸発器に流入する冷媒の温度である蒸発器入口温度と前記蒸発器から流出する冷媒の温度である蒸発器出口温度とに基づいて求めた過熱度に応じて前記減圧器の開度を制御する制御部を有し前記蒸発器から流出した冷媒が前記二次側冷媒通路から前記圧縮機へ帰還するか前記二次側冷媒通路をバイパスするバイパス通路から前記圧縮機へ帰還するかを切り替え制御する制御弁と、前記一次側冷媒通路を出で前記減圧器に流入する冷媒の温度である前記減圧器の入口温度を検出する温度センサを設け、所期の前記過熱度が取れなくなる寝込み状態へ陥る前兆として生じる前記減圧器の入口温度の低下によって前記温度センサの検出温度が所定温度以下またはこの所定温度より低い場合、前記制御部の動作に基づく前記制御弁の動作によって、前記蒸発器から流出した冷媒が、前記二次側冷媒通路へ流れずに前記バイパス通路へ流れるように冷媒の通路を切り替えることを特徴とする。 In the refrigeration apparatus of the second invention, the gas refrigerant compressed by the compressor is radiated by the radiator, and the refrigerant flowing out of the radiator is reduced in pressure by the decompressor through the primary side refrigerant passage of the heat exchanger, After evaporating in the evaporator, it passes through the secondary refrigerant passage of the heat exchanger and flows through the refrigerant path returning to the compressor, and the evaporator inlet temperature, which is the temperature of the refrigerant flowing into the evaporator, and the a control unit for controlling the opening of the pressure reducer in accordance with the degree of superheat calculated based on the the temperature of the refrigerant flowing out from the evaporator evaporator outlet temperature, the refrigerant flowing out of the evaporator the two A control valve for controlling switching between returning from the secondary refrigerant passage to the compressor or returning from the bypass passage bypassing the secondary refrigerant passage to the compressor; and exiting the primary refrigerant passage to the decompressor The inlet of the pressure reducer which is the temperature of the refrigerant flowing into the A temperature sensor for detecting the temperature is provided, and the temperature detected by the temperature sensor is lower than the predetermined temperature or lower than the predetermined temperature due to a decrease in the inlet temperature of the pressure reducer, which is a sign of falling into a sleeping state where the desired degree of superheat cannot be obtained In this case, the operation of the control valve based on the operation of the control unit switches the refrigerant passage so that the refrigerant flowing out of the evaporator flows to the bypass passage without flowing to the secondary refrigerant passage. And

上記第1発明によれば、冷凍装置が寝込みの状態に陥る兆候を減圧器の入口温度を検出する温度センサによって検出することにより、制御部によって動作する制御弁によって、通常、放熱器から熱交換器の一次側冷媒通路を通って減圧器に流入する冷媒は、放熱器から熱交換器の一次側冷媒通路をバイパスして減圧器に流れるように制御されるため、寝込みを速やかに防止することができるものとなる。このように、寝込みを防止することで、過熱度を安定的に確保することができ、冷凍効率が安定して維持され、これにより消費電力を低減することができる。 According to the first aspect of the invention, by detecting a sign that the refrigeration apparatus is in the stagnation state by the temperature sensor that detects the inlet temperature of the decompressor, the control valve operated by the control unit normally performs heat exchange from the radiator. Since the refrigerant flowing into the decompressor through the primary refrigerant passage of the heat exchanger is controlled to flow from the radiator to the decompressor by bypassing the primary refrigerant passage of the heat exchanger, it is necessary to quickly prevent stagnation. Will be able to. In this way, by preventing stagnation, the degree of superheat can be stably secured, and the refrigeration efficiency can be stably maintained, thereby reducing the power consumption.

第2発明では、冷凍装置が寝込みの状態に陥る兆候を減圧器の入口温度を検出する温度センサによって検出し、制御部によって動作する制御弁によって、蒸発器から圧縮機の吸込み側に供給するガス冷媒が熱交換器をバイパスして圧縮機の吸込み側に流れるように制御するため、寝込みを防止することが的確に行えるものとなり、寝込みを防止することで、過熱度を安定的に確保することができ、冷凍効率が安定して維持され、これにより消費電力を低減することができる。なお、制御弁が減圧器の上流側に配置される場合には、高圧に耐えられるものであることが必要であり高価な制御弁となるが、制御弁が減圧器の下流側である低圧冷媒回路に配置されるため、このような懸念はない装置が提供できる。In the second invention, the gas supplied to the suction side of the compressor from the evaporator is detected by the temperature sensor that detects the inlet temperature of the pressure reducer, and the control valve that is operated by the control unit detects the sign that the refrigeration apparatus falls into the sleeping state. Since the refrigerant is controlled so that it bypasses the heat exchanger and flows to the suction side of the compressor, it is possible to accurately prevent stagnation and to ensure stable overheating by preventing stagnation. Thus, the refrigeration efficiency is stably maintained, thereby reducing power consumption. When the control valve is arranged on the upstream side of the pressure reducer, it needs to be able to withstand high pressure and becomes an expensive control valve, but the low pressure refrigerant whose control valve is on the downstream side of the pressure reducer Since it is arranged in a circuit, a device which does not have such a concern can be provided.

本発明の冷凍装置は、ガス冷媒を圧縮する圧縮機と、前記圧縮機で圧縮されたガス冷媒を放熱させる放熱器と、前記放熱器から流出するガス冷媒を減圧する減圧器と、前記減圧器で減圧されたガス冷媒を蒸発させ前記圧縮機の吸込み側に供給する蒸発器と、前記放熱器から前記減圧器に流入するガス冷媒と前記蒸発器から前記圧縮機の吸込み側に供給するガス冷媒とを熱交換させる熱交換器と、前記蒸発器に流入する前記冷媒の温度である蒸発器入口温度と前記蒸発器から流出する前記冷媒の温度である蒸発器出口温度とに基づいて求めた前記冷媒の前記過熱度に応じて前記減圧器の開度を制御する制御部を有し、前記減圧器に流入する前記冷媒の温度である減圧器入口温度が予め設定された所定温度以下またはこの所定温度より低い場合に、前記制御部の動作に基づき、前記熱交換器での正規の前記熱交換を行わないように制御弁によって前記冷媒の通路を切り替えるものであり、本発明の実施例を以下に記載する。   The refrigeration apparatus of the present invention includes a compressor that compresses a gas refrigerant, a radiator that dissipates the gas refrigerant compressed by the compressor, a decompressor that decompresses the gas refrigerant flowing out of the radiator, and the decompressor. An evaporator for evaporating the gas refrigerant depressurized in step (b) and supplying it to the suction side of the compressor; a gas refrigerant flowing from the radiator to the decompressor; and a gas refrigerant supplied from the evaporator to the suction side of the compressor And the evaporator outlet temperature, which is the temperature of the refrigerant flowing out of the evaporator, and the evaporator outlet temperature, which is the temperature of the refrigerant flowing out of the evaporator, A controller that controls an opening of the decompressor according to the degree of superheat of the refrigerant, and a decompressor inlet temperature, which is a temperature of the refrigerant flowing into the decompressor, is equal to or lower than a predetermined temperature set in advance. If below the temperature Based on the operation of the control unit, the control valve so as not to perform the heat exchange of the normal in the heat exchanger is intended to switch the passage of the refrigerant, describes an embodiment of the present invention are described below.

次に、本発明の実施の形態について説明する。図1は本発明の第1の実施形態として示す冷凍装置の構成図、図2は本発明の第2の実施形態として示す冷凍装置の構成図、図3は本発明の第3の実施形態として示す冷凍装置の構成図、図4は本発明の第4の実施形態として示す冷凍装置の構成図、図5は本発明の制御部によって行われる減圧器の開度制御に関する処理を説明するフローチャート、図6は本発明の冷凍装置が寝込みの状態に陥る兆候をキャッチして行なう冷媒通路の切り替え制御を説明するフローチャート、図7は本発明の冷凍装置が寝込みの状態に陥る兆候を示す減圧器入口温度、蒸発器入口温度、及び蒸発器出口温度の時間変化図、図8は本発明の冷凍装置の制御部40のハードウエア構成図、図9は本発明の冷凍装置のp−h線図(モリエル線図)、図10は従来の冷媒圧縮部が1段圧縮の圧縮機を採用した冷凍装置の構成図、図11は従来の冷媒圧縮部が2段圧縮の圧縮機を採用した冷凍装置の構成図、図12は冷凍装置の安定状態での減圧器入口温度、蒸発器入口温度、及び蒸発器出口温度の時間変化図、図13は冷凍装置の寝込み状態での減圧器入口温度の時間変化図である。   Next, an embodiment of the present invention will be described. FIG. 1 is a configuration diagram of a refrigeration apparatus shown as a first embodiment of the present invention, FIG. 2 is a configuration diagram of a refrigeration apparatus shown as a second embodiment of the present invention, and FIG. 3 is a third embodiment of the present invention. FIG. 4 is a block diagram of the refrigeration apparatus shown as the fourth embodiment of the present invention, FIG. 5 is a flowchart for explaining processing related to the opening degree control of the decompressor performed by the control unit of the present invention, FIG. 6 is a flowchart for explaining refrigerant passage switching control performed by catching a sign that the refrigeration apparatus of the present invention falls into a stagnation state, and FIG. 7 is a decompressor inlet showing the sign of the refrigeration apparatus of the present invention falling into a stagnation state. FIG. 8 is a hardware configuration diagram of the control unit 40 of the refrigeration apparatus of the present invention, and FIG. 9 is a ph diagram (FIG. 9) of the refrigeration apparatus of the present invention. Mollier diagram), Fig. 10 shows conventional FIG. 11 is a configuration diagram of a refrigeration apparatus in which a medium compression unit employs a compressor having a single-stage compression, FIG. 11 is a configuration diagram of a refrigeration apparatus in which a conventional refrigerant compression unit employs a two-stage compression compressor, and FIG. FIG. 13 is a time variation diagram of the decompressor inlet temperature when the refrigeration apparatus is in the sleeping state, and FIG. 13 is a time variation diagram of the decompressor inlet temperature, the evaporator inlet temperature, and the evaporator outlet temperature in the state.

先ず、本発明の実施の形態を図1の冷凍装置に基づき説明する。本発明において、「ガス冷媒」とは、気相状態の冷媒、液相状態の冷媒、及びそれら2層の共存状態をなす冷媒を指している。本発明に係る冷凍装置1は、二酸化炭素を冷媒として用いるものである。   First, an embodiment of the present invention will be described based on the refrigeration apparatus of FIG. In the present invention, the “gas refrigerant” refers to a gas-phase refrigerant, a liquid-phase refrigerant, and a refrigerant in a coexistence state of these two layers. The refrigeration apparatus 1 according to the present invention uses carbon dioxide as a refrigerant.

図1に示す本発明の冷凍装置1は、冷媒圧縮部が2段圧縮の圧縮機(コンプレッサ)11を採用した冷凍装置を示しており、冷媒ガスを第1圧縮部11Aで圧縮した後、中間冷却器12を通して更に第2圧縮部11Bで圧縮する2段圧縮の圧縮機(コンプレッサ)11と、この圧縮機11で圧縮されたガス冷媒を放熱させる放熱器(ガスクーラ)15と、後述の制御弁21と、放熱器15から流出するガス冷媒を減圧する減圧器(膨張弁)19と、減圧器19で減圧されたガス冷媒を蒸発させ圧縮機11の吸込み側に供給する蒸発器20と、放熱器15から減圧器19に流入するガス冷媒と蒸発器20から圧縮機11の吸込み側に供給するガス冷媒とを熱交換させる熱交換器(内部熱交換器)18と、減圧器19の入口温度を検出する温度センサ31と、蒸発器20の入口温度を検出する温度センサ32と、蒸発器20の出口温度を検出する温度センサ33と、制御部40を含んで構成されている。   A refrigerating apparatus 1 of the present invention shown in FIG. 1 shows a refrigerating apparatus in which a compressor (compressor) 11 having a two-stage refrigerant compression unit is employed, and after the refrigerant gas is compressed by the first compression unit 11A, A two-stage compressor (compressor) 11 that is further compressed by the second compressor 11B through the cooler 12, a radiator (gas cooler) 15 that radiates the gas refrigerant compressed by the compressor 11, and a control valve described later 21, a decompressor (expansion valve) 19 for decompressing the gas refrigerant flowing out from the radiator 15, an evaporator 20 for evaporating the gas refrigerant decompressed by the decompressor 19 and supplying the evaporated refrigerant to the suction side of the compressor 11, and heat radiation A heat exchanger (internal heat exchanger) 18 for exchanging heat between the gas refrigerant flowing into the decompressor 19 from the compressor 15 and the gas refrigerant supplied from the evaporator 20 to the suction side of the compressor 11, and the inlet temperature of the decompressor 19 Temperature sensor to detect A support 31, a temperature sensor 32 for detecting the inlet temperature of the evaporator 20, the temperature sensor 33 which detects the outlet temperature of the evaporator 20, is configured to include a control unit 40.

圧縮機(コンプレッサ)11は、冷媒を吸入圧縮する往復式、遠心式、又は回転式(ロータリー式)等の圧縮装置である。放熱器15は、外気等と熱交換させることにより冷媒を冷却する。   The compressor (compressor) 11 is a compression device such as a reciprocating type, a centrifugal type, or a rotary type (rotary type) that sucks and compresses refrigerant. The radiator 15 cools the refrigerant by exchanging heat with outside air or the like.

内部熱交換器18は、放熱器15から出た冷媒と、蒸発器20から出た冷媒とを熱交換させる。内部熱交換器18によって放熱器15から蒸発器20に向けて供給される冷媒の温度が下がり、これにより蒸発器20の入口と出口における冷媒のエンタルピの差が拡大し、蒸発器20で外気等の相手方物質からの熱の汲み上げ量を増やすことができる。   The internal heat exchanger 18 exchanges heat between the refrigerant output from the radiator 15 and the refrigerant output from the evaporator 20. The temperature of the refrigerant supplied from the radiator 15 to the evaporator 20 is lowered by the internal heat exchanger 18, whereby the difference in the enthalpy of the refrigerant at the inlet and outlet of the evaporator 20 is expanded, and the evaporator 20 It is possible to increase the amount of heat pumped from the other material.

減圧器19は、内部熱交換器18から流入する冷媒を減圧する。減圧器19は、例えば(EEV:Electronic Expansion Valve)等の自動制御可能な膨張弁であり、後述するように、制御部40によってその開度が自動的に制御される。なお、膨張弁を用いる場合はキャピラリチューブを併用してもよい。   The decompressor 19 decompresses the refrigerant flowing from the internal heat exchanger 18. The decompressor 19 is an automatically controllable expansion valve such as (EEV: Electronic Expansion Valve), and its opening degree is automatically controlled by the control unit 40 as described later. In addition, when using an expansion valve, you may use a capillary tube together.

蒸発器20は冷媒を蒸発させる。蒸発器20としては、例えば、乾式、又は満液式のものが用いられる。逆止弁21は圧縮機11に向かう冷媒の流れ方向が順方向となるように設けられ、圧縮機11から蒸発器20側への冷媒の逆流を阻止する。   The evaporator 20 evaporates the refrigerant. As the evaporator 20, for example, a dry type or a full type is used. The check valve 21 is provided so that the flow direction of the refrigerant toward the compressor 11 is the forward direction, and prevents the reverse flow of the refrigerant from the compressor 11 to the evaporator 20 side.

第1センサ31、第2センサ32、及び第3センサ33は、例えば、サーミスタ等の温度センサである。このうち第1センサ31は、減圧器19に流入する冷媒の温度、すなわち、減圧器19の入口における冷媒温度(以下、減圧器入口温度と称する。)を検出する。第2センサ32は、蒸発器20に流入する冷媒の温度、すなわち、蒸発器20の入口における冷媒温度(以下、蒸発器入口温度と称する。)を検出する。第3センサ33は、蒸発器20から出た冷媒の温度、すなわち、蒸発器20の出口における冷媒温度(以下、蒸発器出口温度と称する。)を検出する。なお、測定範囲において冷媒の温度と圧力が比例関係にある場合は第1センサ31、第2センサ32、及び第3センサ33として圧力センサを用いてもよい。   The first sensor 31, the second sensor 32, and the third sensor 33 are temperature sensors such as a thermistor, for example. Among these, the 1st sensor 31 detects the temperature of the refrigerant | coolant which flows in into the pressure reduction device 19, ie, the refrigerant | coolant temperature in the inlet_port | entrance of the pressure reduction device 19 (henceforth a pressure reduction device inlet temperature). The second sensor 32 detects the temperature of the refrigerant flowing into the evaporator 20, that is, the refrigerant temperature at the inlet of the evaporator 20 (hereinafter referred to as the evaporator inlet temperature). The third sensor 33 detects the temperature of the refrigerant discharged from the evaporator 20, that is, the refrigerant temperature at the outlet of the evaporator 20 (hereinafter referred to as the evaporator outlet temperature). When the refrigerant temperature and pressure are in a proportional relationship in the measurement range, pressure sensors may be used as the first sensor 31, the second sensor 32, and the third sensor 33.

制御部40は、第1センサ31、第2センサ32、及び第3センサ33から入力される測定値に基づき減圧器19に開度制御のための制御信号を送信し、減圧器19の開度を制御する。図8に制御部40のハードウエア構成を示す。同図に示すように、制御部40は、バスを介して接続された、CPU41、メモリ42、入力インタフェース43、及び出力インタフェース44を有している。このうち入力インタフェース43は、第1センサ31、第2センサ32、及び第3センサ33と通信可能に接続し、各センサ31,32,33から送られてくる測定値を受信する。出力インタフェース44は、減圧器19と通信可能に接続し、減圧器19の開度を制御するための制御信号を減圧器19に送信する。   The control unit 40 transmits a control signal for opening degree control to the decompressor 19 based on the measurement values input from the first sensor 31, the second sensor 32, and the third sensor 33, and the opening degree of the decompressor 19 To control. FIG. 8 shows a hardware configuration of the control unit 40. As shown in the figure, the control unit 40 has a CPU 41, a memory 42, an input interface 43, and an output interface 44 connected via a bus. Among these, the input interface 43 is communicably connected to the first sensor 31, the second sensor 32, and the third sensor 33, and receives measurement values sent from the sensors 31, 32, 33. The output interface 44 is communicably connected to the decompressor 19 and transmits a control signal for controlling the opening degree of the decompressor 19 to the decompressor 19.

次に、図9に示すp−h線図(モリエル線図)とともに冷凍装置1の冷凍サイクルについて説明する。同図において、aは飽和液線、bは飽和蒸気線、Cは冷媒(二酸化炭素)の臨界点である。   Next, the refrigeration cycle of the refrigeration apparatus 1 will be described with a ph diagram (Mollier diagram) shown in FIG. In the figure, a is a saturated liquid line, b is a saturated vapor line, and C is a critical point of the refrigerant (carbon dioxide).

まず圧縮機11において、冷媒は所定の圧力(以下、高圧と称する。)まで圧縮される(符号1→2の過程)。圧縮後の冷媒は放熱器15に流入する。放熱器15に流入した冷媒は、ここで外気等の相手方物質と熱交換されて所定温度まで冷却され(符号2→3の過程)、内部熱交換器18に流入する。内部熱交換器18に流入した冷媒は、ここで蒸発器20から内部熱交換器18に流入する冷媒と熱交換されてさらに冷却される(符号3→4の過程)。   First, in the compressor 11, the refrigerant is compressed to a predetermined pressure (hereinafter referred to as high pressure) (process of reference numeral 1 → 2). The compressed refrigerant flows into the radiator 15. The refrigerant that has flowed into the radiator 15 is heat-exchanged with a counterpart substance such as outside air, cooled to a predetermined temperature (process of reference numeral 2 → 3), and flows into the internal heat exchanger 18. The refrigerant that has flowed into the internal heat exchanger 18 is further cooled by exchanging heat with the refrigerant that flows into the internal heat exchanger 18 from the evaporator 20 (step 3 → 4).

内部熱交換器18から出た冷媒は、次に減圧器19において減圧されて液化し(符号4→5で示す過程)、蒸発器20に流入する。蒸発器20において、冷媒は外気等の相手方物質から熱を奪って気化し(符号5→6で示す過程)、内部熱交換器18に流入する。   The refrigerant discharged from the internal heat exchanger 18 is then depressurized and liquefied by the decompressor 19 (process indicated by reference numeral 4 → 5) and flows into the evaporator 20. In the evaporator 20, the refrigerant takes heat from a counterpart substance such as outside air and vaporizes (a process indicated by reference numeral 5 → 6) and flows into the internal heat exchanger 18.

内部熱交換器18に流入した冷媒は、ここで放熱器15から流入する冷媒と熱交換されて温められた後(符号6→1)、逆止弁21を通って圧縮機11の吸込み側に戻る。   The refrigerant flowing into the internal heat exchanger 18 is heated by heat exchange with the refrigerant flowing from the radiator 15 (reference numeral 6 → 1), and then passes through the check valve 21 to the suction side of the compressor 11. Return.

以上が冷凍装置1の冷凍サイクルである。次に制御部40によって行われる減圧器19の開度制御について説明する。   The above is the refrigeration cycle of the refrigeration apparatus 1. Next, the opening degree control of the decompressor 19 performed by the control unit 40 will be described.

制御部40の機能として、制御部40の測定値取得部が、第1センサ31、第2センサ32、及び第3センサ33から入力される測定値を取得する。また制御部40の過熱度算出部が、第2センサ32及び第3センサ33で測定した測定値から蒸発器20の出口における冷媒の過熱度を求める。具体的には、前記過熱度算出部は、第2センサ32の測定値から求められる蒸発器入口温度と、第3センサ33の測定値から求められる蒸発器出口温度との差を求め、この差を過熱度とする。また制御部40の減圧器制御部は、第1センサ31から入力される測定値から求まる減圧器入口温度と、前記過熱度算出部によって求められる上記過熱度とに基づいて、減圧器19の開度を制御する。なお、以上に説明した制御部40の各機能は、制御部40のハードウエアにより、又は、CPU41がメモリ42に記憶されているプログラムを実行することにより実現される。   As a function of the control unit 40, the measurement value acquisition unit of the control unit 40 acquires measurement values input from the first sensor 31, the second sensor 32, and the third sensor 33. Further, the superheat degree calculation unit of the control unit 40 obtains the superheat degree of the refrigerant at the outlet of the evaporator 20 from the measurement values measured by the second sensor 32 and the third sensor 33. Specifically, the superheat degree calculation unit obtains a difference between the evaporator inlet temperature obtained from the measured value of the second sensor 32 and the evaporator outlet temperature obtained from the measured value of the third sensor 33, and this difference is obtained. Is the degree of superheat. The decompressor control unit of the control unit 40 opens the decompressor 19 based on the decompressor inlet temperature obtained from the measurement value input from the first sensor 31 and the superheat degree obtained by the superheat degree calculator. Control the degree. Each function of the control unit 40 described above is realized by the hardware of the control unit 40 or when the CPU 41 executes a program stored in the memory 42.

ところで、本発明者は、冷凍装置1が前述した寝込み状態に陥る際、その前兆として、減圧器入口温度が極端に低下する現象が生じることを知見している。図7に寝込み状態に陥る過程における、減圧器入口温度、蒸発器入口温度、及び蒸発器出口温度の時間変化を上記実験結果の一例として示す。同図に示すように、寝込みの状態に陥る際(時間toの付近で寝込みに陥っている)は、その前兆として、減圧器入口温度が極端に低下している(例えば、時間ta、tb、tc)ことを知見している。   By the way, when this inventor falls into the sleeping state mentioned above, this inventor has discovered that the phenomenon in which the pressure-reducer inlet temperature falls extremely as a precursor. FIG. 7 shows, as an example of the above experimental results, time changes of the decompressor inlet temperature, the evaporator inlet temperature, and the evaporator outlet temperature in the process of falling into the sleeping state. As shown in the figure, when falling into a sleeping state (falling in the vicinity of time to), the pressure at the inlet of the decompressor is extremely lowered (for example, time ta, tb, tc).

そこで本発明では、減圧器19の入口温度が極端に低下した場合に、これをキャッチして、寝込みの状態に陥ることを防ぐことができる冷凍装置1を提供する。その手段として、蒸発器20に流入する冷媒の温度である蒸発器入口温度と蒸発器20から流出する冷媒の温度である蒸発器出口温度とに基づいて求めた冷媒の過熱度に応じて減圧器19の開度を制御する制御部40を有し、減圧器19に流入する冷媒の温度である減圧器入口温度が予め設定された温度より低い場合には、制御部40の動作に基づき、熱交換器(内部熱交換器)18での正規の熱交換を行わないように制御弁22によって冷媒の通路を切り替え制御する。   Therefore, in the present invention, when the inlet temperature of the decompressor 19 is extremely lowered, the refrigeration apparatus 1 that can catch this and prevent falling into a sleeping state is provided. As a means for this, a decompressor is used according to the degree of superheat of the refrigerant determined based on the evaporator inlet temperature, which is the temperature of the refrigerant flowing into the evaporator 20, and the evaporator outlet temperature, which is the temperature of the refrigerant flowing out of the evaporator 20. 19 has a control unit 40 for controlling the opening degree, and when the decompressor inlet temperature, which is the temperature of the refrigerant flowing into the decompressor 19, is lower than a preset temperature, based on the operation of the control unit 40, The control valve 22 switches and controls the refrigerant passage so that regular heat exchange in the exchanger (internal heat exchanger) 18 is not performed.

この具体的手段として、減圧器19の入口温度を検出する温度センサ31の検出温度が所定温度(定常状態での下限温度・・図7と図12に示す略T1よりも十分低い温度、例えばT4)以下の場合、またはこの所定温度より低い場合に、制御部40の動作に基づく制御弁22の動作によって、放熱器15から減圧器19に流入するガス冷媒が熱交換器18をバイパスして減圧器19に流れるように制御する。   As a specific means, the detected temperature of the temperature sensor 31 for detecting the inlet temperature of the decompressor 19 is a predetermined temperature (a lower limit temperature in a steady state, a temperature sufficiently lower than approximately T1 shown in FIGS. 7 and 12, for example, T4 ) In the following cases or when the temperature is lower than the predetermined temperature, the operation of the control valve 22 based on the operation of the control unit 40 causes the gas refrigerant flowing from the radiator 15 to the decompressor 19 to bypass the heat exchanger 18 and reduce the pressure. The flow is controlled to flow to the container 19.

制御弁22の一つとして三方弁が用いられる。この三方弁(三方制御弁)22を用いた冷凍装置1の構成を図1に示す。この三方弁(三方制御弁)22は、放熱器15から流出する冷媒が流入する入口22Aと、この入口22Aから流入した冷媒が熱交換器18の一次側冷媒通路18Aへ流れる第1出口22Bと、入口22Aから流入した冷媒が熱交換器18をバイパスして減圧器19に流入するバイパス通路23へ流れる第2出口22Cを備えている。   A three-way valve is used as one of the control valves 22. A configuration of the refrigeration apparatus 1 using the three-way valve (three-way control valve) 22 is shown in FIG. The three-way valve (three-way control valve) 22 includes an inlet 22A through which refrigerant flowing out of the radiator 15 flows, and a first outlet 22B through which refrigerant flowing from the inlet 22A flows into the primary refrigerant passage 18A of the heat exchanger 18. In addition, a second outlet 22C flows into the bypass passage 23 where the refrigerant flowing from the inlet 22A bypasses the heat exchanger 18 and flows into the decompressor 19.

図2には、減圧器19の入口温度を検出する温度センサ31の検出温度が、所定温度(定常状態での下限温度・・図7と図12に示す温度T1よりも十分低い温度T4)以下の場合、またはこの所定温度T4より低い場合に、制御部40の動作に基づく制御弁22の動作によって、蒸発器20から圧縮機11の吸込み側に供給するガス冷媒が、熱交換器18をバイパスして圧縮機11の吸込み側に流れるように制御する構成を示している。この制御弁22の一つとして三方弁(三方制御弁)22を用いた冷凍装置の構成である。この三方弁(三方制御弁)22は、蒸発器20から流出する冷媒が流入する入口22Aと、この入口22Aから流入した冷媒が熱交換器18の二次側冷媒通路18Bへ流れる第1出口22Bと、入口22Aから流入した冷媒が熱交換器18をバイパスして圧縮機11の吸込み側に供給されるバイパス通路23Aへ流れる第2出口22Cを備えた構成である。   In FIG. 2, the temperature detected by the temperature sensor 31 that detects the inlet temperature of the decompressor 19 is equal to or lower than a predetermined temperature (the lower limit temperature in the steady state... The temperature T4 sufficiently lower than the temperature T1 shown in FIGS. 7 and 12). In this case, or when the temperature is lower than the predetermined temperature T4, the gas refrigerant supplied from the evaporator 20 to the suction side of the compressor 11 bypasses the heat exchanger 18 by the operation of the control valve 22 based on the operation of the control unit 40. Thus, a configuration is shown in which control is performed so as to flow to the suction side of the compressor 11. This is a configuration of a refrigeration apparatus using a three-way valve (three-way control valve) 22 as one of the control valves 22. The three-way valve (three-way control valve) 22 includes an inlet 22A through which refrigerant flowing out of the evaporator 20 flows, and a first outlet 22B through which the refrigerant flowing from the inlet 22A flows into the secondary refrigerant passage 18B of the heat exchanger 18. And the refrigerant | coolant which flowed in from the inlet 22A is the structure provided with the 2nd outlet 22C which flows into the bypass channel 23A supplied to the suction side of the compressor 11 by bypassing the heat exchanger 18.

図3には、冷媒圧縮部が1段圧縮の圧縮機11を採用した冷凍装置1の構成を示している。図1と同様部分は同一符号を付しており、その動作も図1で説明した上記説明と同様である。   FIG. 3 shows a configuration of the refrigeration apparatus 1 that employs a compressor 11 having a one-stage compression refrigerant compressor. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the operation thereof is the same as that described above with reference to FIG.

図4には、冷媒圧縮部が1段圧縮の圧縮機11を採用した冷凍装置1の構成を示している。図2と同様部分は同一符号を付しており、その動作も図2で説明した上記説明と同様である。   FIG. 4 shows a configuration of the refrigeration apparatus 1 that employs a compressor 11 having a one-stage compression refrigerant compressor. The same parts as those in FIG. 2 are denoted by the same reference numerals, and the operations thereof are also the same as those described above with reference to FIG.

図1及び図3の冷凍装置1は、制御弁22が減圧器19の上流側の高圧冷媒回路に設けられているため、この高圧に耐えられる構成が必要であるが、図2及び図4の冷凍装置1は、制御弁22が減圧器19の下流側の低圧冷媒回路に設けられているため、図1及び図3の構成に比して、制御弁22の耐高圧設計が不要となり、低コスト化が図れる。   The refrigeration apparatus 1 in FIGS. 1 and 3 requires a configuration that can withstand this high pressure because the control valve 22 is provided in the high-pressure refrigerant circuit upstream of the decompressor 19. Since the control valve 22 is provided in the low-pressure refrigerant circuit on the downstream side of the decompressor 19, the refrigeration apparatus 1 does not require a high pressure resistant design of the control valve 22 as compared with the configuration of FIGS. 1 and 3. Cost can be reduced.

上記の各構成において、制御部40によって行われる減圧器19の開度制御に関する処理を図5に示すフローチャートと共に説明する。同図に示す処理は、リアルタイムに実行するようにしてもよいし、例えば数秒〜数十秒程度の制御周期で定期的に実行するようにしてもよい。また、圧縮機11を再始動させる直前や、冷凍装置1が蒸発器20の除霜運転の実施直後に実行するようにしてもよい。また冷凍装置1が被冷却物の貯蔵室の扉の開閉有無や開閉回数、開放時間等、冷凍負荷が大きく変動する可能性がある時点で実行するようにしてもよい。   In each of the above-described configurations, processing related to the opening degree control of the decompressor 19 performed by the control unit 40 will be described with reference to the flowchart shown in FIG. The process shown in the figure may be executed in real time, or may be executed periodically at a control cycle of, for example, several seconds to several tens of seconds. Further, it may be executed immediately before restarting the compressor 11 or immediately after the refrigeration apparatus 1 performs the defrosting operation of the evaporator 20. Further, the refrigeration apparatus 1 may be executed when the refrigeration load may fluctuate greatly, such as whether or not the door of the storage chamber of the object to be cooled is opened and closed, the number of opening and closing, and the opening time.

図5において、ステップS1では、制御部40の測定値取得部が、第1乃至第3センサ31〜33の測定値を取得する。ステップS2では、制御部40の過熱度算出部が、第2センサ32及び第3センサ33から入力される測定値から蒸発器20の出口における冷媒の過熱度を求めるように動作する。   In FIG. 5, in step S <b> 1, the measurement value acquisition unit of the control unit 40 acquires measurement values of the first to third sensors 31 to 33. In step S <b> 2, the superheat degree calculation unit of the control unit 40 operates so as to obtain the superheat degree of the refrigerant at the outlet of the evaporator 20 from the measurement values input from the second sensor 32 and the third sensor 33.

ステップS3では、制御部40の減圧器制御部が、制御部40の過熱度算出部によって求められた過熱度と、予め設定されてメモリ42に記憶されている上限閾値とを比較する。上限閾値は、過熱度の適正範囲における上限値に設定される。なお、過熱度の適正範囲は、冷凍装置1の冷凍能力、冷凍装置1の配管長、蒸発器20の蒸発温度、内部熱交換器18の容量や種類等、個々の冷凍装置1の属性に応じて定まる。   In step S <b> 3, the decompressor control unit of the control unit 40 compares the superheat degree obtained by the superheat degree calculation unit of the control unit 40 with the upper limit threshold value that is preset and stored in the memory 42. The upper threshold value is set to an upper limit value in an appropriate range of the degree of superheat. Note that the appropriate range of superheat depends on the attributes of the individual refrigeration apparatus 1, such as the refrigeration capacity of the refrigeration apparatus 1, the piping length of the refrigeration apparatus 1, the evaporation temperature of the evaporator 20, the capacity and type of the internal heat exchanger 18, and the like. Determined.

比較の結果、過熱度が上限閾値を超えている場合、すなわち、過熱度が適正範囲を逸脱している場合には(ステップS3:YES)、ステップS4に進む。一方、過熱度が上限閾値を超えていない場合には(ステップS3:NO)、ステップS5に進む。   If the degree of superheat exceeds the upper threshold value as a result of the comparison, that is, if the degree of superheat deviates from the appropriate range (step S3: YES), the process proceeds to step S4. On the other hand, when the degree of superheat does not exceed the upper limit threshold (step S3: NO), the process proceeds to step S5.

ステップS4では、制御部40の減圧器制御部が減圧器19の開度を微少量だけ増加させる。即ち、減圧器19が電子式膨張弁の場合は、その開度制御を行うステッピングモータの1ステップを単位として設定される動作によって、その弁開度を増加させる。ステップS5では、制御部40の減圧器制御部が、制御部40の過熱度算出部によって求められた過熱度と、予め設定されてメモリ42に記憶されている下限閾値とを比較する。なお、下限閾値は、過熱度の適正範囲における下限値に設定される。比較の結果、過熱度が下限閾値よりも小さい場合、すなわち、過熱度が適正範囲を逸脱している場合には(ステップS5:YES)、ステップS6に進む。ステップS6では、制御部40の減圧器制御部が減圧器19の開度を微少量だけ減少させる。即ち、減圧器19が電子式膨張弁の場合は、その開度制御を行うステッピングモータのステップを単位として設定される動作によって、その弁開度を減少させる。一方、過熱度が下限閾値以上である場合には(ステップS5:NO)、ステップS7に進み減圧器19の開度をそのままの状態に維持する。   In step S4, the decompressor controller of the controller 40 increases the opening of the decompressor 19 by a small amount. That is, when the pressure reducer 19 is an electronic expansion valve, the valve opening degree is increased by an operation that is set in units of one step of the stepping motor that controls the opening degree. In step S <b> 5, the decompressor control unit of the control unit 40 compares the superheat degree obtained by the superheat degree calculation unit of the control unit 40 with the lower limit threshold value that is preset and stored in the memory 42. In addition, a lower limit threshold value is set to the lower limit value in the appropriate range of the degree of superheat. If the degree of superheat is smaller than the lower limit threshold as a result of the comparison, that is, if the degree of superheat deviates from the appropriate range (step S5: YES), the process proceeds to step S6. In step S6, the decompressor controller of the controller 40 decreases the opening of the decompressor 19 by a minute amount. That is, when the pressure reducer 19 is an electronic expansion valve, the valve opening degree is decreased by an operation set in units of steps of a stepping motor that controls the opening degree. On the other hand, when the degree of superheat is equal to or greater than the lower limit threshold (step S5: NO), the process proceeds to step S7, and the opening of the decompressor 19 is maintained as it is.

次に寝込みの前兆を検出する処理について説明する。上記のように過熱度の制御を行っているときに、図7に示すように、冷凍装置1が寝込み状態に陥る際、その前兆として、減圧器入口温度が極端に低下する現象が生じる。図7に一例として示すように、寝込みの状態に陥る際(時間toの付近で寝込みに陥っている)は、その前兆として、減圧器入口温度が極端に低下する(例えば、時間ta、tb、tc)ので、この低下した温度を第1センサ31で検出する。   Next, a process for detecting a sign of falling asleep will be described. When the superheat degree is controlled as described above, as shown in FIG. 7, when the refrigeration apparatus 1 falls into the sleeping state, a phenomenon that the pressure at the decompressor inlet is extremely lowered occurs as a precursor. As shown as an example in FIG. 7, when falling into a state of falling asleep (falling in the vicinity of time to), the pressure at the inlet of the decompressor is extremely lowered (for example, time ta, tb, Therefore, the decreased temperature is detected by the first sensor 31.

図6において、ステップS1では、制御部40の測定値取得部が、第1乃至第3センサ31〜33の測定値を取得する。ステップS8では、制御部40の減圧器制御部が、第1センサ31の測定値に基づく減圧器入口温度と、予め設定されてメモリ42に記憶されている所定温度とを比較する。この所定温度は、実験結果等に基づいて、寝込みの前兆を検出するのに適切な温度に設定する。実施例では、この所定温度は、定常状態での下限温度(図12に示すT1)よりも十分低い温度、例えばT4に設定する。このため、ステップS8では、制御部40の減圧器制御部が、第1センサ31の測定値に基づく減圧器入口温度と、メモリ42に記憶されているこの所定温度(T4)とを比較する。   In FIG. 6, in step S <b> 1, the measurement value acquisition unit of the control unit 40 acquires the measurement values of the first to third sensors 31 to 33. In step S <b> 8, the decompressor control unit of the control unit 40 compares the decompressor inlet temperature based on the measurement value of the first sensor 31 with a predetermined temperature that is preset and stored in the memory 42. This predetermined temperature is set to an appropriate temperature for detecting a sign of falling asleep based on experimental results and the like. In the embodiment, the predetermined temperature is set to a temperature sufficiently lower than the lower limit temperature (T1 shown in FIG. 12) in the steady state, for example, T4. For this reason, in step S8, the decompressor control unit of the control unit 40 compares the decompressor inlet temperature based on the measurement value of the first sensor 31 with the predetermined temperature (T4) stored in the memory 42.

この比較によって、減圧器入口温度が所定温度(T4)以下の場合、またはこの所定温度(T4)より低い場合に(図7のta時点がこれに相当する)、ステップS9に進み、制御部40の動作に基づく制御弁22の動作に入る。即ち、図1及び図3の構成では、三方弁(三方制御弁)22が切り替わり、これまで、放熱器15から流出して入口22Aへ流入した冷媒が、第1出口22Bから熱交換器18の一次側冷媒通路18Aへ流れていた状態から、入口22Aから流入した冷媒が熱交換器18をバイパスして減圧器19に流入するバイパス通路23へ流れるように、第2出口22Cから流出するように切り替わる。   By this comparison, when the decompressor inlet temperature is equal to or lower than the predetermined temperature (T4) or lower than the predetermined temperature (T4) (corresponding to the time point ta in FIG. 7), the process proceeds to step S9, and the control unit 40 The operation of the control valve 22 is started based on the operation. That is, in the configuration of FIG. 1 and FIG. 3, the three-way valve (three-way control valve) 22 is switched, and the refrigerant that has flowed out of the radiator 15 and into the inlet 22A so far has passed through the first outlet 22B to the heat exchanger 18. From the state of flowing to the primary refrigerant passage 18A, the refrigerant flowing from the inlet 22A flows out from the second outlet 22C so as to flow to the bypass passage 23 that bypasses the heat exchanger 18 and flows into the pressure reducer 19. Switch.

また、図2及び図4の構成では、この比較によって、減圧器入口温度が所定温度(T4)以下の場合、またはこの所定温度(T4)より低い場合に(図7のta時点がこれに相当する)、ステップS9に進み、制御部40の動作に基づく制御弁22の動作に入る。即ち、三方弁(三方制御弁)22が切り替わり、これまで、蒸発器20から流出して入口22Aへ流入した冷媒が、第1出口22Bから熱交換器18の二次側冷媒通路18Bへ流れていた状態から、入口22Aから流入した冷媒が熱交換器18をバイパスして圧縮機11の吸込み側に流入するバイパス通路23Aへ流れるように、第2出口22Cから流出する状態に切り替わる。   In the configurations of FIGS. 2 and 4, this comparison shows that when the decompressor inlet temperature is equal to or lower than the predetermined temperature (T4) or lower than the predetermined temperature (T4) (the time point ta in FIG. 7 corresponds to this). In step S9, the control valve 22 is operated based on the operation of the control unit 40. That is, the three-way valve (three-way control valve) 22 is switched, and the refrigerant that has flown out of the evaporator 20 and has flowed into the inlet 22A so far has flowed from the first outlet 22B to the secondary side refrigerant passage 18B of the heat exchanger 18. Then, the refrigerant flows from the second outlet 22C so that the refrigerant flowing from the inlet 22A flows into the bypass passage 23A that bypasses the heat exchanger 18 and flows into the suction side of the compressor 11.

上記のように、ステップS8で制御部40の減圧器制御部が、第1センサ31の測定値に基づく減圧器入口温度と、予め設定されてメモリ42に記憶されている所定温度とを比較し、減圧器入口温度が所定温度(T4)以上、またはこの所定温度(T4)より高い場合は、制御部40の動作に基づきステップS10に進み、図1及び図3の構成では、三方弁(三方制御弁)22がそのままの状態、即ち、放熱器15から流出して入口22Aへ流入した冷媒が、第1出口22Bから熱交換器18の一次側冷媒通路18Aへ流れている状態を維持し、また、図2及び図4の構成では、蒸発器20から流出して入口22Aへ流入した冷媒が、第1出口22Bから熱交換器18の二次側冷媒通路18Bへ流れる状態を維持する。   As described above, the decompressor control unit of the control unit 40 compares the decompressor inlet temperature based on the measured value of the first sensor 31 with the predetermined temperature stored in the memory 42 in advance in step S8. When the decompressor inlet temperature is equal to or higher than the predetermined temperature (T4) or higher than the predetermined temperature (T4), the process proceeds to step S10 based on the operation of the control unit 40. In the configuration of FIGS. Control valve) 22 is maintained as it is, that is, the refrigerant flowing out of the radiator 15 and flowing into the inlet 22A flows from the first outlet 22B to the primary refrigerant passage 18A of the heat exchanger 18; 2 and 4, the refrigerant that has flowed out of the evaporator 20 and has flowed into the inlet 22 </ b> A maintains the state of flowing from the first outlet 22 </ b> B to the secondary-side refrigerant passage 18 </ b> B of the heat exchanger 18.

上記では、ステップS8において、制御部40の減圧器制御部が、第1センサ31の測定値に基づく減圧器入口温度と、予め設定されてメモリ42に記憶されている所定温度(例えばT4)とを比較するようにしているが、この場合、図7に示すように、寝込みの前兆として減圧器入口温度が複数回、所定温度(T4)に低下する減少があるため、1回の温度低下によって熱交換器18をバイパスするように三方弁(三方制御弁)22を切り替えるのではなく、所定時間内に複数回、所定温度(T4)に低下したことを検出したとき、熱交換器18をバイパスするように三方弁(三方制御弁)22を切り替えるようにすることができる。このようにすることにより、寝込みの前兆ではない原因によって1回だけ温度低下があった場合には、通常の状態での過熱制御状態を維持できる安定動作が得られるものとなる。   In the above, in step S8, the decompressor control unit of the control unit 40 uses the decompressor inlet temperature based on the measurement value of the first sensor 31 and the predetermined temperature (for example, T4) that is preset and stored in the memory 42. In this case, as shown in FIG. 7, there is a decrease in the decompressor inlet temperature to a predetermined temperature (T4) as a precursor to sleep, so that the temperature decreases once. Instead of switching the three-way valve (three-way control valve) 22 so as to bypass the heat exchanger 18, the heat exchanger 18 is bypassed when it is detected that the temperature has decreased to a predetermined temperature (T4) a plurality of times within a predetermined time. Thus, the three-way valve (three-way control valve) 22 can be switched. By doing in this way, when there is only one temperature drop due to a cause that is not a sign of sleep, a stable operation that can maintain the overheat control state in the normal state can be obtained.

なお、上記では、ステップS8において、制御部40の減圧器制御部が、第1センサ31の測定値に基づく減圧器入口温度と、予め設定されてメモリ42に記憶されている所定温度T4とを比較するようにしているが、寝込みの前兆として極端に低下する温度低下を捉えて、的確に寝込みの前兆であることを捉えるために、T4よりも更に低い温度低下が生じる時点、例えば図7のtb時点で生じる温度T5を所定温度に設定しておくことにより、1回の温度低下によっても、的確に寝込みの前兆を捉えることができる。   In the above description, in step S8, the decompressor control unit of the control unit 40 calculates the decompressor inlet temperature based on the measurement value of the first sensor 31 and the predetermined temperature T4 that is preset and stored in the memory 42. Although the comparison is made, in order to grasp the temperature decrease that is extremely lowered as a precursor to falling asleep and accurately grasp that it is a precursor to falling asleep, for example, the time point when a temperature drop lower than T4 occurs, for example, FIG. By setting the temperature T5 generated at the time point tb to a predetermined temperature, it is possible to accurately capture a sign of falling asleep even by a single temperature drop.

以上に説明したように、本発明では、冷凍装置1の減圧器(膨張弁)19の入口温度によって寝込みの発生の前兆を監視し、前兆を検知すると内部熱交換器18をバイパスするように制御弁22を切り替えることにより、内部熱交換器18による熱交換を中止して、減圧器(膨張弁)19の入口温度の極度の低下を防止して、安定した過熱度制御状態を維持するように制御している。   As described above, in the present invention, the sign of occurrence of stagnation is monitored based on the inlet temperature of the decompressor (expansion valve) 19 of the refrigeration apparatus 1, and control is performed so as to bypass the internal heat exchanger 18 when the sign is detected. By switching the valve 22, the heat exchange by the internal heat exchanger 18 is stopped, an extreme decrease in the inlet temperature of the decompressor (expansion valve) 19 is prevented, and a stable superheat degree control state is maintained. I have control.

これによって、寝込みの状態に陥ってしまうのを確実に防ぐことができ、寝込みの状態に陥る可能性があるにも拘わらず、過熱度制御が行われて減圧器の開度が増加し寝込みを誘発してしまうのを防ぐことができる。また寝込みの発生が無くなることで、過熱度を安定的に確保することができ、これにより冷凍効率が安定して維持されて冷凍装置1の消費電力を抑えることができる。   As a result, it is possible to reliably prevent falling into a sleeping state, and although there is a possibility of falling into a sleeping state, the degree of superheat is controlled to increase the opening of the decompressor, and to sleep. It can be prevented from triggering. Further, since the occurrence of stagnation is eliminated, the degree of superheat can be stably ensured, whereby the refrigeration efficiency is stably maintained and the power consumption of the refrigeration apparatus 1 can be suppressed.

上記では制御弁22に三方弁(三方制御弁)22を採用したが、1つの冷媒入口と1つの冷媒出口を備えた2方弁を2個用いて、上記同様の冷媒通路の切り替えを行なうようにしてもよい。   In the above description, the three-way valve (three-way control valve) 22 is used as the control valve 22. However, the two-way valves having one refrigerant inlet and one refrigerant outlet are used to switch the refrigerant passage in the same manner as described above. It may be.

なお、中間冷却器12は、第1圧縮部11Aから吐出された冷媒を外気等の相手方物質と熱交換させて冷却し、第2圧縮部11Bに吸込まれる冷媒の温度を低下させるものである。中間冷却器12を設けることで第2圧縮部11Bから出た冷媒の温度上昇が抑えられ、その結果冷凍装置1の冷凍効率が向上する。また液圧縮を防ぐため、蒸発器20から流出する冷媒に含まれる液体成分を分離するアキュムレータを第1圧縮部11Aの前段に設けてもよい。   The intermediate cooler 12 cools the refrigerant discharged from the first compression unit 11A by exchanging heat with a counterpart substance such as outside air, and lowers the temperature of the refrigerant sucked into the second compression unit 11B. . By providing the intercooler 12, the temperature rise of the refrigerant discharged from the second compression unit 11B is suppressed, and as a result, the refrigeration efficiency of the refrigeration apparatus 1 is improved. In order to prevent liquid compression, an accumulator for separating the liquid component contained in the refrigerant flowing out of the evaporator 20 may be provided in the front stage of the first compression unit 11A.

以上の実施形態では、蒸発器20における熱交換により外気等の被冷却物質を冷却する冷凍装置1について説明したが、本発明は放熱器15から放熱される熱を利用して給湯水の温度を上昇させる給湯器等に適用することもできる。このため、本発明は、上記実施形態に限定されず、本発明の技術的範囲を逸脱しない限り種々の変更が考えられ、それに係る種々の実施形態を包含するものである。   In the above embodiment, the refrigeration apparatus 1 that cools a substance to be cooled such as outside air by heat exchange in the evaporator 20 has been described. However, the present invention uses the heat radiated from the radiator 15 to control the temperature of the hot water supply water. It can also be applied to a hot water heater that is raised. For this reason, this invention is not limited to the said embodiment, A various change can be considered unless it deviates from the technical scope of this invention, and the various embodiment which concerns on it is included.

本発明の第1の実施形態として示す冷凍装置の構成図である。(実施例1)It is a block diagram of the freezing apparatus shown as the 1st Embodiment of this invention. Example 1 本発明の第2の実施形態として示す冷凍装置の構成図である。(実施例1)It is a block diagram of the freezing apparatus shown as the 2nd Embodiment of this invention. Example 1 本発明の第3の実施形態として示す冷凍装置の構成図である。(実施例1)It is a block diagram of the freezing apparatus shown as the 3rd Embodiment of this invention. Example 1 本発明の第4の実施形態として示す冷凍装置の構成図である。(実施例1)It is a block diagram of the freezing apparatus shown as the 4th Embodiment of this invention. Example 1 本発明の制御部によって行われる減圧器の開度制御に関する処理を説明するフローチャートである。(実施例1)It is a flowchart explaining the process regarding the opening degree control of the decompressor performed by the control part of this invention. Example 1 本発明の冷凍装置が寝込みの状態に陥る兆候をキャッチして行なう冷媒通路の切り替え制御を説明するフローチャートである。(実施例1)It is a flowchart explaining the switching control of the refrigerant path performed by catching the sign that the refrigeration apparatus of the present invention falls into a sleeping state. Example 1 本発明の冷凍装置が寝込みの状態に陥る兆候を示す減圧器入口温度、蒸発器入口温度、及び蒸発器出口温度の時間変化図である。(実施例1)It is a time change figure of decompressor inlet temperature, evaporator inlet temperature, and evaporator outlet temperature which shows a sign that the freezing apparatus of the present invention falls into a state of falling. Example 1 本発明の冷凍装置の制御部40のハードウエア構成図である。(実施例1)It is a hardware block diagram of the control part 40 of the freezing apparatus of this invention. Example 1 本発明の冷凍装置のp−h線図(モリエル線図)である。(実施例1)It is a ph diagram (Mollier diagram) of the refrigeration apparatus of the present invention. Example 1 従来の冷媒圧縮部が1段圧縮の圧縮機を採用した冷凍装置の構成図である。It is a block diagram of the freezing apparatus which employ | adopted the compressor whose conventional refrigerant | coolant compression part employ | adopted 1 step | paragraph compression. 従来の冷媒圧縮部が2段圧縮の圧縮機を採用した冷凍装置の構成図である。It is a block diagram of the freezing apparatus which employ | adopted the compressor whose conventional refrigerant | coolant compression part employ | adopted two-stage compression. 冷凍装置の安定状態での減圧器入口温度、蒸発器入口温度、及び蒸発器出口温度の時間変化図である。It is a time change figure of decompressor inlet temperature, evaporator inlet temperature, and evaporator outlet temperature in the stable state of a refrigerating device. 冷凍装置の寝込み状態での減圧器入口温度の時間変化図である。It is a time change figure of decompressor inlet_port | entrance temperature in the sleeping state of a freezing apparatus.

符号の説明Explanation of symbols

1・・・・・冷凍装置
11・・・・圧縮機
11A・・・第1圧縮部
11B・・・第2圧縮部
12・・・・中間冷却器
15・・・・放熱器
18・・・・内部熱交換器
19・・・・減圧器
20・・・・蒸発器
21・・・・逆止弁
22・・・・制御弁(三方弁)
23・・・・バイパス通路
23A・・・バイパス通路
31・・・・第1温度センサ
32・・・・第2温度センサ
33・・・・第3温度センサ
40・・・・制御部
DESCRIPTION OF SYMBOLS 1 ... Refrigeration apparatus 11 ... Compressor 11A ... 1st compression part 11B ... 2nd compression part 12 ... Intermediate cooler 15 ... Radiator 18 ... · Internal heat exchanger 19 ··· Pressure reducer 20 ··· Evaporator 21 · · · Check valve 22 · · · Control valve (three-way valve)
23 .... Bypass passage 23A ... Bypass passage 31 ... First temperature sensor 32 ... Second temperature sensor 33 ... Third temperature sensor 40 ... Control unit

Claims (2)

圧縮機で圧縮されたガス冷媒は放熱器で放熱され、前記放熱器から流出した冷媒は、熱交換器の一次側冷媒通路を通過して減圧器で減圧され、蒸発器にて蒸発した後、前記熱交換器の二次側冷媒通路を通過して前記圧縮機へ帰還する冷媒路を流れ、前記蒸発器に流入する冷媒の温度である蒸発器入口温度と前記蒸発器から流出する冷媒の温度である蒸発器出口温度とに基づいて求めた過熱度に応じて前記減圧器の開度を制御する制御部を有し、
前記放熱器から流出した冷媒が前記一次側冷媒通路から前記減圧器に流れるか前記一次側冷媒通路をバイパスするバイパス通路から前記減圧器に流れるかを切り替え制御する制御弁と、前記一次側冷媒通路を出で前記減圧器に流入する冷媒の温度である前記減圧器の入口温度を検出する温度センサを設け、
所期の前記過熱度が取れなくなる寝込み状態へ陥る前兆として生じる前記減圧器の入口温度の低下によって前記温度センサの検出温度が所定温度以下またはこの所定温度より低い場合、前記制御部の動作に基づく前記制御弁の動作によって、前記放熱器から流出した冷媒が、前記一次側冷媒通路へ流れずに前記バイパス通路へ流れるように冷媒の通路を切り替えることを特徴とする冷凍装置。
The gas refrigerant compressed by the compressor is radiated by the radiator, and the refrigerant flowing out of the radiator passes through the primary side refrigerant passage of the heat exchanger, is depressurized by the decompressor, and is evaporated by the evaporator. The temperature at the evaporator inlet that is the temperature of the refrigerant that flows through the refrigerant path that passes through the secondary refrigerant passage of the heat exchanger and returns to the compressor and flows into the evaporator, and the temperature of the refrigerant that flows out of the evaporator A controller for controlling the opening of the decompressor according to the degree of superheat determined based on the evaporator outlet temperature,
A control valve that controls whether the refrigerant flowing out of the radiator flows from the primary-side refrigerant passage to the decompressor or from a bypass passage that bypasses the primary-side refrigerant passage to the decompressor; and the primary-side refrigerant passage Providing a temperature sensor for detecting the inlet temperature of the decompressor, which is the temperature of the refrigerant flowing out into the decompressor
Based on the operation of the control unit when the temperature detected by the temperature sensor is lower than the predetermined temperature or lower than the predetermined temperature due to a decrease in the inlet temperature of the pressure reducer that occurs as a precursor to falling into a sleeping state where the desired degree of superheat cannot be obtained A refrigerating apparatus, wherein the refrigerant passage is switched by the operation of the control valve so that the refrigerant flowing out of the radiator flows into the bypass passage without flowing into the primary refrigerant passage .
圧縮機で圧縮されたガス冷媒は放熱器で放熱され、前記放熱器から流出した冷媒は、熱交換器の一次側冷媒通路を通過して減圧器で減圧され、蒸発器にて蒸発した後、前記熱交換器の二次側冷媒通路を通過して前記圧縮機へ帰還する冷媒路を流れ、前記蒸発器に流入する冷媒の温度である蒸発器入口温度と前記蒸発器から流出する冷媒の温度である蒸発器出口温度とに基づいて求めた過熱度に応じて前記減圧器の開度を制御する制御部を有し
前記蒸発器から流出した冷媒が前記二次側冷媒通路から前記圧縮機へ帰還するか前記二次側冷媒通路をバイパスするバイパス通路から前記圧縮機へ帰還するかを切り替え制御する制御弁と、前記一次側冷媒通路を出で前記減圧器に流入する冷媒の温度である前記減圧器の入口温度を検出する温度センサを設け、
所期の前記過熱度が取れなくなる寝込み状態へ陥る前兆として生じる前記減圧器の入口温度の低下によって前記温度センサの検出温度が所定温度以下またはこの所定温度より低い場合、前記制御部の動作に基づく前記制御弁の動作によって、前記蒸発器から流出した冷媒が、前記二次側冷媒通路へ流れずに前記バイパス通路へ流れるように冷媒の通路を切り替えることを特徴とする冷凍装置。
The gas refrigerant compressed by the compressor is radiated by the radiator, and the refrigerant flowing out of the radiator passes through the primary side refrigerant passage of the heat exchanger, is depressurized by the decompressor, and is evaporated by the evaporator. The temperature at the evaporator inlet that is the temperature of the refrigerant that flows through the refrigerant path that passes through the secondary refrigerant passage of the heat exchanger and returns to the compressor and flows into the evaporator, and the temperature of the refrigerant that flows out of the evaporator A controller for controlling the opening of the decompressor according to the degree of superheat determined based on the evaporator outlet temperature ,
A control valve for switchingly controlling whether the refrigerant flowing out of the evaporator returns from the secondary refrigerant passage to the compressor or returns from the bypass passage bypassing the secondary refrigerant passage to the compressor; Providing a temperature sensor for detecting an inlet temperature of the decompressor, which is a temperature of the refrigerant flowing out of the primary refrigerant passage and flowing into the decompressor;
Based on the operation of the control unit when the temperature detected by the temperature sensor is lower than the predetermined temperature or lower than the predetermined temperature due to a decrease in the inlet temperature of the pressure reducer that occurs as a precursor to falling into a sleeping state where the desired degree of superheat cannot be obtained A refrigerating apparatus according to claim 1, wherein the refrigerant passage is switched by the operation of the control valve so that the refrigerant flowing out of the evaporator flows into the bypass passage without flowing into the secondary refrigerant passage .
JP2007193502A 2007-07-25 2007-07-25 Refrigeration equipment Expired - Fee Related JP4997012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193502A JP4997012B2 (en) 2007-07-25 2007-07-25 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193502A JP4997012B2 (en) 2007-07-25 2007-07-25 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2009030840A JP2009030840A (en) 2009-02-12
JP4997012B2 true JP4997012B2 (en) 2012-08-08

Family

ID=40401548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193502A Expired - Fee Related JP4997012B2 (en) 2007-07-25 2007-07-25 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4997012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271030A (en) * 2009-04-24 2010-12-02 Daikin Ind Ltd Refrigerating system
JP5881379B2 (en) * 2011-11-10 2016-03-09 株式会社前川製作所 Fishing boat refrigeration equipment
JPWO2014002145A1 (en) * 2012-06-29 2016-05-26 三菱電機株式会社 Air conditioning apparatus and control method thereof
US11268746B2 (en) * 2019-12-17 2022-03-08 Heatcraft Refrigeration Products Llc Cooling system with partly flooded low side heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196450B2 (en) * 1997-11-06 2008-12-17 株式会社デンソー Supercritical refrigeration cycle
JP4346157B2 (en) * 1999-06-24 2009-10-21 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP2001235239A (en) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd Supercritical vapor compressing cycle system
JP3811116B2 (en) * 2001-10-19 2006-08-16 松下電器産業株式会社 Refrigeration cycle equipment
JP4731806B2 (en) * 2003-12-01 2011-07-27 パナソニック株式会社 Refrigeration cycle apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system

Also Published As

Publication number Publication date
JP2009030840A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
CN102667372B (en) For the low suction pressure protection of refrigerant vapor compression system
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
EP2631562B1 (en) Heat pump-type air-warming device
US10845096B2 (en) Refrigeration cycle device
CN102419024B (en) Refrigeration cycle apparatus and hot-water heating apparatus
CN102734969B (en) The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit
US20120318006A1 (en) Defrost operations and apparatus for a transport refrigeration system
JP6223469B2 (en) Air conditioner
EP2886976B1 (en) Refrigerating device
US8752398B2 (en) Refrigerating device, in particular for aircraft
JP4462435B2 (en) Refrigeration equipment
US20120167604A1 (en) Refrigeration cycle apparatus
JP2008096033A (en) Refrigerating device
US11384961B2 (en) Cooling system
JP2006177597A (en) Freezing equipment, and air conditioner using it
JP4997012B2 (en) Refrigeration equipment
JP2008241125A (en) Refrigerating unit
JP2008075919A (en) Chiller device
JP2015038388A (en) Refrigeration device for container
JP2011153784A (en) Refrigerating cycle apparatus
WO2020208714A1 (en) Refrigeration device
JP2004225924A (en) Refrigeration cycle control system
US20230042444A1 (en) Heat pump system and method for controlling the same
JP4911125B2 (en) vending machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees