JP4995767B2 - Positioning device and scanning probe microscope using the same - Google Patents

Positioning device and scanning probe microscope using the same Download PDF

Info

Publication number
JP4995767B2
JP4995767B2 JP2008122675A JP2008122675A JP4995767B2 JP 4995767 B2 JP4995767 B2 JP 4995767B2 JP 2008122675 A JP2008122675 A JP 2008122675A JP 2008122675 A JP2008122675 A JP 2008122675A JP 4995767 B2 JP4995767 B2 JP 4995767B2
Authority
JP
Japan
Prior art keywords
axis direction
positioning device
directions
driven
driving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008122675A
Other languages
Japanese (ja)
Other versions
JP2009008661A (en
Inventor
将史 渡邉
正敏 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2008122675A priority Critical patent/JP4995767B2/en
Priority to US12/129,350 priority patent/US8001831B2/en
Publication of JP2009008661A publication Critical patent/JP2009008661A/en
Application granted granted Critical
Publication of JP4995767B2 publication Critical patent/JP4995767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、駆動素子を用いて被対象物を第1の方向と前記第1の方向に直交する第2の方向及びこれら第1の方向と第2の方向に対して直交する第3の方向に移動させることにより前記被対象物の位置決めを行う位置決め装置、及びこれを用いた走査型プローブ顕微鏡に関するものである。 The present invention uses a drive element to move an object to a first direction, a second direction orthogonal to the first direction, and a third direction orthogonal to the first direction and the second direction. The present invention relates to a positioning device that positions the object by moving the object to a position, and a scanning probe microscope using the positioning device.

走査型プローブ顕微鏡とは、自由端に先鋭化した探針を有するカンチレバーと、カンチレバーと被測定物(以下、サンプルと称する。)の相対位置を微小移動させる移動機構を備えており、探針先端とサンプルとの間に働く相互作用によるカンチレバーの自由端の変位を検出しながら、探針をサンプル表面に沿って、第1の方向(以下、X軸方向と称する。)及びこれに直交する第2の方向(以下、Y軸方向と称する。)を含む面方向、すなわちサンプル表面に水平な面方向(以下、XY方向と称する。)に走査し、サンプルの表面形状や物性などの情報を3次元的に測定する装置である。走査型プローブ顕微鏡によってサンプルの表面形状を測定する際には、XY方向に走査しながらカンチレバーのたわみ量からサンプルと探針の間隔を測定し、サンプルと探針の間隔が一定になるようにXY方向と直交する方向、すなわちサンプル表面に垂直な方向(以下、Z軸方向と称する。)に動かすことで、Z軸方向の移動量からサンプルの表面形状を測定する(例えば、非特許文献1参照。)。 The scanning probe microscope includes a cantilever having a sharpened probe at a free end, and a moving mechanism that minutely moves the relative position of the cantilever and a measured object (hereinafter referred to as a sample). While detecting the displacement of the free end of the cantilever due to the interaction between the sample and the sample, the probe is moved along the sample surface in the first direction (hereinafter referred to as the X-axis direction) and in the first direction orthogonal thereto. Scanning in a plane direction including two directions (hereinafter referred to as the Y-axis direction), that is, a plane direction horizontal to the sample surface (hereinafter referred to as the XY direction), information on the surface shape, physical properties, etc. of the sample is obtained. It is a device that measures dimensionally. When measuring the surface shape of a sample with a scanning probe microscope, the distance between the sample and the probe is measured from the deflection amount of the cantilever while scanning in the XY direction, and the distance between the sample and the probe is kept constant. The surface shape of the sample is measured from the amount of movement in the Z-axis direction by moving in a direction perpendicular to the direction, that is, a direction perpendicular to the sample surface (hereinafter referred to as the Z-axis direction) (for example, see Non-Patent Document 1). .)

前記の走査型プローブ顕微鏡の移動機構として主に圧電素子を使用した位置決め装置が用いられるが、前述のようにサンプルと探針の相対位置を移動して表面形状に追従させて測定するため、走査型プローブ顕微鏡で用いる位置決め装置はXY方向へはサンプル面に沿って所定の速度で走査するだけでよいが、Z軸方向へはサンプル表面の微細な凹凸に追従しなければならないため、サンプル表面の傾斜によってXY方向よりも高速な応答性が求められる。 A positioning device that mainly uses a piezoelectric element is used as the moving mechanism of the scanning probe microscope. However, as described above, since the relative position of the sample and the probe is moved to follow the surface shape, scanning is performed. The positioning device used in the scanning probe microscope only needs to scan along the sample surface in the XY direction at a predetermined speed, but in the Z-axis direction, it must follow minute irregularities on the sample surface. Responsiveness faster than the XY direction is required due to the inclination.

しかしながら、複数軸方向へ駆動する位置決め装置の応答性は、前記位置決め装置を構成する高速で駆動したい軸方向への機構のみではなく低速で駆動する軸方向への機構を含めた位置決め装置全体の共振周波数によって決定される。そのため、複数軸を組み合わせた位置決め装置の場合、特定方向のみに高速に駆動するということができなくなる。 However, the responsiveness of the positioning device driven in a plurality of axial directions is not limited to the resonance of the entire positioning device including not only the mechanism in the axial direction to be driven at high speed but also the mechanism in the axial direction driven at low speed. Determined by frequency. Therefore, in the case of a positioning device that combines a plurality of axes, it cannot be driven at high speed only in a specific direction.

そのため、従来の走査型プローブ顕微鏡では、Z軸方向への応答性を向上させるためにXY方向とZ軸方向の2つの移動機構をサンプル側とカンチレバー側に分離する方法(特許文献1を参照。)や、高速駆動する移動機構にその反作用を打ち消すように駆動素子を取り付けるカウンターバランス方式(特許文献2を参照。)が使われている。しかし、前者の例ではサンプルをXY方向に駆動した際にサンプルの位置ずれが生じる場合があることや、質量の大きなサンプルでは質量の1/2乗に反比例して共振周波数が低下するため高速にXY方向に駆動させることができないといった問題がある。また、後者の例ではカウンターバランスとなる駆動素子をもう一つ追加することとなるため、その駆動素子を駆動するために合計で2倍の電流が必要となり、2つの電源または2倍の容量を持つ電源が必要になるという問題がある。
特許庁ホームページ HOME>資料室(その他参考情報)>標準技術集>表面構造の原子領域分析(技術内容、図1、図2) 特開平10−339735号公報(第3頁、図1) 特開2001−330425号公報(第4−5頁、図1、図2)
Therefore, in the conventional scanning probe microscope, in order to improve the responsiveness in the Z-axis direction, the two moving mechanisms in the XY direction and the Z-axis direction are separated into the sample side and the cantilever side (see Patent Document 1). Or a counterbalance system (see Patent Document 2) in which a driving element is attached to a moving mechanism that is driven at high speed so as to cancel the reaction. However, in the former example, when the sample is driven in the X and Y directions, the sample may be misaligned. In the case of a sample having a large mass, the resonance frequency decreases in inverse proportion to the 1/2 power of the mass. There is a problem that it cannot be driven in the XY directions. In the latter example, another drive element that is counterbalanced is added, so that a total of twice as much current is required to drive the drive element, and two power supplies or twice the capacity is required. There is a problem that a power source is required.
JPO Home Page HOME> Reference Room (Other Reference Information)> Standard Technology Collection> Atomic Analysis of Surface Structure (Technical Contents, Fig. 1 and Fig. 2) Japanese Patent Laid-Open No. 10-339735 (page 3, FIG. 1) JP 2001-330425 A (page 4-5, FIGS. 1 and 2)

本発明は、複数軸方向へ駆動する位置決め装置において、高速駆動する移動機構を低速駆動する移動機構と組み合わせた際にクロストークによって高速駆動する軸方向の共振周波数が低下することを防止し、全体における制御可能な周波数帯域を向上することにより高速駆動する軸方向の応答性を向上し、高速な測定を可能とする走査型プローブ顕微鏡に好適な位置決め装置及びこれを用いた走査型プローブ顕微鏡を提供することを目的とする。 The present invention prevents a decrease in the resonance frequency in the axial direction driven at high speed due to crosstalk when a moving mechanism driven at high speed is combined with a moving mechanism driven at low speed in a positioning device driven in a plurality of axial directions. Provides a positioning device suitable for a scanning probe microscope and a scanning probe microscope using the same, improving the response in the axial direction of high-speed driving by improving the controllable frequency band in The purpose is to do.

本願の第1の発明は、第1の方向(以下、X軸方向と称する)と該X軸方向に直交する第2の方向(以下、Y軸方向と称する)を含む面の略中央に平面略正方形をなし、少なくともその一辺に前記X軸方向に撓む第1の弾性支持体と前記少なくとも一辺に直交する少なくとも一辺に前記Y軸方向に撓む第2の弾性支持体を有する第1,2の方向(以下、XY方向と称する)への被駆動部を有し、略板状をなすXY方向へのステージ部と、前記X軸方向に伸縮し、その一端が前記第1の弾性支持体を押圧する第1の駆動素子(以下、X軸方向の駆動素子と称する)と、前記Y軸方向に伸縮し、その一端が前記第2の弾性支持体を押圧する第2の駆動素子(以下、Y軸方向の駆動素子と称する)と、前記XY方向への被駆動部の第1の面側にその一端が配され、前記X軸方向及びY軸方向と直交する第3の方向(以下、Z軸方向と称する)に伸縮する第3の駆動素子(以下、Z軸方向の駆動素子と称する)と、前記XY方向へのステージ部の前記Z軸方向の駆動素子が配される前記第1の面と相対向する第2の面側を、その対向面が前記第2の面に平行に相対向するように前記XY方向へのステージ部を支持する支持部よりなり、前記Z軸方向の駆動素子の前記XY方向への被駆動部と反対側の端部側に被対象物(以下、サンプルと称する)を載置し、前記X軸方向,Y軸方向,Z軸方向の駆動素子をそれぞれの方向に伸縮させることにより、前記サンプルを前記X軸方向,Y軸方向,Z軸方向に移動させることにより前記サンプルの位置決めを行う位置決め装置において、
前記XY方向へのステージ部の前記第2の面の少なくとも前記XY方向への被駆動部に対応する面と、これに相対向する前記支持部の対向面の間が所定の厚さの間隙を有し、前記間隙に粘性剤が注入されていることを特徴とするものである。
The first invention of the present application is substantially flat at the center of the plane including the first direction (hereinafter referred to as the X-axis direction) and the second direction (hereinafter referred to as the Y-axis direction) perpendicular to the X-axis direction. A first elastic support having a substantially square shape and having a first elastic support body bent in the X-axis direction on at least one side thereof and a second elastic support body bent in the Y-axis direction on at least one side perpendicular to the at least one side; 2 having a driven portion in the direction (hereinafter referred to as XY direction), a stage portion in the XY direction having a substantially plate shape, and extending and contracting in the X-axis direction, one end of which is the first elastic support A first driving element that presses the body (hereinafter referred to as a driving element in the X-axis direction), and a second driving element that extends and contracts in the Y-axis direction and that has one end pressing the second elastic support ( Hereinafter, it is referred to as a drive element in the Y-axis direction) and the first surface side of the driven part in the XY direction A third drive element (hereinafter referred to as a drive element in the Z-axis direction) that expands and contracts in a third direction (hereinafter referred to as the Z-axis direction) orthogonal to the X-axis direction and the Y-axis direction, The second surface side opposite to the first surface on which the drive element in the Z-axis direction of the stage portion in the XY direction is arranged is opposite to the second surface side in parallel to the second surface. Thus, an object (hereinafter referred to as a sample) is formed on the end side opposite to the driven part in the XY direction of the driving element in the Z-axis direction. ) And moving the sample in the X-axis direction, Y-axis direction, and Z-axis direction by expanding and contracting the driving elements in the X-axis direction, Y-axis direction, and Z-axis direction in the respective directions. In the positioning device for positioning the sample by
A gap having a predetermined thickness is formed between at least the surface corresponding to the driven portion in the XY direction of the second surface of the stage portion in the XY direction and the opposing surface of the support portion facing the second surface. And a viscous agent is injected into the gap.

なお、前記XY方向への被駆動部に第1,2の弾性支持体を介して固定部が配されてなり、これらXY方向への被駆動部と固定部と第1の弾性支持体及び第2の弾性支持体は、単一の金属ブロックなどから作製される一体構造をなし、それぞれのZ軸方向の上面と下面はつぎ目の無い平面であることが好ましい。このような一体成形は、放電加工等にて達成できる。 A fixed part is arranged on the driven part in the XY direction via first and second elastic supports, and the driven part and fixed part in the XY direction, the first elastic support and the first It is preferable that the elastic support body 2 has an integral structure made of a single metal block or the like, and the upper and lower surfaces in the Z-axis direction are seamless planes. Such integral molding can be achieved by electric discharge machining or the like.

また、前記Z軸方向の駆動素子はXY方向への被駆動部の第1の面上に接着固定され、Z軸方向の駆動素子はXY方向への被駆動部の支持部への対向面の外周縁からZ軸方向への垂線に囲まれた内側に固定されるものとし、Z軸方向の駆動素子の重心が、XY方向への被駆動部の重心のZ軸方向の直上に位置することが望ましい。 The driving element in the Z-axis direction is bonded and fixed on the first surface of the driven part in the XY direction, and the driving element in the Z-axis direction is provided on the surface facing the support part of the driven part in the XY direction. The center of gravity of the driving element in the Z-axis direction should be positioned directly above the center of gravity of the driven part in the XY direction in the Z-axis direction. Is desirable.

さらに、本願の第2の発明は、前記位置決め装置において、前記間隙の厚さが5〜50μmとなされていることを特徴とするものである。より好ましくは、10〜30μmである。 Furthermore, the second invention of the present application is characterized in that, in the positioning device, the gap has a thickness of 5 to 50 μm. More preferably, it is 10-30 micrometers.

前記間隙が50μmよりも厚いとXY方向へのステージ部と支持部との間隔が離れすぎて、粘性剤が流動してしまい、Z軸方向に駆動したときにXY方向への被駆動部がZ軸方向に振動し、XY方向への被駆動部のZ軸方向への振幅が増大するため、好ましくない。また、前記間隙の厚さが5μmよりも小さいと粘性剤の注入が困難となるめ好ましくない。 If the gap is thicker than 50 μm, the distance between the stage part and the support part in the XY direction is too far, the viscous agent flows, and the driven part in the XY direction becomes Z when driven in the Z-axis direction. Since it vibrates in the axial direction and the amplitude of the driven part in the XY direction increases in the Z-axis direction, it is not preferable. Further, if the thickness of the gap is smaller than 5 μm, it is not preferable because it becomes difficult to inject the viscous agent.

さらに本願の第3の発明は、先述の位置決め装置において、前記XY方向へのステージ部のXY方向への被駆動部以外及び第1,2の弾性支持体以外の部分に対応する第2の面と前記支持部の対向面の間にスペーサーが配され、前記スペーサーの厚さが50μm以下であり、且つ前記粘性剤に含まれる微粒子の直径をrとしたときに、r+(Rzb+Rzh)÷2よりも大きいことを特徴とするものである。 Further, the third invention of the present application is the above-described positioning device, wherein the second surface corresponds to a portion other than the driven portion in the XY direction of the stage portion in the XY direction and a portion other than the first and second elastic supports. And a spacer is disposed between the opposed surfaces of the support part, the thickness of the spacer is 50 μm or less, and r + (Rzb + Rzh) / 2, where r is the diameter of the fine particles contained in the viscous agent Is also large.

ここで、Rzhは前記XY方向への被駆動部の前記第2の面の凹凸の最大高さ及びRzbはその対向面となる前記支持部の凹凸の最大高さであり、いずれも表面粗さを表す。これらは、粗さ曲線から、その平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線から最も高い山頂までの高さYpと最も低い谷底までの深さYvとの和により示されるものである。なお、本発明においては、前記基準長さlを本発明の位置決め装置のX軸方向およびY軸方向への最大変位量と規定することとする。 Here, Rzh is the maximum height of the unevenness of the second surface of the driven portion in the XY direction, and Rzb is the maximum height of the unevenness of the supporting portion that is the opposite surface, both of which are surface roughness Represents. These are extracted from the roughness curve by the reference length l in the direction of the average line, and are indicated by the sum of the height Yp from the average line of the extracted portion to the highest peak and the depth Yv to the lowest valley bottom. It is what In the present invention, the reference length l is defined as the maximum displacement amount in the X-axis direction and the Y-axis direction of the positioning device of the present invention.

前記スペーサーの厚さは前記間隙の厚さを50μm以下とするために50μm以下とし、また実験の結果、前記スペーサーの厚さが50μmよりも厚いとXY方向への被駆動部と支持部の間の間隙が広くなり、その間隙に充填された粘性剤が容易にXY方向に流れてしまうため、スペーサーの厚さは50μm以下であるとする。さらにXY方向への被駆動部と支持部の間隔が粘性剤に含まれる微粒子の直径よりも狭くなる部分が生じないために、スペーサーの厚さの下限を上述のような関係式により規定している。 The thickness of the spacer is 50 μm or less in order to make the gap thickness 50 μm or less. As a result of the experiment, if the spacer thickness is thicker than 50 μm, the distance between the driven part and the support part in the XY direction The gap is widened, and the viscosity agent filled in the gap easily flows in the X and Y directions. Therefore, the thickness of the spacer is assumed to be 50 μm or less. Furthermore, in order not to generate a portion where the distance between the driven portion and the support portion in the XY direction becomes narrower than the diameter of the fine particles contained in the viscous agent, the lower limit of the spacer thickness is defined by the relational expression as described above. Yes.

さらに本願の第4の発明は、上述の位置決め装置において、前記XY方向への被駆動部の前記Z軸方向の駆動素子が配される前記第1の面側に凹部を設け、前記凹部内に前記Z軸方向の駆動素子が配されてなり、前記XY方向への被駆動部と前記Z軸方向の駆動素子と前記サンプルの全体の重心が、前記X軸方向の駆動素子及びY軸方向の駆動素子のZ軸方向において相対向する上面と下面の間に入るように調整されていることを特徴とするものである。 Further, a fourth invention of the present application is the above positioning device, wherein a concave portion is provided on the first surface side where the driving element in the Z-axis direction of the driven portion in the XY direction is disposed, and the concave portion is provided in the concave portion. The drive element in the Z-axis direction is arranged, and the driven portion in the XY direction, the drive element in the Z-axis direction, and the center of gravity of the entire sample are in the X-axis direction drive element and the Y-axis direction. The drive element is adjusted so as to be between the upper and lower surfaces facing each other in the Z-axis direction.

さらにまた、本願の第5の発明は、上述の位置決め装置において、前記粘性剤がグリースであること、第6の発明は、前記粘性剤が潤滑油であること、第7の発明は、前記粘性剤がゲル状物質であることを特徴とするものである。なお、前記グリースまたは粘性剤としては、含まれる微粒子の直径が5μm以下であり、間隙から流れ出さない程度の粘度を有し、稠度が300(1/10mm)以下であるものが好ましい。また、前記ゲル状物質としては、シリコーンゲルが挙げられる。ただし、ゲルの場合は、高粘度であるため、駆動時の抵抗が大きくなるために留意が必要となる。 Still further, a fifth invention of the present application is the above positioning apparatus, wherein the viscous agent is grease, the sixth invention is that the viscous agent is a lubricating oil, and the seventh invention is the viscosity described above. The agent is a gel substance. The grease or viscosity agent preferably has a fine particle diameter of 5 μm or less, a viscosity that does not flow out of the gap, and a consistency of 300 (1/10 mm) or less. Moreover, a silicone gel is mentioned as said gel-like substance. However, in the case of a gel, since it has high viscosity, the resistance at the time of driving becomes large, so care must be taken.

さらにまた、本願の第8の発明は、前記位置決め装置において、間隙の厚さは5〜50μmであることが好ましいことから、前記位置決め装置の前記第2の面と前記支持部の対向面の間に前記グリースまたは粘性剤に含まれる微粒子が挟まれることを防止するために、XY方向への被駆動部の前記第2の面の表面粗さを表す最大高さをRzhとし、前記支持部の対向面の表面粗さを示す最大高さをRzbとしたときに、Rzhは10μm以下であり、Rzbは10μm以下であることを特徴とするものである。 Furthermore, according to an eighth aspect of the present invention, in the positioning device, since the thickness of the gap is preferably 5 to 50 μm, the gap between the second surface of the positioning device and the opposing surface of the support portion is In order to prevent fine particles contained in the grease or the viscosity agent from being sandwiched between the maximum height representing the surface roughness of the second surface of the driven portion in the XY direction is Rzh, When the maximum height indicating the surface roughness of the opposing surface is Rzb, Rzh is 10 μm or less, and Rzb is 10 μm or less.

また、本願の第9の発明は、サンプルに近接又は接触させるプローブと、前記サンプルをX軸方向と前記X軸方向に直交するY軸方向及びこれらX軸方向とY軸方向に対して直交するZ軸方向に移動させることにより前記サンプルの位置決めを行う位置決め装置よりなる走査型プローブ顕微鏡において、前記位置決め装置として、上述した位置決め装置のうちいずれかを用いたことを特徴とするものである。 The ninth invention of the present application is directed to a probe that is close to or in contact with a sample, the Y-axis direction perpendicular to the X-axis direction and the X-axis direction, and the X-axis direction and the Y-axis direction. In a scanning probe microscope comprising a positioning device that positions the sample by moving in the Z-axis direction, any of the positioning devices described above is used as the positioning device.

本発明に係る位置決め装置においては、XY方向への被駆動部の支持部への平滑な対向面である第2の面と、前記支持部の平滑な対向面を、所定の厚さの間隙をあけて相対向させ、前記間隙に粘性剤を注入して支持部上にXY方向への被駆動部を固定し、前記XY方向への被駆動部の前記支持部への対向面と相対向する第1の面側に高速駆動するZ軸方向への駆動素子を配している。 In the positioning device according to the present invention, the second surface, which is a smooth facing surface to the support portion of the driven portion in the XY direction, and the smooth facing surface of the support portion are provided with a gap having a predetermined thickness. Open and face each other, inject a viscous agent into the gap to fix the driven part in the XY direction on the support part, and face the surface of the driven part facing the support part in the XY direction. A drive element in the Z-axis direction for high-speed driving is disposed on the first surface side.

本発明の位置決め装置においては、このような構造を有することから、前記XY方向への被駆動部が粘性剤の粘性により支持部に対して密着するように固定されることとなり、位置決め装置のXY方向への被駆動部が支持部に密着せず、浮いているような状態と比較して、Z軸方向の駆動素子を駆動したときに、XY方向への被駆動部に加わる力によって前記XY方向への被駆動部がZ軸方向に振動する振幅が減少する。 Since the positioning device of the present invention has such a structure, the driven portion in the XY direction is fixed so as to be in close contact with the support portion due to the viscosity of the viscous agent. Compared with a state in which the driven part in the direction does not adhere to the support part and floats, when the driving element in the Z-axis direction is driven, the force applied to the driven part in the XY direction causes the XY The amplitude at which the driven part in the direction vibrates in the Z-axis direction decreases.

本発明の位置決め装置においては、このような構造を有することから、前記XY方向への被駆動部が粘性剤の粘性により支持部に対して密着するように固定されることとなり、前記XY方向への被駆動部のZ軸方向への剛性が高くなり、Z軸方向の振動モードの共振周波数が向上する。すなわち、Z軸方向への振動の共振周波数が高くなり、Z軸方向の駆動がより高速化する。通常、このような形状の位置決め装置の外形はXY方向の長さがZ軸方向の長さよりも長いため、1次モードの共振はZ軸方向への振動モードとなることが多いが、そのZ軸方向への振動の共振周波数が向上するため、位置決め装置全体の制御帯域を制限する1次モードの共振周波数が向上することとなる。 Since the positioning device of the present invention has such a structure, the driven portion in the XY direction is fixed so as to be in close contact with the support portion due to the viscosity of the viscous agent, and in the XY direction. This increases the rigidity of the driven part in the Z-axis direction and improves the resonance frequency of the vibration mode in the Z-axis direction. That is, the resonance frequency of vibration in the Z-axis direction is increased, and the drive in the Z-axis direction is further accelerated. Normally, the outer shape of the positioning device having such a shape has a length in the XY direction longer than the length in the Z-axis direction, so that the resonance in the primary mode is often a vibration mode in the Z-axis direction. Since the resonance frequency of the vibration in the axial direction is improved, the resonance frequency of the primary mode that restricts the control band of the entire positioning device is improved.

さらに、本発明の位置決め装置においては、間隙に薄く充填された粘性剤を介してXY方向への被駆動部が支持部に密着することとなるため、粘性剤の粘性によりXY方向への被駆動部がZ軸方向に浮き上がることが無くなり、XY方向への被駆動部の振動方向がXY平面に拘束されることになる。そのため低い共振周波数の振動モードにZ軸方向への動きが含まれなくなり、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなる。 Furthermore, in the positioning device of the present invention, the driven part in the XY direction is brought into close contact with the support part through the viscous agent that is thinly filled in the gap, so that the driven in the XY direction is caused by the viscosity of the viscous agent. The part does not float in the Z-axis direction, and the vibration direction of the driven part in the XY direction is constrained by the XY plane. Therefore, the movement in the Z-axis direction is not included in the vibration mode with the low resonance frequency, and the control band in the Z-axis direction is not limited by the low resonance frequency in the XY direction.

従って、本発明の位置決め装置においては、Z軸方向の駆動素子が配されるXY方向への被駆動部のZ軸方向への振動の振幅が減少する上、Z軸方向への振動の共振周波数が高くなり、Z軸方向の駆動がより高速化し、位置決め装置全体の制御帯域を制限するZ軸方向への振動の共振周波数が向上し、且つ低い共振周波数の振動モードにZ軸方向への動きが含まれなくなり、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなることから、位置決め装置全体における制御可能な周波数帯域が向上し、高速駆動するZ軸方向の応答性が向上する。 Therefore, in the positioning device of the present invention, the amplitude of vibration in the Z-axis direction of the driven part in the XY direction in which the drive elements in the Z-axis direction are arranged is reduced, and the resonance frequency of vibration in the Z-axis direction is reduced. , Driving in the Z-axis direction becomes faster, the resonance frequency of vibration in the Z-axis direction that limits the control band of the entire positioning device is improved, and the movement in the Z-axis direction to a vibration mode with a low resonance frequency Is not included, and the control band in the Z-axis direction is not limited by the low resonance frequency in the XY direction. Therefore, the controllable frequency band in the entire positioning device is improved, and the responsiveness in the Z-axis direction for high-speed driving is improved. Will improve.

このような本発明の位置決め装置を用いた走査型プローブ顕微鏡においては、サンプルを複数軸方向に移動させて、例えばサンプルの表面形状を測定する場合に、微小な凹凸を有するサンプル表面を追従し、最も高速な応答性が求められるZ軸方向の応答性が高速化され、Z軸方向の制御帯域を拡大することができ、高速な測定が可能となる。 In the scanning probe microscope using such a positioning device of the present invention, when the sample is moved in a plurality of axial directions, for example, when measuring the surface shape of the sample, the sample surface having minute irregularities is followed, The responsiveness in the Z-axis direction, which requires the fastest responsiveness, is increased, the control band in the Z-axis direction can be expanded, and high-speed measurement is possible.

また、本発明に係る位置決め装置においては、前記XY方向への被駆動部の前記Z軸方向の駆動素子が配される前記第1の面側に凹部を設け、前記凹部内に前記Z軸方向の駆動素子が配されてなり、前記XY方向への被駆動部と前記Z軸方向の駆動素子とこのZ軸方向の上側に配されるサンプルの全体の重心が、X軸方向の駆動素子及びY軸方向の駆動素子のZ軸方向において相対向する上面と下面の間に入るように調整されている。 In the positioning device according to the present invention, a concave portion is provided on the first surface side where the driving element in the Z-axis direction of the driven portion in the XY direction is disposed, and the Z-axis direction is provided in the concave portion. Drive elements in the XY direction, the drive element in the Z-axis direction, and the entire center of gravity of the sample arranged on the upper side in the Z-axis direction are the drive element in the X-axis direction and The Y-axis direction drive element is adjusted so as to fall between the upper and lower surfaces facing each other in the Z-axis direction.

本発明の位置決め装置においては、このような構造を有することから、XY方向へ駆動した際にXY方向への被駆動部がZ軸方向に捩れるように動くことを防止でき、XY方向への動作によって生じるZ軸方向へのクロストークを防止することができ、低い共振周波数の振動モードにZ軸方向への動きの混入が更に抑えられ、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなる。 Since the positioning device of the present invention has such a structure, when driven in the XY direction, the driven portion in the XY direction can be prevented from moving so as to be twisted in the Z-axis direction. Crosstalk in the Z-axis direction caused by operation can be prevented, mixing of movement in the Z-axis direction is further suppressed in the vibration mode having a low resonance frequency, and the control band in the Z-axis direction has a low resonance frequency in the XY direction. Is no longer limited by

また、本発明の位置決め装置においては、このような構造を有することから、XY方向へ駆動した際にZ軸方向の駆動素子7がXY方向に倒れる方向の振動が生じることを防止することができ、Z軸方向の振動へのXY方向のクロストークの混入を防止することができ、Z軸方向の応答性の精度を更に向上することができる。 Further, since the positioning device of the present invention has such a structure, it is possible to prevent the vibration in the direction in which the drive element 7 in the Z-axis direction falls in the XY direction when driven in the XY direction. Further, it is possible to prevent the crosstalk in the XY direction from being mixed into the vibration in the Z-axis direction, and to further improve the accuracy of the responsiveness in the Z-axis direction.

このような本発明の位置決め装置を用いた本発明の走査型プローブ顕微鏡においては、サンプルを複数軸方向に移動させて、例えばサンプルの表面形状を測定する場合に、微小な凹凸を有するサンプル表面を追従し、最も高速な応答性が求められるZ軸方向の応答性が高速化され、Z軸方向の制御帯域を拡大することができ、高速な測定が可能となる。 In the scanning probe microscope of the present invention using such a positioning apparatus of the present invention, when the sample is moved in a plurality of axial directions, for example, when measuring the surface shape of the sample, the sample surface having minute irregularities is removed. The responsiveness in the Z-axis direction, which is required to follow the highest speed, is increased, the control band in the Z-axis direction can be expanded, and high-speed measurement is possible.

なお、本発明の位置決め装置においては、前記XY方向への被駆動部がZ軸方向に振動すると、粘性剤が支持部とXY方向への被駆動部の間隙から押し出されることとなるが、粘性剤は50μm以下の薄さで配されており、粘性剤の粘性抵抗による摩擦が大きく、押し出される量が非常に少なく、粘性剤を損失しにくいことからXY方向への被駆動部がZ軸方向に振動する振幅を長期間に渡って抑えることが可能である。 In the positioning device of the present invention, when the driven part in the XY direction vibrates in the Z-axis direction, the viscous agent is pushed out from the gap between the supporting part and the driven part in the XY direction. The agent is arranged with a thickness of 50 μm or less, the friction due to the viscous resistance of the viscous agent is large, the amount pushed out is very small, and the loss of the viscous agent is difficult, so the driven part in the XY direction is in the Z-axis direction It is possible to suppress the amplitude of vibration for a long time.

以下、本発明に係る位置決め装置及びこれを用いた走査型プローブ顕微鏡の第1の実施例について図1〜図5を用いて説明する。 Hereinafter, a first embodiment of a positioning device according to the present invention and a scanning probe microscope using the same will be described with reference to FIGS.

本実施例の走査型プローブ顕微鏡は図1に示すように、主に、被対象物であるサンプル13に近接又は接触するプローブPとサンプル13をX,Y,Z軸方向(図1中にはX,Z軸方向のみを示すが、Y軸方向は紙面と直交する方向である。)に移動させることによりサンプル13の位置決めを行う位置決め装置M1により構成される。 As shown in FIG. 1, the scanning probe microscope of the present embodiment mainly has a probe P and a sample 13 that are close to or in contact with the sample 13 that is the object to be measured, in the X, Y, and Z axis directions (in FIG. Only the X- and Z-axis directions are shown, but the Y-axis direction is a direction orthogonal to the paper surface).

プローブPは図示するように自由端に先鋭化した探針25を有するカンチレバー14とカンチレバー14に振動を与えるカンチレバー加振部15、カンチレバー加振部15を駆動させるための加振電源16により構成される。 As shown in the figure, the probe P includes a cantilever 14 having a probe 25 sharpened at a free end, a cantilever exciting portion 15 that vibrates the cantilever 14, and an excitation power source 16 for driving the cantilever exciting portion 15. The

一方、位置決め装置M1は図1〜5に示すように、X軸方向とY軸方向を含む面の略中央に平面略正方形をなし、相対向する2辺にX軸方向に撓む第1の弾性支持体40a,40bと相対向する2辺にY軸方向に撓む第2の弾性支持体41a,41bを有するXY方向への被駆動部3を有し、前記XY方向への被駆動部3の周辺に第1,2の弾性支持体40a,40b,41a,41bを介して配される固定部2を有し、略板状をなすXY方向へのステージ部1と、X軸方向に伸縮し、その一端が前記第1の弾性支持体40a,40bを押圧するX軸方向の駆動素子5と、Y軸方向に伸縮し、その一端が前記第2の弾性支持体41a,41bを押圧するY軸方向の駆動素子6と、XY方向への被駆動部3の第1の面3a側にその一端が配され、Z軸方向に伸縮するZ軸方向の駆動素子7と、XY方向へのステージ部1のZ軸方向の駆動素子7が配される第1の面1aと相対向する第2の面1b側を、その対向面9aが前記第2の面1bに平行に相対向するようにXY方向へのステージ部1を支持する支持部9よりなる。 On the other hand, as shown in FIGS. 1 to 5, the positioning device M <b> 1 has a substantially square plane in the approximate center of the surface including the X-axis direction and the Y-axis direction, and is bent in the X-axis direction on two opposite sides. It has the driven part 3 to the XY direction which has the 2nd elastic support bodies 41a and 41b which bend in the Y-axis direction on the two sides opposite to the elastic supports 40a and 40b, and the driven part to the XY direction. 3 has a fixed portion 2 arranged via first and second elastic supports 40a, 40b, 41a, 41b, a substantially plate-shaped stage portion 1 in the XY direction, and an X-axis direction. The X-axis direction drive element 5 that extends and contracts, and one end presses the first elastic supports 40a and 40b, and the one end presses the second elastic supports 41a and 41b. One end of the driving element 6 in the Y-axis direction is arranged on the first surface 3a side of the driven part 3 in the XY direction. The second surface 1b side opposite to the first surface 1a on which the Z-axis direction drive element 7 extending and contracting in the Z-axis direction and the Z-axis direction drive element 7 of the stage portion 1 in the XY direction are arranged. The support surface 9 includes a support portion 9 that supports the stage portion 1 in the XY directions so that the facing surface 9a faces the second surface 1b in parallel.

このとき、前記第1の弾性支持体40a,40b及び前記第2の弾性支持体41a,41bは、X軸方向の駆動素子5及びY軸方向の駆動素子6の駆動により、XY方向への被駆動部3にX軸方向又はY軸方向に力が加わった時に各軸が独立して変位し、その駆動方向をXY方向に拘束すると共にXY方向のクロストークを防止する機能を有している。 At this time, the first elastic supports 40a and 40b and the second elastic supports 41a and 41b are driven in the X and Y directions by driving the drive element 5 in the X axis direction and the drive element 6 in the Y axis direction. When a force is applied to the drive unit 3 in the X-axis direction or the Y-axis direction, the respective axes are independently displaced, and the drive direction is constrained in the XY direction and the crosstalk in the XY direction is prevented. .

また、XY方向への被駆動部3と固定部2と第1の弾性支持体40a,40b及び第2の弾性支持体41a,41bは、単一の金属ブロックなどから放電加工により作製される一体構造をなし、それぞれのZ軸方向の上面と下面はつなぎ目の無い同一の平面であることが好ましい。これは、固定部2とXY方向への被駆動部3の間に機械的摩擦が存在するとナノメートルレベルでの反復駆動が不可能となるため、固定部2とXY方向への被駆動部3の間に摩擦面が存在しないようにするためである。 In addition, the driven part 3 and the fixed part 2 in the XY direction, the first elastic supports 40a and 40b, and the second elastic supports 41a and 41b are integrally formed by electric discharge machining from a single metal block or the like. It is preferable that the upper and lower surfaces in the Z-axis direction have the same plane without joints. This is because, if mechanical friction exists between the fixed portion 2 and the driven portion 3 in the XY direction, it becomes impossible to repeatedly drive at the nanometer level. Therefore, the fixed portion 2 and the driven portion 3 in the XY direction are not allowed. This is so that no friction surface exists between the two.

なお、XY方向へのステージ部1の固定部2には、第1の弾性支持体40a及び第2の弾性支持体41aに隣接するように貫通孔が設けられ、この各貫通孔内にそれぞれX軸方向の駆動素子5及びY軸方向の駆動素子6が配設されている。これらX,Y,Z方向の駆動素子5,6,7としては、電圧を印加することにより伸長する複数の圧電素子を積層したピエゾ素子等の積層型圧電素子を用いることが望ましい。 The fixing portion 2 of the stage portion 1 in the XY direction is provided with a through hole so as to be adjacent to the first elastic support body 40a and the second elastic support body 41a. A driving element 5 in the axial direction and a driving element 6 in the Y-axis direction are arranged. As the drive elements 5, 6, and 7 in the X, Y, and Z directions, it is desirable to use a stacked piezoelectric element such as a piezoelectric element in which a plurality of piezoelectric elements that are expanded by applying a voltage are stacked.

また、前記Z軸方向の駆動素子7はXY方向への被駆動部3の第1の面3a上に接着固定され、Z軸駆動素子7はXY方向への被駆動部3の支持部9への対向面の外周縁からZ軸方向への垂線に囲まれた内側に固定されるものとし、Z軸方向の駆動素子7の重心が、XY方向への被駆動部3の重心のZ軸方向の直上に位置することが望ましい。このような構成とすることで、XY方向への被駆動部3がXY方向に駆動した場合にZ軸方向の駆動素子7のXY方向への振動が混入することが抑えられ、より精度の高い制御が可能となる。 The driving element 7 in the Z-axis direction is bonded and fixed on the first surface 3a of the driven part 3 in the XY direction, and the Z-axis driving element 7 is connected to the support part 9 of the driven part 3 in the XY direction. The center of gravity of the drive element 7 in the Z-axis direction is fixed in the Z-axis direction of the center of gravity of the driven part 3 in the XY direction. It is desirable to be located immediately above. By adopting such a configuration, when the driven unit 3 in the XY direction is driven in the XY direction, it is possible to suppress the vibration in the XY direction of the driving element 7 in the Z-axis direction, and higher accuracy. Control becomes possible.

そして、サンプル13はZ軸方向への駆動素子7の上に載置され、その直上にカンチレバー14の自由端に配される探針25がサンプル13に近接又は接触させるように配されている。カンチレバー14にはレーザー光照射部17からレーザー光が照射され、カンチレバー14から反射されたレーザー光はフォトディテクタ18に入射し、この入射位置からカンチレバー14の変位量がカンチレバー変位検出部19で検出される。このような変位量の検出方法は光テコ方式と呼ばれる。カンチレバー変位検出部19で検出されたカンチレバー14の変位量に基づき制御部20でZ軸方向の駆動素子7の制御信号がZ駆動電源22に出力されZ軸方向への駆動素子7が駆動される。また、XY方向についても制御部20から制御信号がXY駆動電源21に出力されX軸方向の駆動素子5及びY軸方向の駆動素子6が駆動される。 The sample 13 is placed on the drive element 7 in the Z-axis direction, and a probe 25 disposed at the free end of the cantilever 14 is disposed immediately above or in contact with the sample 13. The cantilever 14 is irradiated with laser light from the laser light irradiation unit 17, and the laser light reflected from the cantilever 14 is incident on the photodetector 18, and the displacement amount of the cantilever 14 is detected by the cantilever displacement detection unit 19 from this incident position. . Such a displacement amount detection method is called an optical lever method. Based on the amount of displacement of the cantilever 14 detected by the cantilever displacement detector 19, the control unit 20 outputs a control signal for the drive element 7 in the Z-axis direction to the Z drive power source 22 to drive the drive element 7 in the Z-axis direction. . Also, in the XY directions, a control signal is output from the control unit 20 to the XY drive power source 21 to drive the drive element 5 in the X axis direction and the drive element 6 in the Y axis direction.

このように本実施例の位置決め装置M1においては、X方向の駆動素子5を駆動させて、第1の弾性支持体40a,40bを押圧し、これら第1の弾性支持体40a,40bをX軸方向に撓ませると共に、Y軸方向の駆動素子6を駆動させて、第2の弾性支持体41a,41bを押圧し、これら第2の弾性支持体41a,41bをY軸方向に撓ませることにより、各軸を独立して変位させてXY方向への被駆動部3の位置を変化させてXY方向への被駆動部3上に配されるZ軸方向の駆動素子7上に載置されたサンプル13をXY方向に移動させる。また、サンプル13はZ軸方向の駆動素子7上に配されていることからZ軸方向の駆動素子7の伸縮によりZ軸方向において移動する。従って、このような構成により、サンプル13をX,Y,Z軸方向に移動させてサンプル13の位置決めを行う。 As described above, in the positioning device M1 of the present embodiment, the X-direction drive element 5 is driven to press the first elastic supports 40a and 40b, and the first elastic supports 40a and 40b are moved to the X axis. By bending the Y-axis direction drive element 6 to press the second elastic support bodies 41a and 41b and bending the second elastic support bodies 41a and 41b in the Y-axis direction. Each of the axes is displaced independently to change the position of the driven part 3 in the XY direction, and is placed on the driving element 7 in the Z-axis direction disposed on the driven part 3 in the XY direction. The sample 13 is moved in the XY directions. In addition, since the sample 13 is disposed on the drive element 7 in the Z-axis direction, the sample 13 moves in the Z-axis direction due to expansion and contraction of the drive element 7 in the Z-axis direction. Therefore, with such a configuration, the sample 13 is moved in the X, Y, and Z axis directions to position the sample 13.

ここで、X軸方向の駆動素子5とY軸方向の駆動素子6は、図1〜3に示すようにそれぞれその一端が第1の弾性支持体40a,第2の弾性支持体41aに接し、他端が固定部2に接するようにして固定されることとなるが、これらX軸方向の駆動素子5とY軸方向の駆動素子6は、特に図3に示すようにXY方向へのステージ部1の第2の面1bよりも高くなるように固定されており、支持部9へ接触しないようになされ、その駆動が妨げられないようになされている。 Here, as shown in FIGS. 1 to 3, the X-axis direction drive element 5 and the Y-axis direction drive element 6 each have one end in contact with the first elastic support body 40 a and the second elastic support body 41 a, Although the other end is fixed so as to be in contact with the fixed portion 2, the drive element 5 in the X-axis direction and the drive element 6 in the Y-axis direction are particularly stage portions in the XY direction as shown in FIG. It is fixed so as to be higher than the first second surface 1b, so as not to come into contact with the support portion 9, and so that its driving is not hindered.

そして本実施例の位置決め装置M1においては、XY方向へのステージ部1の第2の面1bの少なくともXY方向への被駆動部3に対応する面と、これに相対向する支持部9の対向面9aの間が所定の厚さの間隙を有し、前記間隙に粘性剤10が注入されている。 In the positioning device M1 of the present embodiment, at least the surface of the second surface 1b of the stage unit 1 in the XY direction that corresponds to the driven unit 3 in the XY direction and the support unit 9 that opposes the surface. A gap having a predetermined thickness is formed between the surfaces 9a, and the viscous agent 10 is injected into the gap.

さらに、前記間隙の厚さは、5〜50μmであることが好ましく、10〜30μmがより好ましい。 Furthermore, the thickness of the gap is preferably 5 to 50 μm, and more preferably 10 to 30 μm.

実験の結果、前記間隙が5μmより小さいと粘性剤の注入が非常に困難となり本発明の効果が得られにくくなること、また、前記間隙が50μmよりも大きいとXY方向へのステージ部1と支持部9との間隔が離れすぎて、粘性剤10が流動してしまい、Z軸方向に駆動したときにXY方向への被駆動部3がZ軸方向に振動し、XY方向への被駆動部3のZ軸方向への振幅が増大するためである。 As a result of the experiment, when the gap is smaller than 5 μm, it is very difficult to inject the viscous agent and it is difficult to obtain the effect of the present invention, and when the gap is larger than 50 μm, the stage 1 is supported in the XY direction. When the distance from the portion 9 is too far, the viscous agent 10 flows, and when driven in the Z-axis direction, the driven portion 3 in the XY direction vibrates in the Z-axis direction, and the driven portion in the XY direction. This is because the amplitude of 3 in the Z-axis direction increases.

さらにまた、本実施例の位置決め装置M1においては、図3及び図5に示すように前記XY方向へのステージ部1のXY方向への被駆動部3以外及び上述の貫通孔以外の部分、すなわち固定部2に対応する第2の面1bと前記支持部9の対向面9aの間にスペーサー8が配され、前記スペーサー8の厚さが50μm以下であり、且つ前記粘性剤10に含まれる微粒子の直径をrとしたときに、r+(Rzb+Rzh)÷2よりも大きくなるようになされている。 Furthermore, in the positioning device M1 of the present embodiment, as shown in FIGS. 3 and 5, the portion other than the driven portion 3 in the XY direction of the stage portion 1 in the XY direction and the portions other than the above-described through holes, A spacer 8 is disposed between the second surface 1b corresponding to the fixing portion 2 and the opposing surface 9a of the support portion 9, and the spacer 8 has a thickness of 50 μm or less and is included in the viscous agent 10 When the diameter of r is r, it is larger than r + (Rzb + Rzh) / 2.

前記最大高さRzh及び最大高さRzbは、表面粗さを示すものであり、粗さ曲線から、その平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線から最も高い山頂までの高さYpと最も低い谷底までの深さYvとの和により示されるものである。なお、本発明においては、前記基準長さlを本発明の位置決め装置のX軸方向およびY軸方向への最大変位量と規定することとする。 The maximum height Rzh and the maximum height Rzb indicate the surface roughness. From the roughness curve, the reference length l is extracted in the direction of the average line, and from the average line of the extracted portion to the highest peak. This is indicated by the sum of the height Yp and the depth Yv to the lowest valley bottom. In the present invention, the reference length l is defined as the maximum displacement amount in the X-axis direction and the Y-axis direction of the positioning device of the present invention.

なお、粘性剤10として多用されるグリース等に含まれる微粒子の直径は5μm程度であることから、XY方向へのステージ部1の第2の面1bの表面粗さを表す最大高さRzhおよび支持部9のXY方向へのステージ部1を固定する対向面9aの表面粗さを表すRzbは、表面の凹凸の山となる部分が微粒子の直径よりも低くなり、谷となる部分が微粒子の直径よりも浅くなるために10μm以下であることが目安となる。 Since the diameter of fine particles contained in grease or the like frequently used as the viscous agent 10 is about 5 μm, the maximum height Rzh representing the surface roughness of the second surface 1b of the stage portion 1 in the XY direction and the support Rzb representing the surface roughness of the facing surface 9a that fixes the stage portion 1 in the XY direction of the portion 9 is such that the portion of the surface where the irregularities are crested is lower than the diameter of the fine particles, and the portion that is the valley is the diameter of the fine particles In order to become shallower, the standard is 10 μm or less.

前記スペーサー8の厚さは、実験の結果、50μmよりも厚いとXY方向への被駆動部3と支持部9の間の間隙が広くなり、その間隙に充填された粘性剤10が容易にXY方向に流れてしまい、Z軸方向の駆動素子7を駆動したときにXY方向への被駆動部3が振動してしまうためである。さらにXY方向への被駆動部3と支持部9の間隔が粘性剤10に含まれる微粒子の直径よりも狭くなる部分が生じないために、スペーサー8の厚さの下限を上述のような関係式により規定している。 As a result of experiments, if the thickness of the spacer 8 is greater than 50 μm, the gap between the driven part 3 and the support part 9 in the XY direction is widened, and the viscous agent 10 filled in the gap is easily XY. This is because the driven portion 3 in the XY direction vibrates when the driving element 7 in the Z-axis direction is driven. Further, since the portion where the distance between the driven portion 3 and the support portion 9 in the XY direction is narrower than the diameter of the fine particles contained in the viscous agent 10 does not occur, the lower limit of the thickness of the spacer 8 is set to the relational expression as described above. It is prescribed by.

実験の結果、前記間隙の厚さは5〜50μmであることが好ましく、10〜30μmがより好ましく、汎用的なグリースに含まれる微粒子の直径が5μm程度であることから、上式より前記最大高さRzh及び最大高さRzbが10μm以下であることが好ましい。 As a result of the experiment, the thickness of the gap is preferably 5 to 50 μm, more preferably 10 to 30 μm, and the diameter of fine particles contained in a general-purpose grease is about 5 μm. The thickness Rzh and the maximum height Rzb are preferably 10 μm or less.

また、XY方向へのステージ部1は、間にスペーサー8を挟む形で支持部9上にネジ止め固定されている。 Further, the stage portion 1 in the XY directions is fixed by screws on the support portion 9 with a spacer 8 interposed therebetween.

XY方向へのステージ部1および支持部9の材質は、この位置決め装置M1によって駆動されることが想定される最大質量のサンプル13を、Z軸方向にこの位置決め装置M1で使用される最大加速度で駆動したときに、発生する応力によってこの位置決め装置M1のZ軸方向の分解能以上に変位しない程度の高いヤング率を有していることが必要である。また、支持部9の質量は同様の条件で駆動したときに、この位置決め装置のZ軸方向の分解能以上にZ軸方向に動かない程度に重いことが必要である。 The material of the stage unit 1 and the support unit 9 in the XY directions is the maximum mass sample 13 that is assumed to be driven by the positioning device M1 and the maximum acceleration used by the positioning device M1 in the Z-axis direction. It is necessary to have a high Young's modulus that does not displace beyond the resolution in the Z-axis direction of the positioning device M1 due to the generated stress when driven. Further, the mass of the support portion 9 needs to be heavy enough not to move in the Z-axis direction beyond the resolution in the Z-axis direction of the positioning device when driven under the same conditions.

なお、本実施例の位置決め装置M1に用いられる粘性剤10としては、グリースや潤滑油が挙げられ、これらに含まれる微粒子の直径が5μm以下であり、間隙から流れ出さない程度の粘度を有し、稠度が300(1/10mm)以下であるものが好ましく用いられる。 The viscosity agent 10 used in the positioning device M1 of the present embodiment includes grease and lubricating oil, and the diameter of fine particles contained in these is 5 μm or less and has a viscosity that does not flow out of the gap. Those having a consistency of 300 (1/10 mm) or less are preferably used.

また、本実施例の走査型プローブ顕微鏡においては、カンチレバー変位検出部19より得られた測定データが制御部20に送られ、イメージデータ生成部23に送られてイメージ化され、これが表示部24に表示されることは言うまでもない。 In the scanning probe microscope of this embodiment, the measurement data obtained from the cantilever displacement detection unit 19 is sent to the control unit 20 and sent to the image data generation unit 23 to be imaged, and this is displayed on the display unit 24. Needless to say, it is displayed.

さらにまた、走査型プローブ顕微鏡の構造としては、本実施例のようにサンプル13をX,Y,Z軸方向に駆動する構造ではなく、カンチレバー14を本実施例の位置決め装置によりX,Y,Z軸方向に駆動する構造としても良い。また、カンチレバー14の変位量を検出する方法についても、上述した光テコ方式に限らず、歪ゲージを蒸着したカンチレバーを用いてカンチレバーの変位を検出する方式でも良く、さらにカンチレバーを使用せずトンネル電流を使用する走査型トンネル顕微鏡としても良い。 Furthermore, the structure of the scanning probe microscope is not the structure in which the sample 13 is driven in the X, Y, and Z axis directions as in the present embodiment, but the cantilever 14 is moved to the X, Y, Z by the positioning device of the present embodiment. A structure for driving in the axial direction may be employed. Further, the method for detecting the displacement amount of the cantilever 14 is not limited to the optical lever method described above, but may be a method of detecting the displacement of the cantilever using a cantilever on which a strain gauge is deposited. It may be a scanning tunneling microscope using

なお、カンチレバー14を本実施例の位置決め装置によりX,Y,Z軸方向に駆動する構造とした場合においては、従来のようにサンプル13の質量の1/2乗に反比例する共振周波数が低下することもなく、共振周波数の制限を受けなくなる。 When the cantilever 14 is driven in the X, Y, and Z axis directions by the positioning device of the present embodiment, the resonance frequency inversely proportional to the 1/2 power of the mass of the sample 13 is lowered as in the prior art. Without being limited by the resonance frequency.

また、本実施例の位置決め装置M1においては、Z軸方向の駆動素子7の一端側のみが伸縮するため、従来のように駆動素子を駆動する電流を2倍にする必要も無く、電流量が小さくてすむので電源を比較的小さいものと出来、コスト低減が達成される。 Further, in the positioning device M1 of the present embodiment, only one end side of the drive element 7 in the Z-axis direction expands and contracts, so there is no need to double the current for driving the drive element as in the prior art, and the amount of current is Since it is small, the power source can be made relatively small, and cost reduction can be achieved.

従って、本実施例で述べた位置決め装置及びこれを用いた本実施例の走査型プローブ顕微鏡においては、以下のような効果が生じる。 Therefore, the positioning apparatus described in the present embodiment and the scanning probe microscope of the present embodiment using the positioning device have the following effects.

1.XY方向への被駆動部3にZ軸方向の駆動素子が載せられた構成の位置決め装置においては、Z軸方向に駆動した際にXY方向への被駆動部3に加わる力によりXY方向への被駆動部3がZ軸方向に振動する問題があるが、本実施例の位置決め装置M1においては、XY方向への被駆動部3を第1,2の弾性支持体40a,40b,41a,41bだけではなく粘性剤10を介して支持部9へZ軸方向に対して支える構造としているため、前記XY方向への被駆動部3が粘性剤10の粘性により支持部9に対して密着するように固定されることから、位置決め装置のXY方向への被駆動部3が支持部9に密着せず、浮いているような状態と比較して、Z軸方向の駆動素子7を駆動したときに、XY方向への被駆動部3に加わる力によって前記XY方向への被駆動部3がZ軸方向に振動する振幅が減少する。 1. In a positioning device having a configuration in which a driving element in the Z-axis direction is mounted on the driven part 3 in the XY direction, the force applied to the driven part 3 in the XY direction when driven in the Z-axis direction Although there is a problem that the driven part 3 vibrates in the Z-axis direction, in the positioning device M1 of the present embodiment, the driven part 3 in the XY direction is connected to the first and second elastic supports 40a, 40b, 41a, 41b. In addition, since the support portion 9 is supported in the Z-axis direction via the viscous agent 10, the driven portion 3 in the XY direction is in close contact with the support portion 9 due to the viscosity of the viscous agent 10. Since the driven unit 3 in the XY direction of the positioning device is not in close contact with the support unit 9 and is in a floating state, the driving element 7 in the Z-axis direction is driven. , By the force applied to the driven part 3 in the XY direction The driven portion 3 in the Y direction is reduced amplitude oscillating in the Z-axis direction.

2.また、本実施例の位置決め装置M1においては、XY方向への被駆動部3を第1,2の弾性支持体40a,40b,41a,41bだけではなく粘性剤10を介して支持部9へZ軸方向に対して支える構造としているため、前記XY方向への被駆動部3が粘性剤10の粘性により支持部9に対して密着するように固定されることから、前記XY方向への被駆動部3のZ軸方向への剛性が高くなり、Z軸方向の振動モードの共振周波数が向上する。すなわち、Z軸方向への共振周波数が高くなり、Z軸方向の駆動がより高速化する。通常、このような形状の位置決め装置の外形はXY方向の長さがZ軸方向の長さよりも長いため、1次モードの共振はZ軸方向への振動モードとなることが多いが、そのZ軸方向への振動の共振周波数が向上するため、位置決め装置M1全体の制御帯域を制限する1次モードの共振周波数が向上することとなる。 2. Further, in the positioning device M1 of the present embodiment, the driven part 3 in the XY direction is transferred to the support part 9 via the viscous agent 10 as well as the first and second elastic support bodies 40a, 40b, 41a, 41b. Since the driven portion 3 in the XY direction is fixed so as to be in close contact with the support portion 9 due to the viscosity of the viscous agent 10, the driven portion 3 in the XY direction is fixed. The rigidity of the portion 3 in the Z-axis direction is increased, and the resonance frequency of the vibration mode in the Z-axis direction is improved. That is, the resonance frequency in the Z-axis direction is increased, and the driving in the Z-axis direction is further accelerated. Normally, the outer shape of the positioning device having such a shape has a length in the XY direction longer than the length in the Z-axis direction, so that the resonance in the primary mode is often a vibration mode in the Z-axis direction. Since the resonance frequency of the vibration in the axial direction is improved, the resonance frequency of the primary mode that limits the control band of the entire positioning device M1 is improved.

3.従来のXY方向への被駆動部3にZ軸方向の駆動素子が載せられた構成の位置決め装置では、低次の振動モードの方向がXYZ軸方向の合成方向であったり、Z軸方向を軸とした回転方向であったりすることがあった。このような回転方向であった場合、凹凸のあるサンプル面と完全に平行ということはないため、これらの低次の振動モードが存在することにより高速で駆動したいZ軸方向の制御帯域が制限されることがあった。しかし、本実施例の位置決め装置M1においては、薄く充填された粘性剤10を介してXY方向への被駆動部3が支持部9に密着しており、粘性剤10の粘性によりXY方向への被駆動部3がZ軸方向に浮き上がることが無くなり、XY方向への被駆動部3の振動方向がXY平面に拘束されることになる。そのため低い共振周波数の振動モードにZ軸方向への動きが含まれなくなり、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなる。 3. In the conventional positioning device in which the driving element in the Z-axis direction is mounted on the driven part 3 in the XY direction, the direction of the low-order vibration mode is the combined direction of the XYZ-axis direction, or the Z-axis direction is the axis It was sometimes the direction of rotation. In such a rotation direction, since it is not completely parallel to the uneven sample surface, the presence of these low-order vibration modes limits the control band in the Z-axis direction to be driven at high speed. There was. However, in the positioning device M1 of the present embodiment, the driven part 3 in the XY direction is in close contact with the support part 9 via the thinly filled viscous agent 10, and the viscosity of the viscous agent 10 causes the XY direction to move in the XY direction. The driven part 3 does not float in the Z-axis direction, and the vibration direction of the driven part 3 in the XY direction is constrained by the XY plane. Therefore, the movement in the Z-axis direction is not included in the vibration mode with the low resonance frequency, and the control band in the Z-axis direction is not limited by the low resonance frequency in the XY direction.

従って、本実施例の位置決め装置M1においては、Z軸方向の駆動素子7が配されるXY方向への被駆動部3のZ軸方向への振動の振幅が減少する上、Z軸方向への振動の共振周波数が高くなり、Z軸方向の駆動がより高速化し、位置決め装置M1全体の制御帯域を制限するZ軸方向への振動の共振周波数が向上し、且つ低い共振周波数の振動モードにZ軸方向への動きが含まれなくなり、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなることから、位置決め装置M1全体における制御可能な周波数帯域が向上し、高速駆動するZ軸方向の応答性が向上する。 Therefore, in the positioning device M1 of the present embodiment, the amplitude of vibration in the Z-axis direction of the driven part 3 in the XY direction in which the drive element 7 in the Z-axis direction is arranged is reduced, and the Z-axis direction is shifted in the Z-axis direction. The resonance frequency of vibration becomes higher, the drive in the Z-axis direction becomes faster, the resonance frequency of vibration in the Z-axis direction that restricts the control band of the entire positioning device M1 is improved, and the vibration mode with a lower resonance frequency is changed to Z Since the movement in the axial direction is not included, and the control band in the Z-axis direction is not limited by the low resonance frequency in the XY direction, the controllable frequency band in the entire positioning device M1 is improved and high-speed driving is performed. Responsiveness in the Z-axis direction is improved.

このような本実施例の位置決め装置M1を用いた本実施例の走査型プローブ顕微鏡においては、サンプル13を複数軸方向に移動させて、例えばサンプル13の表面形状を測定する場合に、微小な凹凸を有するサンプル13表面を追従し、最も高速な応答性が求められるZ軸方向の応答性が高速化され、Z軸方向の制御帯域を拡大することができ、高速な測定が可能となる。 In the scanning probe microscope of this embodiment using the positioning apparatus M1 of this embodiment, when the sample 13 is moved in a plurality of axial directions and the surface shape of the sample 13 is measured, for example, minute unevenness The response in the Z-axis direction where the fastest response is required is increased, the control band in the Z-axis direction can be expanded, and high-speed measurement is possible.

なお、本実施例の位置決め装置M1においては、前記XY方向への被駆動部3がZ軸方向に振動すると、粘性剤10が支持部9とXY方向への被駆動部3の間隙から押し出されることとなるが、粘性剤10は50μm以下の薄さで配されており、粘性剤10の粘性抵抗による摩擦が大きく、押し出される量が非常に少なく、粘性剤10を損失しにくいことからXY方向への被駆動部3がZ軸方向に振動する振幅を長期間に渡って抑えることが可能である。 In the positioning device M1 of the present embodiment, when the driven part 3 in the XY direction vibrates in the Z-axis direction, the viscous agent 10 is pushed out from the gap between the support part 9 and the driven part 3 in the XY direction. However, the viscous agent 10 is arranged with a thickness of 50 μm or less, the friction due to the viscous resistance of the viscous agent 10 is large, the amount of extrusion is very small, and the viscous agent 10 is not easily lost. It is possible to suppress the amplitude at which the driven portion 3 vibrates in the Z-axis direction over a long period of time.

以下、本発明の第2の実施例について図1、図6及び図7を用いて説明する。本実施例の走査型プローブ顕微鏡は実施例1の走査型プローブ顕微鏡と略同一な構成を有するものである。 Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. The scanning probe microscope of the present embodiment has substantially the same configuration as the scanning probe microscope of the first embodiment.

本実施例の走査型プローブ顕微鏡は図1に示すように、主に、被対象物であるサンプル13に近接又は接触するプローブPと、サンプル13をX,Y,Z軸方向に移動させることによりサンプル13の位置決めを行う位置決め装置M1の代わりに図6及び図7に示す位置決め装置M2により構成される。 As shown in FIG. 1, the scanning probe microscope of the present embodiment mainly moves a probe P in proximity to or in contact with a sample 13 as an object and the sample 13 in the X, Y, and Z axis directions. Instead of the positioning device M1 for positioning the sample 13, the positioning device M2 shown in FIGS. 6 and 7 is used.

プローブPの構成及び位置決め装置M2の駆動機構、測定結果の表示機構は実施例1と同様であるので説明を省略する。 Since the configuration of the probe P, the driving mechanism of the positioning device M2, and the display mechanism of the measurement result are the same as those in the first embodiment, description thereof is omitted.

位置決め装置M2は図6及び図7(図6は位置決め装置M2の平面図を示し、図6中にはX,Y軸方向のみを示すが、Z軸方向は紙面と直交する方向である。図7は位置決め装置M2のB−B断面図を示し、図7中にはX,Z軸方向のみを示すが、Y軸方向は紙面と直交する方向である。)に示されるように実施例1の位置決め装置M1と略同様の構成を有するものであり、同一の部材には実施例1と同一の符号を付し、説明を省略する。 The positioning device M2 is shown in FIGS. 6 and 7 (FIG. 6 is a plan view of the positioning device M2, and only the X and Y axis directions are shown in FIG. 6, but the Z axis direction is a direction orthogonal to the paper surface. 7 shows a BB cross-sectional view of the positioning device M2, in which only the X and Z axis directions are shown in FIG. 7, but the Y axis direction is a direction perpendicular to the paper surface. The same members as those of the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.

本実施例の位置決め装置M2においては、XY方向への被駆動部3のZ軸方向の駆動素子7が配される第1の面1a側に凹部26を設け、前記凹部26内に前記Z軸方向の駆動素子7が配されてなり、前記XY方向への被駆動部3と前記Z軸方向の駆動素子7とサンプル(図示は省略する)の全体の重心が、X軸方向の駆動素子5及びY軸方向の駆動素子6のZ軸方向において相対向する上面と下面の間に入るように調整されている。 In the positioning device M2 of the present embodiment, a recess 26 is provided on the first surface 1a side where the drive element 7 in the Z-axis direction of the driven part 3 in the XY direction is disposed, and the Z-axis is in the recess 26 Direction driving element 7 is arranged, and the center of gravity of the driven part 3 in the XY direction, the driving element 7 in the Z-axis direction and the sample (not shown) is the driving element 5 in the X-axis direction. And it is adjusted so that it may enter between the upper surface and lower surface which oppose in the Z-axis direction of the drive element 6 of the Y-axis direction.

また、本実施例においては、凹部26内に配されるZ軸方向の駆動素子7を第1の面1a側に板バネ11で上から押さえつけてZ軸方向への駆動素子7を凹部26内に固定するようにしている。なお、Z軸方向の駆動素子7のZ軸方向の上面が板バネ11のZ軸方向の上面よりも低い位置になるため、サンプルを載置する載置台12をZ軸方向の駆動素子7の上面に接着固定している。 In the present embodiment, the Z-axis direction driving element 7 disposed in the recess 26 is pressed against the first surface 1 a from the top by the leaf spring 11 so that the Z-axis direction driving element 7 is placed in the recess 26. To be fixed to. Since the upper surface of the Z-axis direction drive element 7 in the Z-axis direction is lower than the upper surface of the leaf spring 11 in the Z-axis direction, the mounting table 12 on which the sample is placed is attached to the Z-axis direction drive element 7. Bonded to the top surface.

従って、本実施例で述べた位置決め装置及びこれを用いた本実施例の走査型プローブ顕微鏡においては、以下のような効果が生じる。 Therefore, the positioning apparatus described in the present embodiment and the scanning probe microscope of the present embodiment using the positioning device have the following effects.

1.本実施例の位置決め装置M2においては、XY方向への被駆動部3とZ軸方向の駆動素子7とサンプルの全体の重心が、X軸方向の駆動素子5及びY軸方向の駆動素子6のZ軸方向において相対向する上面と下面の間に入るように調整されていることから、XY方向へ駆動した際にXY方向への被駆動部3がZ軸方向に捩れるように動くことを防止でき、XY方向への動作によって生じるZ軸方向へのクロストークを防止することができ、低い共振周波数の振動モードにZ軸方向への動きの混入が更に抑えられ、Z軸方向の制御帯域がXY方向の低い共振周波数によって制限されることが無くなる。 1. In the positioning device M2 of the present embodiment, the driven portion 3 in the XY direction, the drive element 7 in the Z-axis direction, and the center of gravity of the entire sample are determined by the drive element 5 in the X-axis direction and the drive element 6 in the Y-axis direction. Since it is adjusted so as to fall between the upper and lower surfaces facing each other in the Z-axis direction, when driven in the XY direction, the driven part 3 in the XY direction moves so as to be twisted in the Z-axis direction. It is possible to prevent crosstalk in the Z-axis direction caused by operation in the XY directions, and to further prevent the movement in the Z-axis direction from being mixed in the vibration mode with a low resonance frequency. Is not limited by the low resonance frequency in the XY direction.

2.本実施例の位置決め装置M2においては、XY方向への被駆動部3とZ軸方向の駆動素子7とサンプルの全体の重心が、X軸方向の駆動素子5及びY軸方向の駆動素子6のZ軸方向において相対向する上面と下面の間に入るように調整されていることから、XY方向へ駆動した際にZ軸方向の駆動素子7がXY方向に倒れる方向の振動が生じることを防止することができ、Z軸方向の振動へのXY方向のクロストークの混入を防止することができ、Z軸方向の応答性の精度を更に向上することができる。 2. In the positioning device M2 of the present embodiment, the driven portion 3 in the XY direction, the drive element 7 in the Z-axis direction, and the center of gravity of the entire sample are determined by the drive element 5 in the X-axis direction and the drive element 6 in the Y-axis direction. Since it is adjusted so that it enters between the upper and lower surfaces facing each other in the Z-axis direction, it prevents the drive element 7 in the Z-axis direction from vibrating in the XY direction when driven in the XY direction. It is possible to prevent the crosstalk in the XY directions from being mixed into the vibration in the Z-axis direction, and the accuracy of the responsiveness in the Z-axis direction can be further improved.

このような本実施例の位置決め装置M2を用いた本実施例の走査型プローブ顕微鏡においては、サンプル13を複数軸方向に移動させて、例えばサンプル13の表面形状を測定する場合に、微小な凹凸を有するサンプル13表面を追従し、最も高速な応答性が求められるZ軸方向の応答性が更に高速化され、Z軸方向の制御帯域を更に拡大することができ、更に高速な測定が可能となる。 In the scanning probe microscope of this embodiment using the positioning device M2 of this embodiment, when the sample 13 is moved in a plurality of axial directions and the surface shape of the sample 13 is measured, for example, minute irregularities The Z-axis direction responsiveness that requires the fastest response is further increased, the control band in the Z-axis direction can be further expanded, and higher-speed measurement is possible. Become.

本実施例の位置決め装置M2及びこれを用いた走査型プローブ顕微鏡においても、実施例1で示した位置決め装置M1及びこれを用いた走査型プローブ顕微鏡により得られた効果が得られることは言うまでもない。 Needless to say, the positioning device M2 of the present embodiment and the scanning probe microscope using the same can also obtain the effects obtained by the positioning device M1 shown in the first embodiment and the scanning probe microscope using the positioning device M1.

本発明に関わる位置決め装置を使用した走査型プローブ顕微鏡の概略図である。It is the schematic of the scanning probe microscope which uses the positioning device concerning this invention. 本発明に係る第1の実施例における位置決め装置M1を示す平面図である。なお図2中にはX,Y軸方向のみを示すが、Z軸方向は紙面と直交する方向である。It is a top view which shows the positioning apparatus M1 in 1st Example which concerns on this invention. Although only the X and Y axis directions are shown in FIG. 2, the Z axis direction is a direction orthogonal to the paper surface. 図2のA−A線に沿った断面図、即ち位置決め装置M1のA−A断面図である。なお、図3中にはX,Z軸方向のみを示すが、Y軸方向は紙面と直交する方向である。It is sectional drawing along the AA line of FIG. 2, ie, AA sectional drawing of the positioning device M1. Although only the X and Z axis directions are shown in FIG. 3, the Y axis direction is a direction orthogonal to the paper surface. 本発明に係る第1の実施例における位置決め装置M1を示す斜視図である。It is a perspective view which shows the positioning device M1 in 1st Example which concerns on this invention. 本発明に係る第1の実施例における位置決め装置M1に使用されるスペーサーの形状を示す平面図である。It is a top view which shows the shape of the spacer used for the positioning apparatus M1 in 1st Example which concerns on this invention. 本発明に係る第2の実施例における位置決め装置を示す平面図である。It is a top view which shows the positioning device in 2nd Example which concerns on this invention. 図6のB−B線に沿った断面図である。It is sectional drawing along the BB line of FIG.

符号の説明Explanation of symbols

1 XY方向へのステージ部
2 固定部
3 XY方向への被駆動部
5 X軸方向の駆動素子
6 Y軸方向の駆動素子
7 Z軸方向の駆動素子
8 スペーサー
9 支持部
10 粘性剤
11 板バネ
12 載置台
13 サンプル
14 カンチレバー
15 カンチレバー加振部
16 加振電源
17 レーザー光照射部
18 フォトディテクタ
19 カンチレバー変位検出部
20 制御部
21 XY駆動電源
22 Z駆動電源
23 イメージデータ生成部
24 表示部
25 探針
26 凹部
40a,40b 第1の弾性支持体
41a,41b 第2の弾性支持体
M1,M2 位置決め装置
P プローブ
DESCRIPTION OF SYMBOLS 1 Stage part 2 to XY direction Fixed part 3 Driven part 5 to XY direction X-axis direction drive element 6 Y-axis direction drive element 7 Z-axis direction drive element 8 Spacer 9 Support part 10 Viscous agent 11 Leaf spring 12 Mounting Table 13 Sample 14 Cantilever 15 Cantilever Excitation Unit 16 Excitation Power Supply 17 Laser Light Irradiation Unit 18 Photodetector 19 Cantilever Displacement Detection Unit 20 Control Unit 21 XY Drive Power Supply 22 Z Drive Power Supply 23 Image Data Generation Unit 24 Display Unit 25 Probe 26 concave portions 40a, 40b first elastic supports 41a, 41b second elastic supports M1, M2 positioning device P probe

Claims (9)

第1の方向と該第1の方向に直交する第2の方向を含む面の略中央に平面略正方形をなし、少なくともその一辺に前記第1の方向に撓む第1の弾性支持体と前記少なくとも一辺に直交する少なくとも一辺に前記第2の方向に撓む第2の弾性支持体を有する第1,2の方向への被駆動部を有し、略板状をなす第1,第2の方向のステージ部と、
前記第1の方向に伸縮し、その一端が前記第1の弾性支持体を押圧する第1の駆動素子と、
前記第2の方向に伸縮し、その一端が前記第2の弾性支持体を押圧する第2の駆動素子と、
前記第1,第2の方向の被駆動部の第1の面側にその一端が配され、前記第1及び第2の方向と直交する第3の方向に伸縮する第3の駆動素子と、
前記第1,第2の方向のステージ部の前記第3の駆動素子が配される前記第1の面と相対向する第2の面側を、その対向面が前記第2の面に平行に相対向するように前記第1,第2の方向のステージ部を支持する支持部よりなり、
前記第3の駆動素子の前記第1,第2の方向の被駆動部と反対側の端部側に被対象物を載置し、前記第1,2,3の駆動素子をそれぞれの方向に伸縮させることにより、前記被対象物を前記第1,2,3の方向に移動させて、前記被対象物の位置決めを行う位置決め装置において、
前記第1,第2の方向のステージ部の前記第2の面の少なくとも前記第1,第2の方向の被駆動部に対応する面と、これに相対向する前記支持部の対向面の間が所定の厚さの間隙を有し、前記間隙に粘性剤が注入されていることを特徴とする位置決め装置。
The first elastic support body which is substantially planar in the center of the surface including the first direction and the second direction orthogonal to the first direction, and which is bent in the first direction at least on one side thereof, and First and second driven parts in the first and second directions having a second elastic support body bent in the second direction on at least one side orthogonal to at least one side, and having a substantially plate shape Direction stage part,
A first drive element that expands and contracts in the first direction, one end of which presses the first elastic support;
A second drive element that expands and contracts in the second direction, one end of which presses the second elastic support;
A third driving element having one end arranged on the first surface side of the driven part in the first and second directions and extending and contracting in a third direction orthogonal to the first and second directions;
The second surface side opposite to the first surface on which the third drive element of the stage portion in the first and second directions is disposed is parallel to the second surface. A support portion for supporting the stage portions in the first and second directions so as to face each other;
An object is placed on the end of the third driving element opposite to the driven parts in the first and second directions, and the first, second and third driving elements are placed in the respective directions. In a positioning device for positioning the object by moving the object in the first, second, and third directions by expanding and contracting,
Between at least the surface of the second surface of the stage portion in the first and second directions corresponding to the driven portion in the first and second directions and the facing surface of the support portion opposite to the surface. Has a gap with a predetermined thickness, and a viscous agent is injected into the gap.
前記間隙の厚さが、5〜50μmであることを特徴とする請求項1記載の位置決め装置。   The positioning device according to claim 1, wherein a thickness of the gap is 5 to 50 μm. 前記第1,第2の方向のステージ部の第1,2の方向の被駆動部以外及び第1,2の弾性支持体以外の部分に対応する第2の面と前記支持部の対向面の間にスペーサーが配され、前記スペーサーの厚さが50μm以下であり、且つ前記粘性剤に含まれる微粒子の直径をrとしたときに、r+(Rzb+Rzh)÷2よりも大きいことを特徴とする請求項1から2のいずれかに記載の位置決め装置。   A second surface corresponding to a portion other than the driven portion in the first and second directions of the stage portion in the first and second directions and a portion other than the first and second elastic supports and an opposing surface of the support portion. A spacer is disposed between the spacers, the spacer has a thickness of 50 μm or less, and the diameter of the fine particles contained in the viscous agent is r, and is larger than r + (Rzb + Rzh) / 2. Item 3. The positioning device according to any one of Items 1 to 2. 前記第1,2の方向への被駆動部の前記第3の駆動素子が配される前記第1の面側に凹部を設け、前記凹部内に前記第3の駆動素子が配されてなり、前記第1,2の方向への被駆動部と前記第3の駆動素子と前記被対象物の全体の重心が、前記第1の駆動素子及び第2の駆動素子の第3の方向において相対向する上面と下面の間に入るように調整されていることを特徴とする請求項1から3のいずれかに記載の位置決め装置。   A concave portion is provided on the first surface side where the third driving element of the driven portion in the first and second directions is arranged, and the third driving element is arranged in the concave portion; The center of gravity of the driven part in the first and second directions, the third driving element, and the entire object are opposed to each other in the third direction of the first driving element and the second driving element. 4. The positioning device according to claim 1, wherein the positioning device is adjusted so as to fall between an upper surface and a lower surface. 前記粘性剤がグリースであることを特徴とする請求項1から4のいずれかに記載の位置決め装置。   The positioning device according to claim 1, wherein the viscosity agent is grease. 前記粘性剤が潤滑油であることを特徴とする請求項1から4のいずれかに記載の位置決め装置。   The positioning device according to claim 1, wherein the viscous agent is a lubricating oil. 前記粘性剤がゲル状物質であること特徴とする請求項1から4のいずれかに記載の位置決め装置。   The positioning device according to claim 1, wherein the viscous agent is a gel substance. 前記間隙が5〜50μmであり、前記粘性剤に含まれる微粒子の直径が5μm以下であり、前記第1,第2の方向の被駆動部の前記第2の面の表面粗さを表す最大高さをRzhとし、前記支持部の対向面の表面粗さを示す最大高さをRzbとしたときに、Rzhは10μm以下であり、Rzbは10μm以下であることを特徴とする請求項5から7のいずれかに記載の位置決め装置。   The gap is 5 to 50 μm, the diameter of the fine particles contained in the viscous agent is 5 μm or less, and the maximum height representing the surface roughness of the second surface of the driven part in the first and second directions Rz is 10 μm or less and Rzb is 10 μm or less, where Rzh is Rz and the maximum height indicating the surface roughness of the opposing surface of the support portion is Rzb. A positioning device according to any one of the above. 被対象物に近接又は接触させるプローブと、前記被対象物を第1の方向と前記第1の方向に直交する第2の方向及びこれら第1の方向と第2の方向に対して直交する第3の方向に移動させることにより前記被対象物の位置決めを行う位置決め装置よりなる走査型プローブ顕微鏡において、
前記位置決め装置が、請求項1から8のいずれかに記載の位置決め装置であることを特徴とする走査型プローブ顕微鏡。
A probe that is brought close to or in contact with the object, a second direction that is orthogonal to the first direction and the first direction, and a first direction that is orthogonal to the first direction and the second direction. In a scanning probe microscope comprising a positioning device for positioning the object by moving in the direction of 3,
A scanning probe microscope, wherein the positioning device is the positioning device according to claim 1.
JP2008122675A 2007-05-31 2008-05-08 Positioning device and scanning probe microscope using the same Expired - Fee Related JP4995767B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008122675A JP4995767B2 (en) 2007-05-31 2008-05-08 Positioning device and scanning probe microscope using the same
US12/129,350 US8001831B2 (en) 2007-05-31 2008-05-29 Positioning apparatus and scanning probe microscope employing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007144364 2007-05-31
JP2007144364 2007-05-31
JP2008122675A JP4995767B2 (en) 2007-05-31 2008-05-08 Positioning device and scanning probe microscope using the same

Publications (2)

Publication Number Publication Date
JP2009008661A JP2009008661A (en) 2009-01-15
JP4995767B2 true JP4995767B2 (en) 2012-08-08

Family

ID=40323868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122675A Expired - Fee Related JP4995767B2 (en) 2007-05-31 2008-05-08 Positioning device and scanning probe microscope using the same

Country Status (1)

Country Link
JP (1) JP4995767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295814B2 (en) * 2009-02-17 2013-09-18 オリンパス株式会社 Scanning mechanism and scanning probe microscope

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128467A (en) * 1993-11-02 1995-05-19 Canon Inc Minute drive carrier
JPH10339735A (en) * 1997-06-06 1998-12-22 Shimadzu Corp Scanning type probe microscope
JP3544453B2 (en) * 1997-07-04 2004-07-21 セイコーインスツルメンツ株式会社 3D micro scanning device
JP4797150B2 (en) * 2000-03-14 2011-10-19 オリンパス株式会社 Scanning mechanism and mechanical scanning microscope using the same
JP2006308363A (en) * 2005-04-27 2006-11-09 Olympus Corp Scanning mechanism
JP2007046694A (en) * 2005-08-09 2007-02-22 Sony Corp Bearing unit and rotary device using the same
JP4239024B2 (en) * 2005-09-06 2009-03-18 ソニー株式会社 Electronics

Also Published As

Publication number Publication date
JP2009008661A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
US7555941B2 (en) Scanner for probe microscopy
Wagner et al. Noncontact method for calibration of lateral forces in scanning force microscopy
KR101440450B1 (en) Active damping of high speed scanning probe microscope components
Yong et al. Design of an inertially counterbalanced Z-nanopositioner for high-speed atomic force microscopy
Guliyev et al. Quasi-monolithic integration of silicon-MEMS with piezoelectric actuators for high-speed non-contact atomic force microscopy
Tambe et al. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities
Wang et al. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction
CN102374967B (en) Shear measuring method and its device
US8001831B2 (en) Positioning apparatus and scanning probe microscope employing the same
JP4995767B2 (en) Positioning device and scanning probe microscope using the same
JP5295814B2 (en) Scanning mechanism and scanning probe microscope
Guo et al. Probe system design for three dimensional micro/nano scratching machine
Chahari et al. Modeling of eccentric nanoneedle in trolling‐mode atomic force microscope
Oiwa et al. Linear rectangular air bearing based on squeeze film generated by ultrasonic oscillation
Geng et al. Mechanical drift modeling and analysis of V-shaped linear ultrasonic motors with a flexible clamp
Chen et al. Accuracy of the spring constant of atomic force microscopy cantilevers by finite element method
JP7244958B2 (en) Resonance shear measurement device
KR101793593B1 (en) Precise tribometer operated with low load
JP7318996B2 (en) Resonance shear measurement device
Khandelwal et al. NANOTRIBOLOGY-The road to no WEAR!
JP2008298506A (en) Shape measuring device
RU2356110C2 (en) Probe for nuclear power microscope
WO2018131343A1 (en) Scanner and scanning probe microscope
JP5483112B2 (en) Viscometer
Stolarski et al. Use of near field acoustic levitation sliding contact

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4995767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees