JP4995525B2 - Achromatic lens system, optical device - Google Patents

Achromatic lens system, optical device Download PDF

Info

Publication number
JP4995525B2
JP4995525B2 JP2006259712A JP2006259712A JP4995525B2 JP 4995525 B2 JP4995525 B2 JP 4995525B2 JP 2006259712 A JP2006259712 A JP 2006259712A JP 2006259712 A JP2006259712 A JP 2006259712A JP 4995525 B2 JP4995525 B2 JP 4995525B2
Authority
JP
Japan
Prior art keywords
lens system
diffractive
refractive index
diffractive optical
achromatic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006259712A
Other languages
Japanese (ja)
Other versions
JP2008083096A (en
Inventor
実保 松本
晶子 宮川
俊彦 倉田
Original Assignee
株式会社 ニコンビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ニコンビジョン filed Critical 株式会社 ニコンビジョン
Priority to JP2006259712A priority Critical patent/JP4995525B2/en
Publication of JP2008083096A publication Critical patent/JP2008083096A/en
Application granted granted Critical
Publication of JP4995525B2 publication Critical patent/JP4995525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、色消しレンズ系、光学装置に関する。   The present invention relates to an achromatic lens system and an optical device.

従来の色消しレンズ系は、一般に正の屈折力を有する低分散ガラスレンズと負の屈折力を有する高分散ガラスレンズとの貼り合わせレンズで構成されており、これらのガラスレンズによって正負の収差を発生させ、それを打ち消すことによって色収差と同時に球面収差を補正するものである。   A conventional achromatic lens system is generally composed of a bonded lens composed of a low-dispersion glass lens having a positive refractive power and a high-dispersion glass lens having a negative refractive power. The chromatic aberration and the spherical aberration are corrected by generating and canceling the chromatic aberration.

斯かる色消しレンズ系は、通常の分散特性を有するガラスを用いたレンズで構成されている場合、色収差、特に光の波長の違いによって光軸上の結像位置が異なることに起因して生じる軸上色収差を広い波長域にわたって良好に補正することができないという問題がある。そこでこの軸上色収差を、特に2次スペクトルと呼ばれる色収差を含め、広い波長域にわたって補正するために、異常分散性のガラスを用いたレンズで構成された色消しレンズ系や、回折光学素子を用いたレンズ系が提案されている(例えば、特許文献1を参照。)。
特開2004−126395号公報
When such an achromatic lens system is constituted by a lens using glass having a normal dispersion characteristic, it is caused by a difference in image formation position on the optical axis due to a difference in chromatic aberration, in particular, a wavelength of light. There is a problem that axial chromatic aberration cannot be corrected well over a wide wavelength range. Therefore, in order to correct this axial chromatic aberration over a wide wavelength range, particularly including chromatic aberration called secondary spectrum, an achromatic lens system composed of a lens using anomalous dispersion glass or a diffractive optical element is used. Proposed lens systems (see, for example, Patent Document 1).
JP 2004-126395 A

ここで、ガラスレンズは比重が大きいため、ガラスレンズによって構成された色消しレンズ系は重量が大きくなってしまうという問題がある。これに対し、ガラスレンズよりも比重の小さな樹脂レンズを用いて色消しレンズ系を構成すれば、軽量化を実現することができる。   Here, since the specific gravity of the glass lens is large, there is a problem that the achromatic lens system constituted by the glass lens becomes heavy. On the other hand, if an achromatic lens system is configured using a resin lens having a specific gravity smaller than that of a glass lens, the weight can be reduced.

しかしながら、色消しレンズ系を樹脂レンズどうしの貼り合わせレンズのみで構成した場合には、樹脂光学材料は限られた光学特性のものしかなく、色収差と球面収差の同時補正に適した樹脂レンズの組み合わせが存在しないため、これらの収差を良好に補正することができないという問題がある。また、分離型樹脂レンズ、即ち樹脂レンズどうしを貼り合わせずに用いて色消しレンズ系を構成した場合には、色収差と球面収差を同時に良好に補正することはできるものの、偏心精度が非常に厳しく製造が困難になってしまうという問題がある。   However, when the achromatic lens system is composed only of bonded lenses made of resin lenses, the resin optical material has only limited optical characteristics, and a combination of resin lenses suitable for simultaneous correction of chromatic aberration and spherical aberration. Therefore, there is a problem that these aberrations cannot be corrected satisfactorily. In addition, when the achromatic lens system is configured by using the separation type resin lens, that is, the resin lenses without being bonded to each other, the chromatic aberration and the spherical aberration can be corrected at the same time, but the decentration accuracy is very strict. There is a problem that manufacturing becomes difficult.

そこで本発明は上記問題点に鑑みてなされたものであり、軽量かつ製造が容易で、色収差と同時に球面収差を良好に補正可能な色消しレンズ系、及びそれを用いた光学装置を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and provides an achromatic lens system that is lightweight and easy to manufacture and that can satisfactorily correct spherical aberration simultaneously with chromatic aberration, and an optical device using the same. With the goal.

上記課題を解決するために本発明は、
正の屈折力を有する樹脂レンズと、回折光学素子と、負の屈折力を有する樹脂レンズとを有し、これらは全て接合されており全体として正の屈折力を有し、
前記回折光学素子は、異なる光学材料からなる2つの回折素子要素を接合して構成されており、その接合面は回折格子溝が形成された回折光学面であって、
以下の条件式を満足することを特徴とする色消しレンズ系を提供する。
0.2≦|R/f|≦1.3
0.3≦N/D≦1.8
但し、
R:前記正の屈折力を有する樹脂レンズにおける像側のレンズ面の曲率半径
f:前記色消しレンズ系の焦点距離
N:前記回折光学素子における前記回折光学面の前記回折格子溝の数(本)
D:前記回折光学素子における前記回折光学面の有効半径(mm)
In order to solve the above problems, the present invention
A resin lens having a positive refractive power, a diffractive optical element, and a resin lens having a negative refractive power, all of which are joined and have a positive refractive power as a whole,
The diffractive optical element is formed by joining the two diffractive element made of different optical materials, I the bonding surface is the diffractive optical surface der which diffraction grating grooves are formed,
An achromatic lens system that satisfies the following conditional expression is provided.
0.2 ≦ | R / f | ≦ 1.3
0.3 ≦ N / D ≦ 1.8
However,
R: radius of curvature of the image-side lens surface of the resin lens having positive refractive power
f: Focal length of the achromatic lens system
N: Number of diffraction grating grooves on the diffractive optical surface in the diffractive optical element (number)
D: Effective radius (mm) of the diffractive optical surface in the diffractive optical element

また本発明は、
上記色消しレンズ系を備えていることを特徴とする光学装置を提供する。
The present invention also provides
An optical apparatus comprising the achromatic lens system is provided.

本発明によれば、軽量かつ製造が容易で、色収差と同時に球面収差を良好に補正可能な色消しレンズ系、及びそれを用いた光学装置を提供することができる。   According to the present invention, it is possible to provide an achromatic lens system that is lightweight and easy to manufacture, and that can satisfactorily correct spherical aberration simultaneously with chromatic aberration, and an optical device using the same.

以下、本発明の実施形態に係る色消しレンズ系と光学装置について説明する。
本発明の色消しレンズ系は、正の屈折力を有する樹脂レンズと、回折光学素子と、負の屈折力を有する樹脂レンズとを有し、これらは全て接合されており全体として正の屈折力を有し、前記回折光学素子は、異なる光学材料からなる2つの回折素子要素を接合して構成されており、その接合面は回折格子溝が形成された回折光学面であることを特徴とする。
Hereinafter, an achromatic lens system and an optical device according to an embodiment of the present invention will be described.
The achromatic lens system of the present invention has a resin lens having a positive refractive power, a diffractive optical element, and a resin lens having a negative refractive power, all of which are joined together and have a positive refractive power as a whole. The diffractive optical element is formed by bonding two diffractive element elements made of different optical materials, and the bonded surface is a diffractive optical surface on which a diffraction grating groove is formed. .

上述のように本発明の色消しレンズ系は、色収差を補正するための回折光学素子を含んでいる。回折光学素子は、1mm当たり数本から数百本の細かい溝状又はスリット状の格子構造が同心円状に形成された回折光学面を備え、該回折光学面に入射した光を格子ピッチ(回折格子溝の間隔)と入射光の波長によって定まる方向へ回折する性質を有している。   As described above, the achromatic lens system of the present invention includes a diffractive optical element for correcting chromatic aberration. The diffractive optical element includes a diffractive optical surface in which several to several hundreds of fine groove or slit-like grating structures are formed concentrically per 1 mm, and the light incident on the diffractive optical surface is grating pitch (diffraction grating). It has a property of diffracting in a direction determined by the groove interval) and the wavelength of incident light.

このような回折光学素子は種々の光学系に用いられており、例えば特定次数の回折光を一点に集光してレンズとして使用されるもの等が知られている。斯かる回折光学素子の回折光学面は、分散特性が通常のガラス(屈折光学素子)とは逆で光の波長が短くなるのに伴い屈折率が小さくなる性質、即ち負の分散特性を有しているため、大きな色消し効果が得られる。したがってこの回折光学素子を利用することで、色収差を良好に補正することが可能となる。   Such a diffractive optical element is used in various optical systems. For example, a diffractive optical element that is used as a lens by collecting diffracted light of a specific order at one point is known. The diffractive optical surface of such a diffractive optical element has a dispersion characteristic that is opposite to that of normal glass (refractive optical element) and has a property that the refractive index decreases as the wavelength of light decreases, that is, a negative dispersion characteristic. Therefore, a large achromatic effect can be obtained. Therefore, by using this diffractive optical element, it becomes possible to correct chromatic aberration satisfactorily.

また、上述のように本発明の色消しレンズ系における回折光学素子は、異なる光学材料からなる2つの回折素子要素を接合し、その接合面を回折光学面として構成した、いわゆる密着複層型回折光学素子であるため、g線(波長λ=435.835nm)からC線(波長λ=656.273nm)までの広波長域において回折効率を高くすることができる。したがって、斯かる回折光学素子を利用した本発明の色消しレンズ系は、広波長域(波長λ=435.835nm〜656.273nm)において利用することが可能となる。なお、上記回折効率は、透過型の回折光学素子において、一次回折光を使用する場合、入射光の強度Ioと一次回折光の強度I1との割合η(=I1/Io×100「%」)を示す。   In addition, as described above, the diffractive optical element in the achromatic lens system of the present invention is a so-called contact multilayer diffraction in which two diffractive element elements made of different optical materials are joined and the joined surface is configured as a diffractive optical surface. Since it is an optical element, the diffraction efficiency can be increased in a wide wavelength range from the g-line (wavelength λ = 435.835 nm) to the C-line (wavelength λ = 656.273 nm). Therefore, the achromatic lens system of the present invention using such a diffractive optical element can be used in a wide wavelength region (wavelength λ = 435.835 nm to 656.273 nm). The diffraction efficiency is the ratio η (= I1 / Io × 100 “%”) between the intensity Io of the incident light and the intensity I1 of the first-order diffracted light when the first-order diffracted light is used in the transmission type diffractive optical element. Indicates.

また、密着複層型回折光学素子は、回折格子溝が形成された2つの回折素子要素を該回折格子溝どうしが対向するように近接配置してなるいわゆる分離型回折光学素子に比べて製造工程を簡素化することができるため、量産効率が良く、また入射画角に対する回折効率が良いという長所を備えている。したがって、斯かる回折光学素子(密着複層型回折光学素子)を利用した本発明の色消しレンズ系は、製造が容易となり、また回折効率が良くなる。
以上より本発明の色消しレンズ系は、軽量かつ製造が容易で、色収差を良好に補正することが可能となる。
Further, the contact multilayer diffractive optical element is manufactured in comparison with a so-called separation type diffractive optical element in which two diffraction element elements formed with diffraction grating grooves are arranged close to each other so that the diffraction grating grooves face each other. Can be simplified, so that mass production efficiency is good and diffraction efficiency with respect to an incident angle of view is good. Therefore, the achromatic lens system of the present invention using such a diffractive optical element (contact multi-layer diffractive optical element) is easy to manufacture, and the diffraction efficiency is improved.
As described above, the achromatic lens system of the present invention is lightweight and easy to manufacture and can correct chromatic aberration well.

また、本発明の色消しレンズ系は、以下の条件式(1)を満足することが望ましい。
(1) 0.2≦|R/f|≦1.3
但し、
R:前記正の屈折力を有する樹脂レンズにおける像側のレンズ面の曲率半径
f:前記色消しレンズ系の焦点距離
Moreover, it is desirable that the achromatic lens system of the present invention satisfies the following conditional expression (1).
(1) 0.2 ≦ | R / f | ≦ 1.3
However,
R: radius of curvature of image side lens surface of resin lens having positive refractive power f: focal length of achromatic lens system

条件式(1)は、本発明の色消しレンズ系における正の屈折力を有する樹脂レンズの像側のレンズ面の曲率半径を規定するものである。
条件式(1)の下限値を下回ると、軸上色収差はd線(波長λ=587.562nm)とg線を色消しした際に、C線とF線(波長λ=486.133nm)で色消し不足となる。このため、白色MTF(Modulation Transfer Function)が低下し、本発明の色消しレンズ系において良好な結像性能を得ることができなくなってしまう。
一方、条件式(1)の上限値を上回ると、軸上色収差はd線とg線を色消しした際に、C線とF線で色消し過剰となる(2次スペクトル)。このため、白色MTFが低下し、本発明の色消しレンズ系において良好な結像性能を得ることができなくなってしまう。
Conditional expression (1) defines the radius of curvature of the lens surface on the image side of the resin lens having positive refractive power in the achromatic lens system of the present invention.
If the lower limit of conditional expression (1) is not reached, the longitudinal chromatic aberration is the C line and F line (wavelength λ = 486.133 nm) when the d line (wavelength λ = 587.562 nm) and g line are achromatic. The color is insufficiently erased. For this reason, white MTF (Modulation Transfer Function) is lowered, and good image forming performance cannot be obtained in the achromatic lens system of the present invention.
On the other hand, if the upper limit of conditional expression (1) is exceeded, axial chromatic aberration will be excessively achromatic in the C and F lines when the d and g lines are achromatic (secondary spectrum). For this reason, white MTF falls and it becomes impossible to obtain favorable imaging performance in the achromatic lens system of the present invention.

また、本発明の色消しレンズ系は、以下の条件式(2)を満足することが望ましい。
(2) 0.3≦N/D≦1.8
但し、
N:前記回折光学素子における前記回折光学面の前記回折格子溝の数(本)
D:前記回折光学素子における前記回折光学面の有効半径(mm)
In addition, it is desirable that the achromatic lens system of the present invention satisfies the following conditional expression (2).
(2) 0.3 ≦ N / D ≦ 1.8
However,
N: Number of diffraction grating grooves on the diffractive optical surface in the diffractive optical element (number)
D: Effective radius (mm) of the diffractive optical surface in the diffractive optical element

条件式(2)は、本発明の色消しレンズ系の回折光学素子において、回折光学面の回折格子溝の数と有効半径の適切な範囲を規定するものである。
条件式(2)の下限値を下回ると、軸上色収差はd線とg線を色消しした際に、C線とF線で色消し不足となる(2次スペクトル)。このため、白色MTFが低下し、本発明の色消しレンズ系において良好な結像性能を得ることができなくなってしまう。
一方、条件式(2)の上限値を上回ると、軸上色収差はd線とg線を色消しした際に、C線とF線で色消し過剰となる(2次スペクトル)。このため、白色MTFが低下し、本発明の色消しレンズ系において良好な結像性能を得ることができなくなってしまう。
Conditional expression (2) defines an appropriate range of the number of diffraction grating grooves and the effective radius of the diffractive optical surface in the diffractive optical element of the achromatic lens system of the present invention.
If the lower limit of conditional expression (2) is not reached, axial chromatic aberration will be insufficiently achromatic in the C-line and F-line when the d-line and g-line are achromatic (secondary spectrum). For this reason, white MTF falls and it becomes impossible to obtain favorable imaging performance in the achromatic lens system of the present invention.
On the other hand, if the upper limit of conditional expression (2) is exceeded, axial chromatic aberration will be excessively achromatic in the C and F lines when the d and g lines are achromatic (secondary spectrum). For this reason, white MTF falls and it becomes impossible to obtain favorable imaging performance in the achromatic lens system of the present invention.

また、本発明の色消しレンズ系は、少なくとも1つの非球面を備えていることが望ましい。
これにより、本発明の色消しレンズ系は、色収差と同時に、球面収差をより良好に補正することができる。
Moreover, it is desirable that the achromatic lens system of the present invention has at least one aspherical surface.
Thereby, the achromatic lens system of the present invention can correct spherical aberration better at the same time as chromatic aberration.

また、本発明の色消しレンズ系は、前記2つの回折素子要素が、互いに異なり、少なくとも一方は紫外線硬化樹脂からなることが望ましい。
これにより、量産性を高めることができる。
より詳しくは、回折素子要素として樹脂と紫外線硬化樹脂を用いて本発明の回折光学素子を製造する場合、回折格子溝が形成された金型を用いて成形(射出成形等)、若しくは切削研磨によって回折格子面を前記樹脂に形成した後、この回折格子面に紫外線硬化樹脂を滴下し紫外線を照射して硬化させる方法を採用できる。この方法を採用することにより、2つの回折素子要素に対して回折格子面を別々に形成し、さらにこれらの位置合わせを行うという作業が不要になるため、量産性を高めることができる。
また、回折素子要素として2つの異なる紫外線硬化樹脂を用いて本発明の回折光学素子を製造する場合には、基板上に滴下した一方の紫外線硬化樹脂に対し回折格子溝が形成された金型を型押しして紫外線を照射して硬化させ、この型押しによって成形された回折格子面にもう一方の紫外線硬化樹脂を滴下し紫外線を照射して硬化させる方法を採用できる。この方法を採用することにより、1つの金型を用いるだけで製造が可能であり、前述と同様に2つの回折素子要素に対して回折格子面を別々に形成し、さらにこれらの位置合わせを行うという作業が不要になる。また、金型に紫外線硬化樹脂を滴下して硬化させるという作業を2回実施するのみで製造することができるため、量産性を高めることができる。
In the achromatic lens system of the present invention, it is desirable that the two diffraction element elements are different from each other, and at least one of them is made of an ultraviolet curable resin.
Thereby, mass productivity can be improved.
More specifically, when the diffractive optical element of the present invention is manufactured using a resin and an ultraviolet curable resin as the diffractive element, molding (injection molding or the like) using a mold in which a diffraction grating groove is formed, or by cutting and polishing. After the diffraction grating surface is formed on the resin, a method in which an ultraviolet curable resin is dropped onto the diffraction grating surface and irradiated with ultraviolet rays to be cured can be employed. By adopting this method, it is not necessary to separately form diffraction grating surfaces for the two diffraction element elements, and to align them, so that mass productivity can be improved.
Further, when the diffractive optical element of the present invention is manufactured using two different ultraviolet curable resins as the diffractive element, a mold having a diffraction grating groove formed on one ultraviolet curable resin dropped on the substrate is used. It is possible to employ a method in which a mold is irradiated and cured by irradiating with ultraviolet rays, and the other ultraviolet curable resin is dropped onto the diffraction grating surface formed by this embossing and is cured by irradiating with ultraviolet rays. By adopting this method, it is possible to manufacture by using only one mold. Similarly to the above, the diffraction grating surfaces are separately formed on the two diffractive element elements, and these positions are aligned. This is no longer necessary. Moreover, since it can manufacture only by implementing the operation | work of dripping an ultraviolet curable resin to a metal mold | die and hardening it, mass productivity can be improved.

また、本発明の色消しレンズ系は、以下の条件式(3),(4),(5),(6)を満足することが望ましい。
以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか1項に記載の色消しレンズ系。
(3) nd1≦1.54
(4) 0.0145≦nF1−nC1
(5) 1.55≦nd2
(6) nF2−nC2≦0.013
但し、
nd1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のd線(波長λ=587.562nm)に対する屈折率
nF1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のF線(波長λ=486.133nm)に対する屈折数
nC1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のC線(波長λ=656.273nm)に対する屈折率
nd2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のd線(波長λ=587.562nm)に対する屈折率
nF2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のF線(波長λ=486.133nm)に対する屈折数
nC2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のC線(波長λ=656.273nm)に対する屈折率
In addition, it is desirable that the achromatic lens system of the present invention satisfies the following conditional expressions (3), (4), (5), and (6).
The achromatic lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
(3) nd1 ≦ 1.54
(4) 0.0145 ≦ nF1-nC1
(5) 1.55 ≦ nd2
(6) nF2-nC2 ≦ 0.013
However,
nd1: Refractive index nF1: for the d-line (wavelength λ = 587.562 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number among the two diffractive element elements in the diffractive optical element Of the two diffractive element elements in the diffractive optical element, the refractive index nC1: for the F-line (wavelength λ = 486.133 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number. Among the two diffractive element elements, the refractive index nd2 with respect to the C-line (wavelength λ = 656.273 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number: the above-mentioned in the diffractive optical element Of the two diffractive element elements, the refractive index nF2 for the d-line (wavelength λ = 587.562 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number: the diffractive optical element Of the two diffractive element elements in the element, the refractive index nC2 with respect to the F-line (wavelength λ = 486.133 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number: in the diffractive optical element Of the two diffractive element elements, the refractive index with respect to the C-line (wavelength λ = 656.273 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number.

条件式(3),(4),(5),(6)は、本発明の色消しレンズ系の回折光学素子を構成する2つの回折素子要素の材質、即ち2つの異なる紫外線硬化樹脂の屈折率とF線とC線に対する分散(nF−nC)をそれぞれ規定するものである(但し、nF:F線に対する屈折率、nC:C線に対する屈折率)。
本発明の色消しレンズ系はこれらの条件式を満足することで、より良い性能で、異なる紫外線硬化樹脂からなる2つの回折素子要素を密着接合させて回折光学面を形成することができ、これによりg線からC線までの広波長域において90%以上の回折効率を実現することができる。なお、このような光学材料としての樹脂は、例えば特願2004−367607号公報、特願2005−237573号公報に記載されている。
各条件式(3),(4),(5),(6)の上限値又は下限値を越えると、本発明の色消しレンズ系における回折光学素子は、広波長域において90%以上の回折効率を得ることが困難になり、密着複層型回折光学素子の形状を維持することが困難になってしまう。
なお、回折効率を求める式は、以下の通りである。
ηをm次回折光の回折効率とすると、
η={(sin(a−m)π)/((a−m)π)}
但し、
a={(n1−1)d−(n2−1)d}/λ
m :回折次数
d :回折格子高
n1:回折格子面(回折光学面)を形成する一方の材料の屈折率
n2:回折格子面(回折光学面)を形成する他方の材料の屈折率
λ :波長
今回の実施例で用いた樹脂の組み合わせの場合、格子高は20.05μmであり、1次の回折効率はg線(波長λ=435.835nm)で98%、F線(波長λ=486.133nm)で98%、d線(波長λ=587.562nm)で100%、C線(波長λ=656.273nm)で98%と広い波長域にわたって回折効率が98%以上という優れた値を持つ密着複層型回折光学素子が実現できることがわかる。
Conditional expressions (3), (4), (5), and (6) are the refraction of two diffractive element elements constituting the diffractive optical element of the achromatic lens system of the present invention, that is, the refraction of two different ultraviolet curable resins. And the dispersion (nF-nC) for the F line and the C line (nF: refractive index for the F line, nC: refractive index for the C line).
By satisfying these conditional expressions, the achromatic lens system of the present invention can form a diffractive optical surface by closely bonding two diffractive element elements made of different ultraviolet curable resins with better performance. As a result, a diffraction efficiency of 90% or more can be realized in a wide wavelength range from the g-line to the C-line. In addition, resin as such an optical material is described in Japanese Patent Application No. 2004-367607 and Japanese Patent Application No. 2005-237573, for example.
When the upper limit or lower limit of each conditional expression (3), (4), (5), (6) is exceeded, the diffractive optical element in the achromatic lens system of the present invention has a diffraction of 90% or more in a wide wavelength region. It becomes difficult to obtain efficiency, and it becomes difficult to maintain the shape of the contact multilayer diffractive optical element.
The equation for obtaining the diffraction efficiency is as follows.
If η m is the diffraction efficiency of m-th order diffracted light,
η m = {(sin (am) π) / ((am) π)} 2
However,
a = {(n1-1) d- (n2-1) d} / λ
m: Diffraction order d: Diffraction grating height n1: Refractive index of one material forming a diffraction grating surface (diffractive optical surface) n2: Refractive index of the other material forming a diffraction grating surface (diffractive optical surface) λ: Wavelength In the case of the resin combination used in this example, the grating height is 20.05 μm, the first-order diffraction efficiency is 98% for g-line (wavelength λ = 435.835 nm), and F-line (wavelength λ = 486. The diffraction efficiency is 98% or higher over a wide wavelength range of 98% at 133 nm, 100% at d-line (wavelength λ = 587.562 nm), and 98% at C-line (wavelength λ = 656.273 nm). It can be seen that a contact multilayer diffractive optical element can be realized.

また本発明の光学装置は、上述した構成の色消しレンズ系を備えている。
これにより、軽量かつ製造が容易で、色収差を良好に補正可能な光学装置を実現することができる。
The optical apparatus of the present invention includes the achromatic lens system having the above-described configuration.
As a result, it is possible to realize an optical device that is lightweight and easy to manufacture and that can correct chromatic aberration satisfactorily.

以下、数値実施例に係る色消しレンズ系について添付図面に基づいて詳細に説明する。
(第1実施例)
図1は、本発明の第1実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図1に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L13と、正立光学系L14とからなる。なお、本レンズ系OLは、正立光学系L13及び正立光学系L14によって光路が折り曲がった構成であるが、図1には展開して示されている。
Hereinafter, an achromatic lens system according to a numerical example will be described in detail with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a lens system including an achromatic lens system according to a first example of the present invention.
As shown in FIG. 1, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, an achromatic lens system L, an erecting optical system L13, and a positive lens system L13. And a vertical optical system L14. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L13 and the erecting optical system L14, but is shown in an expanded manner in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL11と回折光学素子L11Eと物体側に凹面を向けた負メニスカス樹脂レンズL12とからなり、これらは互いに接合されており、全体として正の屈折力を有している。なお、負メニスカス樹脂レンズL12の像側のレンズ面には、非球面が形成されている。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L11, a diffractive optical element L11E, and a negative meniscus resin lens L12 having a concave surface facing the object side. It is joined and has a positive refractive power as a whole. An aspherical surface is formed on the image side lens surface of the negative meniscus resin lens L12.

回折光学素子L11Eは、色収差、特に軸上色収差を良好に補正し、かつ高い回折効率を得るための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE11と、該第1回折素子要素と異なる紫外線硬化樹脂からなる第2回折素子要素DE12とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。   The diffractive optical element L11E is a close-contact multilayer diffractive optical element that corrects chromatic aberration, particularly axial chromatic aberration, and obtains high diffraction efficiency, and is an ultraviolet curable resin in order from the object side along the optical axis. The first diffractive element element DE11 made of and a second diffractive element element DE12 made of an ultraviolet curable resin different from the first diffractive element element are in close contact with each other, and a diffraction grating groove is formed on the joint surface. The diffractive optical surface Gf.

以下の表2に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
[全体諸元]において、fは焦点距離(mm)、FNOはFナンバーをそれぞれ示す。
[レンズデータ]において、面番号は物体側から数えた光学面の順番、rは光学面の曲率半径(mm)(光学面が非球面である場合には基準球面の曲率半径)、dは光学面どうしの間隔(mm)、νdはd線に対するアッベ数、n(d)はd線に対する屈折率をそれぞれ示す。なお、曲率半径∞は平面を示す。
Table 2 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.
In [Overall specifications], f represents a focal length (mm), and FNO represents an F number.
In [Lens data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature (mm) of the optical surface (or the radius of curvature of the reference sphere when the optical surface is aspheric), and d is the optical The distance between the surfaces (mm), νd is the Abbe number with respect to the d-line, and n (d) is the refractive index with respect to the d-line. The curvature radius ∞ indicates a plane.

[非球面データ]には、非球面の形状を次式(A),(B)で表した場合の非球面係数を示す。
Z(y)=(y/r)/[1+{1−κ(y/r)}1/2]
+C2y+C4y+C6y+C8y+C10y10 ・・・・・(A)
R =1/{(1/r)+2C2} ・・・・・(B)
但し、yは光軸に垂直な高さ(入射高)、Z(y)を非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(非球面量又はサグ量)、rを基準球面の曲率半径、Rを近軸曲率半径、κを円錐係数、C2,C4,C6,C8,C10を2,4,6,8,10次の非球面係数とする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。
[Aspherical data] shows aspherical coefficients when the shape of the aspherical surface is expressed by the following expressions (A) and (B).
Z (y) = (y 2 / r) / [1+ {1-κ (y 2 / r 2 )} 1/2 ]
+ C2y 2 + C4y 4 + C6y 6 + C8y 8 + C10y 10 (A)
R = 1 / {(1 / r) + 2C2} (B)
Where y is the height (incident height) perpendicular to the optical axis, and Z (y) is the distance along the optical axis from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y (aspheric amount). Or sag amount), r is the radius of curvature of the reference sphere, R is the paraxial radius of curvature, κ is the conic coefficient, C2, C4, C6, C8, C10 are the aspherical coefficients of the second, fourth, sixth, eighth and tenth order. To do. “En” indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”.

ここで、本実施例において回折光学面Gfは、通常の屈折率と上記非球面式(A),(B)を用いる超高屈折率法によって表されている。この超高屈折率法は、非球面形状を表す式と回折光学面Gfの格子ピッチとの一定の等価関係を利用するものであって、本実施例における回折光学面Gfは、超高屈折率法のデータ、即ち上記非球面式(A),(B)及びその係数によって示されている。なお、本実施例では収差特性の算出対象としてd線、g線、C線、及びF線を選択している。本実施例において用いたd線、g線、C線、及びF線の波長と、各スペクトル線に対して設定した回折光学面Gfの具体的な屈折率の値を以下の表1に示す。また、超高屈折率法については、「『回折光学素子入門』応用物理学会日本光学会監修平成9年第1版発行」に詳しい。   Here, in this embodiment, the diffractive optical surface Gf is represented by an ultrahigh refractive index method using a normal refractive index and the aspherical expressions (A) and (B). This ultra-high refractive index method uses a constant equivalent relationship between an expression representing an aspherical shape and the grating pitch of the diffractive optical surface Gf. The diffractive optical surface Gf in this embodiment has an ultra-high refractive index. It is indicated by the modulo data, that is, the aspherical expressions (A) and (B) and their coefficients. In this embodiment, d-line, g-line, C-line, and F-line are selected as the aberration characteristic calculation targets. Table 1 below shows the wavelengths of the d-line, g-line, C-line, and F-line used in this example, and specific refractive index values of the diffractive optical surface Gf set for each spectral line. The ultra-high refractive index method is detailed in “Introduction to Diffractive Optical Elements” published by the Japan Society for Optics of Applied Physics Society, published in 1997.

(表1)
波長(nm) 屈折率
d線 587.562 10001.0000
g線 435.835 7418.6853
C線 656.273 11170.4255
F線 486.133 8274.7311
(Table 1)
Wavelength (nm) Refractive index d-line 587.562 10001.0000
g-line 435.835 7418.6853
C line 656.273 11170.4255
F line 486.133 8274.7311

ここで、本実施例において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は特記のない場合一般に「mm」が使われる。しかし光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、単位は「mm」に限られるものではない。
なお、以上に述べた各表の説明は、後述する各実施例においても同様である。
Here, in the present embodiment, “mm” is generally used as the unit of the focal length f, the radius of curvature r, the surface interval d, and other lengths unless otherwise specified. However, since the optical system can obtain the same optical performance even when proportionally enlarged or reduced, the unit is not limited to “mm”.
The description of each table described above is the same in each example described later.

(表2)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 59.2155 5.0 56.21 1.524440
2 -62.4785 0.4 50.17 1.527600
3 -62.4785 0.0 -3.45 n1
4 -62.4785 0.4 34.71 1.556900
5 -62.4785 2.0 30.33 1.582760
6 -464.5713 47.7 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[回折光学素子L11Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 11

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第4面
κ = 0.0000 C2 = -5.12353E-09
C4 = 6.03747E-12 C6 = 3.00000E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 0.0000 C2 = 0.00000E+00
C4 = 1.71000E-07 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.579
(2)N/D= 0.88
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 2)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 59.2155 5.0 56.21 1.524440
2 -62.4785 0.4 50.17 1.527600
3 -62.4785 0.0 -3.45 n1
4 -62.4785 0.4 34.71 1.556900
5 -62.4785 2.0 30.33 1.582760
6 -464.5713 47.7 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[Diffraction optical element L11E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 11

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
4th surface κ = 0.0000 C2 = -5.12353E-09
C4 = 6.03747E-12 C6 = 3.00000E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 0.0000 C2 = 0.00000E + 00
C4 = 1.71000E-07 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.579
(2) N / D = 0.88
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図2(a)、及び図2(b)は、本発明の第1実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
ここで、球面収差図において、dはd線、gはg線、CはC線、FはF線における収差をそれぞれ示す。また非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以上に述べた収差図の説明は、後述する各実施例においても同様である。
諸収差図と30本/mmのときのMTF値が0.88であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 2A and 2B are graphs showing various aberrations of the lens system including the achromatic lens system according to the first example of the present invention, and MTF on the optical axis due to white light. is there.
Here, in the spherical aberration diagram, d is the d-line, g is the g-line, C is the C-line, and F is the aberration in the F-line. In the graph showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. The description of the aberration diagrams described above is the same in each example described later.
Since the MTF value at the time of 30 aberrations / mm is 0.88, the lens system provided with the achromatic lens system according to the present example corrects various aberrations, in particular, axial chromatic aberration. It can be seen that it has excellent imaging performance.

(第2実施例)
図3は、本発明の第2実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図3に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L23と、正立光学系L24とからなる。なお、本レンズ系OLは、正立光学系L23及び正立光学系L24によって光路が折り曲がった構成であるが、図3には展開して示されている。
(Second embodiment)
FIG. 3 is a diagram showing a configuration of a lens system including an achromatic lens system according to the second example of the present invention.
As shown in FIG. 3, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, the achromatic lens system L, the erecting optical system L23, and the positive lens system L23. And a vertical optical system L24. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L23 and the erecting optical system L24, but is shown in a developed state in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL21と回折光学素子L21Eと物体側に凹面を向けた負メニスカス樹脂レンズL22とからなり、これらは互いに接合されており、全体として正の屈折力を有している。なお、負メニスカス樹脂レンズL22の像側のレンズ面には、非球面が形成されている。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L21, a diffractive optical element L21E, and a negative meniscus resin lens L22 having a concave surface directed toward the object side. It is joined and has a positive refractive power as a whole. An aspherical surface is formed on the image side lens surface of the negative meniscus resin lens L22.

回折光学素子L21Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE21と、該第1回折素子要素DE21と異なる紫外線硬化樹脂からなる第2回折素子要素DE22とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。
以下の表3に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L21E is a contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE21 and a second diffractive element element DE22 made of an ultraviolet curable resin different from the first diffractive element element DE21 are in close contact with each other, and the joint surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become.
Table 3 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表3)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 67.2637 5.0 56.21 1.524440
2 -53.0000 0.4 50.17 1.556900
3 -53.0000 0.0 -3.45 n1
4 -53.0000 0.4 34.71 1.527600
5 -53.0000 2.0 30.33 1.582760
6 -227.7608 48.3 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[回折光学素子L21Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 9

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第4面
κ = 0.0000 C2 = -3.62125E-09
C4 = 2.13029E-12 C6 = 3.00000E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 0.0000 C2 = 0.00000E+00
C4 = 1.35517E-07 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.491
(2)N/D= 0.72
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 3)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 67.2637 5.0 56.21 1.524440
2 -53.0000 0.4 50.17 1.556900
3 -53.0000 0.0 -3.45 n1
4 -53.0000 0.4 34.71 1.527600
5 -53.0000 2.0 30.33 1.582760
6 -227.7608 48.3 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[Diffraction optical element L21E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 9

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
4th surface κ = 0.0000 C2 = -3.62125E-09
C4 = 2.13029E-12 C6 = 3.00000E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 0.0000 C2 = 0.00000E + 00
C4 = 1.35517E-07 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.491
(2) N / D = 0.72
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図4(a)、及び図4(b)は、本発明の第2実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.84であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 4A and 4B are graphs showing various aberrations of the lens system including the achromatic lens system according to the second example of the present invention, and MTF on the optical axis due to white light. is there.
Since the MTF value at the time of 30 aberrations / mm is 0.84, the lens system provided with the achromatic lens system according to the present example corrects various aberrations, particularly axial chromatic aberration, satisfactorily. It can be seen that it has excellent imaging performance.

(第3実施例)
図5は、本発明の第3実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図5に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L33と、正立光学系L34とからなる。なお、本レンズ系OLは、正立光学系L33及び正立光学系L34によって光路が折り曲がった構成であるが、図5には展開して示されている。
(Third embodiment)
FIG. 5 is a diagram showing a configuration of a lens system including an achromatic lens system according to the third example of the present invention.
As shown in FIG. 5, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, an achromatic lens system L, an erecting optical system L33, and a positive lens system L33. And a vertical optical system L34. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L33 and the erecting optical system L34, but is shown expanded in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL31と回折光学素子L31Eと両凹形状の負樹脂レンズL32とからなり、これらは互いに接合されており、全体として正の屈折力を有している。なお、負樹脂レンズL32の像側のレンズ面には、非球面が形成されている。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L31, a diffractive optical element L31E, and a biconcave negative resin lens L32, which are joined to each other. As a whole, it has a positive refractive power. An aspheric surface is formed on the image side lens surface of the negative resin lens L32.

回折光学素子L31Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE31と、該第1回折素子要素DE31と異なる紫外線硬化樹脂からなる第2回折素子要素DE32とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。
以下の表4に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L31E is a close-contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE31 and a second diffractive element element DE32 made of an ultraviolet curable resin different from the first diffractive element element DE31 are configured to be in close contact with each other, and the joint surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become.
Table 4 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表4)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 52.4353 5.0 56.21 1.524440
2 -100.0000 0.4 50.17 1.527600
3 -100.0000 0.0 -3.45 n1
4 -100.0000 0.4 34.71 1.556900
5 -100.0000 2.0 30.33 1.582760
6 1496.9158 47.0 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[回折光学素子L31Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 19

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第4面
κ = 0.0000 C2 = -9.81658E-09
C4 = 1.73327E-11 C6 = 3.00000E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 0.0000 C2 = 0.00000E+00
C4 = 1.56506E-07 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.926
(2)N/D= 1.52
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 4)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 52.4353 5.0 56.21 1.524440
2 -100.0000 0.4 50.17 1.527600
3 -100.0000 0.0 -3.45 n1
4 -100.0000 0.4 34.71 1.556900
5 -100.0000 2.0 30.33 1.582760
6 1496.9158 47.0 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[Diffraction optical element L31E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 19

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
4th surface κ = 0.0000 C2 = -9.81658E-09
C4 = 1.73327E-11 C6 = 3.00000E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 0.0000 C2 = 0.00000E + 00
C4 = 1.56506E-07 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.926
(2) N / D = 1.52
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図6(a)、及び図6(b)は、本発明の第3実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.67であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 6A and 6B are graphs showing various aberrations of the lens system including the achromatic lens system according to the third example of the present invention, and MTF on the optical axis due to white light. is there.
Since the various aberration diagrams and the MTF value at 30 lines / mm are 0.67, the lens system provided with the achromatic lens system according to the present example corrects various aberrations, particularly axial chromatic aberration, well. It can be seen that it has excellent imaging performance.

(第4実施例)
図7は、本発明の第4実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図7に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L43と、正立光学系L44とからなる。なお、本レンズ系OLは、正立光学系L43及び正立光学系L44によって光路が折り曲がった構成であるが、図7には展開して示されている。
(Fourth embodiment)
FIG. 7 is a diagram showing a configuration of a lens system including an achromatic lens system according to the fourth example of the present invention.
As shown in FIG. 7, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, an achromatic lens system L, an erecting optical system L43, and a positive lens system L43. And a vertical optical system L44. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L43 and the erecting optical system L44, but is shown in an expanded manner in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL41と回折光学素子L41Eと物体側に凹面を向けた負メニスカス樹脂レンズL42とからなり、これらは互いに接合されており、全体として正の屈折力を有している。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L41, a diffractive optical element L41E, and a negative meniscus resin lens L42 having a concave surface directed toward the object side. It is joined and has a positive refractive power as a whole.

回折光学素子L41Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE41と、該第1回折素子要素DE41と異なる紫外線硬化樹脂からなる第2回折素子要素DE42とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。
以下の表5に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L41E is a close-contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE41 and a second diffractive element element DE42 made of an ultraviolet curable resin different from the first diffractive element element DE41 are in close contact with each other, and the joint surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become.
Table 5 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表5)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 60.4803 5.0 56.21 1.524440
2 -61.1264 0.4 50.17 1.527600
3 -61.1264 0.0 -3.45 n1
4 -61.1264 0.4 34.71 1.556900
5 -61.1264 2.0 30.33 1.582760
6 -395.7077 47.8 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[回折光学素子L41Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 6

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第4面
κ = 0.0000 C2 = -4.92877E-09
C4 = 1.43025E-11 C6 = 4.38851E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.566
(2)N/D= 0.48
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 5)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 60.4803 5.0 56.21 1.524440
2 -61.1264 0.4 50.17 1.527600
3 -61.1264 0.0 -3.45 n1
4 -61.1264 0.4 34.71 1.556900
5 -61.1264 2.0 30.33 1.582760
6 -395.7077 47.8 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[Diffraction optical element L41E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 6

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
4th surface κ = 0.0000 C2 = -4.92877E-09
C4 = 1.43025E-11 C6 = 4.38851E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.566
(2) N / D = 0.48
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図8(a)、及び図8(b)は、本発明の第4実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.89であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、非球面を使用せずに諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 8A and 8B are graphs showing various aberrations of the lens system including the achromatic lens system according to the fourth example of the present invention, and MTF on the optical axis due to white light. is there.
Since the MTF value at the time of 30 aberrations / mm is 0.89, the lens system including the achromatic lens system according to the present example does not use an aspherical surface, and various aberrations, particularly the axis. It can be seen that the upper chromatic aberration is corrected well and the imaging performance is excellent.

(第5実施例)
図9は、本発明の第5実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図9に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L53と、正立光学系L54とからなる。なお、本レンズ系OLは、正立光学系L53及び正立光学系L54によって光路が折り曲がった構成であるが、図9には展開して示されている。
(5th Example)
FIG. 9 is a diagram showing a configuration of a lens system including an achromatic lens system according to the fifth example of the present invention.
As shown in FIG. 9, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, the achromatic lens system L, the erecting optical system L53, and the positive lens system L53. And a vertical optical system L54. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L53 and the erecting optical system L54, but is shown in a developed state in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL51と物体側に凹面を向けた負メニスカス樹脂レンズL52と回折光学素子L52Eとからなり、これらは互いに接合されており、全体として正の屈折力を有している。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L51, a negative meniscus resin lens L52 having a concave surface facing the object side, and a diffractive optical element L52E. It is joined and has a positive refractive power as a whole.

回折光学素子L52Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE51と、該第1回折素子要素DE51と異なる紫外線硬化樹脂からなる第2回折素子要素DE52とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。なお、第2回折素子要素DE52の像側面には、非球面が形成されている。
以下の表6に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L52E is a contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE51 and a second diffractive element element DE52 made of an ultraviolet curable resin different from the first diffractive element element DE51 are closely bonded to each other, and the bonded surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become. An aspheric surface is formed on the image side surface of the second diffraction element element DE52.
Table 6 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表6)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 59.5583 5.0 56.21 1.524440
2 -61.4337 2.0 30.33 1.582760
3 -439.0598 0.4 50.17 1.527600
4 -439.0598 0.0 -3.45 n1
5 -439.0598 0.4 34.71 1.556900
6 -439.0598 47.9 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[回折光学素子L52Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 11

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第5面
κ = 0.0000 C2 = -4.97996E-09
C4 = 5.50019E-12 C6 = 3.00000E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 0.0000 C2 = 0.00000E+00
C4 = 1.77557E-07 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.569
(2)N/D= 0.88
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 6)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 59.5583 5.0 56.21 1.524440
2 -61.4337 2.0 30.33 1.582760
3 -439.0598 0.4 50.17 1.527600
4 -439.0598 0.0 -3.45 n1
5 -439.0598 0.4 34.71 1.556900
6 -439.0598 47.9 1.000000
7 ∞ 30.0 56.05 1.568829
8 ∞ 1.4 1.000000
9 ∞ 26.0 56.05 1.568829
10 ∞ 18.5 1.000000

[Diffraction optical element L52E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 11

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
5th surface κ = 0.0000 C2 = -4.97996E-09
C4 = 5.50019E-12 C6 = 3.00000E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 0.0000 C2 = 0.00000E + 00
C4 = 1.77557E-07 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.569
(2) N / D = 0.88
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図10(a)、及び図10(b)は、本発明の第5実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.87であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 10A and 10B are graphs showing various aberrations of the lens system including the achromatic lens system according to the fifth example of the present invention and MTFs on the optical axis due to white light. is there.
Since the MTF value at the time of 30 aberrations / mm is 0.87, the lens system provided with the achromatic lens system according to the present example corrects various aberrations, in particular, axial chromatic aberration. It can be seen that it has excellent imaging performance.

(第6実施例)
図11は、本発明の第6実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図11に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lのみからなる。
(Sixth embodiment)
FIG. 11 is a diagram showing a configuration of a lens system including an achromatic lens system according to the sixth example of the present invention.
As shown in FIG. 11, the lens system OL including the achromatic lens system L according to the present embodiment includes only the achromatic lens system L in order from the object side along the optical axis.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL61と回折光学素子L61Eと物体側に凹面を向けた負メニスカス樹脂レンズL62とからなり、これらは互いに接合されており、全体として正の屈折力を有している。なお、負メニスカス樹脂レンズL62の像側のレンズ面には、非球面が形成されている。   The achromatic lens system L is composed of, in order from the object side along the optical axis, a biconvex positive resin lens L61, a diffractive optical element L61E, and a negative meniscus resin lens L62 having a concave surface facing the object side. It is joined and has a positive refractive power as a whole. An aspheric surface is formed on the image side lens surface of the negative meniscus resin lens L62.

回折光学素子L61Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE61と、該第1回折素子要素DE61と異なる紫外線硬化樹脂からなる第2回折素子要素DE62とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。
以下の表7に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L61E is a contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE 61 and a second diffractive element element DE 62 made of an ultraviolet curable resin different from the first diffractive element element DE 61 are closely bonded to each other, and the bonded surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become.
Table 7 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表7)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 55.86027 5 56.21 1.524440
2 -66.70591 0.4 50.17 1.527600
3 -66.70591 0 -3.45 n1
4 -66.70583 0.4 34.71 1.556900
5 -66.70591 2 30.33 1.582760
6 -1018.0615 103 1.000000
7 ∞ 0

[回折光学素子L61Eデータ]
第3面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 20

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第4面
κ = 0.0000 C2 = -8.76759E-09
C4 = 7.37312E-12 C6 = 3.00000E-15
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 8.0000 C2 = 0.00000E+00
C4 = 2.22226E-07 C6 = -9.09884E-11
C8 = 1.00000E-13 C10 = 1.00000E-15

[条件式対応値]
(1)|R/f|= 0.618
(2)N/D= 1.6
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 7)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 55.86027 5 56.21 1.524440
2 -66.70591 0.4 50.17 1.527600
3 -66.70591 0 -3.45 n1
4 -66.70583 0.4 34.71 1.556900
5 -66.70591 2 30.33 1.582760
6 -1018.0615 103 1.000000
7 ∞ 0

[Diffraction optical element L61E data]
Third surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 20

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
4th surface κ = 0.0000 C2 = -8.76759E-09
C4 = 7.37312E-12 C6 = 3.00000E-15
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 8.0000 C2 = 0.00000E + 00
C4 = 2.22226E-07 C6 = -9.09884E-11
C8 = 1.00000E-13 C10 = 1.00000E-15

[Values for conditional expressions]
(1) | R / f | = 0.618
(2) N / D = 1.6
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図12(a)、及び図12(b)は、本発明の第6実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.89であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
なお、本実施例に係る色消しレンズ系を備えたレンズ系は、正立光学系としてミラープリズムを色消しレンズ系と像面Iとの間に配置しても良い。
FIGS. 12A and 12B are graphs showing various aberrations of the lens system including the achromatic lens system according to the sixth example of the present invention, and MTF on the optical axis due to white light. is there.
Since the MTF value at the time of 30 aberrations / mm is 0.89, the lens system including the achromatic lens system according to the present example corrects various aberrations, particularly axial chromatic aberration, in a satisfactory manner. It can be seen that it has excellent imaging performance.
In the lens system including the achromatic lens system according to the present embodiment, a mirror prism may be disposed between the achromatic lens system and the image plane I as an erecting optical system.

(第7実施例)
図13は、本発明の第7実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。
図14に示すように、本実施例に係る色消しレンズ系Lを備えたレンズ系OLは、光軸に沿って物体側から順に、色消しレンズ系Lと、正立光学系L73と、正立光学系L74とからなる。なお、本レンズ系OLは、正立光学系L73及び正立光学系L74によって光路が折り曲がった構成であるが、図14には展開して示されている。
(Seventh embodiment)
FIG. 13 is a diagram showing a configuration of a lens system including an achromatic lens system according to the seventh example of the present invention.
As shown in FIG. 14, the lens system OL including the achromatic lens system L according to the present embodiment includes, in order from the object side along the optical axis, the achromatic lens system L, the erecting optical system L73, and the positive lens system L73. And a standing optical system L74. The lens system OL has a configuration in which the optical path is bent by the erecting optical system L73 and the erecting optical system L74, but is shown in a developed state in FIG.

色消しレンズ系Lは、光軸に沿って物体側から順に、両凸形状の正樹脂レンズL71と物体側に凹面を向けた負メニスカス樹脂レンズL72と回折光学素子L72Eと、像側に凹面を向けた平凹レンズL75とからなり、前記正樹脂レンズL71と前記負メニスカス樹脂レンズL72と前記回折光学素子L72Eとは互いに接合されている。斯かる色消しレンズ系Lは、全体として正の屈折力を有しており、前記平凹レンズL75を光軸方向へ移動させることで像面位置の微調整を行うことが可能である。   The achromatic lens system L includes, in order from the object side along the optical axis, a biconvex positive resin lens L71, a negative meniscus resin lens L72 with a concave surface facing the object side, a diffractive optical element L72E, and a concave surface on the image side. The positive resin lens L71, the negative meniscus resin lens L72, and the diffractive optical element L72E are cemented with each other. Such an achromatic lens system L has a positive refracting power as a whole, and can finely adjust the image plane position by moving the plano-concave lens L75 in the optical axis direction.

回折光学素子L72Eは、色収差、特に軸上色収差を良好に補正するための密着複層型回折光学素子であって、光軸に沿って物体側から順に、紫外線硬化樹脂からなる第1回折素子要素DE71と、該第1回折素子要素DE71と異なる紫外線硬化樹脂からなる第2回折素子要素DE72とを密着接合して構成されており、その接合面は回折格子溝が形成された回折光学面Gfとなっている。なお、第2回折素子要素DE72の像側面には、非球面が形成されている。
以下の表8に、本実施例に係る色消しレンズ系Lを備えたレンズ系OLの諸元の値を掲げる。
The diffractive optical element L72E is a contact multilayer diffractive optical element for satisfactorily correcting chromatic aberration, particularly axial chromatic aberration, and is a first diffractive element element made of an ultraviolet curable resin in order from the object side along the optical axis. DE 71 and a second diffractive element element DE 72 made of an ultraviolet curable resin different from the first diffractive element element DE 71 are closely bonded to each other, and the bonded surface thereof is a diffractive optical surface Gf on which a diffraction grating groove is formed. It has become. An aspheric surface is formed on the image side surface of the second diffraction element element DE72.
Table 8 below lists values of specifications of the lens system OL including the achromatic lens system L according to the present example.

(表8)
[全体諸元]
f = 108.0
FNO= 4.3

[レンズデータ]
面番号 r d νd n(d)
1 56.89595 5.0 56.21 1.524440
2 -50.04559 2.0 30.33 1.582760
3 -233.94558 0.4 50.17 1.527600
4 -233.94558 0.0 -3.45 n1
5 -233.94558 0.4 34.71 1.556900
6 -233.94558 25.3 1.000000
7 ∞ 2.0 64.17 1.516800
8 275.31152 17.3 1.000000
9 ∞ 30.0 56.05 1.568829
10 ∞ 1.4 1.000000
11 ∞ 26.0 56.05 1.568829
12 ∞ 18.5 1.000000

[回折光学素子L72Eデータ]
第4面
n(d)= 10001.0000 = n1 n(g)= 7418.6853
n(C)= 11170.4255 n(F)= 8274.73111
回折光学面Gfの回折格子溝の数 = 5

[樹脂屈折率]
nC nd nF
低屈折率 1.523300 1.527600 1.538500
高屈折率 1.553700 1.556900 1.564800

[非球面データ]
第5面
κ = 0.0000 C2 = -3.061184E-09
C4 = 5.43278E-12 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

第6面
κ = 0.0000 C2 = 0.00000E+00
C4 = 2.08490E-07 C6 = 0.00000E+00
C8 = 0.00000E+00 C10 = 0.00000E+00

[条件式対応値]
(1)|R/f|= 0.463
(2)N/D= 0.40
(3)nd1= 1.527600
(4)nF1−nC1= 0.0152
(5)nd2= 1.556900
(6)nF2−nC2= 0.011
(Table 8)
[Overall specifications]
f = 108.0
FNO = 4.3

[Lens data]
Surface number r d νd n (d)
1 56.89595 5.0 56.21 1.524440
2 -50.04559 2.0 30.33 1.582760
3 -233.94558 0.4 50.17 1.527600
4 -233.94558 0.0 -3.45 n1
5 -233.94558 0.4 34.71 1.556900
6 -233.94558 25.3 1.000000
7 ∞ 2.0 64.17 1.516800
8 275.31152 17.3 1.000000
9 ∞ 30.0 56.05 1.568829
10 ∞ 1.4 1.000000
11 ∞ 26.0 56.05 1.568829
12 ∞ 18.5 1.000000

[Diffraction optical element L72E data]
Fourth surface n (d) = 10001.0000 = n1 n (g) = 7418.6853
n (C) = 11170.4255 n (F) = 8274.73111
Number of diffraction grating grooves on diffractive optical surface Gf = 5

[Resin refractive index]
nC nd nF
Low refractive index 1.523300 1.527600 1.538500
High refractive index 1.553700 1.556900 1.564800

[Aspherical data]
5th surface κ = 0.0000 C2 = -3.061184E-09
C4 = 5.43278E-12 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

6th surface κ = 0.0000 C2 = 0.00000E + 00
C4 = 2.08490E-07 C6 = 0.00000E + 00
C8 = 0.00000E + 00 C10 = 0.00000E + 00

[Values for conditional expressions]
(1) | R / f | = 0.463
(2) N / D = 0.40
(3) nd1 = 1.527600
(4) nF1-nC1 = 0.0152
(5) nd2 = 1.556900
(6) nF2-nC2 = 0.011

図14(a)、及び図14(b)は、本発明の第7実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。
諸収差図と30本/mmのときのMTF値が0.842であることから、本実施例に係る色消しレンズ系を備えたレンズ系は、諸収差、特に軸上色収差を良好に補正し、優れた結像性能を備えていることがわかる。
FIGS. 14A and 14B are graphs showing various aberrations of the lens system including the achromatic lens system according to the seventh example of the present invention, and MTF on the optical axis due to white light. is there.
Since the various aberration diagrams and the MTF value at 30 lines / mm are 0.842, the lens system including the achromatic lens system according to the present embodiment corrects various aberrations, particularly axial chromatic aberration, in a satisfactory manner. It can be seen that it has excellent imaging performance.

以上より各実施例に係る色消しレンズ系は、樹脂レンズを用いることで、従来のガラスレンズを用いた色消しレンズ系に比して1/3程度の軽量化を達成している。また、接合レンズと使用波長域において回折効率の良好な密着複層型回折光学素子とを用いることで、製造の容易化と色収差の良好な補正、更には球面収差の良好な補正を達成している。このようにして、特に望遠鏡対物レンズ、カメラレンズ、顕微鏡レンズ等に好適な、軽量かつ製造が容易で、色収差を良好に補正可能な色消しレンズ系を実現することができる。   As described above, the achromatic lens system according to each example achieves a weight reduction of about 1/3 compared to the achromatic lens system using a conventional glass lens by using a resin lens. In addition, by using a cemented lens and a close-contact multilayer diffractive optical element with good diffraction efficiency in the wavelength range to be used, manufacturing is facilitated, chromatic aberration is corrected, and spherical aberration is corrected. Yes. In this way, it is possible to realize an achromatic lens system that is particularly suitable for telescope objective lenses, camera lenses, microscope lenses, and the like, is lightweight and easy to manufacture, and can satisfactorily correct chromatic aberration.

次に、本発明の色消しレンズ系を備えた双眼鏡について図15に基づき説明する。
図15は、本発明の色消しレンズ系を備えた双眼鏡の構成を示す図である。
本双眼鏡20は、後述する対物レンズ21として上記第1実施例に係る色消しレンズ系を備えた双眼鏡である。
Next, binoculars equipped with the achromatic lens system of the present invention will be described with reference to FIG.
FIG. 15 is a diagram showing a configuration of binoculars provided with the achromatic lens system of the present invention.
The binocular 20 is a binocular provided with an achromatic lens system according to the first embodiment as an objective lens 21 described later.

図15に示すように本双眼鏡20は、観察者の左右の眼に対応する左右一対の観察鏡筒20a,20b内に、観察対象物側から光軸に沿って順に、対物レンズ21と、正立光学系22と、接眼レンズ23とそれぞれを備えてなる。この構成の下、観察対象物からの光は対物レンズ21によって集光されて物体像が形成される。この物体像は、正立光学系22によって正立化された後、接眼レンズ23によって拡大される。これにより観察者は、観察対象物を拡大観察することができる。   As shown in FIG. 15, the present binoculars 20 are placed in the pair of left and right observation lens barrels 20a and 20b corresponding to the left and right eyes of the observer in order along the optical axis from the object to be observed, and the objective lens 21. Each of the vertical optical system 22 and the eyepiece lens 23 is provided. Under this configuration, light from the observation object is collected by the objective lens 21 to form an object image. This object image is erected by the erecting optical system 22 and then enlarged by the eyepiece lens 23. Thereby, the observer can enlarge and observe the observation object.

ここで、本双眼鏡20に対物レンズ21として搭載した上記第1実施例に係る色消しレンズ系は、上記第1実施例において説明したようにその特徴的なレンズ構成によって、軽量かつ製造が容易で、色収差と球面収差を同時に良好に補正することが可能である。したがって本双眼鏡20は、軽量化及び製造の容易化、そして色収差と球面収差の良好な同時補正を実現することが可能となる。   Here, the achromatic lens system according to the first embodiment mounted on the binoculars 20 as the objective lens 21 is light in weight and easy to manufacture due to its characteristic lens configuration as described in the first embodiment. It is possible to correct chromatic aberration and spherical aberration simultaneously at the same time. Therefore, the binoculars 20 can realize light weight and easy manufacturing, and good simultaneous correction of chromatic aberration and spherical aberration.

なお、上記第2、第3、第4、第5、第6、第7実施例に係る色消しレンズ系を対物レンズ21として搭載した双眼鏡を構成しても上記双眼鏡20と同様の効果を奏することができる。
また、以上、本発明の色消しレンズ系を備えた光学装置の一例として双眼鏡を示したが、光学装置はこれに限られず、本発明の色消しレンズ系は、望遠鏡、カメラ、顕微鏡等にも勿論適用できる。
Even if the binoculars in which the achromatic lens system according to the second, third, fourth, fifth, sixth, and seventh examples is mounted as the objective lens 21, the same effect as the binoculars 20 can be obtained. be able to.
In addition, as described above, binoculars are shown as an example of an optical device provided with the achromatic lens system of the present invention. However, the optical device is not limited to this, and the achromatic lens system of the present invention is applicable to a telescope, a camera, a microscope, and the like. Of course, it can be applied.

以上より、軽量かつ製造が容易で、色収差と同時に球面収差を良好に補正可能な色消しレンズ系、及びそれを用いた光学装置を提供することができる。   From the above, it is possible to provide an achromatic lens system that is lightweight and easy to manufacture and that can satisfactorily correct spherical aberration simultaneously with chromatic aberration, and an optical device using the same.

本発明の第1実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 1st Example of this invention. (a)、及び(b)は、本発明の第1実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。(A) And (b) is a diagram showing various aberrations of the lens system provided with the achromatic lens system according to the first example of the present invention, and the MTF on the optical axis due to white light. 本発明の第2実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 2nd Example of this invention. (a)、及び(b)は、本発明の第2実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。(A) And (b) is a diagram showing various aberrations of the lens system including the achromatic lens system according to the second example of the present invention, and the MTF on the optical axis due to white light. 本発明の第3実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 3rd Example of this invention. (a)、及び(b)は、本発明の第3実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。FIGS. 7A and 7B are graphs showing various aberrations of the lens system including the achromatic lens system according to the third example of the present invention, and the MTF on the optical axis due to white light. FIGS. 本発明の第4実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 4th Example of this invention. (a)、及び(b)は、本発明の第4実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。FIGS. 7A and 7B are graphs showing various aberrations of the lens system including the achromatic lens system according to Example 4 of the present invention, and the MTF on the optical axis due to white light. FIGS. 本発明の第5実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 5th Example of this invention. (a)、及び(b)は、本発明の第5実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。FIGS. 7A and 7B are graphs showing various aberrations of the lens system including the achromatic lens system according to the fifth example of the present invention and MTFs on the optical axis due to white light. FIGS. 本発明の第6実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 6th Example of this invention. (a)、及び(b)は、本発明の第6実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。FIGS. 7A and 7B are graphs showing various aberrations of the lens system including the achromatic lens system according to Example 6 of the present invention, and the MTF on the optical axis due to white light. FIGS. 本発明の第7実施例に係る色消しレンズ系を備えたレンズ系の構成を示す図である。It is a figure which shows the structure of the lens system provided with the achromatic lens system which concerns on 7th Example of this invention. (a)、及び(b)は、本発明の第7実施例に係る色消しレンズ系を備えたレンズ系の諸収差図、及び白色光による光軸上のMTFを示す図である。(A) And (b) is a diagram showing various aberrations of the lens system including the achromatic lens system according to the seventh example of the present invention, and the MTF on the optical axis due to white light. 本発明の色消しレンズ系を備えた双眼鏡の構成を示す図である。It is a figure which shows the structure of the binoculars provided with the achromatic lens system of this invention.

符号の説明Explanation of symbols

L 色消しレンズ系
OL 色消しレンズ系を備えたレンズ系
L11E,L21E,L31E,L41E,L52E,L61E,L72E 回折光学素子
DE11,DE21,DE31,DE41,DE51,DE61,DE71 第1回折素子要素
DE12,DE22,DE32,DE42,DE52,DE62,DE72 第2回折素子要素
L11,L21,L31,L41,L51,L61,L71 正の屈折力を有する樹脂レンズ
L12,L22,L32,L42,L52,L62,L72 負の屈折力を有する樹脂レンズ
Gf 回折光学面
L13,L23,L33,L43,L53,L73 正立化光学系
L14,L24,L34,L44,L54,L74 正立化光学系
I 像面
L Achromatic lens system OL Lens systems L11E, L21E, L31E, L41E, L52E, L61E, L72E having an achromatic lens system Diffractive optical elements DE11, DE21, DE31, DE41, DE51, DE61, DE71 First diffraction element element DE12 DE22, DE32, DE42, DE52, DE62, DE72 Second diffractive element L11, L21, L31, L41, L51, L61, L71 Resin lenses L12, L22, L32, L42, L52, L62 having positive refractive power L72 Resin lens Gf having negative refractive power L13, L23, L33, L43, L53, L73 Erecting optical system L14, L24, L34, L44, L54, L74 Erecting optical system I Image plane

Claims (5)

正の屈折力を有する樹脂レンズと、回折光学素子と、負の屈折力を有する樹脂レンズとを有し、これらは全て接合されており全体として正の屈折力を有し、
前記回折光学素子は、異なる光学材料からなる2つの回折素子要素を接合して構成されており、その接合面は回折格子溝が形成された回折光学面であって、
以下の条件式を満足することを特徴とする色消しレンズ系。
0.2≦|R/f|≦1.3
0.3≦N/D≦1.8
但し、
R:前記正の屈折力を有する樹脂レンズにおける像側のレンズ面の曲率半径
f:前記色消しレンズ系の焦点距離
N:前記回折光学素子における前記回折光学面の前記回折格子溝の数(本)
D:前記回折光学素子における前記回折光学面の有効半径(mm)
A resin lens having a positive refractive power, a diffractive optical element, and a resin lens having a negative refractive power, all of which are joined and have a positive refractive power as a whole,
The diffractive optical element is formed by joining the two diffractive element made of different optical materials, I the bonding surface is the diffractive optical surface der which diffraction grating grooves are formed,
An achromatic lens system satisfying the following conditional expression:
0.2 ≦ | R / f | ≦ 1.3
0.3 ≦ N / D ≦ 1.8
However,
R: radius of curvature of the image-side lens surface of the resin lens having positive refractive power
f: Focal length of the achromatic lens system
N: Number of diffraction grating grooves on the diffractive optical surface in the diffractive optical element (number)
D: Effective radius (mm) of the diffractive optical surface in the diffractive optical element
前記色消しレンズ系は、少なくとも1つの非球面を備えていることを特徴とする請求項1に記載の色消しレンズ系。 The achromatic lens system according to claim 1, wherein the achromatic lens system includes at least one aspheric surface. 前記2つの回折素子要素は、互いに異なり、少なくとも一方は紫外線硬化樹脂からなることを特徴とする請求項1又は請求項2に記載の色消しレンズ系。 The achromatic lens system according to claim 1 or 2 , wherein the two diffractive element elements are different from each other, and at least one is made of an ultraviolet curable resin. 以下の条件式を満足することを特徴とする請求項1から請求項のいずれか1項に記載の色消しレンズ系。
nd1≦1.54
0.0145≦nF1−nC1
1.55≦nd2
nF2−nC2≦0.013
但し、
nd1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のd線(波長λ=587.562nm)に対する屈折率
nF1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のF線(波長λ=486.133nm)に対する屈折数
nC1:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が低くアッベ数が小さい方の前記回折素子要素の材料のC線(波長λ=656.273nm)に対する屈折率
nd2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のd線(波長λ=587.562nm)に対する屈折率
nF2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のF線(波長λ=486.133nm)に対する屈折数
nC2:前記回折光学素子中の前記2つの回折素子要素のうち、屈折率が高くアッベ数が大きい方の前記回折素子要素の材料のC線(波長λ=656.273nm)に対する屈折率
The achromatic lens system according to any one of claims 1 to 3 , wherein the following conditional expression is satisfied.
nd1 ≦ 1.54
0.0145 ≦ nF1-nC1
1.55 ≦ nd2
nF2-nC2 ≦ 0.013
However,
nd1: Refractive index nF1: for the d-line (wavelength λ = 587.562 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number among the two diffractive element elements in the diffractive optical element Of the two diffractive element elements in the diffractive optical element, the refractive index nC1: for the F-line (wavelength λ = 486.133 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number. Among the two diffractive element elements, the refractive index nd2 with respect to the C-line (wavelength λ = 656.273 nm) of the material of the diffractive element element having the lower refractive index and the smaller Abbe number: the above-mentioned in the diffractive optical element Of the two diffractive element elements, the refractive index nF2 for the d-line (wavelength λ = 587.562 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number: the diffractive optical element Of the two diffractive element elements in the element, the refractive index nC2 with respect to the F-line (wavelength λ = 486.133 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number: in the diffractive optical element Of the two diffractive element elements, the refractive index with respect to the C-line (wavelength λ = 656.273 nm) of the material of the diffractive element element having the higher refractive index and the larger Abbe number.
請求項1から請求項のいずれか1項に記載の色消しレンズ系を備えていることを特徴とする光学装置。 An optical device comprising the achromatic lens system according to any one of claims 1 to 4 .
JP2006259712A 2006-09-25 2006-09-25 Achromatic lens system, optical device Expired - Fee Related JP4995525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259712A JP4995525B2 (en) 2006-09-25 2006-09-25 Achromatic lens system, optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259712A JP4995525B2 (en) 2006-09-25 2006-09-25 Achromatic lens system, optical device

Publications (2)

Publication Number Publication Date
JP2008083096A JP2008083096A (en) 2008-04-10
JP4995525B2 true JP4995525B2 (en) 2012-08-08

Family

ID=39354074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259712A Expired - Fee Related JP4995525B2 (en) 2006-09-25 2006-09-25 Achromatic lens system, optical device

Country Status (1)

Country Link
JP (1) JP4995525B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128355B1 (en) 2008-04-11 2018-06-13 Nikon Corporation Microscope objective lens
JP5190691B2 (en) * 2008-09-10 2013-04-24 株式会社ニコン Microscope objective lens
JP5434130B2 (en) * 2009-02-24 2014-03-05 株式会社ニコン Microscope objective lens
JP5206085B2 (en) * 2008-04-11 2013-06-12 株式会社ニコン Microscope objective lens
JP6736394B2 (en) 2016-07-11 2020-08-05 キヤノン株式会社 Observation device
JP6851775B2 (en) 2016-10-31 2021-03-31 キヤノン株式会社 Diffractive optical element and optical system having it, imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503510B2 (en) * 1987-05-18 1996-06-05 株式会社ニコン Telephoto zoom lens
JP3746894B2 (en) * 1998-02-05 2006-02-15 ペンタックス株式会社 Achromatic lens system
KR101174180B1 (en) * 2005-02-22 2012-08-14 가부시키가이샤 니콘 Diffractive optical element

Also Published As

Publication number Publication date
JP2008083096A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US7848027B2 (en) Objective lens
JP5440891B2 (en) Microscope objective lens
JP5854124B2 (en) Zoom optical system and imaging apparatus
JP5614448B2 (en) Microscope objective lens
EP2264505A1 (en) Objective lens
JPWO2011024258A1 (en) Optical system and optical apparatus having the same
JP4995525B2 (en) Achromatic lens system, optical device
JP4860500B2 (en) Achromatic lens system, optical device
JP5641461B2 (en) Zoom optical system and imaging apparatus having the same
JP6354170B2 (en) Objective lens
JPH11295590A (en) Optical system provided with diffraction optical element
JP2004333768A (en) Zoom lens and imaging device having the same
JP2000147379A (en) Zoom lens
JP5206085B2 (en) Microscope objective lens
JP2008122592A (en) Microscope objective lens
JPH1152236A (en) Rear focus type zoom lens
JP5190691B2 (en) Microscope objective lens
JP5434130B2 (en) Microscope objective lens
JP5581182B2 (en) Eyepiece optical system and optical apparatus
WO2009157360A1 (en) Relay zoom system
JP2004126395A (en) Telescopic optical system and objective system used for the same
JP2008122640A (en) Microscope objective lens
JP2004258246A (en) Relay optical system
JP2009294664A (en) Zoom lens and imaging apparatus having it

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080529

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4995525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees