JP4995497B2 - Chamfering machine - Google Patents

Chamfering machine Download PDF

Info

Publication number
JP4995497B2
JP4995497B2 JP2006169313A JP2006169313A JP4995497B2 JP 4995497 B2 JP4995497 B2 JP 4995497B2 JP 2006169313 A JP2006169313 A JP 2006169313A JP 2006169313 A JP2006169313 A JP 2006169313A JP 4995497 B2 JP4995497 B2 JP 4995497B2
Authority
JP
Japan
Prior art keywords
contact
workpiece
chamfering machine
force
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006169313A
Other languages
Japanese (ja)
Other versions
JP2007001006A (en
Inventor
峯子 松葉
Original Assignee
峯子 松葉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 峯子 松葉 filed Critical 峯子 松葉
Priority to JP2006169313A priority Critical patent/JP4995497B2/en
Publication of JP2007001006A publication Critical patent/JP2007001006A/en
Application granted granted Critical
Publication of JP4995497B2 publication Critical patent/JP4995497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)
  • Machine Tool Copy Controls (AREA)

Description

本発明は機械部品等の周囲角部の面取施工機に関する。  The present invention relates to a chamfering machine for peripheral corners of machine parts and the like.

従来の面取機は直線移動可能な接触子を一定圧でワ−クに押し付けた状態でワ−ク側に前進駆動し、ワークからの反力で接触子を後退駆動し,接触子と一体化された切削工具で面取りしている。(例えば参考文献参照)。  The conventional chamfering machine drives the linearly movable contact against the workpiece at a constant pressure, and drives it forward to the workpiece. The reaction force from the workpiece causes the contact to move backward, making it integral with the contact. Chamfered with a cutting tool. (See, eg, references).

以下図1、図2に従来の面取機について説明する。図2において、53はワ−ク52を回転駆動する減速モーターである。50は接触子でウエイト62により数kgの一定の力Pでワ−ク52の方向に加勢されている。ワ−ク52は減速モーター53により回転中心70を中心に左回転している。また接触子50は直動軸受のレール58の上にサドル59の上に取付けられた直動部57に取付けられ、ワ−ク52の方向にのみ直進前後動出来る様に規制されており、ワ−ク52が移動して接触子50との接触点がワ−ク52に近ずく方向に移動するときは接触子50は加勢された一定圧でワ−ク52の方向に押圧され前進する。  A conventional chamfering machine will be described below with reference to FIGS. In FIG. 2, reference numeral 53 denotes a reduction motor that rotationally drives the work 52. A contact 50 is urged by a weight 62 in the direction of the work 52 with a constant force P of several kg. The work 52 is rotated counterclockwise around the rotation center 70 by the reduction motor 53. The contact 50 is mounted on a linear motion portion 57 mounted on a saddle 59 on a rail 58 of a linear motion bearing, and is regulated so as to be able to move back and forth only in the direction of the workpiece 52. -When the workpiece 52 moves and the point of contact with the contact 50 moves in a direction approaching the workpiece 52, the contact 50 is pushed in the direction of the workpiece 52 with the biased constant pressure and moves forward.

第1図にワ−ク52が回転する時、接触子50にはそれから力を受ける反力Rと、ウエイト53による数kgの一定のワ−ク52に向かう力Pと、摩擦力F,力Sの状態を示している。  As shown in FIG. 1, when the work 52 rotates, the contact 50 receives a reaction force R that receives a force therefrom, a force P caused by a weight 53 toward a certain work 52 of several kg, a friction force F, and a force. The state of S is shown.

ワ−ク52が移動して接触子50との接触点がワ−ク52から離れる方向に移動するとき、接触子50は、ワ−ク52から受ける反力R,ウエイトによる一定圧P,及び接触子50とワ−ク52の間の摩擦力Fの合成力により動く。この際、力Sは接触子50の進行方向と90°の方向のため、接触子50の前後動には関与しない。
特開平11−165242
When the work 52 moves and the point of contact with the contact 50 moves away from the work 52, the contact 50 receives the reaction force R received from the work 52, the constant pressure P due to the weight, and It moves by the combined force of the frictional force F between the contact 50 and the workpiece 52. At this time, since the force S is 90 ° with respect to the traveling direction of the contact 50, the force S is not involved in the back-and-forth movement of the contact 50.
JP-A-11-165242

従来の押圧面取り機では刃物を回転駆動しながらワ−クに一定圧で押付け、ワ−ク4を回転しながら面取りしている。この際生ずる課題(問題点)を述べる。  In the conventional pressing chamfering machine, the blade is pressed against the workpiece at a constant pressure while being rotated, and the workpiece 4 is chamfered while rotating. The problem (problem) that arises at this time will be described.

第一には面取り出来るワ−ク形状に制約があることである。
第1図で接触子50がワーク52から離れる方向に動く場合の作用力のバランスを1式に示す。
この式で、aは接触子50の動く方向とワーク52の面取りする部分の稜線の間の角度で接触角と呼ぶことにする。
Rcos(90−a) = P + F×cos(a) −−−−−−− 1式
この式は
R×sin(a)= P +R×μ×cos(a)
となる。
この式でμは接触子50とワーク52の間の摩擦係数で、これらが鉄の場合0.15程度になる。
この式を整理すると
R= P/{sin(a)−μ×cos(a)} −−−−−−− 2式
2式から判る様に接触子50の接触部分のワーク52の接触角aが大きいと、反力Rは小さくなる事が分かる。
例えばaが30°の場合
R= P/{sin30−0.15×cos30)}
= P/0.370
= 2.7 × P
反力Rは押圧力Pの3倍程度で、この状態では接触子50がワーク52から離れる方向に容易に移動で出来る。傾斜角aが小さくなるに従い、反力Rも大きくなり、接触角aが9度近くになると反力Rは無限大になり、摩擦力Fも無限大になって接触子50は後退出来なくなる。歯車の面取りの場合についてこれを検証すると次の様になる。
一般の歯車の圧力角は14.5度で、接触角aが14.5度になった場合の反力Rを計算すると、
R= P/(sin14.5− 0.15×cos14.5)
= P/(0.2504 − 0.1452)
= P/ 0.1052
= 9.5×P −−−−−−−−−−−− 3式
となり、接触子50に加わるワーク52よりの押付力は押圧力Pの10倍程度になる。従って摩擦力Fも大きくなりスムースな面取作業が出来なくなる。押圧力Pが1kgであれば、接触子50は、ワーク52を10kgで押し付けることになる。こうなれば、接触子50は摩擦力Fの為に後退出来なくなって面取りが中止されたり、接触子50がしゃくる様な動きをしてきれいな面取りが出来ない。歯車の場合圧力角14.5°では接触角aも同じ角度になり、スムースな面取作業に支障をきたす事が多い。
接触角aの正接が摩擦係数の0.15になると反力Rは無限大になり、従って接触子50は動かなくなる。この角度はアークtan(0.15)となり、9°近くになる。
First, there is a restriction on the work shape that can be chamfered.
FIG. 1 shows a set of balance of acting forces when the contact 50 moves away from the workpiece 52.
In this equation, a is an angle between the moving direction of the contact 50 and the ridge line of the chamfered portion of the workpiece 52, and is referred to as a contact angle.
Rcos (90−a) = P + F × cos (a) −−−−−−− Equation 1 This equation is R × sin (a) = P + R × μ × cos (a)
It becomes.
In this equation, μ is a coefficient of friction between the contact 50 and the workpiece 52, and is about 0.15 when these are iron.
When this equation is rearranged, R = P / {sin (a) −μ × cos (a)} −−−−−−− As can be understood from equation (2), the contact angle a of the workpiece 52 at the contact portion of the contact 50 is a. It can be seen that the reaction force R becomes smaller when is larger.
For example, when a is 30 °, R = P / {sin30−0.15 × cos30)}
= P / 0.370
= 2.7 x P
The reaction force R is about three times the pressing force P. In this state, the contact 50 can be easily moved away from the workpiece 52. As the inclination angle a decreases, the reaction force R also increases. When the contact angle a approaches 9 degrees, the reaction force R becomes infinite, the frictional force F also becomes infinite, and the contact 50 cannot move backward. It is as follows when this is verified about the case of chamfering of a gear.
When the pressure angle of a general gear is 14.5 degrees and the reaction force R when the contact angle a is 14.5 degrees is calculated,
R = P / (sin14.5−0.15 × cos14.5)
= P / (0.2504-0.1452)
= P / 0.1052
= 9.5 × P ----------------------------------------- 3 formulas, and the pressing force from the workpiece 52 applied to the contact 50 is about 10 times the pressing force P. Accordingly, the frictional force F increases and smooth chamfering work cannot be performed. If the pressing force P is 1 kg, the contact 50 presses the workpiece 52 with 10 kg. In this case, the contact 50 cannot be retracted due to the frictional force F, and the chamfering is stopped, or the contact 50 moves like a crush and cannot be cleanly chamfered. In the case of a gear, when the pressure angle is 14.5 °, the contact angle a is also the same, which often hinders smooth chamfering work.
When the tangent of the contact angle a reaches a friction coefficient of 0.15, the reaction force R becomes infinite, so that the contact 50 does not move. This angle becomes arc tan (0.15), which is close to 9 °.

第二には接触子50と接触する部分のワーク52に傷が入る事である。
前述の様にワーク52と接触子50の接触部分のワーク52の接触角aが小さくなるとワーク52が接触子50から受ける圧力は2式よりわかる様に、大きくなりこの力でスライドするので、ワーク52の接触子50との接触面に傷が入る。商品に傷が入る事は致命傷で、高級歯車、または微かな傷も許されないワーク52には使用出来ない。
The second is that a part of the work 52 in contact with the contact 50 is damaged.
As described above, when the contact angle a of the workpiece 52 at the contact portion between the workpiece 52 and the contact 50 becomes smaller, the pressure that the workpiece 52 receives from the contact 50 becomes larger and slides with this force as can be understood from the two formulas. The contact surface with the contact 50 of 52 is damaged. Scratching a product is a fatal wound and cannot be used for a high-quality gear or a work 52 that does not allow fine scratches.

第三には大きなバリの面取,又は切削量の大きい面取の場合には切削工具に大きな切削力が加わり,それが一体になっている接触子にも影響し,接触子がワークの接触面から離れてしまい面取不能になってしまう事である。この様な場合には2回以上面取りしているのが実情である。    Third, in the case of chamfering with large burrs or chamfering with a large amount of cutting, a large cutting force is applied to the cutting tool, which also affects the contact with which it is integrated. It is that it will be chamfered away from the surface. In such a case, it is the actual situation that chamfering is performed twice or more.

第四には接触子50の寿命が短く、その管理に手がかかる事である。
前述の様に接触子には大きな力が加わった状態でワーク52の面取部を擦るので磨耗が大きく,その寿命も短く頻繁に交換の必要がある。そのため、接触子50の材質、熱処理等に大きな注意を配る必要がある。
また接触子50とワーク52の摩擦状態を良好に保つため接触子50の形状をワーク52に合わせて製作、保管するケースが多い。
Fourthly, the life of the contact 50 is short and management is required.
As described above, since the chamfered portion of the workpiece 52 is rubbed with a large force applied to the contactor, wear is large, its life is short, and frequent replacement is necessary. Therefore, it is necessary to pay great attention to the material of the contact 50, heat treatment, and the like.
Further, in many cases, the shape of the contact 50 is manufactured and stored in accordance with the work 52 in order to keep the friction state between the contact 50 and the work 52 favorable.

本発明は、このような従来の面取機が有していた問題を解決しようとするものであり、接触子50とワーク52の接触状態を改善して、接触子50とワーク52の接触角が小さくても容易に面取出来、大きなバリ,大きな面取でも接触子50のワーク52への押付力を小さく出来てワーク52に接触子50の接触傷が入らず、ワーク52が変わっても接触子50を交換する必要がなく、しかも接触子50の磨耗が小さくて寿命の長い面取機を実現することを目的とする。  The present invention is intended to solve the problem of such a conventional chamfering machine. The contact state between the contact 50 and the work 52 is improved, and the contact angle between the contact 50 and the work 52 is improved. Can be easily chamfered even with small, large burr and large chamfering can reduce the pressing force of the contact 50 against the work 52 so that the contact of the contact 50 does not enter the work 52 and the work 52 changes. It is an object of the present invention to realize a chamfering machine that does not require replacement of the contact 50 and that has a small wear and a long life.

課題を解決しようとする手段Means to solve the problem

そして、本発明は上記目的を達成するために、ワークの回転軸(ワークの面取り部が直線運動する場合は回転半径が無限大のケースとする。)と接触子の回転軸,切削工具の回転軸を設け,接触子の回転軸にはパルス発生装置(エンコ−ダ−等)を直結し,この回転軸にバネなどによりトルクを加勢し、接触子がその回転軸を中心として円弧を描きながらワークに当接し、ワーク面取部が移動することで接触子はワークの面取部形状に沿って揺動し、回転軸に直結されたパルス発生装置からはパルスが発生し,そのパルスで切削工具の回転軸に減速機を介して直結されたパルス駆動モ−タ−を駆動し接触子と切削工具が同期して動く構造にした。  In order to achieve the above object, the present invention achieves the above-mentioned object by rotating the workpiece rotation axis (when the chamfered part of the workpiece moves linearly, the rotation radius is infinite), the contact rotation axis, and the cutting tool rotation. An axis is provided, and a pulse generator (encoder, etc.) is directly connected to the rotating shaft of the contact. Torque is applied to the rotating shaft by a spring or the like, and the contact draws an arc around the rotating shaft. When the workpiece chamfered part moves in contact with the workpiece, the contact oscillates along the shape of the chamfered part of the workpiece, and a pulse is generated from the pulse generator directly connected to the rotating shaft. A pulse drive motor directly connected to the rotating shaft of the tool via a speed reducer is driven to move the contact and the cutting tool in synchronization.

上記手段により接触子がワークとの接触点で動く方向と、ワークの面取部での稜線の方向が形成する接触角を従来の面取機より大きくすることが出来た。By the above means, the contact angle formed by the direction in which the contact moves at the contact point with the workpiece and the direction of the ridge line at the chamfered portion of the workpiece can be made larger than that of the conventional chamfering machine.

また、接触子がバネなどによりトルクを加勢された回転軸により円弧運動をしてワークに接触するので、接触子とワークの面取部との間の接触力は数十グラム〜数百グラムと大幅に小さくする事ことが出来た。In addition, since the contact element makes a circular motion with the rotating shaft to which torque is applied by a spring or the like and contacts the workpiece, the contact force between the contact element and the chamfered part of the workpiece is several tens to hundreds of grams. We were able to make it significantly smaller.

発明の効果The invention's effect

上述した様に本発明による面取機は、従来の面取機では面取りが難しかった接触角(歯車でゆう圧力角)の小さいワークでも容易に面取りが可能になった。これは接触子の動く方向とワークの面取部の稜線との間の接触角を従来より大きくすることが出来た効果である。As described above, the chamfering machine according to the present invention can easily chamfer even a work having a small contact angle (gear pressure angle with a gear), which is difficult to chamfer with a conventional chamfering machine. This is an effect that the contact angle between the moving direction of the contact and the ridge line of the chamfered part of the workpiece can be made larger than before.

また従来の面取機ではワークに接触子の接触傷が入っていたが本発明による面取機はではワークに全く傷が入らずに面取り出来る。これは接触子がワークに接触する力を従来の面取機の場合より大幅に少さく出来た効果である。Further, in the conventional chamfering machine, the contact flaw of the contact has entered the work, but the chamfering machine according to the present invention can chamfer the work without any flaws. This is an effect that the contact force of the contactor with the workpiece can be greatly reduced as compared with the conventional chamfering machine.

また,バリが大きい場合や,面取量が大きい場合でも接触子がワークに接する接圧は小さく変わらず,ワークに傷を与えず面取出来る。
また従来不可能であった大きなバリ取,面取りもなんら支障なく面取が出来る。これは接触子の回転軸と切削工具の回転軸を分け,工具にかかる切削力が接触子に伝わらない様にした効果である。
In addition, even when the burr is large or the chamfering amount is large, the contact pressure with which the contact contacts the workpiece does not change, and the workpiece can be chamfered without scratching.
In addition, large deburring and chamfering, which was impossible before, can be chamfered without any problem. This is an effect of separating the rotating shaft of the contact and the rotating shaft of the cutting tool so that the cutting force applied to the tool is not transmitted to the contact.

また従来の面取機では接触子の磨耗が激しく、頻繁に交換の必要があったが、本発明による面取機では接触子の磨耗は殆ど見られず、耐久性が高いため交換の頻度が大幅に減った。これは接触子がワークに接触する力が従来の面取機の場合より大幅小さくになった効果である。In addition, the conventional chamfering machine has severe contact wear, and frequent replacement is required. However, in the chamfering machine according to the present invention, there is almost no contact wear and the durability is high. Decreased significantly. This is an effect that the force with which the contact contacts the workpiece is much smaller than that of the conventional chamfering machine.

また従来の面取機では接触子がスムースに動く様に、ワーク毎に接触子を製作し、ワークが変わる毎にそれを交換していたが、本発明による面取機ではワークが変わっても接触子が軽く、スムースに動くのでその交換は不必要で、接触子の汎用性が高くなり利便性が向上した。In addition, in the conventional chamfering machine, the contactor is manufactured for each workpiece so that the contactor moves smoothly, and is changed every time the workpiece changes. However, in the chamfering machine according to the present invention, even if the workpiece changes. Since the contacts are light and move smoothly, there is no need to replace them, which increases the versatility of the contacts and improves convenience.

以下、本発明の実施の形態を図3〜図6に基ずいて説明する。Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図3は本発明に係る面取機の平面図、図4は正面図、図5は部分詳細図である。
上図で1は面取機のフレームでそれにギヤ−モーター2が取付けてある。ギヤ−モーター2の出力軸3にはチャック4が取付けてあり、チャック4にはワーク5が把持され回転される。
3 is a plan view of a chamfering machine according to the present invention, FIG. 4 is a front view, and FIG. 5 is a partial detail view.
In the above figure, 1 is a frame of a chamfering machine, to which a gear-motor 2 is attached. A chuck 4 is attached to the output shaft 3 of the gear motor 2, and a work 5 is gripped and rotated by the chuck 4.

フレーム1の上に直動部11が設けられており、その上にスライドベース12が取付けられ、それが直動部11に内臓されたネジにより前後駆動される様になっておる。直動部11に内臓されたネジはベベルギヤー10,9を経て軸8に繋がっており、ハンドル7を廻すことで軸8が駆動され最終的にスライドベース12が前後に駆動される。A linear motion part 11 is provided on the frame 1, and a slide base 12 is mounted on the frame 1, and it is driven back and forth by screws incorporated in the linear motion part 11. The screw incorporated in the linear motion portion 11 is connected to the shaft 8 through the bevel gears 10 and 9, and the shaft 8 is driven by turning the handle 7, and the slide base 12 is finally driven back and forth.

スライドベース12の上に上下駆動機構13が設けられており、ハンドル35を廻すことでブラケット14が上下に駆動される。第5図でブラケット14には梁15が取付けてあり、その先端には減速機16が取り付けてありその入力側にはサーボモーター17が設けられており、出力側には一定長さのブラッケト18が取り付けられており、その端に切削工具19の取付けられた回転工具20が取付けられている。A vertical drive mechanism 13 is provided on the slide base 12, and the bracket 14 is driven up and down by turning the handle 35. In FIG. 5, a beam 15 is attached to the bracket 14, a speed reducer 16 is attached to the tip thereof, a servo motor 17 is provided on the input side, and a bracket 18 having a fixed length is provided on the output side. And a rotary tool 20 to which a cutting tool 19 is attached is attached to the end thereof.

図5に示す様に梁15にはブラッケト21が取付けてあり、それに取付けられた軸受22には回転軸23が設けられ、それに梁24を経て接触子5が設けられている。また、梁15には別のブラッケト25によりエンコーダ26が取付けられ、その回転軸27はカップリング28により接触子5の回転軸23と直結されており、接触子5が揺動するとエンコーダー26から揺動角に比例したパルスが発生する。As shown in FIG. 5, a bracket 15 is attached to the beam 15, a bearing 22 attached thereto is provided with a rotating shaft 23, and a contactor 5 is provided via the beam 24. Further, an encoder 26 is attached to the beam 15 by another bracket 25, and its rotating shaft 27 is directly connected to the rotating shaft 23 of the contact 5 by a coupling 28. When the contact 5 swings, the encoder 26 swings. A pulse proportional to the moving angle is generated.

回転軸23はバネ29で接触子5がワーク3に接触する方向にトルクが与えられており、バネ29の引張力の調整で、接触子5とワーク3の間の接触圧は数十グラムの大きさになっている。Torque is applied to the rotating shaft 23 in the direction in which the contact 5 comes into contact with the work 3 by a spring 29. By adjusting the tensile force of the spring 29, the contact pressure between the contact 5 and the work 3 is several tens of grams. It is a size.

以上に述べた様に構成し、第5図に示す様に接触子5の上に回転工具20の切削工具19が来るようにする。The structure is as described above, and the cutting tool 19 of the rotary tool 20 is placed on the contact 5 as shown in FIG.

実際の面取りでは接触子5がワーク5の形状をトレースして揺動し、エンコーダー26からパルスが出て、サーボモーター17のドライバー51に入り、切削工具19の取付けられた回転工具20を揺動駆動し、接触子5と切削工具19が同期して動く様になる。
接触子5と切削工具19が同期して動くためには次の(4)式に示す関係が必要になる。
n: エンコーダー26の回転軸が1回転して出るパルス数
s: サーボモーター17の出力軸を1回転する為必要なパルス数
p: 減速機の減速比
e: サーボモーター17のドライバーにセットする電子ギヤー比
n×(e/p)=s −−−−−−−−−−−−−−−−−−(4)式
(1)式に示す数式が満足されると接触子5と切削工具19は同一の動きをする。
なお、接触子5と切削工具19の位置関係が完全でないと良好な面取が出来ない。実際には第6図に示す様に、回転工具20を前後(30−2)、左右(30−1)、上下方向(30−3)に位置調整出来る機構を備えており、それらを調整する事で接触子5と切削工具19の位置関係が完全になる。
In actual chamfering, the contact 5 swings by tracing the shape of the workpiece 5, a pulse is output from the encoder 26, enters the driver 51 of the servo motor 17, and swings the rotary tool 20 to which the cutting tool 19 is attached. When driven, the contact 5 and the cutting tool 19 move synchronously.
In order for the contact 5 and the cutting tool 19 to move synchronously, the relationship shown in the following equation (4) is required.
n: Number of pulses output by rotating the rotary shaft of the encoder 26 s: Number of pulses required for rotating the output shaft of the servo motor 17 one time p: Reduction ratio of the reduction gear e: Electronic set in the driver of the servo motor 17 Gear ratio
n × (e / p) = s −−−−−−−−−−−−−−−−−− (4) When the mathematical formula shown in the formula (1) is satisfied, the contact 5 and the cutting tool 19 are satisfied. Make the same movement.
In addition, good chamfering cannot be performed unless the positional relationship between the contact 5 and the cutting tool 19 is perfect. Actually, as shown in FIG. 6, the rotary tool 20 is provided with a mechanism capable of adjusting the position in the front-rear direction (30-2), the left-right direction (30-1), and the up-down direction (30-3). This completes the positional relationship between the contact 5 and the cutting tool 19.

次に本発明に係る面取機でワーク5と接触子25の関係を図7により説明する。従来の面取機では接触子はワークの回転中心とワークと接触子の接点を結ぶ方向に直線運動し、その方向とワークの面取部の稜線との交差角(接触角a)の正接(三角関数のtan(a))がワークと接触子の間の摩擦係数の大きさになるとその間の摩擦力が無限大になりはワークに追従出来なくなる事、歯車の圧力角の14.5°近くでは面取りがスムースに行はれないケースがある事は前述の通りである。  Next, the relationship between the workpiece 5 and the contact 25 in the chamfering machine according to the present invention will be described with reference to FIG. In a conventional chamfering machine, the contact moves linearly in the direction connecting the rotation center of the workpiece and the contact between the workpiece and the contact, and the tangent of the intersection angle (contact angle a) between the direction and the ridge line of the chamfered portion of the workpiece ( When the trigonometric function tan (a)) becomes the friction coefficient between the workpiece and the contact, the frictional force between them becomes infinite, and the workpiece cannot follow the workpiece, and the gear pressure angle is close to 14.5 °. Then, as mentioned above, there are cases where chamfering does not go smoothly.

本発明に係る面取機では接触子が動く方向とワークの面取部の稜線との交差角(接触角)はワークの回転中心とワークと接触子の接点を結ぶ方向と、ワークの面取部の稜線との交差角a1に、ワークの回転中心とワークと接触子の接点を結ぶ方向と接触子の移動方向が形成する角度(b1)を加えた(a1+b1)角度になる。すなはち接触子が動く方向とワークの面取部稜線が形成する角度(接触角)は従来の面取機のそれよりb1°(約10°)大きくなっている。この関係を示す状態を第7図と、第4式に示す。  In the chamfering machine according to the present invention, the intersection angle (contact angle) between the direction in which the contact moves and the ridge line of the chamfered part of the workpiece is the direction connecting the rotation center of the workpiece and the contact between the workpiece and the contact, and the chamfering of the workpiece. The angle (a1 + b1) is obtained by adding an angle (b1) formed by the direction of connecting the rotation center of the workpiece and the contact point of the workpiece and the contact and the moving direction of the contact to the intersection angle a1 with the ridge line of the part. In other words, the direction in which the contact moves and the angle (contact angle) formed by the chamfered ridge line of the workpiece is larger by b1 ° (about 10 °) than that of the conventional chamfering machine. A state showing this relationship is shown in FIG. 7 and the fourth equation.

図7で接触子25は回転軸31を中心に円弧運動を行うが、バネ26によりトルクを加勢されてワーク5に接触しており、ワーク5が回転すると接触子25もその形状に沿って正逆に回転スイングして追従する。この時接触子25は接触点Sと回転軸31を結ぶ直線をLLとすると、接触点S上でバネ26による加勢力P1が直線をLLと直行する方向に働きそれを加勢力P1とする。ワーク5の回転軸31と接触子25とワーク5の接触点Sを結ぶ線AAと加勢力P1との間の角度をb1とする。b1の大きさは図7のハンドル7(図1のハンドル7と同一)で接触子25の回転中心31を移動して調整しその大きさは歯車の圧力角の14.5°より若干小さい10°程度にするのが望ましい。なお角度b1は接触子1がスイングして動くと若干変動するが、最低でも圧力角の14.5°より2〜3°小さくなるように接触子25の回転中心31の位置をセットする。これは接触子25がワーク5に近ずく方向に動くとき、角度b1がワーク5の傾斜角(歯車の場合圧力角)より小さいとワーク5に接触出来ず空振状態になるのを防ぐ為である。In FIG. 7, the contact 25 performs an arc motion around the rotation shaft 31, but the torque is applied by the spring 26 to contact the work 5, and when the work 5 rotates, the contact 25 also moves along its shape. On the contrary, it rotates and follows. At this time, the contact 25 assumes that the straight line connecting the contact point S and the rotation shaft 31 is LL, the biasing force P1 by the spring 26 acts on the contact point S in the direction perpendicular to the straight line LL, and this is defined as the biasing force P1. An angle between a line AA connecting the rotating shaft 31 of the workpiece 5, the contact 25, and the contact point S of the workpiece 5 and the urging force P1 is defined as b1. The size of b1 is adjusted by moving the rotation center 31 of the contactor 25 with the handle 7 in FIG. 7 (same as the handle 7 in FIG. 1), and the size is slightly smaller than 14.5 ° of the gear pressure angle. It is desirable to set it to about °. The angle b1 slightly varies when the contact 1 swings and moves, but the position of the rotation center 31 of the contact 25 is set so that it is at least 2 to 3 degrees smaller than the pressure angle of 14.5 degrees. This is to prevent the workpiece 25 from coming into contact with the workpiece 5 when the contact 25 moves in the direction approaching the workpiece 5 and the angle b1 is smaller than the inclination angle of the workpiece 5 (pressure angle in the case of a gear). is there.

図7でP1はスプリング26による接触子25のワーク5への押圧力で、方向はLLに直交している。R1はワーク5が面取部で接触子25に作用する圧力で、方向は面取部稜線に直交している。
図7で加勢力P1の方向のバランスを考えると
R1×cos(90−(a1+b1))=P1+R1×μ×cos(a1+b1)
これを整理すると
R1×sin(a1+b1)=P1+R1×μ×cos(a1+b1)
R1=P1/{sin(a1+b1)−μ×cos(a1+b1)}
−−−−−−−−−−−−5式
従来の面取機のバランスを示す式は前述の2式で示され、それは次の様になる。
R=P/{sin(a)−μ×cos(a)}
2式と4式を比べれば、一目瞭然で本発明に係る面取機では従来の面取機より接触子25とワーク5の接触状態がb1°(約10°)だけ改善されている。具体的に言えば従来の面取機で圧力角14.5°の歯車の面取は問題が有ったが、本発明による面取機では接触子とワークの接触状態は10°程改善され圧力角が14.5°+10°の24.5°の歯車を面取すると同じ条件になる事が分かる。
具体的に圧力角が14.5°の場合両者の接触力を試算して見ると次の様になる。
従来の面取機の場合
R=P/{sin14.5−μ×cos14.5}}
=P/(0.2504−μ×0.9682) −−−−−−−−−6式
この式に μ=0.15を代入すると
=9.5P≒10P
R=10P −−−−−−−−−−−−7式
となり、押圧力Pの10倍近い反力が接触子に作用している事になる。
通常Pは1kg(接触子と回転工具を取付けた架台が100〜200kg程度でこれが摩擦係数0.003程度の直動スライドの上で動くので押圧力はこの程度必要)と考へられるので接触子はワークを10kg程度で押し付けていることになる。この力による摩擦力と押圧力Pに逆らって接触子は後退する必要がありそれを式で表すと次の様になる。
R×sin14.5>P + R×μ×cos14.5
この式にR=10Pを代入すると
μ<0.155
となり圧力角が14.5°近くではμが鉄材の摩擦係数に近くなり、接触子は後退出来るぎりぎりの線に有ることが分る。実際に圧力角が14.5°近くでは接触子が後退出来ずに面取り不能になる事がおきている。
本発明による面取機では圧力角が
a1+b1=14.5+10
=24.5°となりこれで試算すると
R=3.6P
μ<1.32
となり摩擦係数が1程度でも充分面取り出来る事を示している。すなわち、圧力角が14.5°の場合、従来の面取機では面取りがぎりぎり可能な状態であるのに、本発明に係る面取機では余裕をもって面取が出来る事を示している。
In FIG. 7, P1 is a pressing force of the contact 25 to the workpiece 5 by the spring 26, and the direction is orthogonal to LL. R1 is the pressure at which the workpiece 5 acts on the contact 25 at the chamfered portion, and the direction is orthogonal to the ridgeline of the chamfered portion.
Considering the balance of the direction of the energizing force P1 in FIG. 7, R1 × cos (90− (a1 + b1)) = P1 + R1 × μ × cos (a1 + b1)
To summarize this, R1 × sin (a1 + b1) = P1 + R1 × μ × cos (a1 + b1)
R1 = P1 / {sin (a1 + b1) −μ × cos (a1 + b1)}
------------- 5 The formula which shows the balance of the conventional chamfering machine is shown by the above-mentioned two formulas, and is as follows.
R = P / {sin (a) −μ × cos (a)}
Comparing Formula 2 and Formula 4, it is obvious that the contact state between the contact 25 and the workpiece 5 is improved by b1 ° (about 10 °) in the chamfering machine according to the present invention compared to the conventional chamfering machine. More specifically, the conventional chamfering machine has a problem with chamfering of a gear having a pressure angle of 14.5 °. However, in the chamfering machine according to the present invention, the contact state between the contact and the workpiece is improved by about 10 °. It can be seen that the same condition occurs when chamfering a 24.5 ° gear having a pressure angle of 14.5 ° + 10 °.
Specifically, when the pressure angle is 14.5 °, the contact force between the two is estimated to be as follows.
Conventional chamfering machine R = P / {sin 14.5−μ × cos 14.5}}
= P / (0.2504−μ × 0.9682) −−−−−−−−−− 6 Equation When μ = 0.15 is substituted into this equation, = 9.5P≈10P
R = 10P −−−−−−−−−−−−− 7, and a reaction force close to 10 times the pressing force P acts on the contact.
Normally, P is 1 kg (the contact with the contact tool and the rotary tool is about 100 to 200 kg, and this moves on a linear slide with a friction coefficient of about 0.003, so the pressing force is required). Means that the workpiece is pressed at about 10 kg. The contact must move backward against the frictional force and the pressing force P due to this force, and this can be expressed as follows.
R × sin 14.5> P + R × μ × cos 14.5
Substituting R = 10P into this equation, μ <0.155
Then, when the pressure angle is close to 14.5 °, μ is close to the coefficient of friction of the iron material, and it can be seen that the contactor is at the last line that can be retracted. Actually, when the pressure angle is close to 14.5 °, the contact cannot be retreated and the chamfering becomes impossible.
In the chamfering machine according to the present invention, the pressure angle is a1 + b1 = 14.5 + 10.
= 24.5 °
R = 3.6P
μ <1.32
This indicates that even if the friction coefficient is about 1, it can be chamfered sufficiently. That is, when the pressure angle is 14.5 °, the conventional chamfering machine is in a state where the chamfering is almost possible, but the chamfering machine according to the present invention can perform chamfering with a margin.

次に、ワークの接触子との接触面に接触傷が入る件を検討する。ワークが接触子から受ける力(接触力)を従来の面取機と、本発明に係る面取機で比較してみる。一般に圧力角が小さくなると接触力は大きくなるので圧力角が14.5°の場合について考える。
従来の面取機の接触力Rは前述の様に
R≒10P≒10kg −−−−−−−−−−−−8式
になり、これは10kg程度になる。
本発明に係るの面取機の接触力Rは前述の様に
R1=3.6P1 −−−−−−−−−−−−9式
P1はスプリング65により決まるが通常0.1kg程度に調整しているので
R1=0.36kg −−−−−−−−−−−10式
7式、9式より分る様に本発明に係るの面取機の接触力R1は従来の面取機で生じる接触力Rの1/30程度に小さくなる。
実際に従来の面取機ではワークの材質が鉄材でもワークに傷が入るが、本発明に係るの面取機ではワークの材質がアルミでも傷が入らない。
Next, the case where contact scratches enter the contact surface of the workpiece with the contactor is examined. The force (contact force) that the workpiece receives from the contact is compared between the conventional chamfering machine and the chamfering machine according to the present invention. In general, when the pressure angle becomes smaller, the contact force becomes larger, so the case where the pressure angle is 14.5 ° is considered.
As described above, the contact force R of the conventional chamfering machine is R≈10P≈10 kg ----------- 8, which is about 10 kg.
As described above, the contact force R of the chamfering machine according to the present invention is R1 = 3.6P1 ---------------------- P1 is determined by the spring 65 but is usually adjusted to about 0.1 kg. Therefore, R1 = 0.36kg ------------------------------------------------------------------------- 10 Is reduced to about 1/30 of the contact force R generated by.
Actually, in the conventional chamfering machine, the work is damaged even if the material of the work is iron, but in the chamfering machine according to the present invention, the work is not damaged even if the material of the work is aluminum.

次に接触子の寿命が短く、その管理に手がかかる事を検討する。
前述の様に接触子とワークとの間の接触力は従来の面取機の場合
R=10kgになり
本発明に係るの面取機の接触力R1は
R1=0.36kg程度 になる。
すなはち接触力は本発明に係るの面取機では従来の面取機の面取機の1/30 程度になり、単純に考えて接触子の磨耗も1/30程度になるものと思われる。実際接触子の磨耗は殆ど見られない。
また従来の面取機では接触子の形状をワークに傷が入らず、滑りやすい物にするためワーク毎に専用の接触子用意している。
本発明に係るの面取機ではワークが変わっても接触子はスムースに動くので、接触子の形状を変える必要がなく、そのまま他のワークにも使用出来る。本発明に係るの面取機では接触子の寿命が格段に伸び、接触子も汎用性があり、ワークが変わっても交換の必要がない。
Next, we consider that the life of the contact is short and it takes some time to manage it.
As described above, the contact force between the contact and the workpiece is R = 10 kg in the case of the conventional chamfering machine, and the contact force R1 of the chamfering machine according to the present invention is about R1 = 0.36 kg.
That is, the contact force of the chamfering machine according to the present invention is about 1/30 of that of a conventional chamfering machine, and the wear of the contactor is considered to be about 1/30 simply by considering it. It is. In fact, there is almost no wear on the contacts.
In addition, in the conventional chamfering machine, a dedicated contact is prepared for each work in order to make the shape of the contact so that the work is not damaged and is slippery.
In the chamfering machine according to the present invention, since the contact moves smoothly even if the workpiece changes, it is not necessary to change the shape of the contact and can be used for other workpieces as they are. In the chamfering machine according to the present invention, the life of the contactor is remarkably extended, the contactor is also versatile, and it is not necessary to replace it even if the workpiece changes.

従来の面取機のワークと接触子との力関係を示す図面。The figure which shows the force relationship between the workpiece | work and contactor of the conventional chamfering machine. 従来の面取機の駆動系を示す図面である。It is drawing which shows the drive system of the conventional chamfering machine. 本発明に係る面取機の平面図である。It is a top view of the chamfering machine concerning the present invention. 本発明に係る面取機の部分拡大図である。It is the elements on larger scale of the chamfering machine which concerns on this invention. 本発明に係る面取機の回転工具微調整機構の配置図である。It is an arrangement plan of a rotary tool fine adjustment mechanism of a chamfering machine according to the present invention. 本発明に係る面取機のワークと接触子との力関係を示す図面。Drawing which shows the force relationship of the workpiece | work and contactor of the chamfering machine which concerns on this invention. 本発明に係る面取機の接触子の回転駆動系を示す図面。Drawing which shows the rotational drive system of the contactor of the chamfering machine which concerns on this invention.

符号の説明Explanation of symbols

1 面取機の架台
2 減速モーター
3 チャック
4 ワーク
5 接触子
7 前後駆動ハンドル
15 ブラケット
17 サーボモーター
18 減速機
19 切削工具
20 回転工具
26 エンコーダー
29 スプリング
51 サーボドライバー
DESCRIPTION OF SYMBOLS 1 Chamfering machine base 2 Reduction motor 3 Chuck 4 Work piece 5 Contact 7 Front / rear drive handle 15 Bracket 17 Servo motor 18 Reduction gear 19 Cutting tool 20 Rotating tool 26 Encoder 29 Spring 51 Servo driver

Claims (1)

基台を設け、その上に、ワークを保持し回転駆動する保持回転移動装置と、ワークの保持回転移動装置の回転軸と平行で、パルス発生器(ロータリーエンコーダー等)が設けられた回転自在な回転軸に一定距離はなれた位置に設けられた接触子と、ワークの保持回転移動装置の回転軸と平行でパルス駆動モーターにより回転駆動される回転軸に一定距離はなれた位置に設けられた刃物を着装した回転工具を設け、接触子が取り付けられた回転軸にトルクを与えることで接触子が回転運動してワークに接触し、ワークを回転する事で接触子がワークに沿って動き、その回転軸も揺動し、それに設けられたパルス発生器から発生するパルスで回転工具が着装された回転軸を回転駆動するパルス駆動モーターを駆動し、回転工具が接触子と同じ動きをする同期駆動方法。  A base is provided, on which a rotary rotating device for holding and rotating the workpiece and a rotation generator of the rotary holding device for moving the workpiece are provided, and a pulse generator (such as a rotary encoder) is provided for rotation. A contact provided at a position separated from the rotation axis by a fixed distance, and a blade provided at a position separated from the rotation axis rotated by a pulse drive motor in parallel with the rotation axis of the workpiece holding rotation moving device. A wearing rotary tool is provided, and torque is applied to the rotating shaft to which the contactor is attached. The contactor rotates and contacts the workpiece. By rotating the workpiece, the contactor moves along the workpiece and rotates. The shaft also oscillates, and the pulse generated from the pulse generator provided on the shaft drives a pulse drive motor that rotates the rotary shaft on which the rotary tool is mounted. Synchronous drive how to.
JP2006169313A 2005-05-25 2006-05-23 Chamfering machine Expired - Fee Related JP4995497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169313A JP4995497B2 (en) 2005-05-25 2006-05-23 Chamfering machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005181184 2005-05-25
JP2005181184 2005-05-25
JP2006169313A JP4995497B2 (en) 2005-05-25 2006-05-23 Chamfering machine

Publications (2)

Publication Number Publication Date
JP2007001006A JP2007001006A (en) 2007-01-11
JP4995497B2 true JP4995497B2 (en) 2012-08-08

Family

ID=37687050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169313A Expired - Fee Related JP4995497B2 (en) 2005-05-25 2006-05-23 Chamfering machine

Country Status (1)

Country Link
JP (1) JP4995497B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211218651U (en) * 2018-10-10 2020-08-11 东莞市桂业自动化设备科技有限公司 Automatic cutting equipment
CN114101803B (en) * 2021-12-29 2024-04-09 烟台艾迪精密机械股份有限公司 Gear chamfering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017274A (en) * 2002-06-14 2004-01-22 Hitohiro Matsuba Chamfering machine
JP2005014199A (en) * 2003-06-24 2005-01-20 Hitomi Matsuba Chamfering machine causing no flaw

Also Published As

Publication number Publication date
JP2007001006A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4523228B2 (en) Motion device for supporting and programmably driving an end element in a machine or instrument
JP2004017274A (en) Chamfering machine
JP5481919B2 (en) Workpiece processing apparatus and control method thereof
JP6425601B2 (en) Tool post of machine tool
US10016815B2 (en) Machine tool and machining method
TWI481459B (en) Workpiece having a non-revolution curved surface
JP4995497B2 (en) Chamfering machine
JP4901546B2 (en) Processing equipment
US20120325061A1 (en) Machining device
JP5147317B2 (en) Laser punch combined processing machine
JP2023174707A (en) Mobile device and drive mechanism
JPS60131115A (en) Machine for manufacturing or machining gear
JP4049374B2 (en) Forming machine
KR102574818B1 (en) High-precision gear chamfering method for adjusting the chamfering angle and cutting amount
CN1762626A (en) Spherical surface processing method
JP2007521970A (en) Processing equipment for processing disc-shaped workpieces
JP7180895B2 (en) positioning table
CN219968456U (en) Multi-roller cutting mechanism
CN212634461U (en) Automatic flexible reverse face device that mills
CN112108662B (en) Multifunctional cutter and numerical control machining method adopting multifunctional cutter
JP2013215788A (en) Two-motor power processing machine
KR102574814B1 (en) High-precision gear chamfering system for adjusting the chamfering angle and cutting amount
JP3247789U (en) Machine tool spindle feed mechanism
JP4813052B2 (en) Workpiece copying stylus
US1220597A (en) Marker for lathes and the like.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees