JP4993352B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP4993352B2
JP4993352B2 JP2007054870A JP2007054870A JP4993352B2 JP 4993352 B2 JP4993352 B2 JP 4993352B2 JP 2007054870 A JP2007054870 A JP 2007054870A JP 2007054870 A JP2007054870 A JP 2007054870A JP 4993352 B2 JP4993352 B2 JP 4993352B2
Authority
JP
Japan
Prior art keywords
flow
flow path
opening
wall surface
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007054870A
Other languages
Japanese (ja)
Other versions
JP2008216085A (en
Inventor
広行 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2007054870A priority Critical patent/JP4993352B2/en
Publication of JP2008216085A publication Critical patent/JP2008216085A/en
Application granted granted Critical
Publication of JP4993352B2 publication Critical patent/JP4993352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、特に低圧の空気等からなる被測定流体の微少な流量測定に好適に利用可能な流量計に関する。   The present invention relates to a flow meter that can be suitably used for measuring a minute flow rate of a fluid to be measured, which is composed of low-pressure air or the like.

ガスや空気等の流体の流量を検出する流量計として熱式の気体流速センサを用いた流量計が知られている。この流量計は、ハーメチックシール構造の部品上にセンサを搭載しこれを流路に取り付けるようにしたもので、特に高圧の流体の流量を検出する場合に適している。しかしながら、このハーメチックシール構造の流量計は、コストが高いという問題がある。   2. Description of the Related Art A flow meter using a thermal gas flow rate sensor is known as a flow meter that detects the flow rate of a fluid such as gas or air. This flow meter is one in which a sensor is mounted on a part having a hermetic seal structure and attached to a flow path, and is particularly suitable for detecting the flow rate of a high-pressure fluid. However, this hermetic seal type flow meter has a problem of high cost.

また、このようなハーメチックシール構造とは異なる構造を有する流量計として、流量計のボディの一部である蓋体に形成された流路の一部に開口したセンサ孔を、流路に検出面が臨むようにフローセンサを配置した回路基板を密接して封止することによって流路を形成する流量計が知られている(例えば、特許文献1参照)。そして、フローセンサは蓋体の内面よりも所定距離(約0.05mm)だけ流路壁の外側に位置するように、即ち、流路よりも引っ込んだ位置に検出面が配置されている。センサ孔は、フローセンサの流路の長手方向両側に所定の隙間(約0.7mm)ができる大きさであり、蓋体とフローセンサとの間には段差のある隙間が存在している。
特開2005―315788号公報(4頁、図4、図5)
In addition, as a flowmeter having a structure different from the hermetic seal structure, a sensor hole opened in a part of a flow path formed in a lid that is a part of the body of the flowmeter is provided on a detection surface on the flow path. There is known a flow meter that forms a flow path by closely sealing a circuit board on which a flow sensor is arranged so that the flow sensor faces (see, for example, Patent Document 1). The detection surface is arranged so that the flow sensor is positioned outside the flow path wall by a predetermined distance (about 0.05 mm) from the inner surface of the lid, that is, at a position retracted from the flow path. The sensor hole has such a size that a predetermined gap (approximately 0.7 mm) can be formed on both sides in the longitudinal direction of the flow path of the flow sensor, and there is a gap with a step between the lid and the flow sensor.
JP 2005-315788 A (page 4, FIG. 4, FIG. 5)

例えば給湯器のブロアに流れる空気のように圧力の低い被測定対象流体の流量を測定する場合、上述した後者の流量計の更なるコスト低減を図るために、図7に示すようにハウジング1に流体の入口2aから出口2bまで直管をなす流路2の途中の内壁面2cに長手方向(流体の流れる方向)に沿って長い開口部2dを形成し、入口2a側に流入する被測定流体の流れを整流するための整流器3を設け、ハウジング1に流路2の外側に開口部2dを密封して覆うように回路基板4を取り付け、この回路基板4に開口部2d内に位置しかつ検出面5aが流路2の内壁面2cよりも外側に位置するようにフローセンサ5を設けた基板タイプの構造の流量計9が提案されている。   For example, when measuring the flow rate of a fluid to be measured having a low pressure, such as air flowing in a blower of a water heater, in order to further reduce the cost of the latter flow meter described above, the housing 1 has a structure as shown in FIG. A fluid to be measured which flows into the inlet 2a side by forming a long opening 2d along the longitudinal direction (fluid flow direction) on the inner wall surface 2c in the middle of the flow path 2 forming a straight pipe from the fluid inlet 2a to the outlet 2b. A circuit board 4 is attached to the housing 1 so as to seal and cover the opening 2d outside the flow path 2, and the circuit board 4 is positioned in the opening 2d. A flow meter 9 having a substrate type structure in which a flow sensor 5 is provided so that the detection surface 5a is positioned outside the inner wall surface 2c of the flow path 2 has been proposed.

図7に示した構造の流量計において流路2を通流する被測定流体の整流器3通過後の流速分布は図8の流速分布Aで示すように流路2の内壁面2cにおいては流速ゼロであり、流路2の中心部に向かって徐々に大きくなり、流路2の中心部で最大流量となっている。ところが、流路2が急拡大する開口部2dの位置においては流路2の内壁面2cと回路基板4の下面4aとの間の空間部(凹部)の容積(開口部2dの容積)分だけ急拡大したことにより、開口部2dの上流側開口端2eの直角をなす角部2fが流路2の内壁面に形成され、この角部2fにおいて渦7が発生する。そして、この渦7の影響により被測定流体の流れは流れ方向に対して流速が減速又は逆流するような流体挙動が生じる。   In the flow meter having the structure shown in FIG. 7, the flow velocity distribution of the fluid to be measured flowing through the flow channel 2 after passing through the rectifier 3 is zero at the inner wall surface 2c of the flow channel 2 as shown by the flow velocity distribution A in FIG. And gradually increases toward the center of the flow path 2, and reaches a maximum flow rate at the center of the flow path 2. However, at the position of the opening 2d where the flow path 2 suddenly expands, only the volume of the space (concave part) between the inner wall surface 2c of the flow path 2 and the lower surface 4a of the circuit board 4 (volume of the opening 2d). Due to the rapid expansion, a corner 2f that forms a right angle to the upstream opening end 2e of the opening 2d is formed on the inner wall surface of the flow path 2, and a vortex 7 is generated at the corner 2f. Due to the influence of the vortex 7, the flow of the fluid to be measured has a fluid behavior in which the flow velocity is decelerated or reversed with respect to the flow direction.

このため、流速分布は渦7の発生位置から下流側で渦7の影響を受ける範囲(影響圏)8内にある流路においては、流速分布B及び流速分布Cに示すように流路内壁面2cから近い位置(流路2の内壁面2cと回路基板4の下面4aとの間)では流れ方向に対して流速が減速又は逆流することがある。そして、渦7の影響を受ける範囲8を脱すると、流速分布Dは流路2の内壁面2cおよび回路基板4の下面4aにおいて流速がゼロであり、流路2の中心部に向かって流速が大きくなり、流路の中心部で最大となる。尚、図8は、被測定流体の流路2内における流体挙動及び流速分布を分かりやすく示した模式的に示したものである。   For this reason, in the flow path within the range (influence zone) 8 affected by the vortex 7 on the downstream side from the position where the vortex 7 is generated, the inner wall surface of the flow path as shown in the flow velocity distribution B and the flow velocity distribution C At a position close to 2c (between the inner wall surface 2c of the flow path 2 and the lower surface 4a of the circuit board 4), the flow velocity may decelerate or reverse in the flow direction. Then, when the range 8 affected by the vortex 7 is removed, the flow velocity distribution D is zero on the inner wall surface 2c of the flow channel 2 and the lower surface 4a of the circuit board 4, and the flow velocity is directed toward the center of the flow channel 2. It becomes larger and becomes maximum at the center of the flow path. FIG. 8 schematically shows the fluid behavior and flow velocity distribution of the fluid to be measured in the flow path 2 in an easily understandable manner.

従って、図7に示すような構造の流量計では上述したような渦7の影響による流速分布の変化が起こり、その変化が起こっている範囲8にフローセンサ5の検出面5aがある場合は検出精度の悪化を招くという問題がある。この問題は特に最大流速が速い大流量域において顕著に発生する。   Therefore, in the flowmeter having the structure shown in FIG. 7, the flow velocity distribution changes due to the influence of the vortex 7 as described above, and the detection is performed when the detection surface 5a of the flow sensor 5 is in the range 8 where the change occurs. There is a problem that the accuracy is deteriorated. This problem occurs particularly in a large flow rate region where the maximum flow velocity is fast.

また、フローセンサ5が流路2の内壁面2cよりも流路中心軸線から見て外側(凹んだ部分)に位置していることにより、流れ方向に対して流速が減速又は逆流している被測定流体の流れが検出面5aを通過するためにフローセンサ5の出力が図9に示すように飽和してしまい、流量を正確に測定することができなくなるという問題がある。尚、特許文献1に開示されている流量計においても上述した構造の流量計と略同様の傾向があると考えられる。   In addition, since the flow sensor 5 is positioned outside (indented part) as viewed from the flow path center axis line with respect to the inner wall surface 2c of the flow path 2, the flow velocity is decelerated or reversed in the flow direction. Since the flow of the measurement fluid passes through the detection surface 5a, the output of the flow sensor 5 is saturated as shown in FIG. 9, and there is a problem that the flow rate cannot be measured accurately. In addition, it is thought that the flowmeter disclosed in Patent Document 1 has a tendency similar to that of the flowmeter having the above-described structure.

本発明の目的は、被測定流体の流路にフローセンサを設けるために形成した開口部の上流側開口端の角部において発生した渦の影響をフローセンサの検出精度に及ぼさないようにした流路構造を有する流量計を提供することにある。   An object of the present invention is to provide a flow in which the influence of the vortex generated at the corner of the upstream opening end of the opening formed to provide the flow sensor in the flow path of the fluid to be measured does not affect the detection accuracy of the flow sensor. An object of the present invention is to provide a flow meter having a channel structure.

上述した課題を解決するために、本発明に係る流量計は、
入口から出口まで直管をなす流路の途中の壁面に長手方向に沿って長い開口部が形成されたハウジングと、前記ハウジングに取り付けられ前記流路の外側に前記開口部を密封して覆うように配置された回路基板と、前記回路基板に設けられ前記開口部内に位置しかつ検出面が前記流路の内壁面よりも流路中心軸線から見て外側に位置するフローセンサとを備えた流量計であって、
前記流路の前記開口部と対向する側の内壁面に当該流路の入口から流入した被測定流体を前記フローセンサの検出面に沿わせて流すように膨出部を形成し、
前記開口部が前記回路基板によって覆われることにより流路の一部となっている流路部分の断面積と、前記開口部の上流側及び下流側の断面積とが略同じになるように形成されていることを特徴としている。
In order to solve the above-described problems, the flow meter according to the present invention is:
A housing in which a long opening is formed along the longitudinal direction on the wall surface in the middle of the flow path that forms a straight pipe from the inlet to the outlet, and the opening is sealed and covered outside the flow path attached to the housing And a flow sensor provided in the circuit board and positioned in the opening and having a detection surface positioned outside the inner wall surface of the flow channel as viewed from the flow channel center axis. A total of
Forming a bulging portion so that the fluid to be measured flowing from the inlet of the flow channel flows along the detection surface of the flow sensor on the inner wall surface of the flow channel facing the opening,
The opening is covered with the circuit board so that the cross-sectional area of the flow path part that is a part of the flow path is substantially the same as the cross-sectional area of the upstream side and the downstream side of the opening part. It is characterized by being.

被測定流体がハウジングの流路を流れる際に開口部上流側開口端の角部において発生する渦によって流路内壁面から離れた位置で流速がゼロになる位置が、膨出部が形成されていない場合に比べて回路基板に向けてシフトする。この結果、渦の影響を受ける範囲が短くなり、フローセンサの検出面においては安定した流速分布が得られる。これにより、フローセンサの出力が高流量域まで安定して正確に測定することが可能となる。   When the fluid to be measured flows through the flow path of the housing, a bulge is formed at a position where the flow velocity becomes zero at a position away from the inner wall surface of the flow path due to the vortex generated at the corner at the upstream end of the opening. Shift towards the circuit board as compared to the case without. As a result, the range affected by the vortex is shortened, and a stable flow velocity distribution is obtained on the detection surface of the flow sensor. Thereby, the output of the flow sensor can be stably and accurately measured up to a high flow rate range.

また、本発明の請求項2に記載の流量計は、請求項1に記載の流量計において、前記膨出部は前記流路の内壁面が前記フローセンサ側に徐々に高くなる傾斜部と、前記フローセンサと対向する領域に形成された平面部と、当該平面部から前記内壁面に向かって徐々に低くなる傾斜部とが連続して形成されていることを特徴としている。   The flow meter according to claim 2 of the present invention is the flow meter according to claim 1, wherein the bulging portion includes an inclined portion in which the inner wall surface of the flow path gradually increases toward the flow sensor, The flat part formed in the area | region facing the said flow sensor, and the inclined part which becomes low gradually toward the said inner wall surface from the said flat part are formed continuously.

流路の入口から流入した被測定流体は、流路の内壁面がフローセンサ側に徐々に高くなる傾斜部により回路基板に向けてシフトされ、フローセンサと対向する領域に形成された平面部によりフローセンサの検出面に沿って流れ、平面部から内壁面に向かって徐々に低くなる傾斜部により前記シフトが解除される。これにより、流路内を流れる被測定流体をフローセンサの検出面側にシフトさせかつ検出面に沿わせて流すことができ、フローセンサの出力が高流量の流域まで安定して検出可能となると共に、被測定流体がフローセンサの検出面に角度をもって当たることにより生じる、被測定流体に含まれるゴミや粉塵が検出面に付着するのを防止することができる。   The fluid to be measured that has flowed in from the inlet of the flow path is shifted toward the circuit board by an inclined portion in which the inner wall surface of the flow path gradually increases toward the flow sensor, and is formed by a flat portion formed in a region facing the flow sensor. The shift is canceled by the inclined portion that flows along the detection surface of the flow sensor and gradually decreases from the flat portion toward the inner wall surface. As a result, the fluid to be measured flowing in the flow path can be shifted to the detection surface side of the flow sensor and flow along the detection surface, and the output of the flow sensor can be stably detected up to the high flow area. In addition, it is possible to prevent dust and dust contained in the fluid to be measured, which are generated when the fluid to be measured hits the detection surface of the flow sensor with an angle, from adhering to the detection surface.

本発明によると、流路の開口部と対向する内壁面に膨出部を形成することにより被測定流体の流速分布が回路基板に向けてシフトするので、開口部の上流側開口端角部で発生する渦の影響を受ける範囲を短くすることができ、この結果、フローセンサの検出面において安定した流速分布が得られ、フローセンサの出力が高流量の流域まで安定して流量を正確に測定することが可能となる。また、流路の内壁面に膨出部を形成するだけの簡単な構成であり、安価な流量計を提供することが可能であり、特に被測定流体が低圧の空気等である場合の流量計に好適に利用できる。   According to the present invention, the flow velocity distribution of the fluid to be measured is shifted toward the circuit board by forming the bulging portion on the inner wall surface facing the opening of the flow path. The range affected by the generated vortex can be shortened. As a result, a stable flow velocity distribution can be obtained on the detection surface of the flow sensor, and the flow sensor output can be stably measured up to the high flow basin and the flow rate can be accurately measured. It becomes possible to do. Further, it is a simple configuration that only forms a bulging portion on the inner wall surface of the flow path, and it is possible to provide an inexpensive flow meter, especially when the fluid to be measured is low-pressure air or the like. Can be suitably used.

また、本発明によると、膨出部の形状を、流路の内壁面がフローセンサ側に徐々に高くなる傾斜部と、フローセンサと対向する領域に形成された平面部と、平面部から内壁面に向かって徐々に低くなる傾斜部とを連続して形成することにより、流路内を流れる被測定流体をフローセンサの検出面に沿わせて流すことができ、フローセンサの出力が高流量の流域まで安定して検出することが可能となると共に、被測定流体がフローセンサの検出面に角度をもって当たることが防止されるので検出面のダイアフラム構造を破損から保護することができる。   In addition, according to the present invention, the shape of the bulging portion includes an inclined portion where the inner wall surface of the flow path gradually increases toward the flow sensor, a flat portion formed in a region facing the flow sensor, and an inner portion from the flat portion. By continuously forming an inclined part that gradually decreases toward the wall surface, the fluid to be measured that flows in the flow path can flow along the detection surface of the flow sensor, and the output of the flow sensor is high. In addition, it is possible to stably detect the flow area of the fluid, and it is possible to prevent the fluid to be measured from hitting the detection surface of the flow sensor at an angle, so that the diaphragm structure of the detection surface can be protected from damage.

以下、本発明の実施形態に係る流量計について図面に基づいて説明する。図1及び図2に示すように流量計11は、ハウジング12、蓋体13、回路基板31等により構成されている。ハウジング12は、図1に示すように上方から見て略正方形状の箱体をなし、図2に示すように上部に回路基板31を収容する回路基板収容室(以下「収容室」という)14が形成され、この収容室14の下側の中央位置に図中左右方向に断面円形の直管状の流路15が形成されている。流路15の入口15a、出口15bは、ハウジング12の両側部から外方に延出されており、図示しない外部の被流体流路に接続されるようになっている。そして、被測定流体は、図2の矢印で示すように入口15aから流路15に流入して出口15bから流出する。尚、以後流路15の入口15a側を上流側、出口15b側を下流側という。   Hereinafter, a flow meter according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the flow meter 11 includes a housing 12, a lid 13, a circuit board 31, and the like. As shown in FIG. 1, the housing 12 has a substantially square box as viewed from above, and as shown in FIG. 2, a circuit board accommodation chamber (hereinafter referred to as “accommodation chamber”) 14 in which the circuit board 31 is accommodated. A straight tubular flow path 15 having a circular cross section in the left-right direction in the figure is formed at a central position below the storage chamber 14. The inlet 15a and outlet 15b of the flow path 15 extend outward from both sides of the housing 12, and are connected to an external fluid flow path (not shown). Then, the fluid to be measured flows into the flow path 15 from the inlet 15a and flows out from the outlet 15b as shown by the arrows in FIG. Hereinafter, the inlet 15a side of the flow path 15 is referred to as an upstream side, and the outlet 15b side is referred to as a downstream side.

収容室14の底板14aの中央部は、流路15との隔壁を形成しており、図2及び図3に示すように流路15の中央部15cの上部に長手方向(被測定流体の流れる方向)に沿って長い長方形状をなす開口部16が形成されている。この開口部16は、上流側開口端16a、下流側の開口端16bが図5に拡大して示すように流路15に対して直角状の角部16c,16dをなしている。   The central portion of the bottom plate 14a of the storage chamber 14 forms a partition wall with the flow channel 15, and as shown in FIGS. 2 and 3, the longitudinal direction (flow of the fluid to be measured flows) above the central portion 15c of the flow channel 15. A long rectangular opening 16 is formed along (direction). As shown in FIG. 5, the opening 16 has corners 16 c and 16 d that are perpendicular to the flow path 15, as the upstream opening 16 a and the downstream opening 16 b are enlarged in FIG. 5.

収容室14の底板14aの上面14bは、開口部16の周縁部14cが僅かに高く(略1mm程度)形成されており、回路基板31を載置する載置部(以下「載置部14c」という)とされている。載置部14cの両側部には回路基板31を固定するためのねじ孔17が形成されている。そして、載置部14cの開口部16の周縁部14d、ねじ孔17の周縁部14eは、載置部14cの上面から同じ高さとされている。これらの周縁部14d及び14eは、回路基板31を載置部14cに載置して接着剤で固定する際に接着剤が開口部16及びねじ孔17内に入り込むことを防止するためのもので、載置部14cから僅かに高く(略0.1mm程度)形成されている。   The upper surface 14b of the bottom plate 14a of the storage chamber 14 is formed with the peripheral edge portion 14c of the opening 16 being slightly higher (about 1 mm), and a mounting portion (hereinafter referred to as “mounting portion 14c”) on which the circuit board 31 is placed. It is said that). Screw holes 17 for fixing the circuit board 31 are formed on both sides of the mounting portion 14c. And the peripheral part 14d of the opening part 16 of the mounting part 14c and the peripheral part 14e of the screw hole 17 are made into the same height from the upper surface of the mounting part 14c. These peripheral portions 14d and 14e are for preventing the adhesive from entering the opening 16 and the screw hole 17 when the circuit board 31 is placed on the placement portion 14c and fixed with the adhesive. And slightly higher (approximately 0.1 mm) from the mounting portion 14c.

流路15の内壁面15dの開口部16と対向する側の内壁面15dには図2に示すように開口部16に向かって膨出する膨出部18が形成されている。この膨出部18は、流路15を流れる被測定流体を回路基板31に向けてシフトさせて、この回路基板31の下面31aに設けられ開口部16の略中央位置に配置されたフローセンサ32の検出面32aに沿わせて流すためのものである。   A bulging portion 18 that bulges toward the opening portion 16 is formed on the inner wall surface 15d on the side facing the opening portion 16 of the inner wall surface 15d of the flow path 15 as shown in FIG. The bulging portion 18 shifts the fluid to be measured flowing through the flow path 15 toward the circuit board 31, and is provided on the lower surface 31 a of the circuit board 31 and is disposed at a substantially central position of the opening 16. It is for flowing along the detection surface 32a.

膨出部18は、上流側の傾斜部18aと中央の平面部18bと下流側の傾斜部18cからなり、これらの傾斜部18aと平面部18bと傾斜部18cが連続して形成されている。上流側の傾斜部18aは、開口部16の上流側開口端16aと対向する内壁面15dの位置から緩やかな傾斜(勾配約5°〜30°)をなして徐々に高くなり、平面部18bは、フローセンサ32の上流側の任意の位置から下流側の任意の位置までフローセンサ32の検出面32aと対向する領域に回路基板31と対向して平行に形成され、下流側の傾斜部18cは、平面部18bから開口部16の下流側開口端16bと対向する内壁面15dの位置まで緩やかな傾斜(勾配約5°〜30°)をなして徐々に低くなっている。   The bulging portion 18 includes an upstream inclined portion 18a, a central flat portion 18b, and a downstream inclined portion 18c. The inclined portion 18a, the flat portion 18b, and the inclined portion 18c are continuously formed. The upstream inclined portion 18a gradually increases from the position of the inner wall surface 15d facing the upstream opening end 16a of the opening 16 with a gentle inclination (gradient of about 5 ° to 30 °), and the flat portion 18b From the arbitrary position on the upstream side of the flow sensor 32 to the arbitrary position on the downstream side, the region facing the detection surface 32a of the flow sensor 32 is formed in parallel to face the circuit board 31, and the inclined portion 18c on the downstream side The slope gradually decreases from the flat surface portion 18b to the position of the inner wall surface 15d facing the downstream opening end 16b of the opening portion 16 with a gentle inclination (gradient of about 5 ° to 30 °).

このように膨出部18の上流側の傾斜部18aと下流側の傾斜部18cを緩やかな傾斜面とすることにより、流路15の開口部16の部分(凹部)が急拡大部とならないようにすることが可能となる。即ち開口部16における流路15の断面積が急に大きくなることによる流路15内を流れる被測定流体の流れの乱れを防止することが可能となる。   In this way, by forming the upstream inclined portion 18a and the downstream inclined portion 18c of the bulging portion 18 as gentle inclined surfaces, the portion (concave portion) of the opening portion 16 of the flow path 15 does not become a sudden expansion portion. It becomes possible to. In other words, it is possible to prevent the disturbance of the flow of the fluid to be measured flowing in the flow channel 15 due to the sudden increase in the cross-sectional area of the flow channel 15 in the opening 16.

また、流路15は、フローセンサ32の前後の流路における流路抵抗の不均一をなるべく無くすために開口部16が流路の一部となっている流路部分(凹部)の断面積と、開口部16の上流側及び下流側の断面積が略同じになるように形成されている。このようにして、流路15の開口部16と対向する内壁面15dに膨出部18が形成されている。このハウジング12は、例えば合成樹脂部材により一体に形成されている。   Further, the flow path 15 has a cross-sectional area of a flow path portion (concave part) in which the opening 16 is a part of the flow path in order to eliminate the non-uniformity of flow path resistance in the flow paths before and after the flow sensor 32 as much as possible. The cross-sectional areas of the upstream side and the downstream side of the opening 16 are substantially the same. In this way, the bulging portion 18 is formed on the inner wall surface 15d facing the opening portion 16 of the flow path 15. The housing 12 is integrally formed of, for example, a synthetic resin member.

尚、膨出部18は、流路15を流れる被測定流体を回路基板31に向けてシフトさせてフローセンサ32の検出面32aに沿わせて流すようにすれば良く、上流側の傾斜面18a、下流側の傾斜部18cの形状は、上述したように緩やかなテーパ状に形成しても良く、或いは僅かに凸面をなす曲面で形成しても良い。更に細かい段差をなす階段状に形成することも可能である。   The bulging portion 18 may be configured to shift the fluid to be measured flowing through the flow path 15 toward the circuit board 31 and flow along the detection surface 32a of the flow sensor 32, and the upstream inclined surface 18a. The shape of the inclined portion 18c on the downstream side may be formed as a gentle taper as described above, or may be formed as a slightly convex curved surface. It is also possible to form a stepped shape with a fine step.

流路15の入口15aは、図2に示すように流路15と段差をなして拡径して形成されており、入口15aから流路15に流入する被測定流体の流れを整流するための整流器21が嵌挿収容されている。この整流器21は、円筒形状をなし被測定流体の流れる方向に沿って所定の間隔を存して整流用の金網22が複数枚(例えば、4枚)並設して形成されている。   As shown in FIG. 2, the inlet 15a of the flow path 15 is formed to have a stepped diameter with the flow path 15, and rectifies the flow of the fluid to be measured flowing into the flow path 15 from the inlet 15a. The rectifier 21 is inserted and accommodated. The rectifier 21 has a cylindrical shape and is formed by arranging a plurality of (for example, four) rectifying wire meshes 22 in parallel with a predetermined interval along the direction in which the fluid to be measured flows.

フローセンサ32は、図2に示すように回路基板31の下面31aの略中央位置に設けられている。このフローセンサ32は、例えばシリコン基板の上面に窒化シリコン又は二酸化シリコンの絶縁膜(薄膜)が形成され、この絶縁膜の流路15の中央位置と対応する位置に流量検出部(センサ部)が形成され、更に流量検出部が窒化シリコン又は二酸化シリコンの絶縁膜により被覆された構成とされている。   As shown in FIG. 2, the flow sensor 32 is provided at a substantially central position on the lower surface 31 a of the circuit board 31. In the flow sensor 32, for example, an insulating film (thin film) of silicon nitride or silicon dioxide is formed on the upper surface of a silicon substrate, and a flow rate detection unit (sensor unit) is provided at a position corresponding to the center position of the flow path 15 of the insulating film. Further, the flow rate detection unit is covered with an insulating film of silicon nitride or silicon dioxide.

前記流量検出部が形成されている絶縁膜の部位はダイアフラムとされて流量検出部とシリコン基板とが熱的に遮断されている。前記流量検出部は熱式の検出部で、絶縁膜状に例えば白金薄膜でできた発熱素子としてのヒータと、このヒータの上流側及び下流側に等間隔で配置された例えば白金薄膜でできた抵抗素子としての測温素子とにより構成されている。そして、抵抗素子と測温素子とでホイーストンブリッジ回路をなし、これによってフローセンサ32の検出部32aが形成されている。   The portion of the insulating film in which the flow rate detection unit is formed is a diaphragm, and the flow rate detection unit and the silicon substrate are thermally blocked. The flow rate detection unit is a thermal detection unit made of a heater as a heating element made of, for example, a platinum thin film in an insulating film, and made of, for example, a platinum thin film arranged at equal intervals on the upstream side and the downstream side of the heater. It comprises a temperature measuring element as a resistance element. The resistance element and the temperature measuring element form a Wheatstone bridge circuit, and thereby the detection unit 32a of the flow sensor 32 is formed.

前記流量検出部のヒータに通電すると、このヒータは制御回路によりシリコン基板上に設けられた周囲温度センサで測定された被測定流体の温度よりもある一定温度だけ高く加熱され、流路15を流れる被測定流体を加熱する。被測定流体が流れないときは、ヒータの上流側/下流側に均一の温度分布が形成されており、上流側の測温素子と下流側の測温素子は、略等しい温度に対応する抵抗値を示す。   When the heater of the flow rate detection unit is energized, the heater is heated by a certain temperature higher than the temperature of the fluid to be measured measured by the ambient temperature sensor provided on the silicon substrate by the control circuit, and flows through the flow path 15. Heat the fluid to be measured. When the fluid to be measured does not flow, a uniform temperature distribution is formed on the upstream / downstream side of the heater, and the upstream temperature measuring element and the downstream temperature measuring element have resistance values corresponding to substantially equal temperatures. Indicates.

一方、被測定流体の流れがあるときには、ヒータの上流側/下流側の均一な温度分布が崩れ、上流側の温度が低くなり、下流側の温度が高くなる。そして、上流側の測温素子と下流側の測温素子により構成される例えばホイーストンブリッジ回路により測温素子の抵抗値差即ち温度差を検出して流路15内を流れる被測定流体の流量を測定する。   On the other hand, when there is a flow of the fluid to be measured, the uniform temperature distribution on the upstream / downstream side of the heater collapses, the temperature on the upstream side decreases, and the temperature on the downstream side increases. The flow rate of the fluid to be measured flowing in the flow path 15 is detected by detecting a resistance value difference, that is, a temperature difference between the temperature measuring elements by, for example, a Wheatstone bridge circuit configured by the upstream temperature measuring element and the downstream temperature measuring element. Measure.

回路基板31は、図2に示すようにハウジング12の収容室14に収容されて図3に示す載置部14cの開口部16の周縁部14d、ねじ孔17の周縁部14eに載置される。そして、図4に示すように回路基板31は、載置部14cと対向する下面31aが載置部14cに接着剤23により接着されて固定される。このとき接着剤23は、開口部16の周縁部14d、ねじ孔17の周縁部14eより開口部16、ねじ孔17内に入り込むことが防止される。これにより、回路基板31は、開口部16の周縁部を全周に亘り覆うように載置部14cに密着されて流路15を気密に封止するので、開口部を挟んで流路側と流路と反対側との気密性が確保される。   As shown in FIG. 2, the circuit board 31 is housed in the housing chamber 14 of the housing 12 and placed on the peripheral edge portion 14d of the opening 16 of the mounting portion 14c and the peripheral edge portion 14e of the screw hole 17 shown in FIG. . Then, as shown in FIG. 4, the circuit board 31 is fixed by the lower surface 31a facing the mounting portion 14c being bonded to the mounting portion 14c with the adhesive 23. At this time, the adhesive 23 is prevented from entering the opening 16 and the screw hole 17 from the peripheral portion 14 d of the opening 16 and the peripheral portion 14 e of the screw hole 17. As a result, the circuit board 31 is in close contact with the mounting portion 14c so as to cover the entire periphery of the opening 16 so as to hermetically seal the flow path 15. Airtightness between the road and the opposite side is ensured.

そして、フローセンサ32が開口部16の略中央位置に配置される。フローセンサ32は、前述したように薄く形成されており、従って、検出面32aは流路15の内壁面15dよりも外側に位置している。そして、検出面32aは、膨出部18の平面部18bと平行に対向している。   The flow sensor 32 is disposed at a substantially central position of the opening 16. As described above, the flow sensor 32 is formed thin, and thus the detection surface 32a is located outside the inner wall surface 15d of the flow path 15. The detection surface 32a faces the flat portion 18b of the bulging portion 18 in parallel.

次いで、回路基板31は、図4に示すようにねじ24により底板14aに固定される。回路基板31は、載置部14cが底板14aの上面14bから僅かに高く形成されていることにより、下面31aが上面14bから僅かに離隔して接触することが防止される。次いで、図1及び図2に示すようにハウジング12に蓋体13が装着される。   Next, the circuit board 31 is fixed to the bottom plate 14a with screws 24 as shown in FIG. Since the mounting portion 14c is formed slightly higher than the upper surface 14b of the bottom plate 14a, the circuit board 31 is prevented from contacting the lower surface 31a with being slightly separated from the upper surface 14b. Next, as shown in FIGS. 1 and 2, the lid 13 is attached to the housing 12.

次に上記構成の流量計11の作用を説明する。図2の矢印で示すように流路15の入口15aから流入した被測定流体は、整流器21により整流されて流路15内に流入する。流路15に流入した被測定流体の流速分布は、その流れは流路内壁面15dにおいて流速がゼロであり、流路15の中心部に向かって徐々に流速が大きくなり、流路15の中心部で最大流速となっている。従って、開口部16の上流側においては図5の流速分布Aで示すようになる。尚、図5は流路15内における被測定流体の流体挙動及び流速分布を模式的に示したものである。   Next, the operation of the flow meter 11 having the above configuration will be described. As shown by the arrows in FIG. 2, the fluid to be measured that flows from the inlet 15 a of the flow path 15 is rectified by the rectifier 21 and flows into the flow path 15. The flow velocity distribution of the fluid to be measured that has flowed into the flow channel 15 is zero on the inner wall surface 15d of the flow channel, and the flow velocity gradually increases toward the center of the flow channel 15. The maximum flow velocity at the part. Accordingly, the flow velocity distribution A in FIG. FIG. 5 schematically shows the fluid behavior and flow velocity distribution of the fluid to be measured in the flow path 15.

そして、開口部16の上流側の開口端16aにおいては、流路15が急拡大したことにより直角状の角部16cにより渦35が発生する。この渦35の影響により被測定流体の流れは流れ方向に対して流速が減速又は逆流するような流体挙動が生じる。このため、流速分布は渦35の発生位置から下流側で渦35の影響を受ける範囲(影響圏)36内にある流路においては、流速分布Bで示すように流路15の内壁面15dから近い位置、即ち内壁面15dから回路基板31の下面31aまでの間の位置では流れ方向に対して流速が減速又は逆流するようなことがある。   And in the opening end 16a of the upstream of the opening part 16, when the flow path 15 expanded rapidly, the vortex 35 is generated by the right-angled corner part 16c. Due to the influence of the vortex 35, the flow of the fluid to be measured has a fluid behavior in which the flow velocity is decelerated or reversed in the flow direction. For this reason, in the flow path within the range (influence zone) 36 affected by the vortex 35 on the downstream side from the position where the vortex 35 is generated, the flow velocity distribution is from the inner wall surface 15d of the flow path 15 as indicated by the flow velocity distribution B. In a close position, that is, a position between the inner wall surface 15d and the lower surface 31a of the circuit board 31, the flow velocity may be reduced or backflowed with respect to the flow direction.

流路15は、開口部16と対向する流路内壁面15dに開口端16aと対向する位置から開口部16に向かって形成された膨出部18の傾斜部18aにより開口部16における急拡大による流れの影響が抑制され、渦35の影響を受ける範囲(影響圏)36が短くなる。即ち、開口部16の上流側端16aの角部16cにおいて発生する渦35によって流路内壁面15dから外側に離れた位置で流速がゼロになる位置(渦35の影響圏36を示す破線との交点位置)が、膨出部18が形成されていない場合に比べて回路基板31に向けてシフトする。   The flow path 15 is formed by a sudden expansion in the opening 16 by an inclined part 18a of the bulging part 18 formed toward the opening 16 from a position facing the opening end 16a on the flow path inner wall surface 15d facing the opening 16. The influence of the flow is suppressed, and the range (influence zone) 36 affected by the vortex 35 is shortened. That is, the position where the flow velocity becomes zero at a position away from the inner wall surface 15d of the flow path by the vortex 35 generated at the corner 16c of the upstream end 16a of the opening 16 (the broken line indicating the influence zone 36 of the vortex 35) (Intersection position) is shifted toward the circuit board 31 as compared with the case where the bulging portion 18 is not formed.

被測定流体が渦35の影響を受ける範囲36を脱して平面部18bのフローセンサ32の上流側に達すると、流速分布Cで示すように回路基板31の下面31aにおいて流速がゼロとなり、流路15の中心部に向かって徐々に流速が大きくなり、流路15の中心部で最大となる。そして、このような流速分布は、流速分布Dで示すように平面部18bのフローセンサ32の下流側に至るまで維持される。   When the fluid to be measured escapes from the range 36 affected by the vortex 35 and reaches the upstream side of the flow sensor 32 in the plane portion 18b, the flow velocity becomes zero on the lower surface 31a of the circuit board 31 as shown by the flow velocity distribution C, and the flow path The flow velocity gradually increases toward the central portion of the flow path 15 and becomes maximum at the central portion of the flow path 15. Such a flow velocity distribution is maintained until reaching the downstream side of the flow sensor 32 in the flat surface portion 18b as indicated by the flow velocity distribution D.

被測定流体が開口部16の下流側端面16bを過ぎると、流量分布は再び流路15の内壁面15dにおいて流速がゼロとなり、流路15の中心部に向かって徐々に流速が大きくなって流路の中心部で最大となる。   When the fluid to be measured passes the downstream end face 16 b of the opening 16, the flow rate distribution becomes zero again on the inner wall surface 15 d of the flow path 15, and the flow speed gradually increases toward the center of the flow path 15. Maximum at the center of the road.

これにより、開口部16における被測定流体の層流がフローセンサ32の上流側から下流側に至るまで維持される。この結果、フローセンサ32の検出面32aにおいては安定した流速分布が得られ、フローセンサ32は、出力が図6に示すように高流量の流域まで安定して正確に流量を測定することが可能となる。また、流路15内を流れる被測定流体をフローセンサ32の検出面32aに沿わせて流すことにより、被測定流体がフローセンサ32の検出面32aに直接当たって被測定流体に含まれるゴミや粉塵が検出面32aに付着するのを防止することができる。   Thereby, the laminar flow of the fluid to be measured in the opening 16 is maintained from the upstream side to the downstream side of the flow sensor 32. As a result, a stable flow velocity distribution is obtained on the detection surface 32a of the flow sensor 32, and the flow sensor 32 can measure the flow rate stably and accurately up to a high flow rate basin as shown in FIG. It becomes. In addition, by flowing the fluid to be measured flowing in the flow path 15 along the detection surface 32a of the flow sensor 32, the fluid to be measured directly hits the detection surface 32a of the flow sensor 32 and the dust contained in the fluid to be measured It is possible to prevent dust from adhering to the detection surface 32a.

本発明に係る流量計の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the flowmeter which concerns on this invention. 図1に示した流量計の矢線II―IIに沿う断面図である。It is sectional drawing which follows the arrow line II-II of the flowmeter shown in FIG. 図1に示したハウジングの回路基板収容室の上面図である。It is a top view of the circuit board accommodation chamber of the housing shown in FIG. 図2に示した流量計の矢線IV―IVに沿う一部断面図である。FIG. 4 is a partial cross-sectional view of the flow meter shown in FIG. 2 taken along an arrow IV-IV. 図2に示した流量計の流路内における被測定流体の流体挙動及び流速分布を模式的に示した説明図である。It is explanatory drawing which showed typically the fluid behavior and flow velocity distribution of the to-be-measured fluid in the flow path of the flowmeter shown in FIG. 図2に示した流量計の流量特性の一例を示すグラフである。It is a graph which shows an example of the flow characteristic of the flowmeter shown in FIG. 従来の流量計の一例を示す断面図である。It is sectional drawing which shows an example of the conventional flowmeter. 図7に示した流量計の流路内における被測定流体の流体挙動及び流速分布を模式的に示した説明図である。It is explanatory drawing which showed typically the fluid behavior and flow velocity distribution of the to-be-measured fluid in the flow path of the flowmeter shown in FIG. 図7に示した流量計の流量特性の一例を示すグラフである。It is a graph which shows an example of the flow characteristic of the flowmeter shown in FIG.

符号の説明Explanation of symbols

1 ハウジング
2 流路
2a 入口
2b 出口
2c 内壁面
2d 開口部
2e 上流側開口端
2f 角部
3 整流器
4 回路基板
4a 下面
5 フローセンサ
5a 検出面
7 渦
8 渦の影響を受ける範囲(影響圏)
9 流量計
11 流量計
12 ハウジング
13 蓋体
14 収容室(回路基板収容室)
14a 底板(隔壁)
14b 上面
14c 載置部(周縁部)
14d 開口部の周縁部
14e ねじ孔の周縁部
15 流路
15a 入口
15b 出口
15c 中央部
15d 内壁面
16 開口部
16a,16b 開口端
16c,16d 角部
17 ねじ孔
18 膨出部
18a,18c 傾斜部
18b 平面部
21 整流器
22 金網
23 接着剤
24 ねじ
31 回路基板
31a 下面
32 フローセンサ
32a 検出面
35 渦
36 渦の影響を受ける範囲(影響圏)
A,B,C,D 流路内における被測定流体の流速分布
DESCRIPTION OF SYMBOLS 1 Housing 2 Flow path 2a Inlet 2b Outlet 2c Inner wall surface 2d Opening 2e Upstream opening end 2f Corner 3 Rectifier 4 Circuit board 4a Lower surface 5 Flow sensor 5a Detection surface 7 Vortex 8 Range affected by vortex (influence zone)
9 Flowmeter 11 Flowmeter 12 Housing 13 Lid 14 Storage chamber (Circuit board storage chamber)
14a Bottom plate (partition wall)
14b Upper surface 14c Placement part (peripheral part)
14d Peripheral part of opening part 14e Peripheral part of screw hole 15 Flow path 15a Inlet 15b Outlet 15c Central part 15d Inner wall surface 16 Opening part 16a, 16b Opening end 16c, 16d Corner part 17 Screw hole 18 Swelling part 18a, 18c Inclined part 18b Plane portion 21 Rectifier 22 Wire mesh 23 Adhesive 24 Screw 31 Circuit board 31a Lower surface 32 Flow sensor 32a Detection surface 35 Vortex 36 Range affected by vortex (influence zone)
A, B, C, D Flow velocity distribution of fluid to be measured in the flow path

Claims (2)

入口から出口まで直管をなす流路の途中の壁面に長手方向に沿って長い開口部が形成されたハウジングと、前記ハウジングに取り付けられ前記流路の外側に前記開口部を密封して覆うように配置された回路基板と、前記回路基板に設けられ前記開口部内に位置しかつ検出面が前記流路の内壁面よりも流路中心軸線から見て外側に位置するフローセンサとを備えた流量計であって、
前記流路の前記開口部と対向する側の内壁面に当該流路の入口から流入した被測定流体を前記フローセンサの検出面に沿わせて流すように膨出部を形成し、
前記開口部が前記回路基板によって覆われることにより流路の一部となっている流路部分の断面積と、前記開口部の上流側及び下流側の断面積とが略同じになるように形成されていることを特徴とする流量計。
A housing in which a long opening is formed along the longitudinal direction on the wall surface in the middle of the flow path that forms a straight pipe from the inlet to the outlet, and the opening is sealed and covered outside the flow path attached to the housing And a flow sensor provided in the circuit board and positioned in the opening and having a detection surface positioned outside the inner wall surface of the flow channel as viewed from the flow channel center axis. A total of
Forming a bulging portion so that the fluid to be measured flowing from the inlet of the flow channel flows along the detection surface of the flow sensor on the inner wall surface of the flow channel facing the opening,
The opening is covered with the circuit board so that the cross-sectional area of the flow path part that is a part of the flow path is substantially the same as the cross-sectional area of the upstream side and the downstream side of the opening part. A flow meter characterized by being .
前記膨出部は前記流路の内壁面が前記フローセンサ側に徐々に高くなる傾斜部と、前記フローセンサと対向する領域に形成された平面部と、当該平面部から前記内壁面に向かって徐々に低くなる傾斜部とが連続して形成されていることを特徴とする、請求項1に記載の流量計。   The bulging portion includes an inclined portion in which the inner wall surface of the flow path gradually increases toward the flow sensor, a flat portion formed in a region facing the flow sensor, and the flat portion toward the inner wall surface. The flowmeter according to claim 1, wherein the gradually decreasing slope portion is continuously formed.
JP2007054870A 2007-03-05 2007-03-05 Flowmeter Active JP4993352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054870A JP4993352B2 (en) 2007-03-05 2007-03-05 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007054870A JP4993352B2 (en) 2007-03-05 2007-03-05 Flowmeter

Publications (2)

Publication Number Publication Date
JP2008216085A JP2008216085A (en) 2008-09-18
JP4993352B2 true JP4993352B2 (en) 2012-08-08

Family

ID=39836292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054870A Active JP4993352B2 (en) 2007-03-05 2007-03-05 Flowmeter

Country Status (1)

Country Link
JP (1) JP4993352B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168669A (en) * 2000-12-04 2002-06-14 Ckd Corp Thermal flowmeter
JP2003240614A (en) * 2002-02-21 2003-08-27 Denso Corp Flow measuring device
JP4106224B2 (en) * 2002-03-14 2008-06-25 株式会社デンソー Flow measuring device

Also Published As

Publication number Publication date
JP2008216085A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US5230245A (en) Flow meter and measuring method therefor
EP2157411A1 (en) Flow rate meter
JP4854238B2 (en) Flow sensor
KR101456469B1 (en) Micro flow sensor
JP5182314B2 (en) Air flow measurement device
JP5135136B2 (en) Flow meter and flow control device
JP2008014789A (en) Flow sensor
WO2007145037A1 (en) Multi-vortex flowmeter integrating pressure gauge
US8033180B2 (en) Flow sensor apparatus and method with media isolated electrical connections
JP5135137B2 (en) Flow meter and flow control device
JP4158980B2 (en) Multi vortex flowmeter
JPH08233627A (en) Flow-rate sensor device and operating method thereof
RU2286544C2 (en) Measuring transformer of vortex-type flow
US11639864B2 (en) Flow sensor
KR102447065B1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel structure
JP2016186499A5 (en)
JP4993352B2 (en) Flowmeter
JP2005201684A (en) Measuring apparatus for air flow rate
JP2007121036A (en) Flowmeter
JP6416357B1 (en) Flow measuring device
JP3248840B2 (en) Karman vortex flowmeter
JP2010230388A (en) Flow sensor
US20210063223A1 (en) Gas meter
JP4820032B2 (en) Fluidic element manufacturing method, fluidic element, fluidic flow meter, and composite flow meter
JP6923405B2 (en) Pressure change measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150