JP4992037B2 - DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD - Google Patents

DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD Download PDF

Info

Publication number
JP4992037B2
JP4992037B2 JP2007031966A JP2007031966A JP4992037B2 JP 4992037 B2 JP4992037 B2 JP 4992037B2 JP 2007031966 A JP2007031966 A JP 2007031966A JP 2007031966 A JP2007031966 A JP 2007031966A JP 4992037 B2 JP4992037 B2 JP 4992037B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
potential difference
switching element
drive device
vibration member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007031966A
Other languages
Japanese (ja)
Other versions
JP2008199774A (en
Inventor
龍一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2007031966A priority Critical patent/JP4992037B2/en
Publication of JP2008199774A publication Critical patent/JP2008199774A/en
Application granted granted Critical
Publication of JP4992037B2 publication Critical patent/JP4992037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は圧電素子を用いた摩擦駆動方式の駆動装置に関する。   The present invention relates to a friction drive type drive device using a piezoelectric element.

圧電素子によって、方向によって変位速度が異なるように、軸状の振動部材を軸方向に往復変位させ、振動部材に摩擦係合する摩擦係合部材を振動部材に対してすべり変位(摩擦係合部材が移動する場合と、振動部材が移動する場合とがある)させる摩擦駆動方式の駆動装置が公知である。   Depending on the piezoelectric element, the axial vibration member is reciprocally displaced in the axial direction so that the displacement speed varies depending on the direction, and the friction engagement member that frictionally engages the vibration member is slid relative to the vibration member (friction engagement member). There is a known friction drive device that moves the vibration member and the vibration member.

このような摩擦駆動方式の駆動装置では、圧電素子に周期的に変動する電圧を印加する駆動装置が必要とされる。中でも、半導体スイッチング素子によって、圧電素子の電極に電圧を印加または接地する駆動回路が利用される。   Such a friction drive type drive device requires a drive device that applies a periodically varying voltage to the piezoelectric element. In particular, a drive circuit that applies a voltage to the electrode of the piezoelectric element or grounds the semiconductor switching element is used.

例えば、特許文献1には、圧電素子の一極を常時接地しておき、他極を電源に接続するスイッチと、接地するスイッチング素子とを備えるハーフブリッジからなる駆動回路が開示されている。また、特許文献2には、電気機械変換素子のいずれか一極を電源に接続し、他極を接地することで、圧電素子に印加される極性が変化するフルブリッジ回路が開示されている。   For example, Patent Document 1 discloses a drive circuit formed of a half bridge that includes a switch that connects one pole of a piezoelectric element to the power source and connects the other pole to a power source and a switching element that is grounded. Patent Document 2 discloses a full bridge circuit in which the polarity applied to the piezoelectric element is changed by connecting any one of the electromechanical conversion elements to a power source and grounding the other pole.

このような駆動装置では、圧電素子の特性が変化して、摩擦係合部材をすべり変位させる駆動速度が変化してしまう可能性がある。また、圧電素子のショートなどの故障が発生したときに、過大な電流が流れ、駆動装置だけでなく電源等に損害が発生する危険性がある。
特開2001−268951号公報 特開2001−211669号公報
In such a drive device, there is a possibility that the drive speed at which the friction engagement member is slid and displaced changes due to a change in the characteristics of the piezoelectric element. In addition, when a failure such as a short circuit of the piezoelectric element occurs, an excessive current flows, and there is a risk of causing damage not only to the driving device but also to the power source and the like.
JP 2001-268951 A JP 2001-21669 A

前記問題点に鑑みて、本発明は、圧電素子の状態を検出できる駆動装置、駆動装置の状態検出方法、および、駆動装置の制御方法を提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a drive device that can detect the state of a piezoelectric element, a drive device state detection method, and a drive device control method.

また、本発明によれば、電圧が印加されると伸縮する圧電素子と、前記圧電素子に一端が固定され、前記圧電素子の伸縮によって、軸方向に往復変位可能な振動部材と、前記振動部材に摩擦係合し、前記振動部材の往復変位によって、前記振動部材に対してすべり変位する摩擦係合部材と、前記圧電素子の電極を所定の駆動周期で電源に接続する充電スイッチング素子と、前記電極を接地する放電スイッチング素子とを備える駆動回路とを有する駆動装置の状態検出方法は、前記電源と前記圧電素子との間の電路、または、前記圧電素子と接地点との間の電路に検出抵抗を配設し、前記駆動周期中の所定のタイミングで前記検出抵抗の両端の電位差を検出し、検出した前記電位差を基に前記圧電素子の状態を判定し、前記所定のタイミングは、前記充電スイッチング素子および前記放電スイッチング素子の動作から、前記電源から前記圧電素子を介して接地点に至る回路の時定数以上遅れたタイミングであり、検出した前記電位差が前記所定の範囲より大きいときは、前記圧電素子がショートしていると判定する方法とする。 In addition, according to the present invention, a piezoelectric element that expands and contracts when a voltage is applied, a vibration member that is fixed at one end to the piezoelectric element, and that can reciprocate in the axial direction by expansion and contraction of the piezoelectric element, and the vibration member A friction engagement member that frictionally engages and reciprocally displaces with respect to the vibration member by a reciprocating displacement of the vibration member, a charge switching element that connects an electrode of the piezoelectric element to a power source at a predetermined drive cycle, and A method for detecting a state of a driving device having a driving circuit including a discharge switching element that grounds an electrode is detected in an electric circuit between the power source and the piezoelectric element or an electric circuit between the piezoelectric element and a grounding point. resistance disposed, said detecting a potential difference across the detection resistor with a predetermined timing during the driving cycle, determines the state of the piezoelectric element based on the potential difference detected, the predetermined timing A timing delayed from the operation of the charge switching element and the discharge switching element by a time constant of a circuit from the power source to the ground point via the piezoelectric element, and when the detected potential difference is larger than the predetermined range A method for determining that the piezoelectric element is short-circuited.

この方法によれば、圧電素子に充放電する際の電流値を検出抵抗における電圧降下として検出し、電圧降下の波形の変化によって圧電素子の容量変化や充放電の経路の異常を検出することができる。これにより、圧電素子の状態変化に応じて駆動電圧波形を調整して駆動力や駆動速度を標準化したり、故障の発生を検出して動作を停止し、障害を最小限度に留めることができる。 According to this method, it is possible to detect a current value when charging / discharging the piezoelectric element as a voltage drop in the detection resistor, and to detect a capacitance change of the piezoelectric element and an abnormality in a charging / discharging path by a change in the voltage drop waveform. it can. As a result, the drive voltage waveform can be adjusted according to the state change of the piezoelectric element to standardize the drive force and the drive speed, or the operation can be stopped by detecting the occurrence of a failure, thereby minimizing the failure.

また、本発明による駆動装置の制御方法は、電圧が印加されると伸縮する圧電素子と、前記圧電素子に一端が固定され、前記圧電素子の伸縮によって、軸方向に往復変位可能な振動部材と、前記振動部材に摩擦係合し、前記振動部材の往復変位によって、前記振動部材に対してすべり変位する摩擦係合部材と、前記圧電素子の電極を所定の駆動周期で電源に接続する充電スイッチング素子と、前記電極を接地する放電スイッチング素子とを備える駆動回路とを有する駆動装置の制御方法であって、前記電源と前記圧電素子との間の電路、または、前記圧電素子と接地点との間の電路に検出抵抗を配設し、前記駆動周期中の所定のタイミングで前記検出抵抗の両端の電位差を測定し、検出した前記電位差を基に前記圧電素子の状態を判定し、前記所定のタイミングは、前記充電スイッチング素子および前記放電スイッチング素子の動作から僅かに遅れたタイミングであり、検出した前記電位差が増大したときは、前記圧電素子の容量が増加していると判定し、前記圧電素子の容量の増加を検出したときは、前記駆動周期を長くする方法とする。 Further, the control method of the driving device according to the present invention includes a piezoelectric element that expands and contracts when a voltage is applied, and a vibration member that has one end fixed to the piezoelectric element and is capable of reciprocating in the axial direction by the expansion and contraction of the piezoelectric element. Charge switching for frictionally engaging the vibration member and slidingly displacing the vibration member by reciprocating displacement of the vibration member and the electrode of the piezoelectric element connected to a power source at a predetermined drive cycle A drive device control method comprising: an element; and a drive circuit including a discharge switching element for grounding the electrode, wherein an electric path between the power source and the piezoelectric element, or between the piezoelectric element and a ground point A detection resistor is disposed in the electric circuit between the two, and a potential difference between both ends of the detection resistor is measured at a predetermined timing during the driving cycle, and a state of the piezoelectric element is determined based on the detected potential difference. Predetermined timing is a timing which is slightly delayed from the operation of the charge switching device and the discharge switching element, when the potential difference detected is increased, it is determined that the capacity of the piezoelectric element is increased, the When an increase in the capacitance of the piezoelectric element is detected, the driving cycle is lengthened.

圧電素子がショートした場合、充放電電流が減衰しないので、スイッチング素子の動作から圧電素子と検出抵抗とからなるRC回路の時定数以上遅れたタイミングで検出抵抗の電位差を測定し、電位差が大きい場合は圧電素子のショートであることが分かる。圧電素子の容量の変化応じて、デューティ比や駆動周期などを変更することで、駆動力や駆動速度を標準化できる。 When the piezoelectric element is short-circuited, the charge / discharge current is not attenuated, so the potential difference of the detection resistor is measured at a timing that is delayed by more than the time constant of the RC circuit consisting of the piezoelectric element and the detection resistor from the operation of the switching element. Is a short circuit of the piezoelectric element. The driving force and driving speed can be standardized by changing the duty ratio and the driving cycle according to the change in the capacitance of the piezoelectric element.

本発明によれば、検出抵抗による電圧降下を測定して圧電素子の容量の変化を検出することにより、駆動装置の動作を最適化することができる。   According to the present invention, the operation of the driving device can be optimized by measuring the voltage drop due to the detection resistor and detecting the change in the capacitance of the piezoelectric element.

これより、本発明の実施形態について、図面を参照しながら説明する。
図1に、本発明の第1実施形態の駆動装置1の構成を示す。駆動装置1は、電圧Vp(V)の直流電源2および制御装置3が接続された駆動回路4と、駆動回路の出力が電極5a,5bに印加される圧電素子5と、圧電素子5に一端が固定された軸状の振動部材6と、振動部材6に摩擦力によって係合する摩擦係合部材7とを有する。
Embodiments of the present invention will now be described with reference to the drawings.
In FIG. 1, the structure of the drive device 1 of 1st Embodiment of this invention is shown. The driving device 1 includes a driving circuit 4 to which a DC power source 2 having a voltage Vp (V) and a control device 3 are connected, a piezoelectric element 5 to which an output of the driving circuit is applied to the electrodes 5a and 5b, and one end to the piezoelectric element 5. Is fixed to the shaft-like vibration member 6 and the friction engagement member 7 is engaged with the vibration member 6 by a frictional force.

圧電素子5は、電極5a,5b間に印加される電圧に応じて、振動部材6の軸方向に伸縮するようになっている。圧電素子5が伸縮すると、振動部材6は軸方向に往復移動(変位)する。摩擦係合部材7は、振動部材6が緩慢に移動する場合には、振動部材6に摩擦係合したままともに移動するが、振動部材6が急峻に移動すると、その慣性力によってその場に留ろうとして、振動部材6に対してすべり変位する。   The piezoelectric element 5 expands and contracts in the axial direction of the vibration member 6 according to the voltage applied between the electrodes 5a and 5b. When the piezoelectric element 5 expands and contracts, the vibrating member 6 reciprocates (displaces) in the axial direction. When the vibration member 6 moves slowly, the friction engagement member 7 moves together with the vibration member 6 while being frictionally engaged. However, when the vibration member 6 moves steeply, the friction engagement member 7 stays in place due to its inertial force. As a result, the sliding displacement occurs with respect to the vibrating member 6.

駆動回路4は、制御装置3の制御信号S1,S2,S3,S4によってオン/オフさせられる4つのトランジスタ8,9,10,11と、保護抵抗12とを備える。トランジスタ8は、オンすることで電源2の電圧を保護抵抗12を介して圧電素子5の電極5aに印加するpチャネル型FETからなる充電スイッチング素子であり、トランジスタ9は、オンすることで電極5aを保護抵抗12を介して接地するnチャネル型FETからなる放電スイッチング素子である。また、トランジスタ10は、オンすることで電源2の電圧を電極5bに印加するpチャネル型FETからなる充電スイッチング素子であり、トランジスタ11は、オンすることで電極5bを接地するnチャネル型FETからなる放電スイッチング素子である。   The drive circuit 4 includes four transistors 8, 9, 10, 11 that are turned on / off by control signals S 1, S 2, S 3, S 4 of the control device 3 and a protective resistor 12. The transistor 8 is a charge switching element composed of a p-channel FET that turns on to apply the voltage of the power supply 2 to the electrode 5a of the piezoelectric element 5 via the protective resistor 12, and the transistor 9 turns on the electrode 5a. Is a discharge switching element composed of an n-channel FET that grounds through a protective resistor 12. The transistor 10 is a charge switching element composed of a p-channel FET that turns on and applies the voltage of the power supply 2 to the electrode 5b. The transistor 11 is an n-channel FET that turns on and grounds the electrode 5b. This is a discharge switching element.

また、駆動装置1は、検出抵抗12の両端の電位V1,V2の電位差dVを導出して制御装置3に入力する差分器(電位差検出手段)13を有している。制御装置3は、入力された電位差dVをA/D変換し、電位差dVに基づいて圧電素子5の状態を判定し(状態判定手段)、圧電素子5の状態に応じて駆動回路4を最適に制御する。   The driving device 1 also includes a differentiator (potential difference detection means) 13 that derives a potential difference dV between the potentials V1 and V2 across the detection resistor 12 and inputs the potential difference dV to the control device 3. The control device 3 performs A / D conversion on the input potential difference dV, determines the state of the piezoelectric element 5 based on the potential difference dV (state determination unit), and optimizes the drive circuit 4 according to the state of the piezoelectric element 5. Control.

制御装置3は、トランジスタ8,9,10,11をそれぞれ駆動する周期的な矩形波状の制御信号S1,S2,S3,S4を出力するが、制御信号S1と制御信号S2が同じ波形であり、制御信号S3と制御信号S4とは、制御信号S1,S2の反転出力である。これにより、制御装置3は、トランジスタ8とトランジスタ11とが同時にオンし、トランジスタ9とトランジスタ10とがトランジスタ8,11がオフのときにオンするように駆動回路4を制御する。つまり、駆動回路4は、圧電素子5の電極5a,5bのいずれか一方に電源2の電圧Vp(V)を印加しながら他方を接地し、電圧Vp(V)を印加する電極5a,5bを交互に切り替えるフルブリッジ回路である。   The control device 3 outputs periodic rectangular wave-shaped control signals S1, S2, S3, and S4 that drive the transistors 8, 9, 10, and 11 respectively, but the control signal S1 and the control signal S2 have the same waveform, The control signal S3 and the control signal S4 are inverted outputs of the control signals S1 and S2. Thereby, the control device 3 controls the drive circuit 4 so that the transistor 8 and the transistor 11 are simultaneously turned on, and the transistor 9 and the transistor 10 are turned on when the transistors 8 and 11 are off. That is, the drive circuit 4 applies the voltage Vp (V) of the power source 2 to one of the electrodes 5 a and 5 b of the piezoelectric element 5 while grounding the other, and applies the electrodes 5 a and 5 b to which the voltage Vp (V) is applied. It is a full bridge circuit that switches alternately.

制御信号S1,S2,S3,S4の駆動周期をT(秒)とすると、例えば、トランジスタ8,11は、0.7T(秒)のオンと0.3T(秒)のオフとを繰り返し、トランジスタ9,10は、0.7T(秒)のオフと0.3T(秒)のオンとを繰り返す。これによって、圧電素子5の電極5a−5b間には、+Vp(V)が0.7T(秒)、−Vp(V)が0.3T(秒)、繰り返し印加される。この場合、圧電素子5および振動部材6の機械的な遅れによって、振動部材6は圧電素子5に押し出される方向と圧電素子5に引き戻される方向との移動速度に違いが生じ、摩擦係合部材7を振動部材6に対して一方向にだけすべり移動させて駆動する。   Assuming that the drive period of the control signals S1, S2, S3, S4 is T (seconds), for example, the transistors 8 and 11 repeat 0.7T (seconds) on and 0.3T (seconds) off, 9 and 10 repeat 0.7T (second) off and 0.3T (second) on. Accordingly, + Vp (V) is repeatedly applied between the electrodes 5 a-5 b of the piezoelectric element 5 by 0.7 T (seconds) and -Vp (V) by 0.3 T (seconds). In this case, due to the mechanical delay of the piezoelectric element 5 and the vibration member 6, the moving speed of the vibration member 6 is different between the direction in which the vibration member 6 is pushed out to the piezoelectric element 5 and the direction in which the vibration member 6 is pulled back to the piezoelectric element 5. Is driven by sliding in one direction with respect to the vibration member 6.

トランジスタ8,11がオンする時間の比(デューティ比)は、摩擦係合部材7を移動させる速度に応じて変更されるようになっており、制御信号S1,S2と、制御信号S3,S4との出力時間比を入れ替えることによって、摩擦係合部材7がすべり移動する方向を逆転させることができる。   The ratio (duty ratio) of the time during which the transistors 8 and 11 are turned on is changed according to the speed at which the friction engagement member 7 is moved, and the control signals S1 and S2, the control signals S3 and S4, By switching the output time ratio, the direction in which the friction engagement member 7 slides can be reversed.

図2に、駆動装置1の制御信号S1,S2,S3,S4と、圧電素子5の電極5a−5b間に印加される電圧と、検出抵抗12における電圧降下(dV)、つまり、検出抵抗12の両端の電位差(V1−V2)との関係を示す。   FIG. 2 shows the control signals S1, S2, S3, S4 of the driving device 1, the voltage applied between the electrodes 5a-5b of the piezoelectric element 5, and the voltage drop (dV) in the detection resistor 12, that is, the detection resistor 12 The relationship with the potential difference (V1-V2) of both ends of is shown.

制御信号S1,S2,S3,S4は、矩形波であり、トランジスタ8,11またはトランジスタ9,10を同時にオンして電源2と接地点とを圧電素子5を介して接続する。しかしながら、トランジスタ8,11または9,10のオン抵抗、検出抵抗13および圧電素子の内部抵抗があるために、充電電流が制限され、これらの抵抗において電圧降下が発生するので、図示するように、圧電素子5の電極5a−5b間に現れる電圧は、1次遅れの波形となる。   The control signals S1, S2, S3, and S4 are rectangular waves, and the transistors 8 and 11 or the transistors 9 and 10 are simultaneously turned on to connect the power source 2 and the ground point via the piezoelectric element 5. However, because of the on-resistance of the transistors 8, 11 or 9, 10 and the internal resistance of the detection resistor 13 and the piezoelectric element, the charging current is limited and a voltage drop occurs in these resistors. The voltage appearing between the electrodes 5a-5b of the piezoelectric element 5 has a first-order lag waveform.

圧電素子5の充放電に係る回路、つまり、駆動装置1の電源2から圧電素子5を介して接地点に至る回路は、RC回路と同視できる。例えば、検出抵抗が1(Ω)、pチャネル型FETからなるトランジスタ8,10のオン抵抗が0.7(Ω)およびnチャネル型FETからなるトランジスタ9,11のオン抵抗0.3(Ω)であり、圧電素子5の容量が(70nF)であるとすると、このRC回路の時定数τは、約0.14(μ秒)である。   A circuit related to charging / discharging of the piezoelectric element 5, that is, a circuit extending from the power source 2 of the driving device 1 to the ground point via the piezoelectric element 5 can be regarded as an RC circuit. For example, the detection resistance is 1 (Ω), the on-resistance of the transistors 8 and 10 made of p-channel FET is 0.7 (Ω), and the on-resistance of the transistors 9 and 11 made of n-channel FET is 0.3 (Ω) If the capacitance of the piezoelectric element 5 is (70 nF), the time constant τ of this RC circuit is about 0.14 (μ seconds).

駆動装置1の制御装置3は、トランジスタ8,9,10,11の動作(切り替わり)からτμ秒後と、10τμ秒後の検出抵抗12における電位差(それぞれ、dV,dVとする)とを測定している。 The control device 3 of the driving device 1 calculates the potential difference (referred to as dV 1 and dV 2 respectively) at the detection resistor 12 after τμ seconds and 10τμ seconds after the operation (switching) of the transistors 8, 9, 10, 11. Measuring.

駆動装置1が初期状態にある正常時において、電位差dVは、トランジスタ8,9,10,11の動作時に現れる最大値の約37%であり、電位差dVは、略ゼロである。 In the normal state in which the driving device 1 is in the initial state, the potential difference dV 1 is about 37% of the maximum value that appears when the transistors 8, 9, 10, and 11 are operated, and the potential difference dV 2 is substantially zero.

圧電素子5の容量が増加した場合、圧電素子5を充電するために必要な電荷の量が多くなるので、正常時に較べて電流値の減少が緩やかになる。このため、トランジスタ8,9,10,11の動作から十分に時間が経過したときの電位差dVは変わらないが、トランジスタ8,9,10,11の動作から僅かに遅れたタイミングでの電位差dVは正常時に較べて大きな値を示している。 When the capacity of the piezoelectric element 5 is increased, the amount of electric charge necessary for charging the piezoelectric element 5 is increased, so that the current value is gradually decreased as compared with the normal time. For this reason, the potential difference dV 2 when a sufficient amount of time has elapsed from the operation of the transistors 8, 9, 10, 11 does not change, but the potential difference dV at a timing slightly delayed from the operation of the transistors 8, 9, 10, 11. 1 shows a larger value than in the normal state.

このように、トランジスタ8,9,10,11の動作から僅かに遅れたタイミングで、検出抵抗12の両端の電位差dVを測定すれば、電位差dVの大きさによって圧電素子5の容量の増減を判定することができる。 Thus, if the potential difference dV 1 across the detection resistor 12 is measured at a timing slightly delayed from the operation of the transistors 8, 9, 10, 11, the capacitance of the piezoelectric element 5 increases or decreases depending on the magnitude of the potential difference dV 1. Can be determined.

この電位差dVを測定するタイミングは、トランジスタ8,9,10,11の動作の直後では、測定値が大きく増減を判定しやすい反面、電位差の変化率が大きいために測定誤差が大きくなる。逆に、トランジスタ8,9,10,11の動作から大きく遅れると、電位差の変化率は小さく測定誤差が小さくなるが、測定値が非常に小さくなるので正常時との比較が困難になる。 The timing for measuring the potential difference dV 1 is large immediately after the operation of the transistors 8, 9, 10, and 11, but it is easy to determine increase / decrease, but the measurement rate increases because the change rate of the potential difference is large. Conversely, if the operation of the transistors 8, 9, 10, and 11 is greatly delayed, the change rate of the potential difference is small and the measurement error is small. However, the measurement value is very small, so that comparison with the normal time becomes difficult.

駆動装置1を完全なRC回路と仮定すると、トランジスタ8,9,10,11の動作から時定数τの0.1倍だけ遅れた時点で、検出抵抗12の電位差dVは、最大値の約90%まで減少し、変化率もある程度緩やかになる。また、トランジスタ8,9,10,11の動作から時定数τの2倍だけ遅れた時点では、検出抵抗12の電位差dVは、最大値の約14%まで減少し、これ以上測定値が減少すると正常時との比が正確に求められなくなる。よって、圧電素子5の容量の変化を判定するためには、検出抵抗12の両端の電位差dVを、トランジスタ8,9,10,11の動作から時定数τの0.1倍以上、2倍以下だけ遅れた時点で測定することが好ましい。 Assuming that the driving device 1 is a complete RC circuit, the potential difference dV of the detection resistor 12 is about 90 times the maximum value at a time delayed by 0.1 times the time constant τ from the operation of the transistors 8, 9, 10, and 11. %, The rate of change will be moderate to some extent. When the operation of the transistors 8, 9, 10, and 11 is delayed by twice the time constant τ, the potential difference dV of the detection resistor 12 decreases to about 14% of the maximum value, and the measured value further decreases. The ratio to the normal time cannot be obtained accurately. Therefore, in order to determine the change in the capacitance of the piezoelectric element 5, the potential difference dV 1 across the detection resistor 12 is set to 0.1 times or more and 2 times the time constant τ from the operation of the transistors 8, 9, 10, and 11. It is preferable to measure at a point delayed by the following.

また、圧電素子5がショートした場合、電位差dVだけでなく電位差dVも上昇している。つまり、圧電素子5のショートを判定するためには、トランジスタ8,9,10,11の動作から十分に遅れた時点で、電位差dVを測定することが効果的である。トランジスタ8,9,10,11の動作から時定数τだけ遅れた時点で、検出抵抗12の電位差dVは、最大値の約37%まで減少し、ショート時の電位差との違いを容易に検出できる。つまり、圧電素子5のショートの判定には、トランジスタ8,9,10,11の動作から時定数τ以上遅れて、検出抵抗12の電位差dVを測定することが好ましい。 When the piezoelectric element 5 is short-circuited, not only the potential difference dV 1 but also the potential difference dV 2 is increased. That is, in order to determine whether the piezoelectric element 5 is short-circuited, it is effective to measure the potential difference dV 2 when it is sufficiently delayed from the operation of the transistors 8, 9, 10, and 11. When the operation is delayed by the time constant τ from the operation of the transistors 8, 9, 10, and 11, the potential difference dV of the detection resistor 12 decreases to about 37% of the maximum value, and the difference from the potential difference at the time of short-circuit can be easily detected. . That is, for determining whether the piezoelectric element 5 is short-circuited, it is preferable to measure the potential difference dV 2 of the detection resistor 12 after a time constant τ or more from the operation of the transistors 8, 9, 10, and 11.

また、圧電素子5または駆動回路4が断線したときは、電位差dVおよびdVはともにゼロになっている。つまり、トランジスタ8,9,10,11の動作から僅かに遅れて測定した電位差dVによって断線を監視することもできる。 Further, when the piezoelectric element 5 or the drive circuit 4 is disconnected, the potential differences dV 1 and dV 2 are both zero. That is, the disconnection can be monitored by the potential difference dV 1 measured slightly after the operation of the transistors 8, 9, 10, and 11.

圧電素子5のショートや圧電素子5または駆動回路4の断線が検出された場合、電源2等を保護するために、制御装置3が制御信号S1,S2,S3,S4を出力しないようにするとよい。さらに、このような異常を知らせるために外部に信号を出力するようにしてもよい。   When a short circuit of the piezoelectric element 5 or a disconnection of the piezoelectric element 5 or the drive circuit 4 is detected, the control device 3 should not output the control signals S1, S2, S3, S4 in order to protect the power supply 2 and the like. . Further, a signal may be output to the outside in order to notify such an abnormality.

本実施形態では、検出抵抗12を、トランジスタ8,9と電極5aとの間の電路に設けているが、トランジスタ10,11と電極5bとの間の電路(図中の点A)、電源2とトランジスタ8,10との間の電路(図中の点B)、或いは、トランジスタ9,11と接地点との間の電路(図中の点C)に検出抵抗12を配設してもよい。   In the present embodiment, the detection resistor 12 is provided in the electric circuit between the transistors 8 and 9 and the electrode 5a. However, the electric circuit between the transistors 10 and 11 and the electrode 5b (point A in the figure), the power source 2 And the detection resistor 12 may be arranged in the electric circuit between the transistors 8 and 10 (point B in the figure) or the electric circuit between the transistors 9 and 11 and the ground point (point C in the figure). .

尚、本実施形態では、差分器13によって、検出抵抗12の電位差dVを測定しているが、制御装置3の内部で演算によって算出するようにしてもよい。また、検出抵抗12の電位差dVの積分値を測定するようにすれば、電流値の総和、つまり、圧電素子5に充電された電荷の総量を算出することができ、圧電素子5の容量をより正確に判定できる。   In the present embodiment, the potential difference dV of the detection resistor 12 is measured by the differentiator 13, but may be calculated by calculation inside the control device 3. If the integral value of the potential difference dV of the detection resistor 12 is measured, the sum of the current values, that is, the total amount of charges charged in the piezoelectric element 5 can be calculated, and the capacitance of the piezoelectric element 5 can be further increased. Accurate judgment can be made.

さらに、図3に、本発明の第2実施形態の駆動装置1の構成を示す。本実施形態の説明において、第1実施形態と同じ構成要素には同じ符号を付して、説明を省略する。本実施形態の駆動回路4は、充電スイッチング素子である1つのトランジスタ8と、放電スイッチング素子である1つのトランジスタ9とを備え、圧電素子5の電極5aが電源2または接地点に接続され、電極5bが常に接地されているハーフブリッジ回路である。   Further, FIG. 3 shows a configuration of the driving apparatus 1 according to the second embodiment of the present invention. In the description of the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The drive circuit 4 of the present embodiment includes one transistor 8 that is a charge switching element and one transistor 9 that is a discharge switching element, and the electrode 5a of the piezoelectric element 5 is connected to the power supply 2 or the ground point, and the electrode A half bridge circuit 5b is always grounded.

本実施形態では、小さな入力電流でトランジスタ8をスイッチングできるように、バイポーラトランジスタ13と複数の抵抗14,15,16,17,18を備えているが、制御信号S1によってトランジスタ8がオンし、制御信号S2によってトランジスタ9がオンすることに変わりはない。   In this embodiment, the bipolar transistor 13 and the plurality of resistors 14, 15, 16, 17, and 18 are provided so that the transistor 8 can be switched with a small input current. However, the transistor 8 is turned on by the control signal S1, and the control is performed. The transistor 9 is still turned on by the signal S2.

本実施形態においても、検出抵抗12において、圧電素子5の充放電電流による電圧降下が発生し、この電圧降下を測定することで、圧電素子5の容量変化などの駆動装置1の状態を判定でき、判定結果に応じて、制御信号S1,S2のパターンを変えることによって、駆動装置1の性能変化を補償することができる。   Also in this embodiment, a voltage drop due to the charging / discharging current of the piezoelectric element 5 occurs in the detection resistor 12, and by measuring this voltage drop, the state of the driving device 1 such as a capacitance change of the piezoelectric element 5 can be determined. The performance change of the drive device 1 can be compensated by changing the pattern of the control signals S1 and S2 according to the determination result.

本実施形態においても、検出抵抗12を、トランジスタ8,9と電極5aとの間の電路(点D)や、電極5bと接地点との間の電路(点E)に設けてもよい。   Also in this embodiment, the detection resistor 12 may be provided on the electric circuit (point D) between the transistors 8 and 9 and the electrode 5a, or on the electric circuit (point E) between the electrode 5b and the ground point.

本実施形態において、圧電素子5をレンズユニットの筐体に固定し、摩擦係合部材7にレンズを保持すれば、素子固定式のレンズ移動機構になる。また、圧電素子5を移動ステージに固定し、摩擦係合部材7を筐体に固定すれば、振動部材6および圧電素子5が摩擦係合部材7に対して移動(摩擦係合部材7が相対的に振動部材6に対してすべり変位)して移動ステージを駆動する、自走式のステージ移動機構となる。   In this embodiment, if the piezoelectric element 5 is fixed to the housing of the lens unit and the lens is held on the friction engagement member 7, an element-fixing type lens moving mechanism is obtained. If the piezoelectric element 5 is fixed to the moving stage and the friction engagement member 7 is fixed to the housing, the vibration member 6 and the piezoelectric element 5 move relative to the friction engagement member 7 (the friction engagement member 7 is relatively Thus, a self-propelled stage moving mechanism that drives the moving stage by sliding relative to the vibration member 6 is obtained.

本発明の第1実施形態の駆動装置の回路図。The circuit diagram of the drive device of a 1st embodiment of the present invention. 図1の駆動装置に制御信号と充放電電流の関係を示すタイムチャート。The time chart which shows the relationship between a control signal and charging / discharging electric current in the drive device of FIG. 本発明の第2実施形態の駆動装置の回路図。The circuit diagram of the drive device of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 駆動装置
2 電源
3 制御装置(状態判定手段)
4 駆動回路
5 圧電素子
5a,5b 電極
6 振動部材
7 摩擦係合部材
8 トランジスタ(充電スイッチング素子)
9 トランジスタ(放電スイッチング素子)
10 トランジスタ(充電スイッチング素子)
11 トランジスタ(放電スイッチング素子)
12 検出抵抗
13 差分器(電位差検出手段)
DESCRIPTION OF SYMBOLS 1 Drive apparatus 2 Power supply 3 Control apparatus (state determination means)
4 Drive Circuit 5 Piezoelectric Element 5a, 5b Electrode 6 Vibration Member 7 Friction Engagement Member 8 Transistor (Charge Switching Element)
9 Transistor (Discharge switching element)
10 Transistor (Charge switching element)
11 Transistor (Discharge switching element)
12 Detection resistor 13 Differentiator (potential difference detection means)

Claims (2)

電圧が印加されると伸縮する圧電素子と、前記圧電素子に一端が固定され、前記圧電素子の伸縮によって、軸方向に往復変位可能な振動部材と、前記振動部材に摩擦係合し、前記振動部材の往復変位によって、前記振動部材に対してすべり変位する摩擦係合部材と、前記圧電素子の電極を所定の駆動周期で電源に接続する充電スイッチング素子と、前記電極を接地する放電スイッチング素子とを備える駆動回路とを有する駆動装置の状態検出方法であって、
前記電源と前記圧電素子との間の電路、または、前記圧電素子と接地点との間の電路に検出抵抗を配設し、
前記駆動周期中の所定のタイミングで前記検出抵抗の両端の電位差を測定し、
検出した前記電位差を基に前記圧電素子の状態を判定し、
前記所定のタイミングは、前記充電スイッチング素子および前記放電スイッチング素子の動作から、前記電源から前記圧電素子を介して接地点に至る回路の時定数以上遅れたタイミングであり、
検出した前記電位差が前記所定の範囲より大きいときは、前記圧電素子がショートしていると判定することを特徴とする駆動装置の状態検出方法。
A piezoelectric element that expands and contracts when a voltage is applied, a vibration member that is fixed at one end to the piezoelectric element, and that can reciprocally move in the axial direction by the expansion and contraction of the piezoelectric element, and frictionally engage with the vibration member, and the vibration A friction engagement member that slides and displaces with respect to the vibration member by a reciprocal displacement of the member; a charge switching element that connects an electrode of the piezoelectric element to a power source at a predetermined drive cycle; and a discharge switching element that grounds the electrode A state detection method for a drive device having a drive circuit comprising:
A detection resistor is disposed in an electric circuit between the power source and the piezoelectric element, or an electric circuit between the piezoelectric element and a ground point,
Measure the potential difference between both ends of the detection resistor at a predetermined timing during the driving cycle,
Determine the state of the piezoelectric element based on the detected potential difference ,
The predetermined timing is a timing delayed from the operation of the charge switching element and the discharge switching element by a time constant of a circuit from the power source to the ground point via the piezoelectric element,
When the detected potential difference is larger than the predetermined range, it is determined that the piezoelectric element is short-circuited .
電圧が印加されると伸縮する圧電素子と、前記圧電素子に一端が固定され、前記圧電素子の伸縮によって、軸方向に往復変位可能な振動部材と、前記振動部材に摩擦係合し、前記振動部材の往復変位によって、前記振動部材に対してすべり変位する摩擦係合部材と、前記圧電素子の電極を所定の駆動周期で電源に接続する充電スイッチング素子と、前記電極を接地する放電スイッチング素子とを備える駆動回路とを有する駆動装置の制御方法であって、
前記電源と前記圧電素子との間の電路、または、前記圧電素子と接地点との間の電路に検出抵抗を配設し、
前記駆動周期中の所定のタイミングで前記検出抵抗の両端の電位差を測定し、
検出した前記電位差を基に前記圧電素子の状態を判定し、
前記所定のタイミングは、前記充電スイッチング素子および前記放電スイッチング素子の動作から僅かに遅れたタイミングであり、
検出した前記電位差が増大したときは、前記圧電素子の容量が増加していると判定し、
前記圧電素子の容量の増加を検出したときは、前記駆動周期を長くすることを特徴とする駆動装置の制御方法。
A piezoelectric element that expands and contracts when a voltage is applied, a vibration member that is fixed at one end to the piezoelectric element, and that can reciprocally move in the axial direction by the expansion and contraction of the piezoelectric element, and frictionally engage with the vibration member, and the vibration A friction engagement member that slides and displaces with respect to the vibration member by a reciprocal displacement of the member; a charge switching element that connects an electrode of the piezoelectric element to a power source at a predetermined drive cycle; and a discharge switching element that grounds the electrode A drive circuit control method comprising: a drive circuit comprising:
A detection resistor is disposed in an electric circuit between the power source and the piezoelectric element, or an electric circuit between the piezoelectric element and a ground point,
Measure the potential difference between both ends of the detection resistor at a predetermined timing during the driving cycle,
Determine the state of the piezoelectric element based on the detected potential difference,
The predetermined timing is a timing slightly delayed from the operation of the charge switching element and the discharge switching element,
When the detected potential difference increases, it is determined that the capacitance of the piezoelectric element has increased,
The drive device control method, wherein when the increase in the capacitance of the piezoelectric element is detected, the drive cycle is lengthened.
JP2007031966A 2007-02-13 2007-02-13 DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD Active JP4992037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031966A JP4992037B2 (en) 2007-02-13 2007-02-13 DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031966A JP4992037B2 (en) 2007-02-13 2007-02-13 DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2008199774A JP2008199774A (en) 2008-08-28
JP4992037B2 true JP4992037B2 (en) 2012-08-08

Family

ID=39758225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031966A Active JP4992037B2 (en) 2007-02-13 2007-02-13 DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP4992037B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130733A (en) * 2008-11-25 2010-06-10 Sanyo Electric Co Ltd Output driver
JP5352402B2 (en) * 2009-09-28 2013-11-27 パナソニック株式会社 Alarm
JP5716624B2 (en) * 2011-09-29 2015-05-13 株式会社豊田自動織機 Ultrasonic motor drive device
JP2017175696A (en) 2016-03-22 2017-09-28 セイコーエプソン株式会社 Control circuit of piezoelectric drive device, piezoelectric drive device, ultrasonic motor, robot, hand, and pump
JP6651937B2 (en) 2016-03-28 2020-02-19 セイコーエプソン株式会社 Piezo actuators, piezo motors, robots, hands and pumps

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171022B2 (en) * 1994-08-30 2001-05-28 ミノルタ株式会社 Driving device using electromechanical transducer
JPH099652A (en) * 1995-06-16 1997-01-10 Olympus Optical Co Ltd Driving apparatus for ultrasonic motor
JP4470258B2 (en) * 2000-01-20 2010-06-02 コニカミノルタホールディングス株式会社 Drive device
JP2001268951A (en) * 2000-03-23 2001-09-28 Minolta Co Ltd Driver
JP2003289681A (en) * 2002-03-27 2003-10-10 Canon Inc Control device for vibrating type actuator
JP2004056914A (en) * 2002-07-19 2004-02-19 Minolta Co Ltd Driver, lens unit equipped therewith, and photographing equipment
JP2005323450A (en) * 2004-05-10 2005-11-17 Konica Minolta Holdings Inc Driving device

Also Published As

Publication number Publication date
JP2008199774A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP5391527B2 (en) Drive device
JP4992037B2 (en) DRIVE DEVICE, DRIVE DEVICE STATE DETECTION METHOD, AND DRIVE DEVICE CONTROL METHOD
US7190104B2 (en) Device and method utilizing electromechanical conversion element
US10693394B2 (en) Driving apparatus of vibration-type actuator method of controlling driving vibration-type actuator and image pickup apparatus
JPH09247968A (en) Driven unit using electromechanical transducer
JP2010273397A (en) Vibration type drive device
EP2110940B1 (en) Driver
US8791709B2 (en) On-chip measurement of capacitance for micro-electro-mechanical system (MEMS) actuator circuit
US20060049716A1 (en) Drive unit
JP6727173B2 (en) Rotor position detection system
WO2011048948A1 (en) Vibration-type drive apparatus, and control method for vibration-type drive apparatus
JPH11356071A (en) Drive unit using electromechanical transducing element and driving circuit therefor
JP2005237144A (en) Piezoelectric actuator
US10996088B2 (en) Method for operating a magneto inductive flow measuring device for measuring flow velocity or volume flow of a medium in a measuring tube
JP2011080792A (en) Calibration method for inertial drive actuator, and inertial drive actuator device
JP4492756B2 (en) Piezoelectric actuator
JP2002032126A (en) Method and device for controlling position and speed of piezoelectric element
JP5151426B2 (en) Positioning device
JP4492738B2 (en) Piezoelectric actuator
JP6432412B2 (en) Driving device for switching element
JP4518086B2 (en) Positioning device
JP2000287466A5 (en)
JP2010253361A (en) Vibration type driving device and method of controlling the same
JP2016152516A (en) Detector
JP2002142474A (en) Ultrasonic motor drive controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350