JP4988684B2 - Electromagnetic processing apparatus and method - Google Patents

Electromagnetic processing apparatus and method Download PDF

Info

Publication number
JP4988684B2
JP4988684B2 JP2008283489A JP2008283489A JP4988684B2 JP 4988684 B2 JP4988684 B2 JP 4988684B2 JP 2008283489 A JP2008283489 A JP 2008283489A JP 2008283489 A JP2008283489 A JP 2008283489A JP 4988684 B2 JP4988684 B2 JP 4988684B2
Authority
JP
Japan
Prior art keywords
electromagnetic
coil
yoke
scale
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008283489A
Other languages
Japanese (ja)
Other versions
JP2010110667A (en
Inventor
千真 梅木
尚司 谷口
和彦 沖田
安彦 角田
明央 吉井
裕一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tohoku Steel Co Ltd
Daiichi Techno Co Ltd
Original Assignee
Tohoku University NUC
Tohoku Steel Co Ltd
Daiichi Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tohoku Steel Co Ltd, Daiichi Techno Co Ltd filed Critical Tohoku University NUC
Priority to JP2008283489A priority Critical patent/JP4988684B2/en
Publication of JP2010110667A publication Critical patent/JP2010110667A/en
Application granted granted Critical
Publication of JP4988684B2 publication Critical patent/JP4988684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、電磁処理装置と方法に関するものである。   The present invention relates to an electromagnetic processing apparatus and method.

本発明者らは、先に異なるタイプの被処理流体であっても、それぞれ異なる方式で被処理流体が流れる配管や貯留槽内の壁面のスケール防止及び腐食防止等に対する効果的な変調電磁場処理を可能にする方法とその方法を実施するための装置について特許出願をした。当該特許出願した発明は、具体的には図36に示す被処理流体を照射するためのコイル部2と、該コイル部2に20Hz〜1MHzの帯域で周波数が時間的に変化する交流電流を流す還元(−)型変調電磁場発生器6aと、前記コイル部2に20Hz〜1MHzの帯域で周波数が時間的に変化する交流電流を流す酸化(+)型変調電磁場発生器6bと、前記2つの変調電磁場発生器6a,6bと前記コイル部2との間に前記2つの変調電磁場発生器6a,6bのいずれかを作動させるための切替器7を備えた変調電磁場処理装置を用いるものであり、異なるタイプの被処理流体であっても、それぞれに適した方式で効果的な変調電磁場処理を効果的に行うことができるというものである。
なお、前記還元(−)型変調電磁場発生器6aは図37に示す電子回路を備え、前記酸化(+)型変調電磁場発生器6bは図38に示す電子回路を備えている。
特開2005−288436号公報
The inventors of the present invention performed effective modulated electromagnetic field processing for preventing scales and corrosion of pipes and storage walls in different ways, even for different types of fluids to be treated. A patent application has been filed for the enabling method and the apparatus for carrying out the method. Specifically, the invention for which the patent application has been made includes a coil part 2 for irradiating the fluid to be processed shown in FIG. 36, and an alternating current whose frequency changes over time in a band of 20 Hz to 1 MHz. A reduction (-) type modulation electromagnetic field generator 6a, an oxidation (+) type modulation electromagnetic field generator 6b in which an alternating current whose frequency changes with time in a band of 20 Hz to 1 MHz flows through the coil section 2, and the two modulations A modulation electromagnetic field processing device including a switch 7 for operating one of the two modulation electromagnetic field generators 6a and 6b between the electromagnetic field generators 6a and 6b and the coil unit 2 is different. Even with a type of fluid to be treated, effective modulation electromagnetic field treatment can be effectively performed by a method suitable for each type of fluid.
The reduction (-) type modulation electromagnetic field generator 6a includes an electronic circuit shown in FIG. 37, and the oxidation (+) type modulation electromagnetic field generator 6b includes an electronic circuit shown in FIG.
JP 2005-288436 A

上記従来の技術には次のような問題点があった。
まず、一つ目の問題点は、高濃度のカルシウム等を含むスケール障害の激しい排ガス脱硫設備、脱硫排水処理設備、焼却灰スラリー処理設備又は高濃度のカルシウムを含む流体収容容器の内壁にスケールを形成し易い(以下、このことをスケール性があるということがある)石灰スラリー溶解・移送設備等の装置においては、上記特許文献1記載の変調電磁場処理ではスラリー液による装置内壁面へのスケール付着防止効果が十分に得られない事が多い。また、スケール性の軽減効果は見られながら、定期的清掃を必要とする場合がしばしばあった。
The above prior art has the following problems.
First, the first problem is that the scale is placed on the inner wall of exhaust gas desulfurization equipment, desulfurization drainage treatment equipment, incineration ash slurry treatment equipment, or fluid container containing high concentration calcium containing highly concentrated calcium. In a device such as a lime slurry melting / transfer facility that is easy to form (hereinafter, this may be referred to as a scale property), in the modulated electromagnetic field treatment described in Patent Document 1, the scale adheres to the inner wall surface of the device by the slurry liquid. In many cases, the prevention effect is not sufficiently obtained. In addition, there was often a need for periodic cleaning while an effect of reducing the scale property was seen.

後述の比較例で説明するように、上記変調電磁場処理にてより実際に稼働している火力発電所の脱硫排水処理設備に流入する排水配管に巻き付けた出力コイルに主要周波数が7,000Hzで10〜50,000Hzの範囲で時間と共に変調した交流電流を流したときのスケール性判定結果を図34(a)〜(c)に示す。   As will be described in a comparative example described later, the main frequency of the output coil wound around the drainage pipe flowing into the desulfurization drainage treatment facility of the thermal power plant that is actually operated by the modulated electromagnetic field treatment is 10 at 7,000 Hz. The scale property determination results when an alternating current modulated with time in the range of ˜50,000 Hz is passed are shown in FIGS.

図34(a)に変調電磁場処理をしていない(以下「未処理」という)の場合の脱硫排水処理設備の排水を常法通り、ガラス板上に滴下して乾燥した流体界面の顕微鏡(100倍)写真を示すように、非常に強いスケール性を示す。また、コイル電流値を0.75Aとして変調電磁場処理をした後、排水をガラス板上に滴下して乾燥した流体界面の顕微鏡(100倍)写真の結果を図34(b)に示し、同様にコイル電流値を2.5Aとしたときの流体界面の顕微鏡(100倍)写真の結果を図34(c)に示す。   As shown in FIG. 34 (a), when the modulated electromagnetic field treatment is not performed (hereinafter referred to as “untreated”), the wastewater from the desulfurization wastewater treatment facility is dropped on a glass plate and dried as usual (100). (Times) As shown in the photograph, it shows a very strong scale. In addition, FIG. 34 (b) shows the result of a microscopic (100 times) photograph of a fluid interface obtained by applying a modulated electromagnetic field treatment with a coil current value of 0.75 A and then dripping drainage onto a glass plate and drying it. The result of the microscope (100 times) photograph of the fluid interface when the coil current value is 2.5 A is shown in FIG.

図34(a)〜(c)に示す結果からコイル電流値を0.75Aで変調電磁場処理をしたときにはスケール性がかなり残っているが、コイル電流値を2.5Aで変調電磁場処理をしたときのスケール性は未処理と比較して低下傾向が見られるが、界面への結晶集合性は残ることが分かる。   From the results shown in FIGS. 34 (a) to 34 (c), when the modulation electromagnetic field processing is performed with the coil current value of 0.75A, the scale characteristic remains considerably, but when the modulation electromagnetic field processing is performed with the coil current value of 2.5A. It can be seen that the scale property of the glass tends to be lower than that of the untreated material, but the crystal assemblage at the interface remains.

前記脱硫排水処理の実設備に前記変調電磁場処理のための装置を設置して、約6ヶ月間の実証試験を行なったが、排水流路内壁面のスケール付着量の減少と付着物軟質化の効果は確認されたが、スケール付着物の清掃作業は必要であった。 なお、実設備でも出力コイル電流値を上げる事でスケール性の低下傾向が見られる。   The equipment for the modulated electromagnetic field treatment was installed in the actual equipment for the desulfurization wastewater treatment, and a verification test was conducted for about 6 months. Although the effect was confirmed, it was necessary to clean the scale deposits. Even in actual equipment, the tendency of the scale property to decrease can be seen by increasing the output coil current value.

より以上の効果を得るためには出力コイル2.5A以上の装置を用いる事で解決されることが予想される。しかし、出力コイル電流値3A以上の装置の製造には従来の約5〜10倍以上のコストが掛かる事と変調電磁場処理装置の内部回路の耐久性試験等の開発にある程度時間が掛かること低出力コイル電流値でよりスケール防止能力を有する装置又は方法が望ましいことが分かった。   In order to obtain the above effect, it is expected to be solved by using an apparatus having an output coil of 2.5 A or more. However, it takes about 5 to 10 times more cost to manufacture devices with output coil current value of 3A or more, and it takes some time to develop endurance test of internal circuit of modulated electromagnetic field processing device. It has been found that an apparatus or method that has more ability to prevent scale at coil current values is desirable.

また、前記従来の変調電磁場処理装置を用いる技術ではコイル電流値が少なくても、被処理流体のスケール性を低減化させる方法として薬品との併用処理が行われている。前記脱硫排水処理設備において炭酸ソーダ溶液を注入する事で出力コイル2.5Aにて変調電磁場処理をした場合には図35に示す処理水のガラス板上の乾燥物の顕微鏡(100倍)写真に示すようなスケール判定結果となり、界面部への結晶集合性は大きく低下している。   Further, in the technique using the conventional modulated electromagnetic field processing apparatus, even when the coil current value is small, a combined treatment with a chemical is performed as a method for reducing the scale property of the fluid to be processed. When a modulation electromagnetic field treatment is performed with the output coil 2.5A by injecting a sodium carbonate solution in the desulfurization wastewater treatment facility, the photograph of the dried material on the glass plate of the treated water shown in FIG. As a result of the scale determination as shown, the crystal aggregation at the interface is greatly reduced.

しかし、このように変調電磁場処理を薬品処理と併用して行うと、薬注設備及び薬品コストを新たに要することになる。
上記従来の排水配管など被処理流体流路の回りにコイルを巻き付けて、該コイルに時間的に変化する周波数の交流電流を流す変調電磁場処理装置を用いて被処理流体流路にスケールが付着しないようにする方法では流体に強い界面電位変化を生じさせるために、コイル出力電流を大きくする必要があった。そのため、変調電磁場処理装置Cの運転動力費が無視できないことと変調電磁場発生器の内部回路の発熱対策を含み、製造コストが大きくなる問題がある。
However, when the modulated electromagnetic field treatment is performed in combination with the chemical treatment in this way, chemical injection equipment and chemical costs are newly required.
A scale is not attached to the fluid flow path by using a modulated electromagnetic field treatment device in which a coil is wound around the fluid flow path to be treated, such as the above-described conventional drainage pipe, and an alternating current having a time-varying frequency is passed through the coil. In this method, it is necessary to increase the coil output current in order to cause a strong change in interface potential in the fluid. For this reason, there are problems that the operating power cost of the modulated electromagnetic field processing device C cannot be ignored and the heat generation countermeasures of the internal circuit of the modulated electromagnetic field generator are included, resulting in an increase in manufacturing cost.

また、電磁場処理の界面電位変化を阻害する極性を有する薬品等が混入した被処理水を含む設備においては、薬品などの極性を変化させる作用を有する処理を予め行う必要があった。   In addition, in equipment including water to be treated in which chemicals having a polarity that inhibits changes in the interfacial potential of electromagnetic field treatment are mixed, it is necessary to perform in advance a treatment having an action of changing the polarity of the chemicals.

さらに、2つ目の問題点は、従来の配管外側に巻くコイル方式の変調電磁場処理装置Cでは化学工場内の「防爆地区」では消防法の規定によって使用が出来ない欠点がある。   A second problem is that the conventional coil-type modulated electromagnetic field treatment device C wound around the outside of the pipe cannot be used in the “explosion-proof district” in the chemical factory due to the provisions of the Fire Service Law.

そこで、本発明の課題は、上記従来技術に比較して消費電力と設備費が少なく済み、補助薬品の添加もできるだけ必要としないで済む新たな電磁処理装置と電磁処理方法を提供することである。   Accordingly, an object of the present invention is to provide a new electromagnetic processing apparatus and an electromagnetic processing method that require less power consumption and equipment costs than the above-described conventional technology and that do not require the addition of auxiliary chemicals as much as possible. .

上記本発明の課題は次の解決手段により解決される。
請求項1記載の発明は、被処理流体流路の近傍に配置する、渦電流の影響を受けない高さの抵抗率を有するフェライト製ヨークにコイルを巻き付けたヨーク型コイル部と、該コイル部に(a)8,000Hzの単一周波数、又は(b)4,000Hzの単一の周波数の交流正弦波を流す電磁発生器とを備えた電磁処理装置である。
The problems of the present invention are solved by the following means.
According to the first aspect of the present invention, there is provided a yoke-type coil section in which a coil is wound around a ferrite yoke having a resistivity that is not affected by an eddy current and is disposed in the vicinity of a fluid flow path, and the coil section (A) a single frequency of 8,000 Hz, or (b) an electromagnetic generator for flowing an AC sine wave having a single frequency of 4,000 Hz.

請求項2記載の発明は、ヨーク型コイル部を覆う非磁性材料からなる防爆装置を設けた請求項1記載の電磁処理装置である。 A second aspect of the present invention is the electromagnetic processing apparatus according to the first aspect, wherein an explosion-proof device made of a nonmagnetic material that covers the yoke-type coil portion is provided .

請求項3記載の発明は、被処理流体流路の近傍で、渦電流の影響を受けない高さの抵抗率を有するフェライト製ヨークに巻き付けたヨーク型コイルに(a)8,000Hzの単一周波数、又は(b)4,000Hzの単一周波数の交流正弦波を流して被処理流体を電磁処理することで被処理流体流路又は被処理流体を貯めた装置の壁面のスケール、その他の成分の付着防止及び/又は除去を行う電磁処理方法である。 According to the third aspect of the present invention , (a) a single 8,000 Hz coil is wound around a yoke-type coil wound around a ferrite yoke having a high resistivity that is not affected by eddy currents in the vicinity of the fluid flow path. (B) The scale of the wall of the apparatus in which the fluid to be processed is stored by flowing an AC sine wave having a single frequency of 4,000 Hz and electromagnetically processing the fluid to be processed, or other components It is the electromagnetic processing method which performs adhesion prevention and / or removal .

本発明では従来の変調電磁場処理装置が有する問題点を解決するために供給する交流信号として正弦波を用いて被処理流体の界面電位を(−)又は(+)に帯電させる最も効果的な単一周波数を見出し、磁性体材料(ヨーク)にコイルを巻き付けたヨーク型コイル部を設けて、被処理流体流路外側の対極部(流体流路の外側にそれぞれ位置して前記ヨークの両端が互いに対向する位置にある部分)にヨーク両端を配置して電磁場を形成させる事で少ない電流値でスケール防止能力に優れた被処理流体の電磁処理装置と電磁処理方法を提供することができる。   In the present invention, in order to solve the problems of the conventional modulated electromagnetic field processing apparatus, the most effective single unit is used to charge the interface potential of the fluid to be processed to (−) or (+) using a sine wave as an AC signal to be supplied. A yoke-type coil portion in which a coil is wound around a magnetic material (yoke) is provided, and counter electrodes on the outside of the fluid flow path to be processed (each outside the fluid flow path, both ends of the yoke are mutually connected) By disposing both ends of the yoke at the opposing portions) to form an electromagnetic field, it is possible to provide an electromagnetic processing apparatus and an electromagnetic processing method for a fluid to be processed that have a small current value and are excellent in scale prevention capability.

図2に示す電磁処理装置Aにより、例えば8,000Hz又はその近傍の単一周波数を有する交流正弦波信号を前記ヨークの両端に出力する。当該電磁処理装置Aは出力コイル部よりフェライト製ヨークを用いて流体配管内を通過するスケール性を有する被処理流体に電磁場を与えて、該流体のスケール性を低下・消失させる効果を有する。前記電磁場は被処理流体より発生するスケール結晶体の界面電位を最もマイナス(−)に帯電させる作用を有するものと考えられる。   The electromagnetic processing apparatus A shown in FIG. 2 outputs an alternating sine wave signal having a single frequency of, for example, 8,000 Hz or the vicinity thereof to both ends of the yoke. The electromagnetic processing apparatus A has an effect of reducing and eliminating the scale property of the fluid by applying an electromagnetic field to the fluid to be processed having a scale property that passes through the fluid piping using a ferrite yoke from the output coil portion. The electromagnetic field is considered to have the effect of charging the interface potential of the scale crystal generated from the fluid to be treated to the minus (−).

また、図4に示す電磁処理装置Bにより、例えば4,000Hz又はその近傍の単一周波数を有する交流正弦波信号を前記ヨークの両端に出力する。当該電磁処理装置Bはヨーク型コイル部より配管内を通過するスケール性を有する被処理流体に電磁場を与えて、該流体のスケール性を低下・消失させる効果を有する。前記電磁場は被処理流体より発生するスケール結晶体の界面電位を最もプラス(+)に帯電させる作用を有するものと考えられる。   Further, an AC sine wave signal having a single frequency of, for example, 4,000 Hz or the vicinity thereof is output to both ends of the yoke by the electromagnetic processing device B shown in FIG. The electromagnetic processing apparatus B has an effect of reducing and eliminating the scale property of the fluid by applying an electromagnetic field to the fluid to be processed having the scale property passing through the pipe from the yoke type coil portion. The electromagnetic field is considered to have the effect of charging the interface potential of the scale crystal generated from the fluid to be treated to the most positive (+).

従来の流体配管外側にコイルを巻き、変調した交流方形波を出力する電磁場処理装置を用いた場合と比較して本発明の単一周波数を有する交流正弦波信号を出力する図2に示す電磁処理装置A又は単一周波数を有する交流正弦波信号を出力する図4に示す電磁処理装置Bと磁性体(フェライト等)のヨークからなるヨーク型コイル部を用いる方法では、より強い界面電位変化を生む事が判った。   The electromagnetic processing shown in FIG. 2 that outputs an AC sine wave signal having a single frequency of the present invention as compared with the case of using an electromagnetic field processing device that outputs a modulated AC square wave by winding a coil around a conventional fluid pipe. In the method using the apparatus A or the electromagnetic processing apparatus B that outputs an AC sine wave signal having a single frequency and the yoke type coil portion formed of a yoke of magnetic material (ferrite, etc.), a stronger change in interface potential is produced. I understand.

また、本発明の電磁場処理では前記変調した交流の方形波を出力する従来の変調電磁場処理装置と異なり、正弦波の周波数を(a)8,000Hz又はその近傍に、更には(b)4,000Hz又はその近傍に変える事で界面電位をマイナス(−)側へ変化させたり、プラス(+)側へ変化させる事が可能となり、1台の電磁処理装置で両極性の界面電位を変化させ、適用させる事が可能となった。   Also, in the electromagnetic field processing of the present invention, unlike the conventional modulation electromagnetic field processing apparatus that outputs the modulated alternating current square wave, the frequency of the sine wave is set to (a) 8,000 Hz or in the vicinity thereof, and (b) 4, By changing to 000 Hz or its vicinity, the interface potential can be changed to the minus (−) side or to the plus (+) side, and the interface potential of both polarities can be changed with one electromagnetic processing device. It became possible to apply.

特に、スケール性を有する被処理流体が流れる配管を挟んでヨーク型コイル部の「コ」字状の磁性体ヨークの両端から流体流路内を流れる被処理流体に電磁場を与えて、該被処理流体のスケール性を低下・消失させる効果を有する。   In particular, an electromagnetic field is applied to the fluid to be processed flowing in the fluid flow path from both ends of the “U” -shaped magnetic yoke of the yoke-shaped coil section across the pipe through which the fluid to be processed having a scale property flows. It has the effect of reducing or eliminating the scale property of the fluid.

また、本発明によれば、従来必要であった大きいコイル出力電流を流す装置が不要となり、電流を上げなくても界面電位を大きく変化させる作用が得られる。特に、スケール性の高い石灰及び消石灰スラリー等の溶解移送設備、脱硫設備等の高濃度カルシウム含有液の収納設備において効果的である。また、電磁処理の界面電位変化を阻害する極性を有する薬品等が混入する設備においても、その極性を変化させる作用が強い事から充分に前記極性に打ち消す能力を有し、仮に打ち消す事が困難であっても8,000Hz又は4,000Hzの周波数を切り替えることで、被処理流体のスケール性を低下させる最も効果的な界面電位の極性を選択して処理が可能である利点を有する。   In addition, according to the present invention, a device for flowing a large coil output current, which has been necessary in the past, is unnecessary, and an effect of greatly changing the interface potential without increasing the current can be obtained. In particular, it is effective in storage equipment for high-concentration calcium-containing liquids such as melting and transport equipment such as lime and slaked lime slurry having high scale properties, and desulfurization equipment. In addition, even in facilities that contain chemicals with a polarity that inhibits interfacial potential changes in electromagnetic processing, the ability to change the polarity is strong, so it has the ability to sufficiently cancel the polarity, and it is difficult to cancel it. Even in such a case, by switching the frequency of 8,000 Hz or 4,000 Hz, it is possible to select and process the polarity of the most effective interface potential that reduces the scale property of the fluid to be processed.

なお、電磁処理装置A(図2)又は電磁処理装置B(図4)のいずれの機能を適用するかについては、電磁処理済みの流体をガラス板上で乾燥させ、乾燥界面付近の顕微鏡観察による前記界面付近の結晶集合性の有無にて判定する机上試験によりスケール性有無と極性の確認を行ってから決定し、実設備での電磁処理時においては机上試験により得られた適合する極性とコイル電流値により電磁処理を行う必要がある。   Whether the electromagnetic processing apparatus A (FIG. 2) or the electromagnetic processing apparatus B (FIG. 4) is applied is determined by drying the electromagnetically processed fluid on a glass plate and observing the vicinity of the drying interface with a microscope. Decided after confirming the presence or absence of scale and polarity by a desktop test to determine the presence or absence of crystal aggregation near the interface, and the appropriate polarity and coil obtained by the desktop test during electromagnetic treatment in actual equipment It is necessary to perform electromagnetic processing according to the current value.

請求項1、記載の発明によれば、交流信号として正弦波を用いて被処理流体の界面電位を(−)又は(+)に帯電させる最も効果的な単一周波数により、少ない電流値でスケール防止能力に優れた電磁処理ができ、高濃度のカルシウム等を含むスケール障害の激しい排ガス脱硫設備、脱硫排水処理設備、焼却灰スラリー処理設備又は高濃度のカルシウムを含む流体収容容器を持つ石灰スラリー溶解・移送設備等のスケール付着除去又はスケール付着防止効果が十分に得られる。
また、請求項1、3記載の発明によればヨーク型コイル部に(a)8,000Hzの単一周波数、又は(b)4,000Hzの単一の周波数の交流正弦波を流すことにより、例えば0.11Aという小さい電流でも界面への結晶の集合性を低下させて、スケール性を大きく低下させることができる。
According to the first and third aspects of the invention, the most effective single frequency for charging the interface potential of the fluid to be processed to (−) or (+) by using a sine wave as an AC signal, with a small current value. Lime slurry with electromagnetic treatment with excellent scale prevention capability and exhaust gas desulfurization equipment, desulfurization drainage treatment equipment, incineration ash slurry treatment equipment or incineration ash slurry treatment equipment containing high concentration calcium etc. A sufficient effect of removing scale adhesion or preventing scale adhesion from a melting / transferring facility can be obtained.
In addition, according to the first and third aspects of the invention, (a) a single frequency of 8,000 Hz or (b) an alternating sine wave of a single frequency of 4,000 Hz is caused to flow through the yoke-type coil portion. For example, even with a current as small as 0.11 A, the crystal assemblage at the interface can be reduced and the scale property can be greatly reduced.

また、請求項記載の発明によれば、請求項1記載の発明の効果に加えて、ヨーク型コイル部を非磁性体材料(アルミ等)で覆う事で「防爆地区」での使用が可能となる。 Further, according to the invention described in claim 2 , in addition to the effect of the invention described in claim 1, the yoke type coil portion can be used in an “explosion-proof area” by covering it with a non-magnetic material (aluminum or the like). It becomes.

本発明の実施例について図面と共に説明する。
本実施例の電磁処理装置としては、下記の電磁処理装置Aと電磁処理装置Bのいずれかを用いる。なお、方形波等の電磁処理用の交流信号形態の影響及びコイル型コイル部とヨーク型コイル部の比較については市販の周波数変換器を用いて実施した。市販の周波数変換器及び増幅器を使用する場合、最大0.5A程度の出力が可能であるが、装置が高価であることと周波数変換器と増幅器の信号を調整するには専門的取り扱い技術を要することより、次の電磁処理装置A及びBを開発した。
Embodiments of the present invention will be described with reference to the drawings.
As the electromagnetic processing apparatus of this embodiment, any one of the following electromagnetic processing apparatus A and electromagnetic processing apparatus B is used. In addition, about the influence of the alternating current signal form for electromagnetic processings, such as a square wave, and the comparison of a coil type coil part and a yoke type coil part, it implemented using the commercially available frequency converter. When using commercially available frequency converters and amplifiers, an output of up to about 0.5 A is possible, but the equipment is expensive, and specialized handling techniques are required to adjust the frequency converter and amplifier signals. Therefore, the following electromagnetic processing devices A and B were developed.

電磁処理装置Aは図2のブロック図に示す構成からなり、8kHzの発振器と増幅器と同調回路からなり、該電磁処理装置Aから出力する信号は図1に示す信号波形を有する交流正弦波8,000Hzの単一周波数である。
電磁処理装置Bは図4のブロック図に示す構成からなり、該装置Bから出力する信号は図3に示す信号波形からなる交流正弦波4,000Hzの単一周波数を有する。
The electromagnetic processing apparatus A has the configuration shown in the block diagram of FIG. 2, and includes an 8 kHz oscillator, an amplifier, and a tuning circuit. The signal output from the electromagnetic processing apparatus A is an AC sine wave 8 having the signal waveform shown in FIG. A single frequency of 000 Hz.
The electromagnetic processing apparatus B has the configuration shown in the block diagram of FIG. 4, and the signal output from the apparatus B has a single frequency of an alternating sine wave of 4,000 Hz consisting of the signal waveform shown in FIG.

また、電磁処理装置Aと電磁処理装置Bのヨーク型コイル部の概略図を図5の平面図と図6の図5のA−A線矢視図にそれぞれ示す。図5、図6に示すように被処理流体が通過する配管5の外側に、該配管5とは間隔をあけて強磁性体材料からなる「コ」字状のヨーク4を配置する。そして該ヨーク4の両端がそれぞれ配管5の外側の対向する位置に向かい合わせとなるように配置して、該ヨーク4の中央部に電磁処理装置Aと電磁処理装置Bの本体から交流正弦波を流すコイルを巻き付けてヨーク型コイル部2としている。   Moreover, the schematic of the yoke type coil part of the electromagnetic processing apparatus A and the electromagnetic processing apparatus B is shown in the top view of FIG. 5, and the AA arrow line view of FIG. 5 of FIG. As shown in FIGS. 5 and 6, a “U” -shaped yoke 4 made of a ferromagnetic material is disposed outside the pipe 5 through which the fluid to be processed passes, spaced from the pipe 5. Then, both ends of the yoke 4 are arranged so as to face each other at opposite positions outside the pipe 5, and an AC sine wave is applied from the main body of the electromagnetic processing device A and the electromagnetic processing device B to the central portion of the yoke 4. A coil to be flowed is wound to form a yoke-type coil portion 2.

このように、コイル部2の内部に磁性体でできたコア(芯)を入れると磁力線はコアに沿って流れ易く、配管5の外側で互いに対向する位置にあるコア部より磁力線は配管5内の被処理流体に作用し易くなる。
ヨーク4に用いる磁性材料としては抵抗率の高い物質であればある程、渦電流の影響を受けないので高周波動作が可能になる。抵抗率100Ω・cmのフェライトは、抵抗率9.71×10-6の鉄、抵抗率60×10-6のパーマロイに比べて格段に抵抗率が高いので有利である。
As described above, when a core made of a magnetic material is inserted into the coil portion 2, the magnetic lines of force easily flow along the core, and the magnetic lines of force are generated in the pipe 5 from the core portions at positions facing each other outside the pipe 5. It becomes easy to act on the fluid to be processed.
The higher the resistivity of the magnetic material used for the yoke 4 is, the less affected by eddy currents, the higher the frequency operation possible. Ferrite resistivity 100 [Omega · cm, the resistance ratio 9.71 × 10 -6 iron, it is advantageous because of the high remarkably resistivity than the resistivity of 60 × 10 -6 permalloy.

次に下記の試料Aからなる被処理液を用いて机上試験法により市販の信号発生機(前記電磁処理装置A、Bではない別の装置であり、信号発生機((株)エヌエフ回路設計ブロック製の「マルチファンクションシンセサイザ」;型式: WF1943B、仕様:出力電圧 AC4.7V、出力電流0.11Aの正弦波/方形波切り替え方式)を用いて、(1)単一周波数による界面電位変化の確認と(2)方形波と正弦波による電磁処理効果の比較を行った。   Next, a commercially available signal generator (a separate device other than the electromagnetic processing devices A and B, a signal generator (NF circuit design block, Inc.) by a desktop test method using a liquid to be processed comprising the following sample A (1) Confirmation of interface potential change at a single frequency using “Multifunction synthesizer”; Model: WF1943B, Specification: Output voltage AC4.7V, Output current 0.11A sine wave / square wave switching method) And (2) Comparison of electromagnetic treatment effect by square wave and sine wave.

試料A:炭酸カルシウム粉末4.0gと塩化カリウム0.745gを精製水に溶かして1Lとする。
処理方法は図7に示す従来法の机上試験装置における塩化ビニル製の配管5(内径32mm)の外側に3芯1.25φ(1本当たり太さ1.25φmmの銅製巻線を3本を用いたもの)の巻線表面に塩化ビニル製の皮膜を設けたケーブルを11回巻いたコイル部2を用いて、該配管2の内部には5回前記試料Aを通液させて電磁処理した。
Sample A: 4.0 g of calcium carbonate powder and 0.745 g of potassium chloride are dissolved in purified water to make 1 L.
The processing method uses three cores of 1.25φ (three copper windings each having a thickness of 1.25φmm) outside the pipe 5 (inner diameter 32 mm) made of vinyl chloride in the conventional desktop testing apparatus shown in FIG. The coil A was wound 11 times with a cable provided with a vinyl chloride coating on the surface of the wire, and the sample A was passed through the pipe 2 5 times to perform electromagnetic treatment.

このように、本実施例1では単一周波数の影響をコイル型コイル部2に方形波と正弦波を流してその比較している。図10〜図13には単一周波数により電磁処理した結果の顕微鏡の観察結果を示す。   As described above, in the first embodiment, the effect of a single frequency is compared by flowing a square wave and a sine wave through the coil-type coil unit 2. 10 to 13 show the observation results of the microscope as a result of electromagnetic treatment with a single frequency.

机上試験の判定方法は、ガラス板上に滴下した試料は常温で乾燥させた後、顕微鏡を用いて倍率100倍で界面部付近における結晶変化状況から判定している。そして、界面への結晶集合性がある場合には「スケール性有り」と判定し、界面への結晶集合性が無い場合には「スケール性無し」と判定する。また、周波数によるスケール性の違いを見るために方形波と正弦波の机上試験で界面への結晶集合性と界面での結晶反発性を観察した。結果を表1と図9〜図13に示す。

Figure 0004988684
In the determination method of the desktop test, the sample dropped on the glass plate is dried at room temperature and then determined from the state of crystal change in the vicinity of the interface at a magnification of 100 using a microscope. Then, when there is crystal aggregation at the interface, it is determined as “with scale”, and when there is no crystal aggregation at the interface, it is determined as “no scale”. In addition, in order to see the difference in the scale property depending on the frequency, we observed the crystal aggregation property at the interface and the crystal repulsion property at the interface in a desktop test of a square wave and a sine wave. The results are shown in Table 1 and FIGS.
Figure 0004988684

表1には、 未処理時のスケール性を「+」とし、これを基準として次の様に判定する。このとき、「+」又は「−」の数が多い程、変化が大きい事を表す。
ここで、「+」は界面への結晶集合性(スケール性)を示し、「−」は界面での結晶反発性(スケール低下)を示す。なおスケールが形成されやすい被処理流体が触れる配管又は各種装置内壁面は、元々(−)帯電性があるので、前記「+」は界面への結晶集合性(スケール性)を示し、前記「−」は界面での(スケール形成性の粒子の)の反発性(スケール低下)を示すことになる。
In Table 1, the scale property at the time of non-processing is set to “+”, and the determination is made as follows based on this. At this time, the greater the number of “+” or “−”, the greater the change.
Here, “+” indicates crystal aggregation at the interface (scale property), and “−” indicates crystal repulsion (scale reduction) at the interface. In addition, since the pipe or the inner wall surface of various apparatuses in which the fluid to be treated which is liable to form a scale is originally (−) charged, the “+” indicates the crystal aggregation property (scale property) at the interface. "Indicates rebound (scale reduction) at the interface (of scale-forming particles).

図9から図13に机上試験によるスケール性判定の顕微鏡写真(100倍)を示す。図9は電磁処理をしていない(以下、「未処理」という)場合を示し、図10には方形波4,000Hzの電磁処理をした結果を示し、図11は正弦波4,000Hzの電磁処理の結果を示す。図10の方形波処理の場合は界面への結晶集合性が増しているのに対して図11の正弦波処理の場合は図10の方形波処理よりもスケール性の増加傾向が見られる。   FIG. 9 to FIG. 13 show micrographs (100 times) of scale property determination by a desktop test. FIG. 9 shows a case where electromagnetic treatment is not performed (hereinafter referred to as “untreated”), FIG. 10 shows a result of electromagnetic treatment of a square wave of 4,000 Hz, and FIG. 11 shows an electromagnetic wave of a sine wave of 4,000 Hz. The result of processing is shown. In the case of the square wave process of FIG. 10, the crystal assemblage at the interface is increased, whereas in the case of the sine wave process of FIG. 11, a tendency of increasing the scale property is seen as compared with the square wave process of FIG.

図12には方形波8,000Hzの電磁処理、図13は正弦波8,000Hzの電磁処理の結果を示す。図12の場合は界面への結晶集合性が低下し、スケール性が低下していることが分かる。また図13の場合も方形波処理の場合と同様に界面への結晶集合性が低下し、スケール性が低下しており、図13に示す場合のスケール性の低下傾向は図12に示す場合より大きくなっている。   FIG. 12 shows the result of electromagnetic processing with a square wave of 8,000 Hz, and FIG. 13 shows the result of electromagnetic processing with a sine wave of 8,000 Hz. In the case of FIG. 12, it can be seen that the crystal aggregation at the interface is reduced and the scale property is reduced. Further, in the case of FIG. 13 as well, in the case of the square wave treatment, the crystal aggregation property at the interface is lowered and the scale property is lowered, and the tendency of the scale property in the case shown in FIG. 13 is lower than the case shown in FIG. It is getting bigger.

表1と図9〜図13の結果から、次のことが分かる。
a.界面電位の変化は周波数に大きく依存する。すなわち、4,000Hzおよび10MHzにおいて(+)帯電性の増加を生じ、8,000Hzで最も強い(−)帯電性を示す。
b.方形波と比較して正弦波処理の方が界面電位の変化が大きい。
c.(−)帯電作用の範囲は正弦波の方が方形波の場合より広い。
以上の机上試験の結果から、本発明では電磁処理装置A,Bの出力信号は正弦波の単一周波数を用いることとし、(−)帯電作用は8,000Hz又はその近傍の周波数、(+)帯電作用は4,000Hzもしくはその近傍の周波数を用いることにした。
From the results shown in Table 1 and FIGS.
a. The change in the interface potential greatly depends on the frequency. That is, an increase in (+) chargeability occurs at 4,000 Hz and 10 MHz, and the strongest (−) chargeability is exhibited at 8,000 Hz.
b. Compared to the square wave, the sine wave treatment has a larger change in the interface potential.
c. The range of (−) charging action is wider for sine waves than for square waves.
From the results of the above desk tests, in the present invention, the output signal of the electromagnetic processing devices A and B uses a single frequency of a sine wave, the (−) charging action is 8,000 Hz or a frequency in the vicinity thereof, (+) For the charging operation, a frequency of 4,000 Hz or a vicinity thereof was used.

次に、いずれも正弦波を用いて図7に示すコイルを被処理水配管5に巻き付けた従来法(コイル型)と図8に示す被処理水配管5の対向する両側に端部を有するヨーク4にコイルを巻き付けたヨーク型コイル部2を用いた場合の比較を行なった。机上試験法により下記の被処理水をそれぞれ5回流してスケール性を比較した。結果を表2と図14〜図23にスケール性判定の顕微鏡写真(100倍)を示す。   Next, in both cases, the conventional method (coil type) in which the coil shown in FIG. 7 is wound around the water pipe 5 to be treated using a sine wave and the yoke having ends on both sides of the water pipe 5 to be treated shown in FIG. A comparison was made in the case of using the yoke type coil part 2 in which the coil is wound around 4. The following to-be-processed water was flowed 5 times each by the desktop test method, and the scale property was compared. The results are shown in Table 2 and FIGS.

炭酸カルシウム濃度の異なる試料A,Bを用いた。なお、試料Aの成分は先に述べたが、試料Bは以下の通りの成分からなる。
試料B: 炭酸カルシウム粉末10.0gと塩化カリウム0.745gを精製水に溶かして1Lとする。
Samples A and B having different calcium carbonate concentrations were used. In addition, although the component of the sample A was described previously, the sample B consists of the following components.
Sample B: 10.0 g of calcium carbonate powder and 0.745 g of potassium chloride are dissolved in purified water to make 1 L.

本実施例2ではコイル部2としてコイル型(従来法)とヨーク型を比較するために単一周波数,正弦波を用いて比較している。試料A,Bを用いた。図15〜図23は単一周波数により電磁処理した結果の顕微鏡の観察結果を示す。   In the second embodiment, a coil type (conventional method) and a yoke type are compared as a coil part 2 by using a single frequency and a sine wave. Samples A and B were used. FIG. 15 to FIG. 23 show the observation results of the microscope as a result of electromagnetic treatment with a single frequency.

試料A(未処理時)のスケール性「+」を基準として次の様に判定する(「+」又は「−」の数が多い程、変化が大きい事とする)。
+:界面への結晶集合性(スケール性)を示す。
−:界面での結晶反発性(スケール低下)を示す。
Determination is made as follows based on the scale property “+” of the sample A (when not processed) (the larger the number of “+” or “−”, the greater the change).
+: Indicates the crystal aggregation property (scale property) at the interface.
−: Indicates crystal rebound (scale reduction) at the interface.

試料Aについての顕微鏡写真を図14〜図18に示す。
図14は「未処理」の場合を示し、図15には従来法(コイル型)により4,000Hzの電磁処理、図16はヨーク型により4,000Hzの電磁処理を行った結果を示す。図15の場合は界面への結晶集合性が増しているのに対して図16の場合は従来法(コイル型)よりもスケール性の増加傾向が見られる。
Photomicrographs of sample A are shown in FIGS.
FIG. 14 shows the case of “untreated”, FIG. 15 shows the result of electromagnetic treatment at 4,000 Hz by the conventional method (coil type), and FIG. 16 shows the result of electromagnetic treatment at 4,000 Hz by the yoke type. In the case of FIG. 15, the crystal gathering property at the interface is increased, whereas in the case of FIG. 16, a tendency of increasing the scale property is seen as compared with the conventional method (coil type).

図17には従来法(コイル型)により8,000Hzの電磁処理、図18はヨーク型により8,000Hzの電磁処理を行った結果を示す。図17の場合は界面への結晶集合性が低下し、スケール性の低下していることが分かる。また図18の場合は従来法に比較してさらに界面への結晶集合性が低下し、スケール性の低下していることが分かる。   FIG. 17 shows the result of electromagnetic treatment at 8,000 Hz by the conventional method (coil type), and FIG. 18 shows the result of electromagnetic treatment at 8,000 Hz by the yoke type. In the case of FIG. 17, it can be seen that the crystal aggregation at the interface is lowered and the scale property is lowered. Further, in the case of FIG. 18, it can be seen that the crystal assemblage at the interface is further lowered and the scale property is lowered as compared with the conventional method.

次に試料Bについての顕微鏡写真を図19〜図23に示す。
図19は「未処理」の場合を示し、図20には従来法(コイル型)により4,000Hzの電磁処理、図21はヨーク型により4,000Hzの電磁処理をそれぞれ行った結果を示す。図20の場合は界面への結晶集合性が増しているのに対して図21の場合は従来法(コイル型)よりもスケール性の増加傾向が見られる。
Next, micrographs of Sample B are shown in FIGS.
FIG. 19 shows the case of “untreated”, FIG. 20 shows the result of performing electromagnetic treatment at 4,000 Hz by the conventional method (coil type), and FIG. 21 shows the result of electromagnetic treatment at 4,000 Hz by the yoke type. In the case of FIG. 20, the crystal gathering property at the interface is increased, whereas in the case of FIG. 21, a tendency of increasing the scale property is seen as compared with the conventional method (coil type).

図22には従来法(コイル型)により8,000Hzの電磁処理、図23はヨーク型により8,000Hzの電磁処理を行った結果を示す。図22の場合は界面への結晶集合性が低下し、スケール性が低下していることが分かる。また図23の場合は従来法(コイル型)に比較してさらに界面への結晶集合性が低下し、スケール性が低下していることが分かる。

Figure 0004988684
FIG. 22 shows the result of electromagnetic treatment at 8,000 Hz by the conventional method (coil type), and FIG. 23 shows the result of electromagnetic treatment at 8,000 Hz by the yoke type. In the case of FIG. 22, it can be seen that the crystal aggregation at the interface is reduced and the scale property is reduced. Further, in the case of FIG. 23, it can be seen that the crystal assemblage at the interface is further lowered and the scale property is lowered as compared with the conventional method (coil type).
Figure 0004988684

以上のことから、次のようなことが分かった。
a.未処理時におけるスケール性は試料Bの方がカルシウム含有量が多い分、スケール性も高い状態である。
b.正弦波4,000Hzではコイル部2が「ヨーク型」である方が「従来法(コイル型)」である場合よりスケール性の増加傾向が大きい。すなわち、(+)帯電力は「ヨーク型」の方が「従来法(コイル型)」より強い事を示す。
c.さらに、正弦波8,000Hzではではコイル部2が「ヨーク型」である方が「従来法(コイル型)」である場合より「スケール性」は低下している。すなわち、コイル部2は(−)帯電力は「ヨーク型」の方が「従来法(コイル型)」より強い事を示す。
以上、コイル部2として「ヨーク型」とした方が正弦波4,000Hzの(+)帯電力を増加させる作用が増し、同じく正弦波8,000Hzの(−)帯電力を増加させる事が判った。
From the above, we found the following.
a. The scale property in the untreated state is higher in the sample B because the sample B has a higher calcium content.
b. In the case of a sine wave of 4,000 Hz, the tendency of the scale property to increase is greater when the coil part 2 is “yoke type” than when it is “conventional method (coil type)”. That is, the (+) band power indicates that the “yoke type” is stronger than the “conventional method (coil type)”.
c. Furthermore, at a sine wave of 8,000 Hz, the “scale property” is lower when the coil portion 2 is “yoke type” than when it is “conventional method (coil type)”. That is, the coil part 2 indicates that the (−) band power is stronger in the “yoke type” than in the “conventional method (coil type)”.
As described above, it is understood that the coil portion 2 having the “yoke type” has an increased effect of increasing the (+) band power of the sine wave of 4,000 Hz and also increases the (−) band power of the sine wave of 8,000 Hz. It was.

次にコイル部2として変調電磁場処理による従来法(コイル型)と電磁処理装置による正弦波による単一周波数を用いるヨーク型の比較を行った。
このとき用いる被処理流体は前記試料A(炭酸カルシウム粉末4.0gと塩化カリウム0.745gを精製水に溶かして1Lとした被処理水)である。
Next, a comparison was made between the conventional method (coil type) using modulated electromagnetic field processing and a yoke type using a single frequency by a sine wave by an electromagnetic processing device as the coil part 2.
The fluid to be treated used at this time is the sample A (water to be treated to be 1 L by dissolving 4.0 g of calcium carbonate powder and 0.745 g of potassium chloride in purified water).

また、従来法では、図36に示す変調電磁場処理装置C((−)還元型変調電磁場発生装置6aと(+)酸化型変調電磁場発生装置6bを備えている)を用いて主要周波数8,000Hzである方形波を10〜50,000Hzで時間の経過と共に変調させ、図7に示す配管にコイルを巻き付けた従来法(コイル型)で、コイルの出力は最大0.75A(可変)として配管に前記被処理流体を5回繰り返して通液する机上試験を行った。   Further, in the conventional method, a main frequency 8,000 Hz is obtained by using a modulation electromagnetic field processing device C shown in FIG. 36 (including a (−) reduction type modulation electromagnetic field generation device 6a and a (+) oxidation type modulation electromagnetic field generation device 6b). This is a conventional method (coil type) in which a square wave is modulated at 10 to 50,000 Hz with the passage of time and a coil is wound around the pipe shown in FIG. 7, and the output of the coil is 0.75 A (variable) at the maximum. A desktop test was conducted in which the fluid to be treated was repeatedly passed 5 times.

また、ヨーク型では、図2に示す電磁処理装置Aを用いて単一周波数8,000Hzである正弦波を、図8に示す配管を挟む位置に両端を配置したヨーク(フェライト製)にコイルを巻き付け、コイルの出力は0.11Aとして配管に前記被処理流体を5回繰り返して通液する机上試験を行った。   Further, in the yoke type, a sine wave having a single frequency of 8,000 Hz is applied to the yoke (made of ferrite) having both ends disposed at the position sandwiching the pipe shown in FIG. 8 using the electromagnetic processing apparatus A shown in FIG. Winding and the output of the coil were set to 0.11A, and a desktop test was conducted in which the treated fluid was repeatedly passed through the pipe five times.

上記従来法の変調電磁場処理装置(コイル型)と新規電磁処理装置A(ヨーク型)による机上試験を行った被処理水をガラス板上で乾燥させて得られた界面の顕微鏡写真(100倍)により電磁処理効果の比較判定を行った。
このとき未処理時のスケール性「++」を基準として次の様に判定する。このとき、「+」又は「−」の数が多い程、電磁処理による変化が大きい事とする。
「+」は界面への結晶集合性(スケール性)を示し、「−」は界面での反発性(スケール低下)を示す。
結果を表3と図24〜図28に示す。
Micrograph (100 times) of the interface obtained by drying the water to be treated, which was subjected to a desktop test using the above-mentioned conventional modulated electromagnetic field treatment device (coil type) and the new electromagnetic treatment device A (yoke type), on a glass plate Thus, the electromagnetic treatment effect was compared and judged.
At this time, the determination is made as follows based on the scale property “++” when not processed. At this time, the greater the number of “+” or “−”, the greater the change due to electromagnetic processing.
“+” Indicates crystal aggregation at the interface (scale property), and “−” indicates rebound at the interface (scale reduction).
The results are shown in Table 3 and FIGS.

図24は「未処理」の場合を示し、図25には変調電磁場処理装置Cを用いる従来法(コイル型)により0.15Aでの電磁処理、図26は変調電磁場処理装置Cを用いる従来法(コイル型)により0.50Aで電磁処理、図27は変調電磁場処理装置Cを用いる従来法(コイル型)法により0.75Aで電磁処理をそれぞれ行った結果を示す。図24の未処理の場合は界面への結晶集合性が増して強いスケール性を示しており、また図25に示す場合でも未処理と場合と同様に強いスケール性を示している。図26に示す場合は未処理に比べてスケール性が低下し、更に出力電流を大きくした図27に示す場合はスケール性が大きく低下することが分かった。   24 shows the case of “unprocessed”, FIG. 25 shows electromagnetic processing at 0.15 A by the conventional method (coil type) using the modulated electromagnetic field processing device C, and FIG. 26 shows the conventional method using the modulated electromagnetic field processing device C. FIG. 27 shows the result of performing electromagnetic treatment at 0.75 A by the conventional method (coil type) method using the modulated electromagnetic field processing apparatus C, respectively. In the case of untreated in FIG. 24, the crystal assemblage at the interface is increased to show a strong scale property, and the case of FIG. 25 also shows a strong scale property as in the case of untreated. In the case shown in FIG. 26, it was found that the scale property was lower than that in the unprocessed case, and in the case shown in FIG. 27 where the output current was further increased, the scale property was greatly reduced.

一方、ヨーク型により8,000Hzという単一周波数の正弦波を出力する電磁処理装置Aを用いる場合は0.11Aという比較的小さい電流でもスケールが消失することが図28から分かった。
以上の結果は表3に示す通りである。

Figure 0004988684
On the other hand, it was found from FIG. 28 that the scale disappears even with a relatively small current of 0.11 A when the electromagnetic processing apparatus A that outputs a sine wave having a single frequency of 8,000 Hz is used.
The results are as shown in Table 3.
Figure 0004988684

図24〜図28及び表3の結果から次のことが分かる。
a.電磁場処理装置C(従来法(コイル型))はコイル電流値を上げる事でスケール性の低下が見られる。
b.電磁場処理装置C(従来法(コイル型))ではコイル電流0.75Aに対して電磁処理装置A/ヨーク型ではコイル電流値0.11Aでほぼ同等のスケール防止効果が得られている。
このことから、正弦波(単一の8000Hzの周波数)でヨーク型処理を行うと従来法(コイル型)の変調電磁場処理と比較して、約1/7−1/8程度の出力コイル電流値でスケール防止が可能であることが分かった。
The following can be understood from the results shown in FIGS.
a. In the electromagnetic field processing device C (conventional method (coil type)), a decrease in scale property can be seen by increasing the coil current value.
b. In the electromagnetic field processing device C (conventional method (coil type)), a coil current value of 0.11 A is obtained in the electromagnetic processing device A / yoke type in comparison with a coil current of 0.75 A, and a substantially equivalent scale prevention effect is obtained.
Therefore, when the yoke type processing is performed with a sine wave (single frequency of 8000 Hz), the output coil current value is about 1 / 7-1 / 8 compared with the modulation electromagnetic field processing of the conventional method (coil type). It was found that scale prevention was possible.

次に前記従来法(コイル型)により変調電磁場処理とヨーク型により単一周波数による電磁処理とをそれぞれ机上試験と実設備による実液試験を行って、各電磁処理による机上試験と液試験の比較を行った。
被処理流体は表4に示す水質を有する某ごみ焼却灰スラリーを用いた。

Figure 0004988684
Next, the modulated electromagnetic field treatment by the conventional method (coil type) and the electromagnetic treatment by a single frequency by the yoke type are respectively performed on the desktop test and the actual liquid test by the actual equipment, and the comparison between the desktop test by each electromagnetic treatment and the liquid test. Went.
The waste fluid incinerated ash slurry having the water quality shown in Table 4 was used as the fluid to be treated.
Figure 0004988684

電磁処理装置は、従来法(コイル型)では図36に示す変調電磁場処理装置Cを用いて主要周波数8,000Hzである方形波を10〜50,000Hzの範囲で時間の経過と共に変調させ、図7に示す配管5にコイル2を巻き付け、コイル2の出力は最大0.75A(可変)として配管5に前記被処理流体を5回繰り返して通液する机上試験を行った。   In the conventional method (coil type), the electromagnetic processing device uses a modulation electromagnetic field processing device C shown in FIG. 36 to modulate a square wave having a main frequency of 8,000 Hz over time in the range of 10 to 50,000 Hz. The coil 2 was wound around the pipe 5 shown in FIG. 7, and the output of the coil 2 was set to a maximum of 0.75 A (variable), and a desktop test was performed in which the fluid to be treated was repeatedly passed through the pipe 5 five times.

また、ヨーク型では、図2に示す電磁処理装置Aを用いて単一周波数8,000Hzである正弦波を、図8に示す配管5を挟む位置に両端を配置したヨーク4にコイル2を巻き付け、コイル2の出力は0.11Aとして配管5に前記被処理流体を5回繰り返して通液する机上試験を行った。   Further, in the yoke type, a sine wave having a single frequency of 8,000 Hz is wound around the yoke 4 having both ends disposed at the position sandwiching the pipe 5 shown in FIG. 8 by using the electromagnetic processing apparatus A shown in FIG. A desktop test was conducted in which the output of the coil 2 was 0.11 A and the fluid to be treated was repeatedly passed through the pipe 5 five times.

また、判定方法は未処理時のスケール性「+++」を基準として次の様に判定し、その際に「+」、又は「−」の数が多い程、変化が大きい事とし、「+」は界面への結晶集合性(スケール性)を示し、「−」は界面での反発性(スケール低下)を示す。
結果を図29〜図33と表5に示す。
In addition, the determination method is determined as follows based on the unprocessed scale property “++++”, and the larger the number of “+” or “−”, the greater the change. Indicates the crystal aggregation property (scale property) at the interface, and “-” indicates the repulsion property (scale reduction) at the interface.
The results are shown in FIGS. 29 to 33 and Table 5.

図29は「未処理」の場合を示し、図30には変調電磁場処理装置Cを用いる従来法(コイル型)により0.15Aでの電磁処理、図31は変調電磁場処理装置Cを用いる従来法(コイル型)により0.50Aで電磁処理、図32は変調電磁場処理装置Cを用いる従来法(コイル型)により0.75Aで電磁処理をそれぞれ行った結果を示す。図29の未処理の場合は界面への結晶集合性が増して強いスケール性を示しており、また図30に示す場合でも未処理と場合と同様に強いスケール性を示している。図31に示す場合は未処理に比べてスケール性が低下し、更に出力電流を大きくした図32に示す場合はスケール性が大きく低下することが分かった。   29 shows the case of “unprocessed”, FIG. 30 shows electromagnetic processing at 0.15 A by the conventional method (coil type) using the modulated electromagnetic field processing device C, and FIG. 31 shows the conventional method using the modulated electromagnetic field processing device C. FIG. 32 shows the results of performing electromagnetic treatment at 0.75 A by the conventional method (coil type) using the modulated electromagnetic field processing apparatus C, respectively. In the case of untreated in FIG. 29, the crystal assemblage at the interface is increased to show a strong scale property, and the case of FIG. 30 also shows a strong scale property as in the case of untreated. In the case shown in FIG. 31, it was found that the scale property was lower than that in the unprocessed case, and in the case shown in FIG. 32 where the output current was further increased, the scale property was greatly reduced.

一方、ヨーク型により8,000Hzという単一周波数の正弦波を出力する電磁処理装置Aを用いる場合は、0.11Aという比較的小さい電流でも界面への結晶集合性は大きく低下して結晶の分散性が見られ、スケール性が低下していることが図33から分かった。
以上の結果は表5に示す通りである。

Figure 0004988684
On the other hand, when the electromagnetic processing apparatus A that outputs a sine wave having a single frequency of 8,000 Hz is used by the yoke type, the crystal assemblage at the interface is greatly reduced even with a relatively small current of 0.11 A, and the crystal dispersion It was found from FIG. 33 that the property was seen and the scale property was reduced.
The results are as shown in Table 5.
Figure 0004988684

以上のことから、次のようなことが判明した。
a.変調電磁場処理装置Cを用いる従来法(コイル型)はコイル電流値を上げる事でスケール性の低下が見られるが、コイル電流値0.75Aにおいてもスケール性低下効果は小さい。
b.変調電磁場処理装置Cで従来法(コイル型)のコイル電流0.75Aとした場合と比較して電磁処理装置Aでヨーク型コイル電流値を0.11Aの方がスケール低下が顕著である。
このことは、実設備による実液試験を行う場合も模擬水で電磁処理を行う場合と同様の結果が得られることが分かった。電磁処理装置Aによる正弦波8,000Hzの単一周波数でヨーク型処理を行う方が、少ないコイル電流値でスケール防止効果が得られることが分かった。
From the above, the following was found.
a. In the conventional method (coil type) using the modulated electromagnetic field processing device C, the scale property is reduced by increasing the coil current value, but the effect of reducing the scale property is small even at the coil current value of 0.75A.
b. Compared to the case where the coil current 0.75A of the conventional method (coil type) is used in the modulated electromagnetic field processing apparatus C, the scale reduction is more remarkable in the electromagnetic processing apparatus A when the yoke type coil current value is 0.11A.
This indicates that the same result as that obtained when electromagnetic treatment is performed with simulated water can be obtained when an actual liquid test is performed using actual equipment. It was found that when the yoke processing is performed at a single frequency of sine wave 8,000 Hz by the electromagnetic processing apparatus A, a scale prevention effect can be obtained with a small coil current value.

[比較例]
従来の技術である変調電磁場処理(従来法(コイル型))にて出力コイル電流値を増加させた時のスケール性判定結果を次に示す。
被処理流体として火力発電所の脱硫排水処理設備に流入する脱硫排水の流路である原水配管(鋼管80A)の外側に前記3芯1.25φの銅製巻線塩化ビニル皮膜ケーブルを11回巻いたコイル部を設け、該コイル部に変調電磁場発生器から主要周波数を7,000Hzとして10〜50,000Hzの間で時間の経過と共に変調する交流電流を流す。
試験方法は上記実設備の脱硫排水配管に巻いたコイル部のコイル電流値を変化させた場合のスケール性を判定する。
[Comparative example]
The following shows the result of determining the scale property when the output coil current value is increased by the conventional modulated electromagnetic field processing (conventional method (coil type)).
The three-core 1.25φ copper-wound PVC film was wound 11 times outside the raw water pipe (steel pipe 80A), which is a flow path for desulfurization drainage flowing into the desulfurization drainage treatment facility of a thermal power plant as a fluid to be treated. A coil portion is provided, and an alternating current that is modulated with time from 10 to 50,000 Hz is supplied from the modulation electromagnetic field generator to the coil portion with a main frequency of 7,000 Hz.
The test method determines the scale property when the coil current value of the coil portion wound around the desulfurization drain pipe of the actual equipment is changed.

図34(a)には変調電磁場処理をしていない、いわゆる未処理の場合の脱硫排水処理設備の排水を常法通り、ガラス板上に滴下して乾燥した流体界面の顕微鏡(100倍)写真を示すように、非常に強いスケール性を示す。また、コイル電流値を0.75Aとしたときのテストの結果を図34(b)に示し、コイル電流値を2.5Aとしたときのテストの結果を図34(c)に示す。   Fig. 34 (a) shows a microscopic photograph (100x magnification) of the fluid interface that has not been subjected to modulated electromagnetic field treatment, and has been dripped onto a glass plate and dried in a conventional manner, so-called untreated desulfurization wastewater treatment equipment. As shown, it shows a very strong scale property. FIG. 34 (b) shows the test result when the coil current value is 0.75A, and FIG. 34 (c) shows the test result when the coil current value is 2.5A.

図34に示す結果からコイル電流値を0.75Aで変調電磁場処理(従来法(コイル型))をしたときにはスケール性がかなり残っているが、コイル電流値を2.5Aで変調電磁場処理(従来法(コイル型))をしたときのスケール性は未処理と比較して低下傾向が見られるが、界面への結晶集合性は残る。   From the results shown in FIG. 34, when the modulated electromagnetic field processing (conventional method (coil type)) is performed with a coil current value of 0.75 A, the scale characteristic remains considerably, but the modulated electromagnetic field processing (conventional method) with a coil current value of 2.5 A is achieved. The scale property when the method (coil type) is reduced tends to be lower than that of untreated, but the crystal aggregation property at the interface remains.

前記脱硫排水処理の実設備に設置した条件にて変調電磁場処理(従来法(コイル型))のための装置を設置して、約6ヶ月間の実証試験を行なったが、排水流路内壁面のスケール付着量の減少と付着物軟質化の効果は確認されたが、スケール付着物の清掃作業は必要であった。
なお、出力コイル電流値を上げる事でスケール性の低下傾向が見られる。
A device for modulation electromagnetic field treatment (conventional method (coil type)) was installed under the conditions installed in the actual equipment for the desulfurization wastewater treatment, and a demonstration test was conducted for about 6 months. Although the effect of reducing the amount of scale adhered and softening the deposit was confirmed, cleaning work for the scale deposit was necessary.
In addition, the tendency for a scale property to fall is seen by raising an output coil electric current value.

より以上の効果を得るためには出力コイル2.5A以上の装置を用いる事で解決されるもと予想される。しかし、出力コイル電流値3A以上の装置の製造には従来の約5〜10倍以上のコストが掛かる事と変調電磁場処理装置の内部回路の耐久性試験等の開発期間を考慮すると低出力コイル電流値でよりスケール防止能力を有する装置又は方法が望ましいことが分かった。   In order to obtain the above effect, it is expected that the problem can be solved by using an apparatus having an output coil of 2.5 A or more. However, in consideration of the cost of manufacturing the device with an output coil current value of 3A or more, which is about 5 to 10 times higher than that of the conventional device and the development period such as the durability test of the internal circuit of the modulated electromagnetic field processing device, the low output coil current It has been found that an apparatus or method that is more scale-proof in value is desirable.

また、前記従来の変調電磁場処理装置(従来法(コイル型))を用いる技術ではコイル電流値が少なくてもスケール性を低減化させる方法として薬品との併用処理が行われている。前記脱硫排水処理設備において炭酸ソーダ溶液を注入する事で出力コイル2.5Aにて変調電磁場処理をした場合には、次の図35に示す被処理水のガラス板上の乾燥物の顕微鏡(100倍)写真に示すようなスケール判定結果となり、界面部への結晶集合性は大きく低下している。
しかし、このように変調電磁場処理を薬品処理と併用して行うと、薬注設備及び薬品コストを新たに要することになる。
Further, in the technique using the conventional modulated electromagnetic field processing apparatus (conventional method (coil type)), combined treatment with chemicals is performed as a method for reducing the scale property even if the coil current value is small. When a modulation electromagnetic field treatment is performed by the output coil 2.5A by injecting a sodium carbonate solution in the desulfurization wastewater treatment facility, a microscope (100 (Times) The scale determination result shown in the photograph is obtained, and the crystal assemblage at the interface is greatly reduced.
However, when the modulated electromagnetic field treatment is performed in combination with the chemical treatment in this way, chemical injection equipment and chemical costs are newly required.

本発明によれば、単一周波数により、少ない電流値でスケール防止能力に優れた電磁処理ができ、高濃度のカルシウム等を含むスケール障害の激しい排ガス脱硫設備、脱硫排水処理設備、焼却灰スラリー処理設備又は高濃度のカルシウムを含む流体収容容器を持つ石灰スラリー溶解・移送設備等のスケール付着除去又はスケール付着防止効果が十分に得られる。   According to the present invention, with a single frequency, electromagnetic treatment with excellent scale prevention capability can be performed with a small current value, exhaust gas desulfurization equipment, desulfurization wastewater treatment equipment, incineration ash slurry treatment with severe scale failure including high-concentration calcium, etc. The scale adhesion removal effect or scale adhesion prevention effect of a lime slurry melting / transfer facility having a facility or a fluid container containing high-concentration calcium is sufficiently obtained.

本実施例の電磁処理装置Aを用いて得られる交流正弦波9,000Hzの単一周波数を有する信号波形である。It is a signal waveform which has the single frequency of alternating current sine wave 9,000Hz obtained using the electromagnetic processing apparatus A of a present Example. 本実施例の電磁処理装置Aの構成図である。It is a block diagram of the electromagnetic processing apparatus A of a present Example. 本実施例の電磁処理装置Bを用いて得られる交流正弦波4,000Hzの単一周波数を有する信号波形である。It is a signal waveform which has the single frequency of the alternating current sine wave 4,000Hz obtained using the electromagnetic processing apparatus B of a present Example. 本実施例の電磁処理装置Aの構成図である。It is a block diagram of the electromagnetic processing apparatus A of a present Example. 本実施例の電磁処理装置のヨーク出力部の平面図である。It is a top view of the yoke output part of the electromagnetic processing apparatus of a present Example. 図5のA−A線断面図である。It is the sectional view on the AA line of FIG. 従来法(コイル型)の机上試験装置である。It is a conventional method (coil type) desktop testing apparatus. 本発明のヨーク型の机上試験装置である。1 is a yoke-type desk test apparatus according to the present invention. 実施例1の試料Aの電磁処理をしていない被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which has not performed the electromagnetic treatment of the sample A of Example 1. FIG. 実施例1の試料Aの従来法(コイル型)の単一4,000Hz周波数(方形波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the single 4,000Hz frequency (square wave) of the conventional method (coil type) of the sample A of Example 1. FIG. 実施例1の試料Aの従来法(コイル型)の単一4,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water by the electromagnetic process of the single 4,000Hz frequency (sine wave) of the conventional method (coil type) of the sample A of Example 1. FIG. 実施例1の試料Aの従来法(コイル型)の単一8,000Hz周波数(方形波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic method of the single 8,000Hz frequency (square wave) of the conventional method (coil type) of the sample A of Example 1. FIG. 実施例1の試料Aの従来法(コイル型)の単一8,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic method of the single 8,000Hz frequency (sine wave) of the conventional method (coil type) of the sample A of Example 1. FIG. 実施例2の試料Aの電磁処理をしていない被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which has not performed the electromagnetic treatment of the sample A of Example 2. FIG. 実施例2の試料Aの従来法(コイル型)の単一4,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the single 4,000Hz frequency (sine wave) of the conventional method (coil type) of the sample A of Example 2. FIG. 実施例2の試料Aのヨーク型の単一4,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the yoke type single 4000Hz frequency (sine wave) of the sample A of Example 2. FIG. 実施例2の試料Aの従来法(コイル型)の単一8,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic method of the single 8,000Hz frequency (sine wave) of the conventional method (coil type) of the sample A of Example 2. FIG. 実施例2の試料Aのヨーク型の単一8,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic processing of the yoke type single 8,000Hz frequency (sine wave) of the sample A of Example 2. FIG. 実施例2の試料Bの電磁処理をしていない被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which has not performed the electromagnetic treatment of the sample B of Example 2. FIG. 実施例2の試料Bの従来法(コイル型)の単一4,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the single 4,000Hz frequency (sine wave) of the conventional method (coil type) of the sample B of Example 2. FIG. 実施例2の試料Bのヨーク型の単一4,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the yoke type single 4000Hz frequency (sine wave) of the sample B of Example 2. FIG. 実施例2の試料Bの従来法(コイル型)の単一8,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic method of the single 8,000Hz frequency (sine wave) of the conventional method (coil type) of the sample B of Example 2. FIG. 実施例2の試料Bのヨーク型の単一8,000Hz周波数(正弦波)の電磁処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the electromagnetic process of the yoke type single 8,000Hz frequency (sine wave) of the sample B of Example 2. FIG. 実施例3の試料Aの電磁処理をしていない被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which has not performed the electromagnetic treatment of the sample A of Example 3. FIG. 実施例3の試料Aの従来法(コイル型)の0.15Aでの変調電磁波処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the modulation | alteration electromagnetic wave process by 0.15A of the conventional method (coil type) of the sample A of Example 3. FIG. 実施例3の試料Aの従来法(コイル型)の0.50Aでの変調電磁波処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the modulated electromagnetic wave process by 0.50A of the conventional method (coil type) of the sample A of Example 3. FIG. 実施例3の試料Aの従来法(コイル型)の0.75Aでの変調電磁波処理による被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water by the modulation | alteration electromagnetic wave process by 0.75A of the conventional method (coil type) of the sample A of Example 3. FIG. 実施例3の試料Aのヨーク型の0.11Aでの単一8,000Hz周波数の正弦波による電磁処理をした被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water which electromagnetically treated by the single 8,000Hz frequency sine wave in the yoke type 0.11A of the sample A of Example 3. FIG. 実施例4の電磁処理をしていない被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which is not electromagnetically processed of Example 4. FIG. 変調電磁場処理装置Cを用いる従来法(コイル型)により0.15Aでの電磁処理をした被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water which electromagnetically treated with 0.15A by the conventional method (coil type | mold) using the modulation | alteration electromagnetic field processing apparatus C. 変調電磁場処理装置Cを用いる従来法(コイル型)により0.50Aで電磁処理をした被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which electromagnetically treated by 0.50A by the conventional method (coil type) using the modulation | alteration electromagnetic field processing apparatus C. 変調電磁場処理装置Cを用いる従来法(コイル型)により0.75Aで電磁処理をした被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the drying interface of the to-be-processed water which electromagnetically treated by 0.75A by the conventional method (coil type | mold) using the modulation | alteration electromagnetic field processing apparatus C. 実施例4の8,000Hzの単一周波数の正弦波による電磁処理をした被処理水の乾燥界面の顕微鏡写真である。It is a microscope picture of the dry interface of the to-be-processed water which carried out the electromagnetic process by the sine wave of the single frequency of 8,000 Hz of Example 4. FIG. 従来法による変調電磁場処理/従来法(コイル型)をしていない場合の脱硫排水処理設備の排水を机上試験による流体界面の顕微鏡(100倍)写真(図34(a)と、コイル電流値を0.75Aとしたときの机上試験の結果を示す写真(図34(b))と、コイル電流値を2.5Aとしたときの机上試験の結果を示す写真(図34(c))である。Microwave (100 times) photograph of fluid interface by desktop test of drainage of desulfurization wastewater treatment equipment when not using modulated electromagnetic field treatment by conventional method / conventional method (coil type) (Fig. 34 (a) and coil current value It is the photograph (FIG.34 (b)) which shows the result of a desktop test when it is set to 0.75A, and the photograph (FIG.34 (c)) which shows the result of a desk test when a coil current value is set to 2.5A. . 変調電磁場処理/従来法(コイル型)による薬品と電磁処理との併用による被処理水の机上試験の顕微鏡写真を示す。The microscope picture of the desktop test of the to-be-processed water by combined use of the chemical | medical agent by electromagnetic field treatment / conventional method (coil type) and electromagnetic treatment is shown. 従来技術の変調電磁場処理装置Cの構成図である。It is a block diagram of the modulation | alteration electromagnetic field processing apparatus C of a prior art. 図36に示す変調電磁場処理装置Cの還元(−)型変調電磁場発生器を示す。The reduction | restoration (-) type | mold modulation | alteration electromagnetic field generator of the modulation | alteration electromagnetic field processing apparatus C shown in FIG. 36 is shown. 図36に示す変調電磁場処理装置Cの酸化(+)型変調電磁場発生器を示す。The oxidation (+) type modulation electromagnetic field generator of the modulation electromagnetic field processing apparatus C shown in FIG. 36 is shown.

符号の説明Explanation of symbols

2 コイル(部)
3 交流の単一周波数電磁波発生器
4 ヨーク
5 被処理流体配管
6 交流の変調周波数発生器
7 切替器
A、B 電磁処理装置
C 変調電磁場処理装置
2 Coil (part)
3 AC single frequency electromagnetic wave generator 4 Yoke 5 Processed fluid piping 6 AC modulation frequency generator 7 Switch A, B Electromagnetic processing device C Modulated electromagnetic field processing device

Claims (3)

被処理流体流路の近傍に配置する、渦電流の影響を受けない高さの抵抗率を有するフェライト製ヨークにコイルを巻き付けたヨーク型コイル部と、該コイル部に(a)8,000Hzの単一周波数、又は(b)4,000Hzの単一の周波数の交流正弦波を流す電磁発生器とを備えたことを特徴とする電磁処理装置。 A yoke-type coil portion, which is disposed in the vicinity of the fluid flow path to be treated, is wound around a ferrite yoke having a resistivity that is not affected by eddy currents , and (a) 8,000 Hz of the coil portion . An electromagnetic processing apparatus comprising: an electromagnetic generator for flowing an AC sine wave having a single frequency or (b) a single frequency of 4,000 Hz. ヨーク型コイル部を覆う非磁性材料からなる防爆装置を設けたことを特徴とする請求項1記載の電磁処理装置。 2. The electromagnetic processing apparatus according to claim 1, further comprising an explosion-proof device made of a nonmagnetic material that covers the yoke-type coil portion . 被処理流体流路の近傍で、渦電流の影響を受けない高さの抵抗率を有するフェライト製ヨークに巻き付けたヨーク型コイルに(a)8,000Hzの単一周波数、又は(b)4,000Hzの単一周波数の交流正弦波を流して被処理流体を電磁処理することで被処理流体流路又は被処理流体を貯めた装置の壁面のスケール、その他の成分の付着防止及び/又は除去を行うことを特徴とする電磁処理方法。 (A) a single frequency of 8,000 Hz or (b) 4, a yoke-type coil wound around a ferrite yoke having a resistivity that is not affected by eddy current in the vicinity of the fluid flow path. By applying an AC sine wave of a single frequency of 000 Hz to electromagnetically treat the fluid to be treated, the treatment fluid flow path or the scale of the wall surface of the device storing the fluid to be treated and / or removal and / or removal of other components can be prevented. An electromagnetic processing method characterized by being performed .
JP2008283489A 2008-11-04 2008-11-04 Electromagnetic processing apparatus and method Active JP4988684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283489A JP4988684B2 (en) 2008-11-04 2008-11-04 Electromagnetic processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283489A JP4988684B2 (en) 2008-11-04 2008-11-04 Electromagnetic processing apparatus and method

Publications (2)

Publication Number Publication Date
JP2010110667A JP2010110667A (en) 2010-05-20
JP4988684B2 true JP4988684B2 (en) 2012-08-01

Family

ID=42299671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283489A Active JP4988684B2 (en) 2008-11-04 2008-11-04 Electromagnetic processing apparatus and method

Country Status (1)

Country Link
JP (1) JP4988684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692924A (en) * 2016-04-20 2016-06-22 秦皇岛索古科技开发有限公司 Water treatment apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337107B2 (en) * 2010-06-11 2013-11-06 エスケーエイ株式会社 Apparatus and method for treating electromagnetic wave of fluid to be treated in water
JP2013198836A (en) * 2012-03-23 2013-10-03 Ihi Corp Flue gas desulfurizer, and method for feeding desulfurization absorbent liquid to the desulfurizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038362A (en) * 1999-07-30 2001-02-13 Ska Kk Device for electromagnetic field treatment
JP2001079556A (en) * 1999-09-17 2001-03-27 Nippon Fusso Kogyo Kk Electromagnetic processor for magnetically processing associated molecule
JP2004267885A (en) * 2003-03-07 2004-09-30 Yanagawa Engineering Co Ltd Device for preventing adhesion of scale
JP4305855B2 (en) * 2004-03-09 2009-07-29 エスケーエイ株式会社 Apparatus and method for processing modulated electromagnetic field of fluid to be processed
JP2009207958A (en) * 2008-02-29 2009-09-17 B Ii Denshi Kogyo Kk Electromagnetic treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105692924A (en) * 2016-04-20 2016-06-22 秦皇岛索古科技开发有限公司 Water treatment apparatus

Also Published As

Publication number Publication date
JP2010110667A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
CN107849709B (en) Method and system for applying superimposed time-varying frequency electromagnetic waves for corrosion protection of submerged and/or buried structures
US8048313B2 (en) Method and apparatus for preventing scale deposits and removing contaminants from fluid columns
Wei et al. Short-period corrosion of X80 pipeline steel induced by AC current in acidic red soil
JP4988684B2 (en) Electromagnetic processing apparatus and method
JP4305855B2 (en) Apparatus and method for processing modulated electromagnetic field of fluid to be processed
JP2001038362A (en) Device for electromagnetic field treatment
Qin et al. Effect of alternating current frequency on corrosion behavior of X80 pipeline steel in coastal saline soil
CN209193721U (en) With sterilization, except the water treatment facilities of algae, scale removal, scale inhibition and pH monitoring function
JP6625907B2 (en) Wastewater treatment method and wastewater treatment system
US20180311680A1 (en) Drainage processing apparatus and drainage processing method
JP3247942B2 (en) Methods and equipment for rust prevention in fluid flow paths
Du et al. Discussion on AC corrosion rate assessment and mechanism for cathodically protected pipelines
JP4116002B2 (en) Test method for water to be treated and method for preventing and / or removing rust, scale, and other components on the walls constituting the fluid flow path
JP6725312B2 (en) Drainage system
CN204874043U (en) A electromagnetism scale removal hinders dirty device for industrial cycle water treatment
Al-Mayouf Dissolution of magnetite coupled galvanically with iron in environmentally friendly chelant solutions
JP3705194B2 (en) Electromagnetic field treatment method for fluid flowing in piping
JP2007000840A (en) Scale deposition suppressing equipment and method
JP2005296796A (en) Method and apparatus for cleaning sewage flow passage
Lan et al. Evaluation of AC corrosion under anodic polarization using microzone pH analysis
JP3674676B2 (en) Method and apparatus for preventing and / or removing rust, scale and other components from fluid flow path
KR20140057884A (en) Pipe management apparatus and pipe management method using zeta potential induction of micro particle
JP4257747B2 (en) Method and device for determining chargeability of fluid to be treated or fluid to be treated and method and device for treating fluid to be treated
KR101533416B1 (en) Apparatus for generating zinc ion and pipe comprising the same
Dosar et al. Improvement of hard water characteristics and scale formation under the effect of pulsating electromagnetic field

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4988684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117