JP4986131B2 - Diamond single crystal substrate and manufacturing method thereof - Google Patents

Diamond single crystal substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4986131B2
JP4986131B2 JP2007013858A JP2007013858A JP4986131B2 JP 4986131 B2 JP4986131 B2 JP 4986131B2 JP 2007013858 A JP2007013858 A JP 2007013858A JP 2007013858 A JP2007013858 A JP 2007013858A JP 4986131 B2 JP4986131 B2 JP 4986131B2
Authority
JP
Japan
Prior art keywords
ppm
single crystal
layer
nitrogen atom
diamond single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007013858A
Other languages
Japanese (ja)
Other versions
JP2008179505A (en
Inventor
健二 泉
貴一 目黒
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007013858A priority Critical patent/JP4986131B2/en
Publication of JP2008179505A publication Critical patent/JP2008179505A/en
Application granted granted Critical
Publication of JP4986131B2 publication Critical patent/JP4986131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ダイヤモンド単結晶基板に関し、詳しくは、半導体用途にも使用できる高品質な単結晶を、短時間でコストを下げて製造する方法に関する。   The present invention relates to a diamond single crystal substrate, and more particularly to a method for producing a high-quality single crystal that can be used for semiconductor applications in a short time and at a low cost.

ダイヤモンドは高熱伝導率、高い電子・正孔移動度、高い絶縁破壊電界強度、低誘電損失、そして広いバンドギャップといった、半導体材料として他に類を見ない、優れた特性を数多く備えている。特に近年では、広いバンドギャップを活かした紫外発光素子や、優れた高周波特性を持つ電界効果トランジスタなどが開発されつつある。さらに、紫外から赤外領域にわたり透明であることから、光学部品材料としても有望である。   Diamond has many unique properties that are unparalleled as a semiconductor material, such as high thermal conductivity, high electron / hole mobility, high breakdown field strength, low dielectric loss, and wide band gap. In particular, in recent years, ultraviolet light emitting elements utilizing a wide band gap and field effect transistors having excellent high frequency characteristics are being developed. Furthermore, since it is transparent from the ultraviolet region to the infrared region, it is also promising as an optical component material.

ダイヤモンドを半導体として利用することを考えた場合、高品質の単結晶基板が必要となる。現在、ダイヤモンド単結晶は主に高温高圧合成法を用いて作製している。これは結晶性に優れ、物性上は半導体基板として利用可能であるが、得られる単結晶のサイズは1cm級までが限界となっている。そこで、気相合成法による単結晶のエピタキシャル成長させる条件が検討されており、さらには気相合成法により大面積の単結晶を製造する方法が検討されている。これまでのところ、ダイヤモンドをヘテロエピタキシャル成長により単結晶を得る方法は結晶欠陥が多く、光学用や半導体基板としては充分な品質ではない。   When considering using diamond as a semiconductor, a high-quality single crystal substrate is required. Currently, diamond single crystals are mainly produced using a high-temperature and high-pressure synthesis method. This is excellent in crystallinity and can be used as a semiconductor substrate in terms of physical properties, but the size of a single crystal obtained is limited to the 1 cm class. Therefore, conditions for epitaxial growth of a single crystal by a vapor phase synthesis method have been studied, and a method for producing a single crystal having a large area by a vapor phase synthesis method has been studied. So far, the method of obtaining a single crystal by heteroepitaxial growth of diamond has many crystal defects and is not of sufficient quality as an optical or semiconductor substrate.

特許文献1には複数の単結晶ダイヤモンドの方位を揃えて並べ、これの上にダイヤモンドを気相合成法により成長させることによりダイヤモンド単結晶を製造する方法が述べられている。
特許文献2では、1つ又は複数の層に窒素、ホウ素などの不純物を含有させて、成膜速度を落とすことなく特性を向上させたダイヤモンド単結晶を製造する方法が述べられている。また特許文献3では、窒素を含有させることで成膜速度を向上させられることが示されている。また特許文献4では窒素原子含有量が異なる層を積み重ねた構造が示されている。
Patent Document 1 describes a method for producing a diamond single crystal by aligning the orientations of a plurality of single crystal diamonds and growing diamond on the diamonds by a vapor phase synthesis method.
Patent Document 2 describes a method of manufacturing a diamond single crystal with improved characteristics without reducing the film formation rate by containing impurities such as nitrogen and boron in one or more layers. Patent Document 3 shows that the film formation rate can be improved by containing nitrogen. Patent Document 4 shows a structure in which layers having different nitrogen atom contents are stacked.

特開平3−75298号公報Japanese Patent Laid-Open No. 3-75298 特表2004−538230号公報Special table 2004-538230 gazette 特表2005−508279号公報JP 2005-508279 A 特開平06−234595号公報Japanese Patent Laid-Open No. 06-234595

特許文献1のような従来技術で得られたダイヤモンド単結晶を半導体等へと利用するためには、大量の高圧高温合成ダイヤモンド単結晶基板が必要とされる。大量のダイヤモンド単結晶基板を高温高圧合成で用意するには、コストと時間がかかる。また、特許文献2の製造方法では成膜開始直後に成膜条件の制御、特に基板温度の制御が困難であり、多結晶が成長してしまうことがある。特許文献3では、成膜速度を向上することができるが、窒素不純物量が多く、半導体へ利用可能な基板にすることはできない。特許文献4の製造方法では、ダイヤモンド作成に時間がかかるために、製造コストが高くなってしまう。   In order to use the diamond single crystal obtained by the prior art as in Patent Document 1 for a semiconductor or the like, a large amount of high-pressure and high-temperature synthetic diamond single crystal substrate is required. It takes cost and time to prepare a large amount of diamond single crystal substrate by high-temperature and high-pressure synthesis. Further, in the manufacturing method of Patent Document 2, it is difficult to control the film forming conditions, particularly the substrate temperature, immediately after the start of film formation, and the polycrystal may grow. In Patent Document 3, the deposition rate can be improved, but the amount of nitrogen impurities is large, so that the substrate cannot be used for a semiconductor. In the manufacturing method of patent document 4, since it takes time to create diamond, the manufacturing cost is increased.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、成膜開始時の基板温度の不安定さにより成膜するダイヤモンドが多結晶化しやすくなるが、窒素原子を含有する導入ガスの添加量を増やすことで、多結晶化しない基板温度範囲を広げられることを見出し
、本発明を完成させた。すなわち、本発明は以下の構成を採用する。
As a result of intensive studies to solve the above problems, the inventors of the present invention are likely to polycrystallize diamond due to instability of the substrate temperature at the start of film formation, but the introduced gas containing nitrogen atoms The inventors have found that the substrate temperature range in which polycrystallization does not occur can be expanded by increasing the amount of addition of, and the present invention has been completed. That is, the present invention adopts the following configuration.

(1)ダイヤモンド単結晶基板において、気相合成法で得られる窒素原子含有量の異なる各層が10μm以上の厚みを有する二以上の層からなり、少なくとも炭素原子に対する2次イオン質量分析法で測定した窒素原子含有量が0ppm以上10ppm以下の層、及び5ppm以上100ppm以下である層を有し、かつ前記0ppm以上10ppm以下の層より前記5ppm以上100ppm以下の層の方が窒素原子含有量が多いことを特徴とするダイヤモンド単結晶基板である。
(2)前記ダイヤモンド単結晶基板において、気相合成法で得られる窒素原子含有量の異なる各層が10μm以上の厚みを有する三以上の層からなり、前記炭素原子に対する2次イオン質量分析法で測定した窒素原子含有量が0ppm以上10ppm以下の層と、前記5ppm以上100ppm以下の層の間に一層以上の層が形成されていることを特徴とする上記(1)に記載のダイヤモンド単結晶基板である。
(1) In a diamond single crystal substrate, each layer having a different nitrogen atom content obtained by a vapor phase synthesis method is composed of two or more layers having a thickness of 10 μm or more, and measured by secondary ion mass spectrometry for at least carbon atoms . It has a layer having a nitrogen atom content of 0 ppm to 10 ppm and a layer of 5 ppm to 100 ppm, and the layer of 5 ppm to 100 ppm has a higher nitrogen atom content than the layer of 0 ppm to 10 ppm. A diamond single crystal substrate characterized by the following.
(2) In the diamond single crystal substrate, each layer having different nitrogen atom contents obtained by a vapor phase synthesis method is composed of three or more layers having a thickness of 10 μm or more, and measured by secondary ion mass spectrometry for the carbon atoms. The diamond single crystal substrate according to (1) above, wherein one or more layers are formed between the layer having a nitrogen atom content of 0 ppm to 10 ppm and the layer of 5 ppm to 100 ppm. is there.

(3)製造時における導入ガスが、気相合成法で得られる炭素原子に対する2次イオン質量分析法で測定した窒素原子含有量が5〜100ppmまたは0〜10ppmの層のダイヤモンド層を成長させるのに必要な量の窒素原子を含んでおり、該窒素原子を含むガスの導入量を調整することで窒素原子含有量の異なるダイヤモンド単結晶層を製造することを特徴とする上記(1)又は(2)に記載のダイヤモンド単結晶基板の製造方法である。 (3) The introduced gas at the time of production grows a diamond layer having a nitrogen atom content of 5 to 100 ppm or 0 to 10 ppm measured by secondary ion mass spectrometry with respect to carbon atoms obtained by a gas phase synthesis method. (1) or (1) , wherein a diamond single crystal layer having a nitrogen atom content different from the nitrogen atom content is prepared by adjusting an introduction amount of a gas containing the nitrogen atom. The method for producing a diamond single crystal substrate according to 2) .

元になる単結晶基板(種基板)をCVD法で作製することで、大量の単結晶基板を準備することが可能となる。本発明では、この際窒素を含むガスを導入することで成膜速度を速くし、製造スピードを上げ製造コストを下げることができるとともに、特に成膜開始直後の、成長条件の制御が難しく多結晶化しやすいという問題を、窒素原子含有量を調整することで多結晶生成を防ぐことができる。更にその上に、窒素原子含有量を減らした層を持つことで、低コストで半導体用途にも使用可能な基板を得ることができる。   By manufacturing a single crystal substrate (seed substrate) as a base by a CVD method, a large amount of single crystal substrates can be prepared. In the present invention, by introducing nitrogen-containing gas at this time, the film forming speed can be increased, the manufacturing speed can be increased, and the manufacturing cost can be reduced. It is possible to prevent the formation of polycrystals by adjusting the nitrogen atom content of the problem of being easily converted. Furthermore, by having a layer with a reduced nitrogen atom content thereon, a substrate that can be used for semiconductor applications at low cost can be obtained.

本発明ではCVD法でダイヤモンド基板を作製することで、大量の単結晶基板の製造スピードを上げ、製造コストを下げることができる。また、特に成膜開始直後での多結晶生成を防ぐことができる。更にその上に、窒素添加量を減らした層を持つことで、低コストで半導体用途にも使用可能な基板を得ることも可能である。
本発明のダイヤモンド単結晶基板は半導体用途にも使用できる高品質な単結晶で、製作時には比較的安価で短時間に入手することが可能である。
In the present invention, by manufacturing a diamond substrate by a CVD method, the manufacturing speed of a large amount of single crystal substrates can be increased and the manufacturing cost can be reduced. In addition, it is possible to prevent the formation of polycrystals immediately after the start of film formation. Furthermore, it is possible to obtain a substrate that can be used for semiconductor applications at low cost by having a layer with a reduced amount of nitrogen added thereon.
The diamond single crystal substrate of the present invention is a high-quality single crystal that can be used for semiconductor applications, and can be obtained at a relatively low cost in a short time during manufacture.

以下、本発明を詳細に説明する。
本発明に係るダイヤモンド単結晶基板は、窒素原子含有量の異なる2つ以上の層からなり、少なくとも炭素原子に対する窒素原子含有量が0ppm以上10ppm以下の層、及び5ppm以上100ppm以下である層を有し、かつ0ppm以上10ppm以下の層に比べ、5ppm以上100ppm以下の層の方で窒素原子含有量が多く、これらの層が気相合成法で作られることを特徴とするダイヤモンド単結晶基板である。この場合の層とは種基板の面積を持ち10μm以上の厚みを持つ部分を指し、同一層の製作時に導入する炭素に対する窒素を含んだガス量が±10%以内のものとする。範囲内であれば、同一層内でも窒素原子含有量が変化しているものでも良い。図1は、本発明のダイヤモンド単結晶基板の典型的な構造の一例である。
Hereinafter, the present invention will be described in detail.
The diamond single crystal substrate according to the present invention comprises two or more layers having different nitrogen atom contents, and has at least a layer having a nitrogen atom content of 0 ppm to 10 ppm and a layer having a nitrogen atom content of 5 ppm to 100 ppm. In addition, the diamond single crystal substrate is characterized in that the nitrogen atom content is higher in the layer of 5 ppm or more and 100 ppm or less than the layer of 0 ppm or more and 10 ppm or less, and these layers are formed by a vapor phase synthesis method. . The layer in this case refers to a portion having the area of the seed substrate and having a thickness of 10 μm or more, and the amount of gas containing nitrogen relative to carbon introduced when manufacturing the same layer is within ± 10%. Within the range, the nitrogen atom content may be changed even in the same layer. FIG. 1 is an example of a typical structure of a diamond single crystal substrate of the present invention.

気相合成で作製したものと、その他の製法によるものとの判別は、水素原子の含有量の差で見ることができる。上記単結晶を得るためには、例えば高圧高温合成で作製した単結晶基板上に気相合成法により成長をさせる方法がある。この際、窒素を添加することで成膜速度を向上させるこができ、製造スピードが上がるとともに、コストも低減することができる。成膜開始時は、成長条件が変わりやすく特に基板温度が不安定となる。ダイヤモ
ンド成膜時の基板温度が、ダイヤモンド単結晶成長条件に比べ低くなる、もしくは高くなることによって多結晶化してしまう。ここで窒素添加量を増やすことで、多結晶化しない基板温度範囲を広げられることを見出した。これにより、初期層は5ppm以上100ppm以下となる層が好ましい。窒素添加量が5ppm以下では多結晶化しやすく、100ppm以上では不純物量が多くなりすぎ新たな多結晶化の原因となってしまう。
The distinction between those produced by vapor phase synthesis and those produced by other production methods can be seen by the difference in the hydrogen atom content. In order to obtain the single crystal, for example, there is a method of growing by a vapor phase synthesis method on a single crystal substrate produced by high-pressure and high-temperature synthesis. At this time, the film formation rate can be improved by adding nitrogen, the manufacturing speed can be increased, and the cost can be reduced. At the start of film formation, the growth conditions are likely to change, and in particular, the substrate temperature becomes unstable. When the substrate temperature at the time of diamond film formation becomes lower or higher than the diamond single crystal growth condition, polycrystallization occurs. Here, it has been found that by increasing the amount of nitrogen added, the substrate temperature range in which polycrystallization does not occur can be expanded. Thereby, the initial layer is preferably a layer having a concentration of 5 ppm to 100 ppm. If the amount of nitrogen added is 5 ppm or less, polycrystallization tends to occur, and if it is 100 ppm or more, the amount of impurities becomes too large, causing new polycrystallization.

この方法で作製した5ppm以上100ppm以下の層上に、更にダイヤモンドを成膜することが可能である。この際、取り出せるダイヤモンド単結晶の厚み、枚数を増やすためには、成膜をつづける必要がある。前述したとおり、成膜開始時は基板温度が安定しないが、時間がたつにつれ基板温度は安定していく。そのため、段階的に、もしくは連続的に窒素添加量を変化させることで、多結晶化させず、更に成膜速度を落とさずに成膜することが可能である。この際、最終的には炭素原子に対する窒素原子含有量が0ppm以上10ppm以下の層となるよう窒素添加量を調整することで、多結晶化させず、また成膜速度を落とさずに成膜が可能である。また図2に示す基板を半導体用途へ使用するためには、更にその上への成膜を行い、この場合意図する窒素添加を行わないようにする方法が好ましい。   A diamond film can be further formed on the layer of 5 ppm to 100 ppm produced by this method. At this time, in order to increase the thickness and number of diamond single crystals that can be taken out, it is necessary to continue film formation. As described above, the substrate temperature is not stable at the start of film formation, but the substrate temperature becomes stable with time. Therefore, by changing the amount of nitrogen added stepwise or continuously, it is possible to form a film without polycrystallization and without lowering the film formation rate. At this time, by adjusting the nitrogen addition amount so that the nitrogen atom content with respect to carbon atoms is finally in a layer of 0 ppm or more and 10 ppm or less, the film can be formed without polycrystallization and without reducing the film formation rate. Is possible. Further, in order to use the substrate shown in FIG. 2 for a semiconductor application, it is preferable to form a film thereon so that the intended addition of nitrogen is not performed.

前記ダイヤモンド単結晶基板において、窒素原子含有量の異なる3つ以上の層からなり、炭素原子に対する窒素原子含有量が0ppm以上10ppm以下の層と5ppm以上100ppm以下の層の間に一層以上の層があることが好ましい(図3)。5ppm以上100ppm以下の層上に、更にダイヤモンドを成膜する場合に、導入窒素含有ガス量を更に増やすことで成膜速度を上げることが可能である。   The diamond single crystal substrate includes three or more layers having different nitrogen atom contents, and one or more layers are provided between a layer having a nitrogen atom content of 0 ppm to 10 ppm and a layer having a nitrogen atom content of 5 ppm to 100 ppm with respect to carbon atoms. There is preferably (FIG. 3). In the case where a diamond film is further formed on a layer of 5 ppm or more and 100 ppm or less, the film formation rate can be increased by further increasing the amount of introduced nitrogen-containing gas.

この方法で作製した基板は、切り出しを行うことで半導体用として使用することも可能であり、更に同様の工程を行うために高温高圧単結晶基板の代わりに使うことも可能である。この場合には5mm角といった比較的大型のサイズでも、大量に速く作ることが可能となる。
この方法で得たダイヤモンド単結晶は、X線ロッキングカーブの半値幅が100秒以内またはラマン散乱スペクトルの半値幅が2cm−1という結晶性の良い単結晶を得ることができ、半導体用途への使用も可能である。
A substrate manufactured by this method can be used for a semiconductor by cutting out, and can also be used in place of a high-temperature high-pressure single crystal substrate to perform a similar process. In this case, even a relatively large size such as 5 mm square can be made quickly in large quantities.
The diamond single crystal obtained by this method can obtain a single crystal with good crystallinity having an X-ray rocking curve half-width within 100 seconds or a Raman scattering spectrum half-width of 2 cm −1 , and can be used for semiconductor applications. Is also possible.

[実施例1]
5mm×5mm、厚さ0.5mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1100℃、圧力90torrでおこなった。導入したガスはメタン200sccm(standard cubic cm)、水素1000sccmとした。
添加する窒素ガスは、成膜開始から2時間は1sccmとし、2時間後からは0.4sccmとした。計20時間成膜を行った。このとき、平均成膜速度は51μm/hとなった。成膜したダイヤモンド単結晶から、CVDで作製した部分から1mmt厚みの単結晶を切り出した。SIMS(secondary ion mass spectrometry:2次イオン質量分析法)による炭素原子に対する窒素原子含有量の計測を行ったところ、上記人工Ib型単結晶基板に接していた部分から上20μmの位置では20ppmとなっており、更にその上200μmの位置では4ppmとなっていた。同時に水素原子量も同様の位置で測定し、それぞれ10ppm、15ppm含有することを確認した。最表面についてX線回折測定、ラマン分光測定を行った結果、単結晶であることを確認した。
[Example 1]
An artificial Ib type single crystal {100} substrate having a size of 5 mm × 5 mm and a thickness of 0.5 mm was prepared, and epitaxial growth was performed by microwave plasma CVD. The substrate temperature was 1100 ° C. and the pressure was 90 torr. The introduced gas was methane 200 sccm (standard cubic cm) and hydrogen 1000 sccm.
The nitrogen gas to be added was 1 sccm for 2 hours from the start of film formation and 0.4 sccm after 2 hours. Film formation was performed for a total of 20 hours. At this time, the average film formation rate was 51 μm / h. From the formed diamond single crystal, a 1 mm thick single crystal was cut out from the portion produced by CVD. When the nitrogen atom content with respect to the carbon atom was measured by SIMS (secondary ion mass spectrometry), it became 20 ppm at a position 20 μm above the portion in contact with the artificial Ib type single crystal substrate. Furthermore, it was 4 ppm at the position of 200 μm. At the same time, the amount of hydrogen atoms was also measured at the same position and confirmed to contain 10 ppm and 15 ppm, respectively. As a result of X-ray diffraction measurement and Raman spectroscopic measurement on the outermost surface, it was confirmed to be a single crystal.

更に、この方法で作製した単結晶基板上にマイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1150℃、圧力70torrでおこなった。導入したガ
スはメタン20sccm、水素100sccmとした。この際に意図した窒素ガスの導入は行わなかった。100時間の成膜を行った。
成膜後、基板について結晶性を評価した。まず半導体特性の評価として試料を水素プラズマ処理し、ホール測定によって水素化表面伝導層の常温における正孔移動度を評価した結果、1100cm/V・secと半導体基板として十分高速な値を得た。次に、二次イオン質量分析により結晶中の窒素不純物量を定量した結果、炭素原子に対して窒素原子量は1.2ppmと十分少ない値を得た。本実施例のダイヤモンド単結晶基板は大型かつ高品質であることを確認した。
Further, epitaxial growth by microwave plasma CVD was performed on the single crystal substrate manufactured by this method. The substrate temperature was 1150 ° C. and the pressure was 70 torr. The introduced gas was methane 20 sccm and hydrogen 100 sccm. At this time, the intended introduction of nitrogen gas was not performed. The film was formed for 100 hours.
After film formation, the crystallinity of the substrate was evaluated. Samples were hydrogen plasma treatment initially as an evaluation of the semiconductor characteristics, the results of evaluation of the hole mobility at normal temperature of the hydrogenated surface conduction layer by Hall measurement, to obtain a fast enough value as 1100cm 2 / V · sec and the semiconductor substrate . Next, as a result of quantifying the amount of nitrogen impurities in the crystal by secondary ion mass spectrometry, the amount of nitrogen atoms was sufficiently low at 1.2 ppm with respect to carbon atoms. The diamond single crystal substrate of this example was confirmed to be large and high quality.

[実施例2]
6mm×2mm、厚さ1.0mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1000℃、圧力70torrでおこなった。導入したガスはメタン150sccm(standard cubic cm)、水素1000sccmとした。
添加する窒素ガスは、成膜開始から2時間は1sccmとし、2時間後からは0.4sccmとした。20時間後からは添加する窒素ガスを0sccmとし(窒素ガスを導入せずに)、成膜を更に80時間行った。この時、平均成膜速度は18μm/hとなった。成膜したダイヤモンド単結晶から、CVDで作製した部分から1mmt厚みの単結晶を切り出した。SIMSによる炭素原子に対する窒素原子含有量の計測を行ったところ、上記人工Ib型単結晶基板に接していた部分から上20μmの位置では20ppmとなっており、更にその上200μmの位置では4ppmとなっていた。最表面について半導体特性の評価として試料を水素プラズマ処理し、ホール測定によって水素化表面伝導層の常温における正孔移動度を評価した結果、1000cm/V・secと半導体基板として十分高速な値を得た。次に、二次イオン質量分析により結晶中の窒素不純物量を定量した結果、炭素原子に対して窒素原子量は1.2ppmと十分少ない値を得た。本実施例のダイヤモンド単結晶基板は大型かつ高品質であることを確認した。
[Example 2]
An artificial Ib type single crystal {100} substrate having a size of 6 mm × 2 mm and a thickness of 1.0 mm was prepared, and epitaxial growth was performed by microwave plasma CVD. The substrate temperature was 1000 ° C. and the pressure was 70 torr. The introduced gases were methane 150 sccm (standard cubic cm) and hydrogen 1000 sccm.
The nitrogen gas to be added was 1 sccm for 2 hours from the start of film formation and 0.4 sccm after 2 hours. After 20 hours, the nitrogen gas to be added was set to 0 sccm (without introducing nitrogen gas), and film formation was further performed for 80 hours. At this time, the average film formation rate was 18 μm / h. From the formed diamond single crystal, a 1 mm thick single crystal was cut out from the portion produced by CVD. When the nitrogen atom content with respect to carbon atoms was measured by SIMS, it was 20 ppm at the position 20 μm above the portion in contact with the artificial Ib type single crystal substrate, and further 4 ppm at the position 200 μm above it. It was. Samples were hydrogen plasma treatment as an evaluation of the semiconductor characteristics of the outermost surface, the result of evaluating the hole mobility at normal temperature of the hydrogenated surface conduction layer by Hall measurement, a sufficiently high speed value as 1000cm 2 / V · sec and the semiconductor substrate Obtained. Next, as a result of quantifying the amount of nitrogen impurities in the crystal by secondary ion mass spectrometry, the amount of nitrogen atoms was sufficiently low at 1.2 ppm with respect to carbon atoms. The diamond single crystal substrate of this example was confirmed to be large and high quality.

[実施例3]
6mm×3mm、厚さ0.7mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1050℃、圧力70torrでおこなった。導入したガスはメタン200sccm(standard cubic cm)、水素1000sccmとした。
添加する窒素ガスは、成膜開始から2時間は1sccmとした。更にその後、連続的に2時間かけて0.3sccmまで減らすようにした。添加する窒素ガス量を減らし始めてから2時間後からは0.3sccmと一定とし、計20時間成膜を行った。平均成膜速度は48μm/hとなった。成膜したダイヤモンド単結晶からCVDで作製した部分から0.5mmt厚みの単結晶を切り出した。SIMSによる炭素原子に対する窒素原子含有量の計測を行ったところ、15ppmの層と3ppmの層が存在した。その間には、8ppmの層も見られた。
[Example 3]
An artificial Ib type single crystal {100} substrate having a size of 6 mm × 3 mm and a thickness of 0.7 mm was prepared, and epitaxial growth was performed by microwave plasma CVD. The substrate temperature was 1050 ° C. and the pressure was 70 torr. The introduced gas was methane 200 sccm (standard cubic cm) and hydrogen 1000 sccm.
The nitrogen gas to be added was 1 sccm for 2 hours from the start of film formation. After that, it was continuously reduced to 0.3 sccm over 2 hours. After 2 hours from the start of reducing the amount of nitrogen gas to be added, film formation was carried out for a total of 20 hours with a constant 0.3 sccm. The average film formation rate was 48 μm / h. A single crystal having a thickness of 0.5 mmt was cut out from a portion formed by CVD from the formed diamond single crystal. When the nitrogen atom content with respect to carbon atoms was measured by SIMS, a 15 ppm layer and a 3 ppm layer were present. In the meantime, an 8 ppm layer was also observed.

この方法で作製した単結晶基板の主面、側面研磨を行い、マイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1100℃、圧力50torrでおこなった。導入したガスはメタン110sccm、水素900sccmとした。この際に意図した窒素ガスの導入は行わなかった。成膜後、結晶性を評価した。まず半導体特性の評価として試料を水素プラズマ処理し、ホール測定によって水素化表面伝導層の常温における正孔移動度を評価した結果、1000cm/V・secと半導体基板として十分高速な値を得た。次に、二次イオン質量分析により結晶中の窒素不純物量を定量した結果、炭素原子に対して窒素原子量は1.1ppmと十分少ない値を得た。本実施例のダイヤモンド単結晶基板は大型かつ高品質であることを確認した。 The main surface and side surfaces of the single crystal substrate manufactured by this method were polished, and epitaxial growth was performed by microwave plasma CVD. The substrate temperature was 1100 ° C. and the pressure was 50 torr. The introduced gas was methane 110 sccm and hydrogen 900 sccm. At this time, the intended introduction of nitrogen gas was not performed. After film formation, crystallinity was evaluated. Samples were hydrogen plasma treatment initially as an evaluation of the semiconductor characteristics, the results of evaluation of the hole mobility at normal temperature of the hydrogenated surface conduction layer by Hall measurement, to obtain a fast enough value as 1000cm 2 / V · sec and the semiconductor substrate . Next, as a result of quantifying the amount of nitrogen impurities in the crystal by secondary ion mass spectrometry, the amount of nitrogen atoms was sufficiently low at 1.1 ppm with respect to carbon atoms. The diamond single crystal substrate of this example was confirmed to be large and high quality.

[実施例4]
実施例1と同様にし、5mm×5mm、厚さ0.5mmの人工Ib型単結晶{100}基板を用意して、マイクロ波プラズマCVDによるエピタキシャル成長を行った。基板温度は1100℃、圧力90torrでおこなった。導入したガスはメタン200sccm(standard cubic cm)、水素1000sccmとしたが、添加する窒素ガスは、成膜開始2時間は1sccmとし、2時間後から12時間後までは10sccmとし、その後更に20時間後までは0.4sccmで成膜を行った。結果、平均成膜速度は70μm/hと、実施例1の51μm/hと比較して速くなった。
成膜後、結晶性を評価した。SIMSによる炭素原子に対する窒素原子含有量の計測を行ったところ、上記人工Ib型単結晶基板に接していた部分から上20μmの位置では20ppmとなっており、更にその上200μmの位置では40ppmとなっていた。成膜後、最も上面だった部分より下側20μmの部分でも測定を行ったところ4ppmとなっていた。
[Example 4]
In the same manner as in Example 1, an artificial Ib type single crystal {100} substrate having a size of 5 mm × 5 mm and a thickness of 0.5 mm was prepared, and epitaxial growth was performed by microwave plasma CVD. The substrate temperature was 1100 ° C. and the pressure was 90 torr. The introduced gas was 200 sccm of methane (standard cubic cm) and 1000 sccm of hydrogen, but the nitrogen gas to be added was 1 sccm for 2 hours from the start of film formation, 10 sccm from 2 hours to 12 hours, and then 20 hours later. Until then, film formation was performed at 0.4 sccm. As a result, the average film formation rate was 70 μm / h, which was faster than 51 μm / h in Example 1.
After film formation, crystallinity was evaluated. When the nitrogen atom content with respect to carbon atoms was measured by SIMS, it was 20 ppm at a position 20 μm above the portion in contact with the artificial Ib type single crystal substrate, and further 40 ppm at a position 200 μm above that. It was. After the film formation, measurement was carried out even at a portion 20 μm below the uppermost portion, and it was 4 ppm.

[比較例1]
実施例1と同様の成膜方法で、添加窒素ガス量を以下の表の窒素原子含有量になるように調整して成膜した。作成した基板の人工単結晶部分を切り取り、その底面から20μmから40μmの領域を第一層とし、基板の上面5μmから25μmの領域を第二層とした。
それぞれの成膜品について、SIMS測定によって炭素原子に対する窒素原子量を各層について測定した。作製した単結晶基板の最表面について、X線ロッキングカーブ測定を行った。結果の半値幅は以下の通りとなった。
[Comparative Example 1]
Film formation was performed by the same film formation method as in Example 1 so that the amount of added nitrogen gas was adjusted to the nitrogen atom content shown in the following table. The artificial single crystal portion of the prepared substrate was cut out, and a region from 20 μm to 40 μm from the bottom was used as the first layer, and a region from 5 μm to 25 μm from the top of the substrate was used as the second layer.
About each film-forming article, the amount of nitrogen atoms with respect to a carbon atom was measured about each layer by SIMS measurement. X-ray rocking curve measurement was performed on the outermost surface of the produced single crystal substrate. The half width of the result is as follows.

No.1〜2では成膜速度も速く、半導体用途へ使用可能な程度に良質な膜質であった。No.3,4では第1層作成段階で多結晶が生成してしまい、その後窒素導入量を減らして成膜した場合でも、多結晶は存在しつづけた。20時間以上の成膜でも膜厚は厚くならなかった。No.5では、最終的に生成されたダイヤモンドの膜質が悪く、半導体基板への使用はできなかった。   In No. 1-2, the film formation rate was high, and the film quality was high enough to be used for semiconductor applications. In Nos. 3 and 4, polycrystals were produced in the first layer preparation stage, and polycrystals continued to exist even when the film was formed with a reduced amount of nitrogen introduced. Even when the film was formed for 20 hours or more, the film thickness did not increase. No. 5 could not be used for a semiconductor substrate because of the poor film quality of the finally produced diamond.

以上詳述したように、本発明のダイヤモンド単結晶基板は半導体用途にも使用できる高品質な単結晶で、製作時には比較的安価で短時間に入手することが可能である。   As described above in detail, the diamond single crystal substrate of the present invention is a high-quality single crystal that can be used for semiconductor applications, and can be obtained at a relatively low cost in a short time during manufacture.

本発明のダイヤモンド単結晶基板を表す概念図である。It is a conceptual diagram showing the diamond single crystal substrate of this invention. 本発明のダイヤモンド単結晶基板を表す別の概念図である。It is another conceptual diagram showing the diamond single crystal substrate of the present invention. 本発明のダイヤモンド単結晶基板を表す更に別の概念図である。It is another conceptual diagram showing the diamond single crystal substrate of the present invention.

Claims (3)

ダイヤモンド単結晶基板において、気相合成法で得られる窒素原子含有量の異なる各層が10μm以上の厚みを有する二以上の層からなり、少なくとも炭素原子に対する2次イオン質量分析法で測定した窒素原子含有量が0ppm以上10ppm以下の層、及び5ppm以上100ppm以下である層を有し、かつ前記0ppm以上10ppm以下の層より前記5ppm以上100ppm以下の層の方が窒素原子含有量が多いことを特徴とするダイヤモンド単結晶基板。 In a diamond single crystal substrate, each layer having a different nitrogen atom content obtained by vapor phase synthesis is composed of two or more layers having a thickness of 10 μm or more, and contains nitrogen atoms measured by secondary ion mass spectrometry for at least carbon atoms. It has a layer whose amount is 0 ppm or more and 10 ppm or less, and a layer which is 5 ppm or more and 100 ppm or less, and the layer of 5 ppm or more and 100 ppm or less has a higher nitrogen atom content than the layer of 0 ppm or more and 10 ppm or less. Diamond single crystal substrate. 前記ダイヤモンド単結晶基板において、気相合成法で得られる窒素原子含有量の異なる各層が10μm以上の厚みを有する三以上の層からなり、前記炭素原子に対する窒素原子含有量が2次イオン質量分析法で測定した値で0ppm以上10ppm以下の層と、前記5ppm以上100ppm以下の層の間に一層以上の層が形成されていることを特徴とする請求項1に記載のダイヤモンド単結晶基板。 In the diamond single crystal substrate, each layer having different nitrogen atom contents obtained by a gas phase synthesis method is composed of three or more layers having a thickness of 10 μm or more, and the nitrogen atom content with respect to the carbon atoms is secondary ion mass spectrometry. 2. The diamond single crystal substrate according to claim 1, wherein one or more layers are formed between the layer of 0 ppm to 10 ppm and the layer of 5 ppm to 100 ppm as measured in 1. 製造時における導入ガスが、気相合成法で得られる炭素原子に対する窒素原子含有量が2次イオン質量分析法で測定した値で5〜100ppmまたは0〜10ppmの層のダイヤモンド層を成長させるのに必要な量の窒素原子を含んでおり、該窒素原子を含むガスの導入量を調整することで窒素原子含有量の異なるダイヤモンド単結晶層を製造することを特徴とする請求項1又は2に記載のダイヤモンド単結晶基板の製造方法。 Introducing a diamond layer having a nitrogen atom content of 5 to 100 ppm or 0 to 10 ppm as measured by secondary ion mass spectrometry with respect to carbon atoms obtained by vapor phase synthesis as the introduced gas during production contains the required amount of nitrogen atom, according to claim 1 or 2, characterized in that the production of different diamond single crystal layer of the nitrogen atom content by adjusting the amount of introduced gas containing nitrogen atom Of manufacturing a diamond single crystal substrate.
JP2007013858A 2007-01-24 2007-01-24 Diamond single crystal substrate and manufacturing method thereof Active JP4986131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013858A JP4986131B2 (en) 2007-01-24 2007-01-24 Diamond single crystal substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013858A JP4986131B2 (en) 2007-01-24 2007-01-24 Diamond single crystal substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008179505A JP2008179505A (en) 2008-08-07
JP4986131B2 true JP4986131B2 (en) 2012-07-25

Family

ID=39723705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013858A Active JP4986131B2 (en) 2007-01-24 2007-01-24 Diamond single crystal substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4986131B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067571B2 (en) * 2008-07-16 2012-11-07 住友電気工業株式会社 Diamond single crystal substrate and manufacturing method thereof
US9017633B2 (en) 2010-01-18 2015-04-28 Element Six Technologies Limited CVD single crystal diamond material
GB201000768D0 (en) * 2010-01-18 2010-03-03 Element Six Ltd CVD single crystal diamond material
GB201013112D0 (en) 2010-08-04 2010-09-22 Element Six Ltd A diamond optical element
GB201610053D0 (en) * 2016-06-09 2016-07-27 Element Six Tech Ltd Synthetic diamond heat spreaders
GB201904435D0 (en) * 2019-03-29 2019-05-15 Element Six Tech Ltd Single crystal synthetic diamond material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513342A (en) * 1991-06-20 1993-01-22 Kawasaki Steel Corp Semiconductur diamond
JP3350994B2 (en) * 1993-02-12 2002-11-25 住友電気工業株式会社 Manufacturing method of diamond sheet
JP4822167B2 (en) * 2005-04-20 2011-11-24 住友電気工業株式会社 Diamond semiconductor manufacturing method and diamond semiconductor

Also Published As

Publication number Publication date
JP2008179505A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4613314B2 (en) Single crystal manufacturing method
KR102267800B1 (en) Method of manufacturing single crystal diamond
JP4986131B2 (en) Diamond single crystal substrate and manufacturing method thereof
JP4694144B2 (en) Method for growing SiC single crystal and SiC single crystal grown thereby
EP2484816B1 (en) Method for production of laminate
JP2006176389A (en) Highly-oriented diamond film, method for manufacturing the same, and electronic device having highly-oriented diamond film
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
EP3026693B1 (en) Pretreatment method for base substrate, and method for manufacturing laminate using pretreated base substrate
JP2002234799A (en) Method of producing silicon carbide film and method of producing silicon carbide multilayer film structure
JP2007210815A (en) Method for producing diamond single crystal and diamond single crystal produced thereby
JPH06107494A (en) Vapor growth method for diamond
JP2012092018A (en) Diamond single crystal substrate
JP4623356B2 (en) Single crystal diamond
EP3112504B1 (en) Method for producing epitaxial silicon carbide wafer
Zhang et al. Morphology and crystalline property of an AlN single crystal grown on AlN seed
JP5067571B2 (en) Diamond single crystal substrate and manufacturing method thereof
JP6746124B2 (en) Method for producing single crystal diamond
Bohnen et al. Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCl in GaN HVPE
JPH04238895A (en) Diamond film and its production
JP6374060B2 (en) Method for producing single crystal diamond
JP6312236B2 (en) Method for producing single crystal diamond
JP7487702B2 (en) Method for manufacturing single crystal diamond substrate
JP6551953B2 (en) Method of manufacturing single crystal diamond
JP5239574B2 (en) Diamond single crystal substrate produced by vapor phase synthesis and method for producing the same
JPH06172089A (en) Synthesis of diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

R150 Certificate of patent or registration of utility model

Ref document number: 4986131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250