JP4985476B2 - Check valve for fuel supply pump - Google Patents

Check valve for fuel supply pump Download PDF

Info

Publication number
JP4985476B2
JP4985476B2 JP2008053891A JP2008053891A JP4985476B2 JP 4985476 B2 JP4985476 B2 JP 4985476B2 JP 2008053891 A JP2008053891 A JP 2008053891A JP 2008053891 A JP2008053891 A JP 2008053891A JP 4985476 B2 JP4985476 B2 JP 4985476B2
Authority
JP
Japan
Prior art keywords
valve
fuel
locking member
supply pump
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008053891A
Other languages
Japanese (ja)
Other versions
JP2009209793A (en
Inventor
政治 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008053891A priority Critical patent/JP4985476B2/en
Publication of JP2009209793A publication Critical patent/JP2009209793A/en
Application granted granted Critical
Publication of JP4985476B2 publication Critical patent/JP4985476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

本発明は、燃料供給ポンプの逆止弁に関し、例えばディーゼルエンジンの燃料噴射装置において燃料を吸入し、圧送する燃料供給ポンプの逆止弁に関する。   The present invention relates to a check valve for a fuel supply pump, for example, a check valve for a fuel supply pump that sucks and pumps fuel in a fuel injection device of a diesel engine.

従来、燃料タンクと内燃機関との間に配置され、内燃機関の駆動力を得てプランジャを往復動することにより、燃料を吸入し内燃機関に圧送する加圧室と、加圧室内に燃料を吸入する燃料吸入経路を開閉する逆止弁とを備えた燃料供給ポンプが知られている(特許文献1等)。   Conventionally, a pressure chamber that is disposed between a fuel tank and an internal combustion engine and obtains a driving force of the internal combustion engine to reciprocate a plunger to suck in fuel and pump it to the internal combustion engine; There is known a fuel supply pump including a check valve that opens and closes an intake fuel intake path (Patent Document 1, etc.).

こうした構成の逆止弁は、弁部材において弁座に着座及び離座するシート部側の端面が、プランジャ端面、及びプランジャを往復動自在に支持する摺動孔と共に加圧室を形成している。弁部材のシート部側とは反対の端部には、弁部材を閉弁方向に付勢するスプリングが設けられており、連結部材を介してスプリング及び弁部材が同軸上に連結されている。   In the check valve having such a configuration, the end surface on the seat portion side of the valve member that is seated on and separated from the valve seat forms a pressurizing chamber together with the plunger end surface and the sliding hole that reciprocally supports the plunger. . A spring that urges the valve member in the valve closing direction is provided at an end opposite to the seat portion side of the valve member, and the spring and the valve member are coaxially connected via a connecting member.

特許文献2に開示される連結部材は、スプリングの軸端部を支持する環状のワッシャ部材、及び内径側開口形状がC字状またはU字状を呈し、ワッシャ部材の移動を規制するストッパ部材を備えており、ストッパ部材の内径側が、上記反対の端部に形成された環状溝に嵌装されると共に、スプリングの軸端部とCリング状部材の間にワッシャ部材が挟み込まれて保持される。こうした構成によって、スプリング及び弁部材の連結状態が形成されている。
特表2001−500593号公報 特開2004−360675号公報
The connecting member disclosed in Patent Document 2 includes an annular washer member that supports the shaft end portion of the spring, and a stopper member that restricts the movement of the washer member, with the opening shape on the inner diameter side being C-shaped or U-shaped. An inner diameter side of the stopper member is fitted in an annular groove formed at the opposite end portion, and a washer member is sandwiched and held between the shaft end portion of the spring and the C ring-shaped member. . With this configuration, a connection state between the spring and the valve member is formed.
Special table 2001-500703 gazette JP 2004-360675 A

上記特許文献2に開示されているような、内燃機関の駆動力を得て駆動軸の回転によりプランジャを往復動させ、加圧室に燃料を吸入し、燃料噴射圧相当に加圧し圧送する燃料供給ポンプでは、燃料ポンプの駆動軸が高回転になるに従って、プランジャの加圧により加圧室内の燃料の昇圧速度が高められるため、逆止弁の閉弁加速が増大する。閉弁加速が増大すると、ストッパ部材の内径側が弁部材の上記環状溝の溝幅内で軸方向にずれるという懸念があり、ストッパ部材の内径側が当該ずれによる摺動により摩耗する可能性がある。   As disclosed in the above-mentioned Patent Document 2, fuel that obtains driving force of an internal combustion engine, reciprocates a plunger by rotation of a driving shaft, sucks fuel into a pressurizing chamber, and pressurizes and pressurizes the fuel equivalent to fuel injection pressure. In the supply pump, as the drive shaft of the fuel pump becomes higher, the pressure increase speed of the fuel in the pressurizing chamber is increased by the pressurization of the plunger, so that the valve closing acceleration of the check valve increases. When the valve closing acceleration increases, there is a concern that the inner diameter side of the stopper member may shift in the axial direction within the groove width of the annular groove of the valve member, and the inner diameter side of the stopper member may be worn by sliding due to the deviation.

また、発明者が鋭意研究を行なった結果、例えば燃料に万が一気泡が混入した場合には、吸入する燃料圧が圧力脈動を生じ、弁部材が異常振動する。その結果例えば上記閉弁加速が異常に高くなり、ひいては上記ストッパ部材の内径側が摩耗して、ストッパ部材が環状溝から抜けたり損傷するという懸念があるとの知見が得られたのである。   In addition, as a result of intensive research conducted by the inventor, for example, when bubbles are mixed in the fuel, the fuel pressure to be sucked causes pressure pulsation, and the valve member vibrates abnormally. As a result, for example, it has been found that the valve closing acceleration becomes abnormally high, and as a result, the inner diameter side of the stopper member is worn, and there is a concern that the stopper member may come off or be damaged from the annular groove.

本発明はこのような問題点に鑑みなされたものであり、優れた耐久性を有する燃料供給ポンプの逆止弁を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a check valve for a fuel supply pump having excellent durability.

本発明は、上記目的を達成するために以下の技術的手段を備える。   In order to achieve the above object, the present invention comprises the following technical means.

即ち、請求項1乃至6に記載の発明では、燃料タンクと内燃機関との間に配置され、内燃機関の駆動力を得て可動部材が往復動することにより燃料を吸入し、圧送する加圧室を備えた燃料供給ポンプに用いられ、
環状を呈する溝を有し、加圧室へ吸入される燃料を断続する弁部材と、弁部材を閉弁方向に付勢する付勢部材と、相手部材に嵌め込み可能な嵌合内周部を有し、弁部材の溝に嵌合内周部が取り付けられることにより、支持部材を介して付勢部材を係止する係止部材と、を有する燃料供給ポンプの逆止弁において、
燃料タンク内の燃料を汲み上げ、予備加圧し、この予備加圧された燃料を加圧室に供給するフィードポンプを備え、フィードポンプと加圧室の間に、燃料を濾過する燃料フィルタが設けられており、弁部材の軸方向において係止部材は、嵌合内周部の両端部で溝の内壁と当接しており、弁部材の溝の内壁に、弁部材の軸方向に向かって徐々に縮径する縮径部が形成され、縮径部の径方向の最内周部は、隙間を介して係止部材の嵌合内周部よりも内周側に位置していることを特徴とする。
That is, in the invention described in claims 1 to 6, the pressurization is arranged between the fuel tank and the internal combustion engine, sucks the fuel by reciprocating the movable member with the driving force of the internal combustion engine, and pressurizes the fuel. Used for fuel supply pump with chamber,
A valve member that has an annular groove and interrupts the fuel sucked into the pressurizing chamber; a biasing member that biases the valve member in the valve closing direction; and a fitting inner peripheral portion that can be fitted into the mating member. In the check valve of the fuel supply pump having a locking member that locks the biasing member via the support member by attaching the fitting inner peripheral portion to the groove of the valve member,
A feed pump is provided for pumping fuel in the fuel tank, pre-pressurizing, and supplying the pre-pressurized fuel to the pressurizing chamber, and a fuel filter for filtering the fuel is provided between the feed pump and the pressurizing chamber. In the axial direction of the valve member, the locking member is in contact with the inner wall of the groove at both ends of the inner periphery of the fitting member, and gradually approaches the inner wall of the groove of the valve member toward the axial direction of the valve member. A diameter-reduced portion that is reduced in diameter is formed, and the radially innermost peripheral portion of the reduced-diameter portion is located on the inner peripheral side with respect to the fitting inner peripheral portion of the locking member via a gap. To do.

かかる発明によると、加圧室へ吸入される燃料を断続する逆止弁において、弁部材の環状を呈する溝に係止部材が取り付けれ、弁部材を閉弁方向に付勢する付勢部材が支持部材を介して係止部材に係止されている。この係止部材は、相手部材に嵌め込み可能な嵌合内周部を溝に取り付けるものであるので、係止部材が溝において弁部材の軸方向の幅内に移動が制限される。言い換えると、係止部材が溝幅内で軸方向に移動するおそれがある。
これに対して上記構成に加えて、上記環状の溝の内壁を縮径するように形成し、当該縮径部の径方向の最内周部を、隙間を介して係止部材の上記嵌合内周部よりも内周側に位置させる構成とした。このような構成によると、係止部材の上記嵌合内周部が常に縮径部を挟み込むことになるので、縮径部により係止部材の軸方向移動が規制されるのである。これにより、係止部材が溝内の移動を制約され、かつその溝内に形成された縮径部により軸方向移動不能に嵌装されるので、係止部材の移動による係止部材の嵌合内周部の摩耗を防止することができる。
According to this invention, in the check valve for intermittently connecting the fuel sucked into the pressurizing chamber, the locking member is attached to the annular groove of the valve member, and the biasing member for biasing the valve member in the valve closing direction is supported. It is latched by the latching member via the member. Since this engaging member attaches the fitting inner peripheral part that can be fitted to the mating member to the groove, the movement of the engaging member within the axial width of the valve member is restricted in the groove. In other words, the locking member may move in the axial direction within the groove width.
On the other hand, in addition to the above configuration, the inner wall of the annular groove is formed to have a reduced diameter, and the innermost peripheral portion in the radial direction of the reduced diameter portion is engaged with the engagement member through the gap. It was set as the structure located in an inner peripheral side rather than an inner peripheral part. According to such a configuration, since the fitting inner peripheral portion of the locking member always sandwiches the reduced diameter portion, the axial movement of the locking member is restricted by the reduced diameter portion. As a result, the locking member is restrained from moving in the groove, and is fitted so as not to move in the axial direction by the reduced diameter portion formed in the groove. Wear of the inner periphery can be prevented.

ここで特に、請求項1に記載の発明の如く、燃料供給ポンプは、フィードポンプと加圧室の間に、燃料を濾過する燃料フィルタという構成要素を有している。このような構成では、例えば万が一燃料タンク内の燃料不足によりガス欠になった場合には、再始動時等において燃料中に気泡が混入する場合があり、吸入燃料の圧力脈動により、弁部材に過度な加速度が加わる可能性がある。また、燃料供給ポンプを、比較的高い高回転側で駆動する運転状態にする場合には、弁部材に過度な加速度が加わる可能性がある。  Here, in particular, as in the first aspect of the invention, the fuel supply pump has a component called a fuel filter for filtering fuel between the feed pump and the pressurizing chamber. In such a configuration, for example, if a gas shortage occurs due to a shortage of fuel in the fuel tank, bubbles may be mixed into the fuel at the time of restart or the like. Excessive acceleration may be applied. Further, when the fuel supply pump is in an operation state in which the fuel supply pump is driven on a relatively high high rotation side, there is a possibility that excessive acceleration is applied to the valve member.
このような状態での運転状態が想定される燃料供給ポンプに対し、弁部材への過度な加速度の影響による係止部材の嵌合内周部の摩耗を防止することができ、ひいては優れた耐久性を有する逆止弁及び燃料供給ポンプが得られるのである。  With respect to the fuel supply pump that is assumed to be operating in such a state, it is possible to prevent wear of the engaging inner peripheral portion of the locking member due to the influence of excessive acceleration on the valve member, and thus excellent durability. Thus, a check valve and a fuel supply pump having the characteristics can be obtained.

以上の請求項1に記載の発明によれば、弁部材に例えば過度な加速度が加わる場合があったとしても、係止部材の嵌合内周部の摩耗を防止することができ、ひいては優れた耐久性を有する燃料供給ポンプの逆止弁が得られるのである。   According to the first aspect of the present invention, even if excessive acceleration is applied to the valve member, for example, it is possible to prevent the engagement inner peripheral portion of the locking member from being worn, which is excellent. A durable fuel supply pump check valve is obtained.

また、請求項2に記載の発明では、弁部材が着座及び離座する弁座を有し、弁座が加圧室側に形成される弁ハウジングを備え、弁部材の弁座側の軸端部は、加圧室の内壁を構成することを特徴とする。   According to a second aspect of the present invention, the valve member includes a valve seat on which the valve member is seated and separated, the valve seat being formed on the pressurizing chamber side, and a shaft end of the valve member on the valve seat side The portion constitutes an inner wall of the pressurizing chamber.

かかる発明では、弁部材の弁座側の軸端部が加圧室の内壁を構成している。こうした構成では、加圧室に吸入される燃料の圧力特性が、負圧部分を含む圧力脈動を有する特性であったり、加圧室内の燃料の昇圧速度を高めるように可動部材を駆動する燃料供給ポンプの運転状態にあったりすると、弁部材の軸端部に、上記加圧室内で発生する圧力脈動や可動部材による燃料昇圧の影響を直接受けることになる。このような逆止弁の弁部材では、弁部材に過度な加速度が加わると、付勢部材の復原力により決まる係止部材側の加速度による移動速度に比べて、弁部材側の溝の移動速度が大きくなる可能性があるため、係止部材の嵌合内周部と溝の間で摺動摩耗が生じ易い。   In this invention, the shaft end of the valve member on the valve seat side constitutes the inner wall of the pressurizing chamber. In such a configuration, the pressure characteristic of the fuel sucked into the pressurizing chamber is a characteristic having a pressure pulsation including a negative pressure portion, or the fuel supply that drives the movable member so as to increase the pressure boosting speed of the fuel in the pressurizing chamber. When the pump is in an operating state, the shaft end portion of the valve member is directly affected by pressure pulsation generated in the pressurizing chamber and fuel pressure increase by the movable member. In such a check valve valve member, when excessive acceleration is applied to the valve member, the movement speed of the groove on the valve member side is higher than the movement speed due to the acceleration on the locking member side determined by the restoring force of the biasing member. Therefore, sliding wear tends to occur between the fitting inner peripheral portion of the locking member and the groove.

これに対して請求項2に記載の発明では、係止部材が溝内の縮径部により軸方向移動不能に嵌装されているので、係止部材の嵌合内周部及び溝間での摺動摩耗が効果的に抑制されるのである。   On the other hand, in the invention according to the second aspect, since the locking member is fitted so as not to move in the axial direction by the reduced-diameter portion in the groove, it is between the fitting inner peripheral portion of the locking member and the groove. Sliding wear is effectively suppressed.

また、請求項3乃至5に記載の発明では、溝の壁のうち、弁部材の軸方向において縮経部と対向する壁面は、弁部材の軸方向に対して垂直な壁面として形成されていることを特徴とする。 Further, in the invention according to claims 3 to 5, of the inner wall of the groove, the wall surface facing the Chijimikei portion in the axial direction of the valve member is formed as a perpendicular wall with respect to the axial direction of the valve member It is characterized by being.

かかる発明において、縮径部は係止部材の嵌合内周部での軸方向移動を規制するが、縮径部の形状によっては係止部材の姿勢が軸方向に対して過度に傾斜する場合がある。過度な傾斜が発生すると、係止部材に加わる付勢部材による復元力のアンバランスが発生するおそれがある。このアンバランスな作用力が係止部材に加わると、当該作用力により係止部材の外周部側が揺動し、これによって嵌合内周部が摩耗するおそれがあるのである。 In such an invention , the reduced diameter portion restricts axial movement at the fitting inner peripheral portion of the locking member, but depending on the shape of the reduced diameter portion, the posture of the locking member is excessively inclined with respect to the axial direction. There is. When excessive inclination occurs, there is a possibility that unbalance of restoring force due to the biasing member applied to the locking member may occur. When this unbalanced acting force is applied to the locking member, the acting force causes the outer peripheral portion side of the locking member to swing, which may cause wear of the fitting inner peripheral portion.

これに対して上記構成に加えて、溝の壁のうち、弁部材の軸方向において縮経部と対向する壁面を、弁部材の軸方向に対して垂直な壁面として形成する構成とするので、当該垂直な壁面によって、係止部材の姿勢が過度な傾斜姿勢になるのを防止することができる。 In addition to the above configuration contrast, among the inner wall of the groove, the wall surface facing the Chijimikei portion in the axial direction of the valve member, since a configuration to form a wall surface perpendicular to the axial direction of the valve member it can be prevented by the vertical wall surface, that the posture of the locking member is excessively inclined posture.

また、上記垂直な壁面は、請求項4に記載の発明の如く、係止部材を挟んで付勢部材とは反対側の壁に形成されていることを特徴とする。 Further, the vertical wall, as in the embodiment described in claim 4, the biasing member across the locking member, characterized in that it is formed in the inner wall of the opposite side.

このような構成によると、上記垂直な壁面は、係止部材を介して付勢部材の付勢力が加わる壁に形成されることになる。これにより、係止部材が過度な傾斜姿勢になるのを防止すると共に、上記垂直な壁面に支持される係止部材に、付勢部材の復元力がアンバランスな作用力として作用することは常にない。 With this configuration, the vertical wall surface will be formed in the inner wall urging force of the urging member via the engaging member is applied. As a result, the locking member is prevented from becoming an excessively inclined posture, and the restoring force of the urging member always acts as an unbalanced acting force on the locking member supported by the vertical wall surface. Absent.

また、上記垂直な壁面は、請求項5に記載の発明の如く、係止部材を挟んで付勢部材と同じ側の壁に形成されていることを特徴とする。 Further, the vertical wall, as in the embodiment described in claim 5, characterized in that it is formed in the inner wall of the same side as the biasing member across the locking member.

かかる発明では、溝の内壁の縮径部で、嵌合内周部と嵌装するので、従来技術のように環状の溝幅を、係止部材の軸方向幅より大きく形成された二面幅状に形成する必要はない。 In this invention, since the inner diameter part of the groove is fitted to the inner diameter part of the groove, the annular groove width is formed to be larger than the axial width of the locking member as in the prior art. It is not necessary to form it into a shape.

これに対して上記構成に加えて、垂直な壁面を、係止部材を挟んで付勢部材と同じ側の壁に形成する構成としている。これにより、係止部材の嵌合内周部が縮径部に嵌装された状態で、係止部材の軸方向端面を垂直な壁面で実質的に支持することができる。 In addition to the above configuration contrast, a vertical wall, has a configuration which forms the inner wall of the same side as the biasing member across the locking member. Thereby, the axial end surface of the locking member can be substantially supported by the vertical wall surface in a state where the fitting inner peripheral portion of the locking member is fitted to the reduced diameter portion.

また、請求項6に記載の発明では、係止部材は、ばね部材であって、嵌合内周部の開口径が拡縮するばね部材であることを特徴とする。   In addition, the invention according to claim 6 is characterized in that the locking member is a spring member, and is a spring member whose opening diameter of the fitting inner peripheral portion expands and contracts.

この構成によると、係止部材が、嵌合内周部の開口径が、弾性変形により拡径及び縮径すると共に、復元力により嵌合内周部を、嵌め込む相手部材に押し当てるというばね部材で形成されることになる。それ故に、弁部材の溝側の縮径部、及び係止部材側の嵌合内周部の大きさに製造ばらつきがあったとしても、干渉等による嵌装組付不良になることなく、溝側の縮径部に、係止部材側の嵌合内周部が確実に嵌装することができる。したがって、係止部材を、嵌装組付不良なく溝に取り付けることができると共に、係止部材を溝で軸方向不能に保持することができる。   According to this configuration, the engaging member has a spring in which the opening diameter of the fitting inner peripheral portion is expanded and reduced by elastic deformation, and the fitting inner peripheral portion is pressed against the mating member to be fitted by a restoring force. It will be formed of a member. Therefore, even if there is a manufacturing variation in the size of the reduced diameter portion on the groove side of the valve member and the fitting inner peripheral portion on the locking member side, the groove does not become defective due to interference or the like. The fitting inner peripheral portion on the locking member side can be securely fitted to the reduced diameter portion on the side. Therefore, the locking member can be attached to the groove without defective fitting and the locking member can be held in the axial direction in the groove.

以下、本発明の複数の実施形態を図面に基づいて説明する。なお、各実施形態において対応する構成要素には同一の符合を付すことにより、重複する説明を省略する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the component corresponding in each embodiment.

(第1実施形態)
図1〜3は、本発明の一実施形態による燃料供給ポンプを、車両用のコモンレール式燃料噴射装置に用いられる燃料供給ポンプに適用した例を示している。コモンレール式燃料噴射装置は、主に燃料タンク、燃料供給ポンプ1、図示しないコモンレール及び燃料噴射弁を備えており、燃料供給ポンプ1から供給される高圧燃料をコモンレールで蓄圧すると共に、当該コモンレール内の高圧燃料を、内燃機関の各気筒に設けられた燃料付射弁に分配し、気筒の燃焼室に噴射供給するものである。燃料タンク及び燃料供給ポンプ1は、コモンレール及び燃料噴射弁に高圧燃料を供給する燃料供給装置を構成している。
(First embodiment)
1 to 3 show an example in which a fuel supply pump according to an embodiment of the present invention is applied to a fuel supply pump used in a common rail fuel injection device for a vehicle. The common rail type fuel injection device mainly includes a fuel tank, a fuel supply pump 1, a common rail (not shown), and a fuel injection valve. The high pressure fuel supplied from the fuel supply pump 1 is accumulated in the common rail, High-pressure fuel is distributed to fuel-provided injection valves provided in each cylinder of the internal combustion engine, and injected into the combustion chamber of the cylinder. The fuel tank and the fuel supply pump 1 constitute a fuel supply device that supplies high-pressure fuel to the common rail and the fuel injection valve.

上記燃料タンクは常圧の燃料を蓄えており、燃料供給ポンプは、常圧の燃料を燃料タンクから吸い上げると共に、当該燃料を加圧し、圧送することによりコモンレールへ供給する高圧燃料を形成するものである。   The fuel tank stores normal pressure fuel, and the fuel supply pump sucks up the normal pressure fuel from the fuel tank and pressurizes and pumps the fuel to form high pressure fuel to be supplied to the common rail. is there.

図1、2に示すように、燃料供給ポンプ1のハウジング2は、ハウジング本体20、シリンダヘッド30、および軸受カバー50を備えている。ハウジング本体20及び軸受カバー50はアルミ製である。シリンダヘッド30は鉄製であり、「可動部材」としてのプランジャ35を往復移動可能に支持するシリンダ部31を有している。   As shown in FIGS. 1 and 2, the housing 2 of the fuel supply pump 1 includes a housing body 20, a cylinder head 30, and a bearing cover 50. The housing body 20 and the bearing cover 50 are made of aluminum. The cylinder head 30 is made of iron and has a cylinder portion 31 that supports a plunger 35 as a “movable member” so as to be able to reciprocate.

シリンダ部31の内部にはプランジャ35を往復移動可能に支持するプランジャ摺動孔31aが形成され、シリンダ部31の外周部が、ハウジング本体20のカム室21に連通する挿入孔29に挿入されて収容されている。このシリンダ部31のプランジャ摺動孔31aと、「逆止弁」としての吸入弁7の弁部材71の軸方向端面71aと、プランジャ35の軸方向端面とにより加圧室32が形成されている。   A plunger sliding hole 31 a that supports the plunger 35 so as to be able to reciprocate is formed inside the cylinder portion 31, and an outer peripheral portion of the cylinder portion 31 is inserted into an insertion hole 29 that communicates with the cam chamber 21 of the housing body 20. Contained. A pressurizing chamber 32 is formed by the plunger sliding hole 31 a of the cylinder portion 31, the axial end surface 71 a of the valve member 71 of the intake valve 7 as a “check valve”, and the axial end surface of the plunger 35. .

また、ハウジング本体20には、軸受けカバー50を軸方向に挿入し支持する支持孔28が形成されており、支持孔28はカム室21と連通している。   The housing body 20 is formed with a support hole 28 for inserting and supporting the bearing cover 50 in the axial direction, and the support hole 28 communicates with the cam chamber 21.

軸受カバー50は、図1の破線で図示されるボルト等の固定部材でハウジング本体20に固定されており、駆動軸80の両軸端部のうちの一方(図1中の左側軸端部)の駆動力入力部81を軸支する軸受ブッシュ(以下、第1軸受ブッシュという)51を収容している。また、駆動軸の他方(図1中の右側軸端部)のフィードポンプ駆動部82を軸支する軸受ブッシュ(以下、第2軸受ブッシュという)52がハウジング本体20に収容されている。   The bearing cover 50 is fixed to the housing body 20 by a fixing member such as a bolt illustrated by a broken line in FIG. 1, and one of both shaft end portions of the drive shaft 80 (left shaft end portion in FIG. 1). A bearing bush (hereinafter referred to as a first bearing bush) 51 that pivotally supports the driving force input portion 81 is housed. A housing bush 20 (hereinafter referred to as a second bearing bush) 52 that supports the feed pump drive unit 82 on the other side of the drive shaft (the right shaft end in FIG. 1) is housed in the housing body 20.

第1軸受ブッシュ51及び第2軸受ブッシュ52は、それぞれ、軸受カバー50及びハウジング本体20に圧入固定されると共に、上記固定部材により軸受カバー50がハウジング本体20に固定されることにより、第1軸受ブッシュ51及び第2軸受ブッシュ52が同軸上に配置されている。軸受カバー50と、駆動軸80の駆動力入力部81との間は、オイルシール53によりシールされている。駆動力入力部81及びフィードポンプ駆動部82を軸支する第1軸受ブッシュ51及び第2軸受ブッシュ52の内周面は、駆動軸80を外側から軸支するハウジングの軸孔部に相当する。   The first bearing bush 51 and the second bearing bush 52 are press-fitted and fixed to the bearing cover 50 and the housing body 20, respectively, and the bearing cover 50 is fixed to the housing body 20 by the fixing member. The bush 51 and the second bearing bush 52 are arranged coaxially. A gap between the bearing cover 50 and the driving force input portion 81 of the driving shaft 80 is sealed with an oil seal 53. The inner peripheral surfaces of the first bearing bush 51 and the second bearing bush 52 that pivotally support the driving force input portion 81 and the feed pump drive portion 82 correspond to the shaft hole portion of the housing that pivotally supports the drive shaft 80 from the outside.

駆動軸80は、駆動力入力部81、フィードポンプ駆動部82、および駆動軸80の回転軸線80jに対して偏心区分を形成するカム83を有しており、駆動力入力部81及びフィードポンプ駆動部82は第1軸受ブッシュ51及び第2軸受ブッシュ52によって回転可能に支持されている。なお、図1において第1軸受ブッシュ51及び第2軸受ブッシュ52は、第2軸受ブッシュ52の内径D2を第1軸受ブッシュ51の内径D3より小径に形成する構成としている(D2<D3)。駆動力入力部81を「大径部」、フィードポンプ駆動部82を「小径部」とも呼ぶ。   The drive shaft 80 includes a drive force input unit 81, a feed pump drive unit 82, and a cam 83 that forms an eccentric section with respect to the rotation axis 80j of the drive shaft 80. The drive force input unit 81 and the feed pump drive The portion 82 is rotatably supported by the first bearing bush 51 and the second bearing bush 52. In FIG. 1, the first bearing bush 51 and the second bearing bush 52 are configured such that the inner diameter D2 of the second bearing bush 52 is smaller than the inner diameter D3 of the first bearing bush 51 (D2 <D3). The driving force input unit 81 is also referred to as “large diameter portion”, and the feed pump driving unit 82 is also referred to as “small diameter portion”.

カム83は、カム輪郭が円形状を呈しており、かつ駆動力入力部81及びフィードポンプ駆動部82の中心軸80jに対し偏心して駆動力入力部81及びフィードポンプ駆動部82の間に形成されている。図1、2において、カム83は、その偏心軸83jが、駆動軸80の回転軸線80jに対して偏心量δが与えられて一体成形されている。   The cam 83 has a circular cam profile, and is formed between the driving force input portion 81 and the feed pump driving portion 82 so as to be eccentric with respect to the central axis 80j of the driving force input portion 81 and the feed pump driving portion 82. ing. 1 and 2, the cam 83 is integrally molded with an eccentric shaft 83 j giving an eccentric amount δ to the rotation axis 80 j of the drive shaft 80.

また、駆動軸80のフィードポンプ駆動部81は、予備圧送部としてのフィードポンプ22が配置され、フィードポンプ駆動部81の先端部とフィードポンプ22が直接的または継手部材などを介して間接的に連結されている。
(予備圧送部)
フィードポンプ22は、燃料タンクから燃料を吸引し、予備的に加圧(以下、予備加圧という)する低圧供給ポンプであり、予備加圧した燃料を、後述する圧送部側の加圧室32へ供給する。フィードポンプの構造は、インナギア式ポンプに限らず、ベーン式ポンプなどの周知のポンプ構造で構成されている。なお、フィードポンプ22から吐出された燃料(以下、フィード燃料)は、図示しないレギュレートなどの圧力調整装置によって、燃料の「予備圧力」としてのフィード圧を一定に保つように調整されている。また、このフィード燃料の一部は、図示しない絞り部を介してカム室21へ正圧の燃料として供給されている。
The feed pump drive unit 81 of the drive shaft 80 is provided with the feed pump 22 as a preliminary pumping unit, and the front end of the feed pump drive unit 81 and the feed pump 22 are directly or indirectly via a joint member or the like. It is connected.
(Preliminary pumping section)
The feed pump 22 is a low-pressure supply pump that sucks fuel from a fuel tank and preliminarily pressurizes (hereinafter referred to as prepressurization), and the prepressurized fuel is supplied to a pressurizing chamber 32 on the pumping unit side described later. To supply. The structure of the feed pump is not limited to the inner gear type pump, but is a known pump structure such as a vane type pump. The fuel discharged from the feed pump 22 (hereinafter referred to as feed fuel) is adjusted so as to keep the feed pressure as a “preliminary pressure” of the fuel constant by a pressure adjusting device such as a regulator (not shown). A part of the feed fuel is supplied as positive pressure fuel to the cam chamber 21 through a throttle portion (not shown).

(圧送部)
燃料供給ポンプ1の圧送部は、加圧室32と、駆動軸80の上記偏心区分に相当するカム83と、複数(本実施例では、図2に示すように2個)のプランジャ35と、カム83とプランジャ35との間に設けられ、駆動軸80の駆動力をプランジャ35へ伝達する「伝達部材」としてのカムリング90とを備えており、フィードポンプ22より吐出されるフィード燃料を更に高圧に加圧し、圧送する。
(Pumping part)
The pumping section of the fuel supply pump 1 includes a pressurizing chamber 32, a cam 83 corresponding to the eccentric section of the drive shaft 80, a plurality of (in this embodiment, two as shown in FIG. 2) plungers 35, A cam ring 90 is provided between the cam 83 and the plunger 35 and serves as a “transmission member” that transmits the driving force of the drive shaft 80 to the plunger 35. The feed fuel discharged from the feed pump 22 is further pressurized. Pressurize and feed.

プランジャ35は、図1、2に示すようにカム83のカム摺動面83aに沿って駆動軸80の周りにほぼ等間隔に配置されている。本実施例では、2つのプランジャ35が駆動軸80を挟んで径方向の相反する側に配置されている。   As shown in FIGS. 1 and 2, the plungers 35 are arranged at substantially equal intervals around the drive shaft 80 along the cam sliding surface 83 a of the cam 83. In this embodiment, the two plungers 35 are arranged on opposite sides in the radial direction with the drive shaft 80 interposed therebetween.

プランジャ35の径方向内側の端部には、カムリング90の外壁側の摺接部95に対して、図1紙面の垂直方向(図2の左右方向)に相対的に摺接移動可能な「傘部」としてのタペット部35aが一体成形されている。即ち、プランジャ35の径方向内側の軸端部、即ちタペット部35aの端部と、カムリング90の摺接部95の端部とが互いに平行な平面状の端面で形成されており、これによって両端面の相対的な摺接移動がスムースに行なえるのである。   At the radially inner end of the plunger 35, an “umbrella that can slide and move relative to the sliding contact portion 95 on the outer wall side of the cam ring 90 in the vertical direction (the left-right direction in FIG. 2) of FIG. The tappet part 35a as a "part" is integrally molded. That is, the shaft end portion on the radially inner side of the plunger 35, that is, the end portion of the tappet portion 35a, and the end portion of the sliding contact portion 95 of the cam ring 90 are formed by planar end surfaces that are parallel to each other. The relative sliding movement of the surface can be performed smoothly.

カムリング90は、外周壁が上記摺接部95に対応する平面状の端面と、円弧状に形成される曲面状の端面とかなる多角形状(本実施例では、四角形状)に形成され、内周壁が円形に形成されている。カムリング90の内周壁には、円形状のカム83と摺動可能に環状を呈する軸受ブッシュ(以下、第3軸受ブッシュという)92が設けられており、第3軸受ブッシュ92はカムリング90の内壁に固定されている。   The cam ring 90 is formed in a polygonal shape (in this embodiment, a quadrangular shape) in which the outer peripheral wall includes a planar end surface corresponding to the sliding contact portion 95 and a curved end surface formed in an arc shape. Is formed in a circular shape. A bearing bush (hereinafter referred to as a third bearing bush) 92 that is slidably annular with the circular cam 83 is provided on the inner peripheral wall of the cam ring 90, and the third bearing bush 92 is provided on the inner wall of the cam ring 90. It is fixed.

上記プランジャ35のタペット部35aとシンダヘッド30の間には、シリンダ部31の軸方向に沿ってスプリング36が配置されており、プランジャ35の径方向内側の軸端部がカムリング90の摺接部95に向けて常に押し当てられている。このスプリング36の付勢力と、加圧室32内の燃料圧力によってプランジャ35が径方向に受ける作用力(以下、燃料作用力という)とによって、カムリング90の回転が規制され偏心回転する。   Between the tappet portion 35 a of the plunger 35 and the cinder head 30, a spring 36 is disposed along the axial direction of the cylinder portion 31, and the axially inner end portion of the plunger 35 is a sliding contact portion 95 of the cam ring 90. It is always pressed toward The urging force of the spring 36 and the acting force that the plunger 35 receives in the radial direction due to the fuel pressure in the pressurizing chamber 32 (hereinafter referred to as fuel acting force) restricts the rotation of the cam ring 90 and rotates eccentrically.

言い換えると、カムリング90は、駆動軸80の回転によるカム83の動きに従って、駆動軸80の回転軸線80jの周りを公転する。しかも、上述の如くカムリング90は、プランジャ35の燃料作用力及びスプリング36の付勢力によって常に押さえ付けられているので、カム83に対して相対的に回転可能であるが、カムリング90自体は回転(自転)せず、カム83のみが、公転するカムリング90内で回転するのである。   In other words, the cam ring 90 revolves around the rotation axis 80 j of the drive shaft 80 according to the movement of the cam 83 caused by the rotation of the drive shaft 80. Moreover, as described above, the cam ring 90 is always pressed by the fuel acting force of the plunger 35 and the urging force of the spring 36, so that it can rotate relative to the cam 83, but the cam ring 90 itself rotates ( Only the cam 83 rotates in the revolving cam ring 90 without rotation.

ここで、上記圧送部は、プランジャ35が図1中の図示下方へ移動することにより加圧室32にフィード燃料が吸入され、プランジャ35が図示上方へ移動することにより加圧室32内の燃料を加圧し圧送することにより燃料を燃料噴射圧相当の燃料圧に高圧化する。   Here, the pumping section is configured so that the feed fuel is sucked into the pressurizing chamber 32 when the plunger 35 moves downward in the figure in FIG. 1, and the fuel in the pressurizing chamber 32 moves when the plunger 35 moves upward in the figure. Is pressurized and pumped to increase the fuel to a fuel pressure equivalent to the fuel injection pressure.

加圧室32で燃料噴射圧相当に加圧される燃料は、吸入側の燃料通路34における吸入弁7とフィードポンプ22との間に配置された燃料調量弁(図示せず)により流量が調整されるのである。調整された流量即ち加圧室32への吸入燃料量は、コモンレール及び燃料噴射弁に供給する高圧燃料の吐出量に相当する燃料量に設定されている。   The amount of fuel pressurized in the pressurizing chamber 32 corresponding to the fuel injection pressure is controlled by a fuel metering valve (not shown) disposed between the suction valve 7 and the feed pump 22 in the fuel passage 34 on the suction side. It is adjusted. The adjusted flow rate, that is, the amount of fuel sucked into the pressurizing chamber 32 is set to a fuel amount corresponding to the discharge amount of the high-pressure fuel supplied to the common rail and the fuel injection valve.

なお、図1に示すように、加圧室32の吸入側の燃料通路33及び吐出側の燃料通路34には、それぞれ逆止弁7、38が設けられており、吸入弁7は加圧室32の吸入時以外は加圧室32への燃料の流入及び流出を制限するものであり、吐出弁38は、コモンレール及び燃料噴射弁へ供給される上記吐出燃料が加圧室32へ逆流するのを防止するものである。ここで、吸入弁7が請求範囲に記載の逆止弁に相当する。   As shown in FIG. 1, check valves 7 and 38 are provided in the fuel passage 33 on the suction side and the fuel passage 34 on the discharge side of the pressurization chamber 32, respectively. The discharge valve 38 restricts the inflow and outflow of fuel to the pressurizing chamber 32 except during the suction of the 32, and the discharge valve 38 causes the discharged fuel supplied to the common rail and the fuel injection valve to flow back to the pressurizing chamber 32. Is to prevent. Here, the suction valve 7 corresponds to a check valve described in the claims.

図1、2において、各プランジャ35においては、シリンダヘッド30、スプリング36、及びプランジャ35とから構成される組付体は、「圧送ユニット」としてのポンプエレメントを構成している。このポンプエレメントは、シリンダヘッド30のシリンダ部31を、ハウジング本体の挿入孔29に挿入した後、ボルト等の固定部材でハウジング本体20に固定されることで、カムリング90及び駆動軸80にプランジャ35のタペット部35aを押し当てるのである。   1 and 2, in each plunger 35, an assembly including the cylinder head 30, the spring 36, and the plunger 35 constitutes a pump element as a “pressure feeding unit”. In this pump element, the cylinder portion 31 of the cylinder head 30 is inserted into the insertion hole 29 of the housing body, and then fixed to the housing body 20 with a fixing member such as a bolt, whereby the plunger 35 is attached to the cam ring 90 and the drive shaft 80. The tappet portion 35a is pressed against.

以上、燃料供給ポンプ1の基本的構成について説明した。以下、燃料供給ポンプ1の吸入弁7の特徴的構成について説明する。   The basic configuration of the fuel supply pump 1 has been described above. Hereinafter, a characteristic configuration of the intake valve 7 of the fuel supply pump 1 will be described.

(吸入弁7の特徴的構成)
図1、3に示すように、吸入弁7は、弁部材71と、弁部材71が着座及び離座する弁座76aを有する弁ハウジング75と、「付勢部材」としてのスプリング77と、係止部材78と、「支持部材」としてのワッシャ部材79とを備えている。吸入弁7は、加圧室32を挟んでプランジャ35とは反対側に配置されている。
(Characteristic configuration of the intake valve 7)
As shown in FIGS. 1 and 3, the suction valve 7 includes a valve member 71, a valve housing 75 having a valve seat 76 a on which the valve member 71 is seated and separated, a spring 77 as an “urging member”, A stop member 78 and a washer member 79 as a “support member” are provided. The suction valve 7 is disposed on the opposite side of the plunger 35 with the pressurizing chamber 32 interposed therebetween.

弁部材71は、シート部72、溝部73、及び摺動部74を有している。シート部は、概ね円盤状に形成され、摺動部74の外径より大きい外径に形成されている。シート部72の外壁には当接部72aが形成されており、当接部72aは弁ハウジング75の内壁に形成される弁座76aに当接可能に配置され、当接部72aと弁座76aとが着座及び離座することで弁部材71が閉弁及び開弁する。シート部72aの弁座とは反対側の軸方向端部は、請求範囲に記載の加圧室の内壁に相当する。   The valve member 71 includes a seat part 72, a groove part 73, and a sliding part 74. The sheet portion is formed in a substantially disk shape and has an outer diameter larger than the outer diameter of the sliding portion 74. A contact portion 72 a is formed on the outer wall of the seat portion 72, and the contact portion 72 a is disposed so as to be able to contact a valve seat 76 a formed on the inner wall of the valve housing 75, and the contact portion 72 a and the valve seat 76 a. The valve member 71 closes and opens as a result of seating and leaving. An axial end of the seat portion 72a opposite to the valve seat corresponds to the inner wall of the pressurizing chamber described in the claims.

溝部73は、弁部材71のシート部72側とは反対の軸端部に設けられ、略環状を呈する環状溝に形成されている。溝部73には係止部材78の内周部78aが取り付けられ、溝部73内に形成される壁構造は、溝部73内で係止部材78を軸方向に移動不能に保持可能な壁形状に形成されている。上記溝部73の壁構造の詳細については後述する。   The groove part 73 is provided in the shaft end part opposite to the seat part 72 side of the valve member 71, and is formed in an annular groove having a substantially annular shape. An inner peripheral portion 78 a of the locking member 78 is attached to the groove portion 73, and the wall structure formed in the groove portion 73 is formed in a wall shape that can hold the locking member 78 in the groove portion 73 so as not to move in the axial direction. Has been. Details of the wall structure of the groove 73 will be described later.

摺動部74は、円柱形状に形成され、シート部72と溝部73との間に配置され、シート部72及び溝部73を繋いでいる。摺動部74の外壁の一部は弁ハウジング75の内壁と摺動する。   The sliding part 74 is formed in a cylindrical shape, is disposed between the sheet part 72 and the groove part 73, and connects the sheet part 72 and the groove part 73. A part of the outer wall of the sliding portion 74 slides with the inner wall of the valve housing 75.

弁ハウジング75は、内部に燃料通路76cを有しており、燃料通路76cは図1に示す吸入側の燃料通路33に連通しており、吸入側の燃料通路33を経由してフィードポンプ22の吐出側に接続している。弁ハウジング75の図示下端面75aは加圧室32側に形成され、弁部材71のシート部72と共に加圧室32の内壁を構成している。   The valve housing 75 has a fuel passage 76c therein, and the fuel passage 76c communicates with the suction-side fuel passage 33 shown in FIG. Connected to the discharge side. A lower end surface 75 a of the valve housing 75 in the figure is formed on the pressurizing chamber 32 side and constitutes an inner wall of the pressurizing chamber 32 together with the seat portion 72 of the valve member 71.

弁ハウジング75の内壁には、燃料通路76cにほぼ垂直に配置され、弁部材71を収容する収容孔部76が形成されている。収容部76は、加圧室32側から順に、弁座76a、摺動孔76bが形成され、弁座76aと摺動孔76bの間の収容部部分に、燃料通路76cが開口している。弁座76aはシート部72の当接部72aに当接及び離間し、当該当接及び離間により弁座76a及びシート部72が着座及び離座する。摺動孔76bは摺動部74を摺動可能に支持する。   The inner wall of the valve housing 75 is formed with an accommodation hole 76 that is disposed substantially perpendicular to the fuel passage 76 c and that accommodates the valve member 71. In the accommodating portion 76, a valve seat 76a and a sliding hole 76b are formed in this order from the pressurizing chamber 32 side, and a fuel passage 76c is opened in the accommodating portion between the valve seat 76a and the sliding hole 76b. The valve seat 76a contacts and separates from the contact portion 72a of the seat portion 72, and the valve seat 76a and the seat portion 72 are seated and separated by the contact and separation. The sliding hole 76b supports the sliding part 74 so that sliding is possible.

係止部材78は、図5に示すように概ねリング状を呈しており、弁部材71の溝部73に嵌め込まれる「嵌合内周部」としての内周部78aと、円弧状の外周部78bとを有しており、外周部78bは、円弧の周方向の両端部側に形成されたアーム部78baと、アーム部78ba間を接続する接続部78bbを有し、接続部78bには、内周部78aを挟んで径方向外側に開口する切欠部78cが設けられている。これにより、溝部73に取り付けられる内周部78aの周長を比較的大きく設定することができる。上記係止部材78はばね材で形成され、内周部78aの大きさが拡縮する、即ち弾性変形により拡径し、復元力により縮径する。   As shown in FIG. 5, the locking member 78 has a generally ring shape, and an inner peripheral portion 78 a as a “fitting inner peripheral portion” that is fitted into the groove 73 of the valve member 71, and an arc-shaped outer peripheral portion 78 b. The outer peripheral portion 78b has an arm portion 78ba formed on both ends in the circumferential direction of the arc, and a connecting portion 78bb for connecting the arm portions 78ba. A notch 78c is provided that opens radially outward with the peripheral portion 78a interposed therebetween. Thereby, the peripheral length of the inner peripheral part 78a attached to the groove part 73 can be set comparatively large. The locking member 78 is formed of a spring material, and the size of the inner peripheral portion 78a expands or contracts, that is, the diameter increases by elastic deformation, and the diameter decreases by a restoring force.

なお、係止部材78は、これに限らず、円弧状の外周部が、C字状やE字状に形成されているものであってもよい。外周部がC字状の場合には内周部78aの周長が同様に比較的大きく設定できるが、外周部の径方向幅が比較的狭くなり、ワッシャ部材79との接触面積が小さくなるおそれがある。外周部がE字状の場合には、E字状という形状に起因して内周部78aの周長が小さくなるおそれがある。   The locking member 78 is not limited to this, and an arcuate outer peripheral portion may be formed in a C shape or an E shape. When the outer peripheral portion is C-shaped, the peripheral length of the inner peripheral portion 78a can be set to be relatively large as well, but the radial width of the outer peripheral portion is relatively narrow, and the contact area with the washer member 79 may be reduced. There is. When the outer peripheral portion is E-shaped, the peripheral length of the inner peripheral portion 78a may be reduced due to the shape of the E-shape.

スプリング77は、弁部材71の軸方向に沿って外周側に同軸に配置され、円環状を呈するワッシャ部材79を介して係止部材78に係止されている。スプリング77の一方の軸端部は、ワッシャ部材79の軸端面に当接し、ワッシャ部材79を介して係止部材78によって支持されると共に、係止部材78を付勢している。スプリング77の他方の軸端部は、弁ハウジング75の図示上端面75bによって支持されると共に、弁ハウジング75を付勢している。スプリング75は、上端面75bに形成された段差部75baによって案内されており、段差部75baによりスプリング77が弁部材71と同軸上に配置されている。   The spring 77 is coaxially arranged on the outer peripheral side along the axial direction of the valve member 71 and is locked to the locking member 78 via a washer member 79 having an annular shape. One shaft end of the spring 77 is in contact with the shaft end surface of the washer member 79, is supported by the locking member 78 via the washer member 79, and biases the locking member 78. The other shaft end portion of the spring 77 is supported by the illustrated upper end surface 75 b of the valve housing 75 and urges the valve housing 75. The spring 75 is guided by a stepped portion 75ba formed on the upper end surface 75b, and the spring 77 is disposed coaxially with the valve member 71 by the stepped portion 75ba.

次に、溝部73の壁構造の詳細を、図3、4に基づいて説明する。   Next, details of the wall structure of the groove 73 will be described with reference to FIGS.

溝部73は、環状溝状の底軸に相当する軸部73aと、互いに対向して配置される側壁73b、73cとを備えている。軸部73aは、摺動部74と頭部71bの間を接続しており、軸部73aには、図4に示す如く係止部材78の内周部78aが、径方向隙間41を置いて配置される。   The groove portion 73 includes a shaft portion 73a corresponding to an annular groove-shaped bottom shaft, and side walls 73b and 73c arranged to face each other. The shaft portion 73a connects between the sliding portion 74 and the head portion 71b, and the shaft portion 73a is provided with an inner peripheral portion 78a of a locking member 78 with a radial gap 41 as shown in FIG. Be placed.

側壁73b、73cのうち、係止部材78を挟んでスプリング77とは反対側(図示上側)の側壁73bは、弁部材71の軸方向に対して垂直な壁面73ba形成ている。この側壁73bの側面73baは、係止部材77の一方の軸方向端部(図示の軸方向端面)と当接可能に配置されており、スプリング77の付勢力が加わる係止部材78を支持する。 Side walls 73b, of 73c, the side wall 73b opposite to the spring 77 across the locking member 78 (shown above) forms a vertical wall surface 73ba to the axial direction of the valve member 71. The side surface 73ba of the side wall 73b is disposed so as to be in contact with one axial end portion (the axial end surface in the drawing) of the locking member 77, and supports the locking member 78 to which the biasing force of the spring 77 is applied. .

側壁73cは、スプリング77と同じ側に配置されており、軸方向に沿って縮径する円錐状の壁面73caを有する縮径部73ccが形成されている。さらに、縮径部73ccは、縮径部73ccの内周部が係止部材78の内周部78aの内側に位置しており、係止部材78の内周部78aに当接する。具体的には、縮径部73ccの壁面73caが、以下の理由により、上記係止部材77の他方の軸方向端部側にある内周部78a部分に常に当接する。   The side wall 73c is disposed on the same side as the spring 77, and a reduced diameter portion 73cc having a conical wall surface 73ca having a reduced diameter along the axial direction is formed. Furthermore, the inner diameter part 73cc of the reduced diameter part 73cc is located inside the inner peripheral part 78a of the locking member 78 and abuts against the inner peripheral part 78a of the locking member 78. Specifically, the wall surface 73ca of the reduced diameter portion 73cc always abuts against the inner peripheral portion 78a portion on the other axial end side of the locking member 77 for the following reason.

即ち、縮径部73ccは、その壁面73caの外径が、溝部の外側に向かって軸方向に拡大するものである。これにより、係止部材77の軸方向幅が製造ばらつきにより大小が生じたとしても、側壁73caに当接する係止部材78の内周部78aの軸方向位置を変えることにより、係止部材77の軸方向幅にみあった、側壁73ba及び側壁73caの隙間に設定できるからである。   That is, the reduced diameter portion 73cc has an outer diameter of the wall surface 73ca that increases in the axial direction toward the outside of the groove portion. As a result, even if the axial width of the locking member 77 is increased or decreased due to manufacturing variations, the axial position of the inner peripheral portion 78a of the locking member 78 in contact with the side wall 73ca is changed. This is because the gap can be set between the side wall 73ba and the side wall 73ca in view of the axial width.

以上によると、係止部材78の内周部78aが両側面73ba、73caによって常に挟み込まれ、ひいては係止部材78を溝部73内で保持する。言い換えると、縮径部73ccは係止部材78の軸方向移動を規制する。そして、縮径部73ccの側面73caは側面73caと共に、係止部材78を軸方向不能に溝部73に嵌装させるのである。   According to the above, the inner peripheral portion 78 a of the locking member 78 is always sandwiched between the side surfaces 73 ba and 73 ca, and as a result, the locking member 78 is held in the groove portion 73. In other words, the reduced diameter portion 73 cc restricts the axial movement of the locking member 78. Then, the side surface 73ca of the reduced diameter portion 73cc, together with the side surface 73ca, fits the locking member 78 into the groove portion 73 so as not to be axially possible.

しかも、本実施形態では、係止部材77は、ばね材で形成されているので、内周部78aが弾性変形により拡径及び縮径し、かつその復元力により内周部78aを、縮径部73ccの壁面73caに押し当てることができ、ひいては係止部材77を軸方向移動不能に保持することができる。   In addition, in the present embodiment, since the locking member 77 is formed of a spring material, the inner peripheral portion 78a is enlarged and reduced in diameter by elastic deformation, and the inner peripheral portion 78a is reduced in diameter by its restoring force. It is possible to press against the wall surface 73ca of the portion 73cc, and as a result, the locking member 77 can be held so as not to move in the axial direction.

また、本実施形態では、ワッシャ部材79の内周部は、弁部材71の摺動部74で内側から支持される構成となっている。   In the present embodiment, the inner peripheral portion of the washer member 79 is supported from the inside by the sliding portion 74 of the valve member 71.

なお、ここで、以上の構成の燃料供給ポンプ1において燃料タンクから加圧室32までの燃料供給経路は、図6に示すように、燃料を濾過する燃料フィルタ100が、燃料タンクとフィードポンプ22との間に配置されている。燃料フィルタ100は内部に燃料中の異物を捕集するフィルタエレメントを有しており、加圧室32へ供給される燃料中の異物を除去する。   Here, in the fuel supply pump 1 having the above-described configuration, the fuel supply path from the fuel tank to the pressurizing chamber 32 is as shown in FIG. It is arranged between. The fuel filter 100 has a filter element that collects foreign matters in the fuel therein, and removes foreign matters in the fuel supplied to the pressurizing chamber 32.

また、上記弁部材71の溝部は、請求範囲に記載の溝に相当する。   The groove portion of the valve member 71 corresponds to the groove described in the claims.

以上の構成を有する燃料供給ポンプ1は、以下の特徴的作動及び作用を得られるのである。   The fuel supply pump 1 having the above configuration can obtain the following characteristic operations and actions.

(特徴的作動及び作用)
内燃機関のクランク軸等から駆動力を得て、駆動軸80が回転駆動されると、カム83が回転し、この回転によりカムリング90が自転することなく公転する。すると、駆動軸80から駆動力がカムリングを介して伝達される各プランジャ35は、シリンダ部31内のプランジャ摺動孔31aを往復動(図1〜図3における上下動)する。
(Characteristic operation and action)
When driving force is obtained from a crankshaft or the like of the internal combustion engine and the driving shaft 80 is driven to rotate, the cam 83 rotates, and the cam ring 90 revolves without rotating due to this rotation. Then, each plunger 35 to which driving force is transmitted from the drive shaft 80 via the cam ring reciprocates (up and down movement in FIGS. 1 to 3) through the plunger sliding hole 31 a in the cylinder portion 31.

このとき、加圧室32には燃料調量弁によって調量された燃料のみが吸入されるので、吸入される燃料量に応じて、図2の上方側のプランジャ35の位置(上死点位置)相当の前後期間の大きさが決定され、当該前後期間は、加圧室32内の吸入燃料を加圧し、圧送する圧送期間に相当する。   At this time, since only the fuel metered by the fuel metering valve is sucked into the pressurizing chamber 32, the position of the upper plunger 35 in FIG. 2 (top dead center position) according to the amount of fuel sucked. ) The size of a considerable period before and after is determined, and the period before and after corresponds to a pumping period in which the intake fuel in the pressurizing chamber 32 is pressurized and pumped.

一方、その他の図2の下方側のプランジャ35の位置(下死点位置)の位置相当や、図3の上方側及び下方側のプランジャ35の各位置相当の前後期間(以下、非加圧期間)では、吸入弁7が開弁され、吸入側の燃料通路33から供給される燃料が加圧室32に供給される。加圧室32に供給される燃料が、燃料調量弁によって調量された燃料量に達すると、吸入弁7が閉弁する。   On the other hand, the position corresponding to the position of the lower plunger 35 (bottom dead center position) in FIG. 2 and the preceding and following periods corresponding to the positions of the upper and lower plungers 35 in FIG. ), The intake valve 7 is opened, and the fuel supplied from the intake side fuel passage 33 is supplied to the pressurizing chamber 32. When the fuel supplied to the pressurizing chamber 32 reaches the fuel amount metered by the fuel metering valve, the suction valve 7 is closed.

このとき、非加圧期間中ではあるが、プランジャ35の移動により加圧室32内の容積が減じられる過程にあるので、吸入弁7の閉弁直前から実質的に上記圧送期間が開始される。また、上記プランジャ35の移動は、駆動軸80の回転が高まるに従って、プランジャ35の移動速度が高められるので、吸入弁7の閉弁直前時において、加圧室32の燃料の昇圧速度が高められる。その結果、弁部材71の閉弁加速度が高められることになる。言い換えると、弁部材71の閉弁時において、弁部材71には、駆動軸80の回転が高回転つまり燃料供給ポンプ1の駆動状態が高回転側の高回転領域で駆動されるほど、より大きい加速度が加わることになる。   At this time, although in the non-pressurization period, the volume in the pressurization chamber 32 is being reduced by the movement of the plunger 35, so that the pumping period is substantially started immediately before the intake valve 7 is closed. . Further, the movement of the plunger 35 increases the moving speed of the plunger 35 as the rotation of the drive shaft 80 increases, so that the pressure increase speed of the fuel in the pressurizing chamber 32 is increased immediately before the intake valve 7 is closed. . As a result, the valve closing acceleration of the valve member 71 is increased. In other words, when the valve member 71 is closed, the valve member 71 is larger as the rotation of the drive shaft 80 is higher, that is, the driving state of the fuel supply pump 1 is driven in the high rotation region on the high rotation side. Acceleration will be added.

さて、図11に示すような従来技術を適用する比較例の吸入弁907の弁部材971では、溝部973は、二面幅状の溝幅を有する環状溝が形成されており、当該溝部973は、両側面973ba、973ca間に、軸方向隙間942を置いて係止部材978が配置されている。このような溝部973では、係止部材978が両側面973ba、973caの溝幅内で軸方向移動が制限されるが、上記軸方向隙間942分だけ、溝部973内で係止部材978が軸方向移動するおそれがある。このような比較例の吸入弁907において、上記吸入弁の閉弁直前に弁部材973に過度な加速度が加わると、スプリング77の復原力により決まる係止部材78側の加速度による移動速度に比べて、弁部材71側の溝部の移動速度が大きくなる可能性があるため、係止部材78の内周部978aと溝部973の間で摺動摩耗が生じ易い。   Now, in the valve member 971 of the suction valve 907 of the comparative example to which the related art as shown in FIG. 11 is applied, the groove portion 973 is formed with an annular groove having a groove width of two faces, and the groove portion 973 is A locking member 978 is disposed between the side surfaces 973ba and 973ca with an axial gap 942 therebetween. In such a groove portion 973, the locking member 978 is restricted from moving in the axial direction within the groove width of both side surfaces 973ba and 973ca, but the locking member 978 is axially moved in the groove portion 973 by the axial gap 942. May move. In such a suction valve 907 of the comparative example, if excessive acceleration is applied to the valve member 973 immediately before the suction valve is closed, it is compared with the moving speed due to the acceleration on the locking member 78 side determined by the restoring force of the spring 77. Since the moving speed of the groove on the valve member 71 side may increase, sliding wear is likely to occur between the inner peripheral portion 978a of the locking member 78 and the groove 973.

これに対して本実施形態では、係止部材78が溝部73内の縮径部73ccにより軸方向移動不能に嵌装されているので、係止部材78の内周部78a及び溝部73間での摺動摩耗が効果的に抑制される。   On the other hand, in this embodiment, since the locking member 78 is fitted so as not to move in the axial direction by the reduced diameter portion 73 cc in the groove portion 73, the locking member 78 is interposed between the inner peripheral portion 78 a and the groove portion 73. Sliding wear is effectively suppressed.

以上によると、弁部材71に例えば過度な加速度が加わる場合があったとしても、係止部材78の内周部78a及び溝部73間の摩耗を防止することができ、ひいては優れた耐久性を有する燃料供給ポンプの吸入弁7が得られるのである。   According to the above, even if, for example, excessive acceleration is applied to the valve member 71, wear between the inner peripheral portion 78a and the groove portion 73 of the locking member 78 can be prevented, and thus excellent durability is achieved. The intake valve 7 of the fuel supply pump is obtained.

特に、上記燃料供給ポンプ1の構成として、燃料タンクとフィードポンプ22との間に燃料フィルタ100を配置するので、燃料タンクとフィードポンプ22の間で燃料が常圧(大気圧)以下になるため、燃料を濾過する際の抵抗により、特に燃料フィルタ100内のフィルタエレメントの下流側で気泡が発生し易い。万が一燃料中に気泡が混入した場合には、フィードポンプ22から吐出され、加圧室32へ供給される燃料の圧力特性が、負圧部分を含む圧力脈動を有する特性となる可能性がある。上記吸入弁の閉弁直前まで加圧室内の燃料が、圧力脈動の影響を受けることになるので、弁部材71の振動を招き、ひいては弁部材71に過大な加速度が加わるおそれがあるのである。   In particular, since the fuel filter 100 is arranged between the fuel tank and the feed pump 22 as the configuration of the fuel supply pump 1, the fuel becomes normal pressure (atmospheric pressure) or less between the fuel tank and the feed pump 22. Due to the resistance at the time of filtering the fuel, bubbles are likely to be generated particularly on the downstream side of the filter element in the fuel filter 100. In the unlikely event that bubbles are mixed into the fuel, the pressure characteristic of the fuel discharged from the feed pump 22 and supplied to the pressurizing chamber 32 may be a characteristic having pressure pulsation including a negative pressure portion. The fuel in the pressurized chamber is affected by pressure pulsation until just before the intake valve is closed, which may cause the valve member 71 to vibrate, which may cause excessive acceleration to the valve member 71.

こうした構成の燃料供給ポンプ1であっても、係止部材78が溝部73内の縮径部73ccにより軸方向移動不能に嵌装されているため、係止部材78の内周部78a及び溝部73間での摺動摩耗が効果的に抑制するので、優れた耐久性を有する吸入弁7が得られ、ひいては優れた耐久性を有する燃料供給ポンプ1が得られる。   Even in the fuel supply pump 1 having such a configuration, the locking member 78 is fitted so as not to move in the axial direction by the reduced diameter portion 73 cc in the groove 73, and therefore, the inner peripheral portion 78 a and the groove 73 of the locking member 78. Therefore, the intake valve 7 having excellent durability can be obtained, and as a result, the fuel supply pump 1 having excellent durability can be obtained.

ここで、上記構成のように溝部73の側壁73b、73cのうち、一方の側壁73c側のみに、縮径部73ccが形成されるものにおいて、縮径部73ccは係止部材78の内周部78aでの軸方向移動を規制するが、縮径部73ccの形状によっては係止部材78の姿勢が軸方向に対して過度に傾斜する場合がある。係止部材78の過度な傾斜が発生すると、係止部材78に加わるスプリングによる復元力のアンバランスが発生するおそれがある。このアンバランスな作用力が係止部材78に加わると、当該作用力により係止部材78の外周部78b側が揺動し、これによって内周部78aが摩耗するおそれがある。   Here, in the case where the reduced diameter portion 73cc is formed only on one side wall 73c side among the side walls 73b and 73c of the groove portion 73 as in the above configuration, the reduced diameter portion 73cc is the inner peripheral portion of the locking member 78. Although movement in the axial direction at 78a is restricted, depending on the shape of the reduced diameter portion 73cc, the posture of the locking member 78 may be excessively inclined with respect to the axial direction. If an excessive inclination of the locking member 78 occurs, there is a possibility that an unbalance of restoring force due to a spring applied to the locking member 78 may occur. When this unbalanced acting force is applied to the locking member 78, the outer peripheral portion 78b side of the locking member 78 is swung by the acting force, which may cause wear of the inner peripheral portion 78a.

これに対して実施形態では、溝部73の側壁73b、73cのうち、他方の側壁73bを、弁部材71の軸方向に対して垂直な壁面73baに形成する構成としているので、他方の側壁側の垂直な壁面73bによって、係止部材78の姿勢が過度な傾斜姿勢になるのが防止される。   On the other hand, in the embodiment, of the side walls 73b and 73c of the groove 73, the other side wall 73b is formed as a wall surface 73ba perpendicular to the axial direction of the valve member 71. The vertical wall surface 73b prevents the locking member 78 from being inclined excessively.

さらに本実施形態では、上記垂直な壁面73baが形成される他方の側壁73bは、係止部材78を挟んでスプリング77とは反対側に配置される構成とするので、上記側壁73b側の垂直な側面73baは、係止部材78の一方の軸方向端面と当接するように配置されており、スプリング77の付勢力が加わる係止部材78を有効に支持することができる。したがって、係止部材78が過度な傾斜姿勢になるのを防止すると共に、上記垂直な壁面73baに支持される係止部材78に、スプリンング35の復元力がアンバランスな作用力として作用することは常にない。   Further, in the present embodiment, the other side wall 73b on which the vertical wall surface 73ba is formed is arranged on the side opposite to the spring 77 with the locking member 78 interposed therebetween, so the vertical wall on the side wall 73b side is arranged. The side surface 73ba is disposed so as to contact one axial end surface of the locking member 78, and can effectively support the locking member 78 to which the urging force of the spring 77 is applied. Therefore, the locking member 78 is prevented from being in an excessively inclined posture, and the restoring force of the spring 35 acts as an unbalanced acting force on the locking member 78 supported by the vertical wall surface 73ba. Not always.

さらに本実施形態では、係止部材78は、ばね材で形成されているので、内周部78aの開口径が弾性変形により拡径及び縮径し、かつその復元力により内周部78aを、縮径部73ccの壁面73caに押し当てることができ、ひいては係止部材78を軸方向移動不能に保持することができる。それ故に、
弁部材71の溝部73側の縮径部73cc、及び係止部材78側の内周部78aの大きさに製造ばらつきがあったとしても、干渉等による嵌装組付不良になることなく、縮径部73ccに、係止部材78側の内周部78aが確実に嵌装することができる。したがって、係止部材78を、嵌装組付不良なく溝部73に取り付けることができると共に、係止部材78を溝部73で軸方向不能に確実に保持することができる。
Furthermore, in this embodiment, since the locking member 78 is formed of a spring material, the opening diameter of the inner peripheral portion 78a is expanded and reduced by elastic deformation, and the inner peripheral portion 78a is restored by its restoring force. It can be pressed against the wall surface 73ca of the reduced diameter portion 73cc, and as a result, the locking member 78 can be held immovable in the axial direction. Therefore,
Even if there is a manufacturing variation in the size of the reduced diameter portion 73cc on the groove 73 side of the valve member 71 and the size of the inner peripheral portion 78a on the locking member 78 side, the size of the valve member 71 is reduced without causing a fitting assembly failure due to interference or the like. The inner peripheral portion 78a on the locking member 78 side can be securely fitted to the diameter portion 73cc. Therefore, the locking member 78 can be attached to the groove 73 without defective fitting and the locking member 78 can be reliably held by the groove 73 so as not to be axially disabled.

(第2実施形態)
第2実施形態を図7に示す。第2実施形態は第1実施形態の変形例である。第2実施形態では、側壁73b、73cのうち、係止部材78を挟んでスプリング77とは反対側にある他方の側壁73bに縮径部73bcを設け、一方の側壁73cに垂直な壁面7caを設けた一例を示すものである。
(Second Embodiment)
A second embodiment is shown in FIG. The second embodiment is a modification of the first embodiment. In the second embodiment, of the side walls 73b and 73c, a reduced diameter portion 73bc is provided on the other side wall 73b opposite to the spring 77 with the locking member 78 interposed therebetween, and the wall surface 7ca perpendicular to the one side wall 73c is provided. An example is shown.

図7に示すように、他方の側壁73bは、軸方向に沿って縮径する壁面73baを有する縮径部73bcが形成されている。さらに、縮径部73bcは、縮径部73bcの内周部が係止部材78の内周部78aの内側に位置しており、係止部材78の内周部78aに当接する。それ故に、溝部73は、比較例のように溝部973内に係止部材78との軸方向隙間を設ける必要がない。そのような溝部73の両側壁73b、73cの配置において、一方の側壁73cに垂直な壁面7caを設けているので、係止部材78の内周部78aが縮径部73bcに嵌装された状態で、係止部材78の軸方向端部が、垂直な壁面73baで実質的に支持される。   As shown in FIG. 7, the other side wall 73b is formed with a reduced diameter portion 73bc having a wall surface 73ba having a reduced diameter along the axial direction. Further, the inner diameter part of the reduced diameter part 73bc is located inside the inner peripheral part 78a of the locking member 78, and the reduced diameter part 73bc comes into contact with the inner peripheral part 78a of the locking member 78. Therefore, the groove part 73 does not need to provide an axial gap with the locking member 78 in the groove part 973 as in the comparative example. In such arrangement of the side walls 73b and 73c of the groove 73, the wall surface 7ca perpendicular to the one side wall 73c is provided, so that the inner peripheral portion 78a of the locking member 78 is fitted into the reduced diameter portion 73bc. Thus, the axial end of the locking member 78 is substantially supported by the vertical wall surface 73ba.

以上の構成によっても、第1実施形態と同様な効果が得られるのである。   Even with the above configuration, the same effect as the first embodiment can be obtained.

(第3実施形態)
第3実施形態を図8に示す。第3実施形態は第1実施形態の変形例である。第3実施形態では、溝部73の縮径部73ccの略円錐状の壁面73cbの母線方向を、曲線状に形成した一例を示すものである。
(Third embodiment)
A third embodiment is shown in FIG. The third embodiment is a modification of the first embodiment. In the third embodiment, an example in which the generatrix direction of the substantially conical wall surface 73cb of the reduced diameter portion 73cc of the groove portion 73 is formed in a curved shape is shown.

図8に示すように、側壁73c側に形成する壁面73cbが、第1実施形態の如き直線状のもの代えて、曲線状に形成されている。   As shown in FIG. 8, a wall surface 73cb formed on the side wall 73c side is formed in a curved shape instead of a linear shape as in the first embodiment.

この構成によっても、第1実施形態と同様な効果が得られるのである。   Also with this configuration, the same effect as in the first embodiment can be obtained.

上記縮径部73ccと係止部材78の内周部78aとの連結構造は、上記係止部材78の内周部78aのうちの、他方の軸方向端部側にある内周部78a部分の環状領域が、縮径部73ccの壁面73caに当接することにより、係止部材77の内周部78aが縮径部73ccの壁面73caに押し当てられるものである。これに対して本実施形態では、円錐状の母線が曲線状に形成された壁面73caに形成されているので、内周部78aと縮径部73ccの壁面73caとの間の接触面積の拡大が図れる。それによって、連結状態にある内周部78aと縮径部73ccにおける初期摩耗が小さくできるという相乗効果が得られる。   The connection structure between the reduced diameter portion 73cc and the inner peripheral portion 78a of the locking member 78 is the inner peripheral portion 78a of the inner peripheral portion 78a of the locking member 78 on the other axial end portion side. When the annular region abuts against the wall surface 73ca of the reduced diameter portion 73cc, the inner peripheral portion 78a of the locking member 77 is pressed against the wall surface 73ca of the reduced diameter portion 73cc. On the other hand, in this embodiment, since the conical bus bar is formed on the curved wall surface 73ca, the contact area between the inner peripheral portion 78a and the wall surface 73ca of the reduced diameter portion 73cc is increased. I can plan. Thereby, the synergistic effect that the initial wear in the inner peripheral portion 78a and the reduced diameter portion 73cc in the connected state can be reduced is obtained.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. .

(1)例えば以上説明した本実施形態では、側壁73b、73cのうち、一方の側壁のみに縮径部を設ける構成としたが、これに限らず、両側壁73b、73cに縮径部を設ける構成としてもよい。   (1) For example, in the present embodiment described above, the reduced diameter portion is provided on only one of the side walls 73b and 73c. However, the present invention is not limited thereto, and the reduced diameter portion is provided on both side walls 73b and 73c. It is good also as a structure.

(2)また、以上説明した本実施形態では、側壁73cの壁面の全体を、縮径部73ccの円錐状の壁面73caに形成した。これに限らず、側壁73cの壁面の一部を、上記円錐状の壁面73caとはせずに、例えば軸部73aの外周面と壁面73caとを繋ぐ角部73rを設け、当該角部73rをコーナRとする構成としてもよい。   (2) Moreover, in this embodiment demonstrated above, the whole wall surface of the side wall 73c was formed in the conical wall surface 73ca of the reduced diameter part 73cc. Not limited to this, a part of the wall surface of the side wall 73c is not used as the conical wall surface 73ca, but, for example, a corner part 73r that connects the outer peripheral surface of the shaft part 73a and the wall surface 73ca is provided. It is good also as a structure set as the corner R.

この場合、円錐状の壁面73caの表面形状精度を高め、係止部材78の内周部78aと縮径部73ccの壁面73caとの接触面積拡大が図る場合において、上記壁面73caを研削加工する方法が考えらえるが、上記構成により、研削加工で表面形状精度を高めることができると共に、上記角部73rのコーナRによって研削工具が軸部73aに干渉するのを回避でき、ひいては容易に弁部材71を製造することができる。   In this case, when the surface shape accuracy of the conical wall surface 73ca is increased and the contact area between the inner peripheral portion 78a of the locking member 78 and the wall surface 73ca of the reduced diameter portion 73cc is increased, the wall surface 73ca is ground. However, with the above configuration, the surface shape accuracy can be improved by grinding, and the corner R of the corner portion 73r can prevent the grinding tool from interfering with the shaft portion 73a, and thus the valve member easily. 71 can be manufactured.

(3)また、以上説明した本実施形態では、燃料供給ポンプ1のフィードポンプ22と燃料タンクの間に、燃料フィルタ100を設ける構成としたが、これに限らず、フィードポンプ22と加圧室32の間に、燃料フィルタ100を設ける構成としてもよい。
このような構成では、例えば万が一燃料タンク内の燃料不足によりガス欠になった場合には、再始動時等において燃料中に気泡が混入する場合があり、吸入燃料の圧力脈動により、弁部材71に過度な加速度が加わる可能性がある。また、燃料供給ポンプ1を、比較的高い高回転側で駆動する運転状態にする場合には、第1〜第3実施形態と同様に、弁部材71に過度な加速度が加わる可能性がある。
(3) In the present embodiment described above, the fuel filter 100 is provided between the feed pump 22 of the fuel supply pump 1 and the fuel tank. However, the present invention is not limited thereto, and the feed pump 22 and the pressurizing chamber are not limited thereto. It is good also as a structure which provides the fuel filter 100 between 32.
In such a configuration, for example, in the event that the gas runs out due to a shortage of fuel in the fuel tank, bubbles may be mixed into the fuel at the time of restart or the like, and the valve member 71 is caused by pressure pulsation of the intake fuel. Excessive acceleration may be applied. Further, when the fuel supply pump 1 is in an operation state in which the fuel supply pump 1 is driven at a relatively high high rotation side, excessive acceleration may be applied to the valve member 71 as in the first to third embodiments.

このような状態での運転状態が想定される燃料供給ポンプに対し、弁部材71への過度な加速度の影響による係止部材78の内周部78aと溝部73の摩耗を防止することができ、ひいては優れた耐久性を有する吸入弁7及び燃料供給ポンプ1が得られるのである。   With respect to the fuel supply pump assumed to be operating in such a state, it is possible to prevent wear of the inner peripheral portion 78a and the groove portion 73 of the locking member 78 due to the influence of excessive acceleration on the valve member 71, As a result, the intake valve 7 and the fuel supply pump 1 having excellent durability can be obtained.

本発明の第1実施形態による燃料供給ポンプを示す縦断面図であって、図2のI−I線断面図である。It is a longitudinal cross-sectional view which shows the fuel supply pump by 1st Embodiment of this invention, Comprising: It is the II sectional view taken on the line of FIG. 図1中のII−II線断面図である。It is the II-II sectional view taken on the line in FIG. 図1中の逆止弁を示す断面図である。It is sectional drawing which shows the non-return valve in FIG. 図3中の逆止弁の特徴部分を示す図であって、弁部材と係止部材の連結構造を説明する模式的断面図である。It is a figure which shows the characteristic part of the non-return valve in FIG. 3, Comprising: It is typical sectional drawing explaining the connection structure of a valve member and a locking member. 図3中の係止部材を示す平面図である。It is a top view which shows the locking member in FIG. 図1の燃料供給ポンプにおいて燃料タンクから加圧室までの燃料経路を説明する模式図である。It is a schematic diagram explaining the fuel path | route from a fuel tank to a pressurization chamber in the fuel supply pump of FIG. 第2実施形態による燃料供給ポンプの逆止弁に係わる弁部材と係止部材の連結構造を示す模式的断面図である。It is typical sectional drawing which shows the connection structure of the valve member and latching member which concern on the non-return valve of the fuel supply pump by 2nd Embodiment. 第3実施形態による燃料供給ポンプの逆止弁に係わる弁部材と係止部材の連結構造を示す模式的断面図である。It is typical sectional drawing which shows the connection structure of the valve member and latching member which concern on the non-return valve of the fuel supply pump by 3rd Embodiment. 他の実施形態による燃料供給ポンプの逆止弁に係わる弁部材と係止部材の連結構造を示す模式的断面図である。It is typical sectional drawing which shows the connection structure of the valve member and latching member which concern on the non-return valve of the fuel supply pump by other embodiment. 他の実施形態燃料供給ポンプにおいて燃料タンクから加圧室までの燃料経路を説明する模式図である。It is a schematic diagram explaining the fuel path | route from a fuel tank to a pressurization chamber in other embodiment fuel supply pump. 比較例による燃料供給ポンプの逆止弁に係わる弁部材と係止部材の連結構造を示す模式的断面図である。It is typical sectional drawing which shows the connection structure of the valve member and latching member which concern on the non-return valve of the fuel supply pump by a comparative example.

符号の説明Explanation of symbols

1 燃料供給ポンプ
2 ハウジング
20 ハウジング本体
21 カム室
22 フィードポンプ
29 挿入孔
30シリンダヘッド
31 シリンダ部
31a プランジャ摺動孔
32 加圧室
35 プランジャ
38 吐出弁
41 径方向隙間
50 軸受カバー
51 第1軸受ブッシュ(軸受ブッシュ)
52 第2軸受ブッシュ(軸受ブッシュ)
7 吸入弁(逆止弁)
71 弁部材
71a 軸方向端面
71b 頭部
72 シート部
72a 当接部
73 溝部
73a 軸部
73b 側壁
73ba 側面
73c 側壁
73ca 側面
73cc 縮径部
74 摺動部
75 弁ハウジング
76 収容孔部
76a 摺動孔
76b 弁座
76c 燃料通路
77 スプリング(付勢部材)
78 係止部材
78a 内周部(嵌合内周部)
78b 外周部
78ba アーム部
78bb 接続部
78c 切欠部
79 ワッシャ部材(支持部材)
80 駆動軸
81 駆動力入力部
82 フィードポンプ駆動部
83 カム(偏心区分)
83a 外周面(摺動面)
90 カムリング(伝達部材)
92 第3軸受ブッシュ(軸受ブッシュ)
95 摺接部
100 燃料フィルタ
DESCRIPTION OF SYMBOLS 1 Fuel supply pump 2 Housing 20 Housing main body 21 Cam chamber 22 Feed pump 29 Insertion hole 30 Cylinder head 31 Cylinder part 31a Plunger sliding hole 32 Pressurization chamber 35 Plunger 38 Discharge valve 41 Radial clearance 50 Bearing cover 51 First bearing bush (Bearing bush)
52 Second bearing bush (bearing bush)
7 Suction valve (check valve)
71 Valve member 71a Axial end surface 71b Head portion 72 Seat portion 72a Contact portion 73 Groove portion 73a Shaft portion 73b Side wall 73ba Side surface 73c Side wall 73ca Side surface 73cc Reduced diameter portion 74 Sliding portion 75 Valve housing 76 Housing hole portion 76a Sliding hole 76b Valve seat 76c Fuel passage 77 Spring (biasing member)
78 Locking member 78a Inner circumference (fitting inner circumference)
78b Outer peripheral part 78ba Arm part 78bb Connection part 78c Notch part 79 Washer member (supporting member)
80 Drive shaft 81 Drive force input part 82 Feed pump drive part 83 Cam (Eccentric section)
83a Outer peripheral surface (sliding surface)
90 Cam ring (transmission member)
92 3rd bearing bush (bearing bush)
95 Sliding part 100 Fuel filter

Claims (6)

燃料タンクと内燃機関との間に配置され、前記内燃機関の駆動力を得て可動部材が往復動することにより燃料を吸入し、圧送する加圧室を備えた燃料供給ポンプに用いられ、
環状を呈する溝を有し、前記加圧室へ吸入される燃料を断続する弁部材と、
前記弁部材を閉弁方向に付勢する付勢部材と、
相手部材に嵌め込み可能な嵌合内周部を有し、前記弁部材の前記溝に前記嵌合内周部が取り付けられることにより、支持部材を介して前記付勢部材を係止する係止部材と、
を有する燃料供給ポンプの逆止弁において、
前記燃料タンク内の燃料を汲み上げ、予備加圧し、この予備加圧された燃料を前記加圧室に供給するフィードポンプを備え、
前記前記フィードポンプと前記加圧室の間に、燃料を濾過する燃料フィルタが設けられており、
前記弁部材の軸方向において前記係止部材は、前記嵌合内周部の両端部で前記溝の内壁と当接しており、
前記弁部材の前記溝の内壁に、前記弁部材の軸方向に向かって徐々に縮径する縮径部が形成され、
前記縮径部の径方向の最内周部は、隙間を介して前記係止部材の前記嵌合内周部よりも内周側に位置していることを特徴とする燃料供給ポンプの逆止弁。
It is disposed between a fuel tank and an internal combustion engine, and is used in a fuel supply pump having a pressurizing chamber that sucks and pumps fuel by obtaining a driving force of the internal combustion engine and reciprocating a movable member;
A valve member that has an annular groove and interrupts the fuel sucked into the pressurizing chamber;
A biasing member that biases the valve member in a valve closing direction;
A locking member that has a fitting inner peripheral portion that can be fitted into a mating member, and that locks the biasing member via a support member by attaching the fitting inner peripheral portion to the groove of the valve member When,
A check valve of a fuel supply pump having
A feed pump for pumping fuel in the fuel tank, pre-pressurizing, and supplying the pre-pressurized fuel to the pressurizing chamber;
A fuel filter for filtering fuel is provided between the feed pump and the pressurizing chamber,
In the axial direction of the valve member, the locking member is in contact with the inner wall of the groove at both ends of the fitting inner peripheral portion,
On the inner wall of the groove of the valve member, a reduced diameter portion that gradually decreases in the axial direction of the valve member is formed,
A check of the fuel supply pump, wherein the radially innermost peripheral portion of the reduced diameter portion is located on the inner peripheral side with respect to the fitting inner peripheral portion of the locking member via a gap. valve.
前記弁部材が着座及び離座する弁座を有し、前記弁座が前記加圧室側に形成される弁ハウジングを備え、
前記弁部材の前記弁座側の軸端部は、前記加圧室の内壁を構成することを特徴とする請求項1に記載の燃料供給ポンプの逆止弁。
The valve member has a valve seat that is seated and separated, and the valve seat includes a valve housing formed on the pressurizing chamber side,
2. The check valve for a fuel supply pump according to claim 1, wherein a shaft end portion of the valve member on the valve seat side constitutes an inner wall of the pressurizing chamber.
前記溝の壁のうち、前記弁部材の軸方向において前記縮経部と対向するは、前記弁部材の軸方向に対して垂直な壁面として形成されていることを特徴とする請求項1または請求項2に記載の燃料供給ポンプの逆止弁。 Of the inner wall of the groove, the wall surface which faces the Chijimikei portion in the axial direction of the valve member, claims, characterized in that it is formed as a perpendicular wall with respect to the axial direction of the valve member A check valve for a fuel supply pump according to claim 1 or 2. 前記垂直な壁面は、前記係止部材を挟んで前記付勢部材とは反対側の前記壁に形成されていることを特徴とする請求項3に記載の燃料供給ポンプの逆止弁。 Said vertical wall, check valve of the fuel supply pump according to claim 3, characterized in that it is formed in the wall opposite to the biasing member across said locking member. 前記垂直な壁面は、前記係止部材を挟んで前記付勢部材と同じ側の前記壁に形成されていることを特徴とする請求項3に記載の燃料供給ポンプの逆止弁。 Said vertical wall, check valve of the fuel supply pump according to claim 3, characterized in that it is formed in the wall of the same side as the biasing member across said locking member. 前記係止部材は、ばね部材であって、前記嵌合内周部の開口径が拡縮するばね部材であることを特徴とする請求項1から請求項5のいずれかに記載の燃料供給ポンプの逆止弁。   6. The fuel supply pump according to claim 1, wherein the locking member is a spring member, and is a spring member in which an opening diameter of the fitting inner peripheral portion expands and contracts. Check valve.
JP2008053891A 2008-03-04 2008-03-04 Check valve for fuel supply pump Expired - Fee Related JP4985476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053891A JP4985476B2 (en) 2008-03-04 2008-03-04 Check valve for fuel supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053891A JP4985476B2 (en) 2008-03-04 2008-03-04 Check valve for fuel supply pump

Publications (2)

Publication Number Publication Date
JP2009209793A JP2009209793A (en) 2009-09-17
JP4985476B2 true JP4985476B2 (en) 2012-07-25

Family

ID=41183192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053891A Expired - Fee Related JP4985476B2 (en) 2008-03-04 2008-03-04 Check valve for fuel supply pump

Country Status (1)

Country Link
JP (1) JP4985476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013217357A1 (en) * 2013-08-30 2015-03-05 Robert Bosch Gmbh Pump, in particular a high-pressure fuel pump
US11105437B2 (en) * 2017-07-03 2021-08-31 Continental Automotive Systems, Inc. Combined inlet and outlet check valve seat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102020U (en) * 1989-02-01 1990-08-14
JP2003001531A (en) * 2001-06-25 2003-01-08 Honda Motor Co Ltd Apparatus for mounting clip
DE10393701T5 (en) * 2002-11-07 2005-11-03 Chubu Bearing K.K., Nagoya Tool for mounting a retaining ring
JP2004301137A (en) * 2003-03-28 2004-10-28 Jatco Ltd Gear support structure of transmission for vehicle
JP2007297994A (en) * 2006-05-01 2007-11-15 Bosch Corp Fuel supply pump
JP2007333140A (en) * 2006-06-16 2007-12-27 Bosch Corp Electromagnetic proportional control valve for flow control and pump for fuel supply

Also Published As

Publication number Publication date
JP2009209793A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4215000B2 (en) High pressure pump
JP4224667B2 (en) Fuel injection pump
WO2005068822A1 (en) Fuel supply pump and tappet structure body
JP5187254B2 (en) High pressure pump
JPH1172014A (en) Fuel pressurizing pump
JP3685317B2 (en) Fuel injection pump
JP3693992B2 (en) High pressure fuel pump
JP5862580B2 (en) High pressure fuel pump
JP4985476B2 (en) Check valve for fuel supply pump
JP2006510835A (en) High pressure pump for fuel injection device of internal combustion engine
JP4016237B2 (en) Fuel injection pump
JP2010112304A (en) Fuel supply pump
JPWO2004063559A1 (en) Fuel supply pump
JP2013053555A (en) Fuel supply pump
JP5910143B2 (en) Fuel pump structure
JP4412284B2 (en) Pressure regulating valve
JP2010275874A (en) Fuel injection pump
JP4941337B2 (en) Fuel supply pump
JP2007132251A (en) Fuel injection device
JP2013147947A (en) Roller lifter guide device and fuel pump
JP5633387B2 (en) Fuel supply pump
JP6579943B2 (en) Fuel supply pump
KR100936724B1 (en) In-tank type pump
JP2005188379A (en) Check valve and fuel injection pump equipped with the check valve
JP6570308B2 (en) Fuel supply pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees