JP4984411B2 - Insulation degradation position evaluation apparatus and method - Google Patents

Insulation degradation position evaluation apparatus and method Download PDF

Info

Publication number
JP4984411B2
JP4984411B2 JP2005088263A JP2005088263A JP4984411B2 JP 4984411 B2 JP4984411 B2 JP 4984411B2 JP 2005088263 A JP2005088263 A JP 2005088263A JP 2005088263 A JP2005088263 A JP 2005088263A JP 4984411 B2 JP4984411 B2 JP 4984411B2
Authority
JP
Japan
Prior art keywords
insulation
voltage
power
circuit
measurement side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005088263A
Other languages
Japanese (ja)
Other versions
JP2006267002A (en
Inventor
幸一 大貫
英章 佐藤
照嗣 常陰
威 阿戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005088263A priority Critical patent/JP4984411B2/en
Publication of JP2006267002A publication Critical patent/JP2006267002A/en
Application granted granted Critical
Publication of JP4984411B2 publication Critical patent/JP4984411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Description

本発明は電力ケーブルで形成された電力線路の絶縁劣化位置を評定する絶縁劣化位置評定装置及び方法に関する。   The present invention relates to an insulation deterioration position evaluation apparatus and method for evaluating an insulation deterioration position of a power line formed of a power cable.

一般に、電力ケーブルで形成された電力線路の絶縁劣化の検出は、簡易絶縁測定器(メガー)により絶縁抵抗を測定することにより行われている。電力ケーブルの劣化パターンには2通りあり、一つは漏れ電流が全くなく、いきなり絶縁破壊に至る架橋ポリエチレンケーブル(CVケーブル)が原因の劣化であり、もう一つは、ジョイント等の浸水が原因によるもので、漏れ電流が大きく徐々に絶縁抵抗が小さくなって最終的に絶縁破壊に至る劣化である。後者の徐々に絶縁破壊に至る劣化は、簡易絶縁測定器(メガー)等で容易に発見が可能であるが、絶縁劣化部の位置を確認することは困難である。簡易絶縁測定器(メガー)等により電力線路に絶縁劣化が発生していることが分かった場合には、電力線路に直流高電圧を印加して絶縁劣化部を焼成し、強制的に絶縁破壊を発生させ、その絶縁破壊が発生した箇所を特定して修理するようにしている。   In general, detection of insulation deterioration of a power line formed by a power cable is performed by measuring insulation resistance with a simple insulation measuring instrument (Megger). There are two types of deterioration patterns of power cables. One is the degradation caused by the cross-linked polyethylene cable (CV cable) that has no leakage current and suddenly causes dielectric breakdown. The other is caused by the flooding of joints and the like. This is a deterioration in which the leakage current is large and the insulation resistance is gradually reduced to finally cause dielectric breakdown. The latter deterioration that gradually leads to dielectric breakdown can be easily detected with a simple insulation measuring instrument (Megger) or the like, but it is difficult to confirm the position of the insulation deterioration portion. If it is found that insulation degradation has occurred in the power line using a simple insulation measuring instrument (Megger), etc., a high DC voltage is applied to the power line to fire the insulation degradation part and forcibly break down the insulation. The location where the dielectric breakdown occurred is identified and repaired.

一方、都市部の大需要家に電力を供給する配電設備には、絶縁特性の優れた六フッ化硫黄SFガスを使用したガス絶縁開閉装置GIS(Gas Insulated Switchgear)がある。GISはSFガスを0.3〜0.5[Mpa]程度に圧縮して充填した容器の中に、開閉器、母線CT・PT、避雷器等を設置した配電設備である。また、各機器を一括して、低圧のSFガスで密閉しキュービクル型としたC−GIS(Cubicle type Gas Insulated Switchgear)がある。以下の説明では、C−GISも含めてGISと言うことにする。GISは、SFガスで絶縁強度を保つので、変電所や電気所の面積や容積を従来の大気絶縁方式に比べ大幅に縮小でき、また、高電圧部分が露出していないので安全であり、さらに、雷、雪、塩分の多い雨などの被害を受けず、コロナ障害などの環境問題もほとんど解消されると言う利点を有する。GISは、電力線路の保守上、直流電圧10kVに耐えうる設計が望ましいとされている(例えば、非特許文献1参照)。
電気学会技術報告(II部)第442号「キュービクル型ガス絶縁開閉装置の技術動向」、電気学会発行、1992年。
On the other hand, a distribution facility for supplying electric power to large consumers in urban areas includes a gas insulated switchgear (GIS) using sulfur hexafluoride SF 6 gas having excellent insulation characteristics. GIS is a power distribution facility in which switches, buses CT / PT, lightning arresters, and the like are installed in a container filled with SF 6 gas compressed to about 0.3 to 0.5 [Mpa]. In addition, there is a C-GIS (Cubicle type Gas Insulated Switchgear) in which each device is collectively sealed with low-pressure SF 6 gas to form a cubicle type. In the following description, the term “GIS” includes C-GIS. Since GIS maintains the insulation strength with SF 6 gas, the area and volume of substations and electrical stations can be greatly reduced compared to conventional atmospheric insulation systems, and it is safe because the high voltage part is not exposed. Furthermore, there is an advantage that environmental problems such as corona failure are almost eliminated without being damaged by lightning, snow, rain with salt. The GIS is desirably designed to withstand a DC voltage of 10 kV for maintenance of the power line (see, for example, Non-Patent Document 1).
IEEJ Technical Report (Part II) No. 442 “Technological Trends of Cubicle Type Gas Insulated Switchgear”, published by the Institute of Electrical Engineers of Japan, 1992.

ところが、このようなGISに接続された需要家に電力を配電する電力線路に対しては、絶縁劣化した箇所を特定するために直流高電圧を印加することができない。前述したように、GISは、電力線路の保守上、直流電圧10kVに耐えうる設計が望ましいとされているので、直流電圧を印可する場合には10kV程度以上の直流電圧を印可することができない。   However, a direct current high voltage cannot be applied to a power line that distributes power to consumers connected to such a GIS in order to identify a location where insulation has deteriorated. As described above, the GIS is desirably designed to withstand a DC voltage of 10 kV for the maintenance of the power line. Therefore, when a DC voltage is applied, a DC voltage of about 10 kV or more cannot be applied.

このように、GISが接続された電力線路に対してはGISの許容直流電圧値(例えば、10kV)以上の直流高電圧を印加することができないので、絶縁劣化部を焼成するに必要な直流高電圧を印加することができない。従って、強制的に絶縁破壊を発生させて絶縁破壊箇所を特定することはできない。   In this way, since a high DC voltage exceeding the allowable dc voltage value (for example, 10 kV) of the GIS cannot be applied to the power line to which the GIS is connected, the high DC voltage necessary for firing the insulation deteriorated portion is not possible. The voltage cannot be applied. Therefore, it is impossible to specify the location of dielectric breakdown by forcibly generating dielectric breakdown.

そこで、GISから絶縁ガスを抜き取り耐圧用アダプタと移動用ケーブルとを介して気中の場合と同様な状態とし、電力線路に直流高電圧を印加して絶縁劣化部を焼成し、強制的に絶縁破壊を発生させて絶縁破壊箇所を特定することが考えられるが、その場合、絶縁破壊箇所の修理の後にGISにSFガスを封入し元の状態に戻さなければならない。また、電力線路に直流高電圧を印加して絶縁劣化部を焼成することになるので、絶縁劣化部以外の健全部の絶縁強度を劣化させるおそれがあり、さらに、破壊した絶縁劣化部を速やかに修復し需要家に電力を供給できるようにしなければならない。 Therefore, the insulating gas is extracted from the GIS, and the state is the same as that in the air via the pressure-resistant adapter and the moving cable, and the high-voltage direct current is applied to the power line to burn the insulation deterioration part and forcibly insulate. It is conceivable to specify the location of dielectric breakdown by causing breakdown. In that case, after repairing the location of dielectric breakdown, SF 6 gas must be sealed in the GIS and returned to its original state. In addition, since the high-voltage direct current is applied to the power line and the insulation deterioration part is fired, there is a possibility that the insulation strength of the sound part other than the insulation deterioration part may be deteriorated. It must be rehabilitated and able to supply power to consumers.

本発明の目的は、ガス絶縁開閉装置に接続された電力線路に対しても絶縁劣化箇所を非破壊で特定できる絶縁劣化位置評定装置及び方法を提供することである。   An object of the present invention is to provide an insulation degradation position evaluation apparatus and method capable of nondestructively identifying an insulation degradation location even for a power line connected to a gas insulated switchgear.

請求項1の発明に係わる絶縁劣化位置評定装置は、電力ケーブルで形成された電力線路の一方端が短絡された2本の電力線路の他方端に測定辺抵抗を接続するとともに測定辺抵抗に並列に検流計メータを接続してホイートストンブリッジ回路を形成し、前記ホイートストンブリッジ回路の測定辺抵抗を按分した位置に直流電圧を印加してマーレーループ法で電力線路の絶縁劣化位置を評定する絶縁劣化位置評定装置において、前記電力線路の絶縁劣化位置を評定する際に前記電力線路に接続されるガス絶縁開閉装置の許容直流電圧値以下の直流電圧を前記ホイートストンブリッジ回路の測定辺抵抗の按分位置に印加する直流電圧電源と、大地間と所定の絶縁強度を保って形成され前記ホイートストンブリッジ回路における2本の電力線路と測定辺抵抗との接続点間に流れる電流を指示する検流計メータと、大地間と所定の絶縁強度を保って形成され2本の電力線路の各々の電力線路に重畳するノイズが前記検流計メータに入力されることを防止するノイズ侵入防止回路と、大地間と所定の絶縁強度を保って形成され前記ホイートストンブリッジ回路の測定辺抵抗の按分位置を変化させ前記検流計メータに流れる電流を零に調整するレシオアームとを備えたことを特徴とする。   The insulation degradation position evaluation apparatus according to the invention of claim 1 is configured to connect a measurement side resistor to the other end of two power lines short-circuited at one end of a power line formed of a power cable and to be parallel to the measurement side resistance. A galvanometer meter is connected to the Wheatstone bridge circuit to form a Wheatstone bridge circuit, and a DC voltage is applied to the position where the measured side resistance of the Wheatstone bridge circuit is apportioned to evaluate the insulation deterioration position of the power line by the Murray loop method. In the position evaluation device, when evaluating the insulation deterioration position of the power line, a DC voltage equal to or less than the allowable DC voltage value of the gas-insulated switchgear connected to the power line is set to a proportional position of the measurement side resistance of the Wheatstone bridge circuit. The DC power supply to be applied and the two power lines in the Wheatstone bridge circuit formed with a predetermined insulation strength between the ground and the measurement are measured. A galvanometer meter that indicates the current flowing between the connection points with the side resistors, and noise that is formed between the two power lines and that has a predetermined insulation strength with the ground, and is superimposed on each of the power lines. A noise intrusion prevention circuit that prevents the signal from being input to the meter, and a current that flows to the galvanometer meter by changing a prorated position of the measurement side resistance of the Wheatstone bridge circuit that is formed while maintaining a predetermined insulation strength between the ground and the ground. And a ratio arm that adjusts to zero.

請求項2の発明に係わる絶縁劣化位置評定装置は、請求項1の発明において、前記ノイズ侵入防止回路は、2本の電力線路の各々の電力線路から入力される電流に含まれるノイズを除去する入力フィルタ回路と、前記入力フィルタ回路の出力の差分を演算する動増幅回路と、2本の電力線路に直流電圧が印加されない状態で前記動増幅回路の出力が零となるように前記検流計メータの零調整を行う零調整回路とを備えたことを特徴とする。
According to a second aspect of the present invention, there is provided an insulation degradation position evaluation device according to the first aspect, wherein the noise intrusion prevention circuit removes noise included in a current input from each of the two power lines. an input filter circuit, and a differential amplifier circuit for calculating the difference between the output of the input filter circuit, said as an output of the differential amplifier circuit becomes zero detection in a state where the DC voltage is not applied to the two power lines And a zero adjustment circuit for performing zero adjustment of the ammeter meter.

請求項3の発明に係わる絶縁劣化位置評定方法は、電力ケーブルで形成された電力線路の一方端が短絡された2本の電力線路の他方端に測定辺抵抗を接続するとともに測定辺抵抗に並列に検流計メータを接続してホイートストンブリッジ回路を形成し、前記ホイートストンブリッジ回路の測定辺抵抗を按分した位置に直流電圧を印加してマーレーループ法で電力線路の絶縁劣化位置を評定する絶縁劣化位置評定方法において、2本の電力線路に流れる電流を大地間と所定の絶縁強度を保って形成されたノイズ侵入防止回路を介して検流計メータに入力し、2本の電力線路に直流電圧が印加されていない状態で大地間と所定の絶縁強度を保って形成された検流計メータの零調整を行い、前記直流電圧電源から前記電力線路に接続されるガス絶縁開閉装置の許容直流電圧値以下の直流電圧を前記ホイートストンブリッジ回路の測定辺抵抗の按分位置に印加し、大地間と所定の絶縁強度を保って形成されたレシオアームにより前記ホイートストンブリッジ回路の測定辺抵抗の按分位置を変化させて前記検流計メータに流れる電流を零に調整し、前記レシオアームで調整された測定辺抵抗の按分位置の比率に基づいて電力線路の絶縁劣化位置を評定することを特徴とする。   According to a third aspect of the present invention, there is provided an insulation degradation position evaluation method in which a measurement side resistor is connected to the other end of two power lines short-circuited at one end of a power line formed of a power cable and is parallel to the measurement side resistance. A galvanometer meter is connected to the Wheatstone bridge circuit to form a Wheatstone bridge circuit, and a DC voltage is applied to the position where the measured side resistance of the Wheatstone bridge circuit is apportioned to evaluate the insulation deterioration position of the power line by the Murray loop method. In the position evaluation method, the current flowing through the two power lines is input to the galvanometer meter via a noise intrusion prevention circuit formed between the ground and maintaining a predetermined insulation strength, and a DC voltage is applied to the two power lines. Gas insulation connected to the power line from the DC voltage power source by performing zero adjustment of a galvanometer formed with a predetermined insulation strength between the ground and the ground without being applied A DC voltage equal to or less than a permissible DC voltage value of the closing device is applied to a proportional position of the measurement side resistance of the Wheatstone bridge circuit, and the measurement side of the Wheatstone bridge circuit is formed by a ratio arm formed while maintaining a predetermined insulation strength between the ground. Changing the apportioning position of the resistance to adjust the current flowing through the galvanometer meter to zero, and evaluating the insulation degradation position of the power line based on the proportion of the apportioning position of the measured side resistance adjusted by the ratio arm It is characterized by.

本発明によれば、マーレループ法によるホイートストンブリッジ回路の2本の電力線路の各々の電力線路に重畳するノイズを除去するノイズ侵入防止回路を設け、またノイズ侵入防止回路は大地間と所定の絶縁強度を保って形成されているので、電力線路の絶縁劣化箇所に流れる微少な漏れ電流を精度良く検出できる。従って、直流電圧電源からホイートストンブリッジ回路に印加する直流電圧が電力線路に接続されるガス絶縁開閉装置の許容直流電圧値以下の直流電圧であっても、電力線路の絶縁劣化位置を評定できる。このことから、ガス絶縁開閉装置に接続された電力線路に対しても絶縁劣化箇所を非破壊で特定できる。   According to the present invention, a noise intrusion prevention circuit for removing noise superimposed on each of the two power lines of the Wheatstone bridge circuit by the Marle loop method is provided, and the noise intrusion prevention circuit has a predetermined insulation from the ground. Since it is formed with the strength maintained, it is possible to accurately detect a minute leakage current that flows through an insulation deterioration portion of the power line. Therefore, even if the DC voltage applied from the DC voltage power source to the Wheatstone bridge circuit is a DC voltage that is equal to or less than the allowable DC voltage value of the gas insulated switchgear connected to the power line, the insulation deterioration position of the power line can be evaluated. From this, an insulation degradation location can be specified non-destructively also to the power line connected to the gas insulated switchgear.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる絶縁劣化位置評定装置の構成図、図2は本発明の実施の形態におけるノイズ侵入防止回路の回路構成図、図3は本発明の実施の形態で使用するマーレーループ法での電力線路の絶縁劣化位置を評定する原理の説明図である。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an insulation deterioration position evaluation apparatus according to an embodiment of the present invention, FIG. 2 is a circuit configuration diagram of a noise intrusion prevention circuit according to the embodiment of the present invention, and FIG. 3 is used in the embodiment of the present invention. It is explanatory drawing of the principle which evaluates the insulation degradation position of the power line in the Murray loop method to do.

まず、本発明の実施の形態で使用するマーレーループ法での電力線路(電力ケーブル)の絶縁劣化位置を評定する原理について説明する。電力ケーブルで形成された電力線路は、電力ケーブルを接続点で直列に接続して形成されるが、説明を簡単にするために、以下の説明では電力ケーブルの接続点がない場合について説明する。図3(a)に示すように、健全相の電力ケーブル11aと絶縁劣化相の電力ケーブル11bとの一方端を短絡ケーブル12で接続する。絶縁劣化相の電力ケーブル11bは簡易絶縁測定器(メガー)等で事前に発見しておくことになる。そして、健全相の電力ケーブル11aと絶縁劣化相の電力ケーブル11bとの他方端に測定辺抵抗13を接続し、その測定辺抵抗13に並列にノイズ侵入防止回路14を介して検流計メータ15を接続してホイートストンブリッジ回路を形成する。このホイートストンブリッジ回路の測定辺抵抗13をレシオアーム16にて按分し、その按分位置Qに直流電圧電源17から直流電圧を印加して、絶縁劣化相の電力ケーブル11aの絶縁劣化位置を評定する。ノイズ侵入防止回路14は電力ケーブル11a、11bを伝わって侵入してくるノイズを除去するものである。ノイズ侵入防止回路14については後述する。   First, the principle for evaluating the insulation degradation position of the power line (power cable) in the Murray loop method used in the embodiment of the present invention will be described. The power line formed by the power cable is formed by connecting the power cable in series at the connection point. However, in order to simplify the description, a case where there is no connection point of the power cable will be described below. As shown in FIG. 3A, one end of the healthy phase power cable 11 a and the insulation degradation phase power cable 11 b is connected by a short-circuit cable 12. The power cable 11b of the insulation deterioration phase is discovered in advance with a simple insulation measuring device (Megger) or the like. A measurement side resistor 13 is connected to the other end of the healthy phase power cable 11 a and the insulation degradation phase power cable 11 b, and the galvanometer meter 15 is connected in parallel to the measurement side resistor 13 via the noise intrusion prevention circuit 14. To form a Wheatstone bridge circuit. The measurement side resistance 13 of the Wheatstone bridge circuit is apportioned by the ratio arm 16 and a DC voltage is applied to the apportioning position Q from the DC voltage power source 17 to evaluate the insulation deterioration position of the power cable 11a in the insulation deterioration phase. The noise intrusion prevention circuit 14 removes noise that enters through the power cables 11a and 11b. The noise intrusion prevention circuit 14 will be described later.

いま、電力ケーブル11a、11bの長さをD、絶縁劣化相の電力ケーブル11bの絶縁劣化点をP、測定点から絶縁劣化点Pまでの長さをx、レシオアーム16にて按分された測定辺抵抗13の健全相側の抵抗値をR1、絶縁劣化相側の抵抗値をR2、測定点から健全相側経由での絶縁劣化点Pまでの抵抗値をR3、測定点から絶縁劣化相経由での絶縁劣化点Pまでの抵抗値をR4、絶縁劣化点Pの劣化点抵抗をR5とする。   Now, the length of the power cables 11a and 11b is D, the insulation deterioration point of the power cable 11b in the insulation deterioration phase is P, the length from the measurement point to the insulation deterioration point P is x, and the ratio arm 16 is prorated. The resistance value on the sound phase side of the side resistor 13 is R1, the resistance value on the insulation deterioration phase side is R2, the resistance value from the measurement point to the insulation deterioration point P via the sound phase side is R3, and the resistance value from the measurement point to the insulation deterioration phase The resistance value up to the insulation deterioration point P is R4, and the deterioration point resistance at the insulation deterioration point P is R5.

図3(b)は図3(a)の等価回路である。図3(b)では、レシオアーム16にて測定辺抵抗13を按分することを可変抵抗R3で示している。図3(b)において、ホイートストンブリッジ回路の平衡条件は下記の(1)式で示される。(1)式が成立するときには、検流計メータ15が指示する電流値は零となる。   FIG. 3B is an equivalent circuit of FIG. In FIG. 3B, the variable resistance R3 indicates that the measurement arm resistance 13 is prorated by the ratio arm 16. In FIG. 3B, the equilibrium condition of the Wheatstone bridge circuit is expressed by the following equation (1). When the formula (1) is established, the current value indicated by the galvanometer meter 15 becomes zero.

R1/R2=R3/R4 …(1)
電力ケーブル11a、11bは同径で同材質であるとし、電力ケーブル11a、11bの導体の固有抵抗をρ、導体の断面積をSとすると、抵抗R3は(2)式で示され、抵抗R4は(3)式で示される。
R1 / R2 = R3 / R4 (1)
Assume that the power cables 11a and 11b have the same diameter and the same material, where the specific resistance of the conductors of the power cables 11a and 11b is ρ, and the cross-sectional area of the conductors is S, the resistance R3 is expressed by equation (2), and the resistance R4 Is represented by equation (3).

R3=(ρ/S)・(2D−x) …(2)
R4=(ρ/S)・x …(3)
(2)式および(3)式を(1)式に代入して、測定点から絶縁劣化点Pまでの長さxを求めると、(4)式で示される。
R3 = (ρ / S) · (2D−x) (2)
R4 = (ρ / S) · x (3)
By substituting the equations (2) and (3) into the equation (1) to obtain the length x from the measurement point to the insulation deterioration point P, the equation (4) is obtained.

x={R2/(R1+R2)}・2D …(4)
このように、測定点から絶縁劣化点Pまでの長さxは、ホイートストンブリッジ回路が平衡条件を満たしたときの測定辺抵抗13の按分比率{R2/(R1+R2)}に電力ケーブル11a、11bの全長2Dを掛け算して求められる。すなわち、電力ケーブル11a、11bの全長2Dは既知であることから、ホイートストンブリッジ回路が平衡条件を満たしたときの測定辺抵抗13の按分比率を計測すれば、測定点から絶縁劣化点Pまでの長さxが分かるので、電力ケーブルの絶縁劣化箇所を特定できる。なお、電力ケーブル11a、11bの径や導体の固有抵抗ρが異なる場合には、等価長に換算して絶縁劣化点Pまでの長さxを求めることになる。
x = {R2 / (R1 + R2)} · 2D (4)
As described above, the length x from the measurement point to the insulation deterioration point P is set to a proportional ratio {R2 / (R1 + R2)} of the measurement side resistance 13 when the Wheatstone bridge circuit satisfies the equilibrium condition. It is obtained by multiplying the total length 2D. That is, since the total length 2D of the power cables 11a and 11b is known, the length from the measurement point to the insulation deterioration point P can be determined by measuring the proportional ratio of the measurement side resistance 13 when the Wheatstone bridge circuit satisfies the equilibrium condition. Since x is known, the insulation deterioration location of the power cable can be identified. When the diameters of the power cables 11a and 11b and the specific resistances ρ of the conductors are different, the length x up to the insulation deterioration point P is calculated in terms of the equivalent length.

次に、本発明の実施の形態に係わる絶縁劣化位置評定装置の構成について説明する。図1に示すように、絶縁劣化位置評定装置は、測定表示装置18と直流電圧電源17とから構成される。測定表示装置18は、2本の電力ケーブル11a、11bを接続してホイートストンブリッジ回路を形成し、測定辺抵抗13の按分比率を測定表示するものである。   Next, the configuration of the insulation deterioration position evaluation apparatus according to the embodiment of the present invention will be described. As shown in FIG. 1, the insulation degradation position evaluation device is composed of a measurement display device 18 and a DC voltage power source 17. The measurement display device 18 connects the two power cables 11 a and 11 b to form a Wheatstone bridge circuit, and measures and displays the proportionality ratio of the measurement side resistance 13.

健全相の電力ケーブル11aと絶縁劣化相の電力ケーブル11bとの一方端を短絡ケーブル12で接続し、その他方端を分岐して測定表示装置18の接続端子19に接続する。測定表示装置18には、測定辺抵抗13、ノイズ侵入防止回路14、検流計メータ15が収納されており、健全相の電力ケーブル11aおよび絶縁劣化相の電力ケーブル11bの他方端を接続端子19に接続することによって、ホイートストンブリッジ回路が形成される。すなわち、健全相の電力ケーブル11aおよび絶縁劣化相の電力ケーブル11bの他方端が測定辺抵抗13に接続され、また、測定辺抵抗13に並列にノイズ侵入防止回路14を介して検流計メータ15が接続され、ホイートストンブリッジ回路が形成される。   One end of the power cable 11 a for the healthy phase and the power cable 11 b for the insulation deterioration phase is connected by the short-circuit cable 12, and the other end is branched and connected to the connection terminal 19 of the measurement display device 18. The measurement display device 18 accommodates a measurement side resistor 13, a noise intrusion prevention circuit 14, and a galvanometer meter 15. The other end of the healthy phase power cable 11a and the insulation degradation phase power cable 11b is connected to the connection terminal 19. To form a Wheatstone bridge circuit. That is, the other ends of the healthy-phase power cable 11 a and the insulation-degraded phase power cable 11 b are connected to the measurement side resistor 13, and the galvanometer meter 15 is connected in parallel to the measurement side resistor 13 via the noise intrusion prevention circuit 14. Are connected to form a Wheatstone bridge circuit.

ホイートストンブリッジ回路の測定辺抵抗13はレシオアーム16により按分され、その按分位置Qに直流電圧電源17から直流電圧が印加される。レシオアーム16で按分された測定辺抵抗13の按分位置Qは比率演算部20に入力され、測定辺抵抗13の按分比率が演算されて按分比率表示器21に表示される。なお、ノイズ侵入防止回路14や比率演算部20にはバッテリ22から制御電源が供給される。   The measurement side resistance 13 of the Wheatstone bridge circuit is prorated by the ratio arm 16, and a DC voltage is applied to the prorated position Q from the DC voltage power supply 17. The apportioning position Q of the measurement side resistor 13 apportioned by the ratio arm 16 is input to the ratio calculating unit 20, and the apportioning ratio of the measurement side resistor 13 is calculated and displayed on the apportioning ratio display 21. Note that control power is supplied from the battery 22 to the noise intrusion prevention circuit 14 and the ratio calculation unit 20.

按分比率表示器21は、例えば7セグメントの発光ダイオード(LED)で形成され、図1では絶縁劣化相の電力ケーブル11bの測定点側から見た按分比率(R100%)が表示された場合を示している。   The apportioning ratio indicator 21 is formed of, for example, a 7-segment light emitting diode (LED), and FIG. 1 shows a case in which the apportioning ratio (R100%) viewed from the measurement point side of the power cable 11b in the insulation deterioration phase is displayed. ing.

絶縁劣化相の電力ケーブル11bの測定点側から見た按分比率は、(4)式から分かるように、R2/(R1+R2)で示される。このR2/(R1+R2)の0〜1/2の範囲を0%〜100%と表示する。例えば、R2が0のときは0%、R2=R1のときは100%と表示する。また、絶縁劣化相の電力ケーブル11bの測定点側から見た按分比率であることを識別するためにRを表示する。   The apportioning ratio seen from the measurement point side of the power cable 11b in the insulation deterioration phase is represented by R2 / (R1 + R2) as can be seen from the equation (4). The range of 0 to 1/2 of R2 / (R1 + R2) is expressed as 0% to 100%. For example, 0% is displayed when R2 is 0, and 100% is displayed when R2 = R1. In addition, R is displayed to identify the proportional ratio viewed from the measurement point side of the power cable 11b in the insulation deterioration phase.

同様に、健全相の電力ケーブル11aの測定点側から見た按分比率は、R1/(R1+R2)で示されるので、R1/(R1+R2)の0〜1/2の範囲を0%〜100%と表示する。そして、健全相の電力ケーブル11aの測定点側から見た按分比率であることを識別するためにLを表示する。従って、例えば按分比率表示器21に「R35%」と表示された場合には、絶縁劣化相の電力ケーブル11bの測定点側から、その長さが35%の位置に絶縁劣化が発生していること示す。同様に、按分比率表示器21に「L165%」と表示された場合には、健全相の電力ケーブル11aの測定点側から、その長さが165%の位置(絶縁劣化相の電力ケーブル11bの測定点側から、その長さが35%の位置)に絶縁劣化が発生していること示すことになる。   Similarly, since the proration rate seen from the measurement point side of the power cable 11a of the healthy phase is indicated by R1 / (R1 + R2), the range of 0/1/2 of R1 / (R1 + R2) is 0% to 100%. indicate. And L is displayed in order to identify that it is a proration rate seen from the measurement point side of the power cable 11a of the healthy phase. Therefore, for example, when “R35%” is displayed on the proration rate indicator 21, insulation deterioration has occurred at a position where the length is 35% from the measurement point side of the power cable 11b in the insulation deterioration phase. Show that. Similarly, when “L165%” is displayed on the proration rate indicator 21, the length of the power cable 11a of the healthy phase from the measurement point side is 165% (the length of the power cable 11b of the deteriorated insulation phase). This indicates that insulation deterioration has occurred at a position where the length is 35% from the measurement point side.

ここで、本発明の実施の形態では、絶縁劣化側の電力ケーブル11bの絶縁劣化点Pでの劣化点抵抗R5が大きい場合であっても、高感度でその絶縁劣化を検出できるように以下のような工夫をしている。   Here, in the embodiment of the present invention, even if the degradation point resistance R5 at the insulation degradation point P of the power cable 11b on the insulation degradation side is large, the following degradation is possible so that the insulation degradation can be detected with high sensitivity. I am devised like this.

(1)直流電圧電源17は、電力ケーブル11a、11bに接続されるガス絶縁開閉装置(GIS)の許容直流電圧値以下の直流電圧を発生する直流安定化電源を採用し、内部抵抗が低抵抗の直流電圧電源を採用したこと。 (1) The DC voltage power supply 17 employs a DC stabilized power supply that generates a DC voltage that is less than the allowable DC voltage value of the gas insulated switchgear (GIS) connected to the power cables 11a and 11b, and has low internal resistance. Adopting a DC voltage power supply.

(2)ノイズ侵入防止回路14を設け電力ケーブル11a、11bの電流変化を高感度で入力できるようにしたこと。 (2) The noise intrusion prevention circuit 14 is provided so that the current change of the power cables 11a and 11b can be input with high sensitivity.

(3)測定表示装置18を構成する各要素であるノイズ侵入防止回路14、検流計メータ15、レシオアーム16、比率演算部20、按分比率表示器21、バッテリ22等の絶縁性能を向上させるとともに、測定表示装置18の操作部(操作スイッチ、操作ダイアル、操作つまみ等)の絶縁性能を向上させ、大地間と所定の絶縁強度を保ち漏れ電流を小さくしたこと。 (3) Improve the insulation performance of the noise intrusion prevention circuit 14, the galvanometer meter 15, the ratio arm 16, the ratio calculator 20, the proration ratio indicator 21, the battery 22, etc., which are the elements constituting the measurement display device 18. In addition, the insulation performance of the operation unit (operation switch, operation dial, operation knob, etc.) of the measurement display device 18 is improved, and the leakage current is reduced while maintaining a predetermined insulation strength between the ground.

まず、工夫点(1)について説明する。電力ケーブル11a、11bに接続されるガス絶縁開閉装置(GIS)の許容直流電圧値は、現状では10kVである。従って、本発明の実施の形態では、直流電圧電源17の発生する直流電圧は10kV以下とする。以下の説明では10kVである場合を例にとり説明する。また、直流電圧電源17としては、出力電流値(負荷)が変動しても直流電圧が変動しない直流安定化電源を採用する。   First, the device point (1) will be described. The allowable DC voltage value of the gas insulated switchgear (GIS) connected to the power cables 11a and 11b is 10 kV at present. Therefore, in the embodiment of the present invention, the DC voltage generated by the DC voltage power supply 17 is 10 kV or less. In the following description, the case of 10 kV will be described as an example. Further, as the DC voltage power supply 17, a DC stabilized power supply that does not change the DC voltage even when the output current value (load) changes is adopted.

また、電力ケーブル11a、11bは電気的特性として静電容量が大きいので、直流電圧を供給した場合に静電容量に充電する充電電流が流れる。この静電容量への充電時間を短縮するために、内部抵抗が低抵抗の直流電圧電源を採用する。理想的には内部抵抗が0であることが望ましい。   Further, since the power cables 11a and 11b have a large capacitance as an electrical characteristic, a charging current for charging the capacitance flows when a DC voltage is supplied. In order to shorten the charging time to the capacitance, a DC voltage power supply having a low internal resistance is employed. Ideally, the internal resistance is preferably zero.

次に、工夫点(2)について説明する。直流電圧電源17の直流電圧として、電力ケーブル11a、11bに接続されるガス絶縁開閉装置(GIS)の許容直流電圧値以下としたことに伴い、電力ケーブル11bの絶縁劣化点Pの劣化点抵抗R5を流れる電流は小さくなる。そこで、ノイズ侵入防止回路14を設け電力ケーブル11a、11bの電流変化を高感度で入力できるようにする。   Next, the device point (2) will be described. As the direct current voltage of the direct current voltage power supply 17 is set to be equal to or less than the allowable direct current voltage value of the gas insulated switchgear (GIS) connected to the power cables 11a and 11b, the deterioration point resistance R5 of the insulation deterioration point P of the power cable 11b. The current flowing through becomes smaller. Therefore, the noise intrusion prevention circuit 14 is provided so that the current change of the power cables 11a and 11b can be input with high sensitivity.

例えば、電力ケーブル11bの絶縁劣化点Pの劣化点抵抗R5が50kΩである場合に、電力ケーブル11a、11bに直流電圧として10kVを印加した場合には、劣化点抵抗R5に流れる漏れ電流は200mAである。漏れ電流が200mAである場合には、ノイズ侵入防止回路14を設けなくても、現状のマーレループ法により絶縁劣化点Pを検出できる。しかし、劣化点抵抗R5が50kΩである絶縁劣化点Pは、絶縁破壊が進み短絡故障となるまでの時間が比較的短いので、絶縁劣化点Pを検出してから補修するまでに短絡故障となってしまうことがある。   For example, when the degradation point resistance R5 of the insulation degradation point P of the power cable 11b is 50 kΩ, when 10 kV is applied as the DC voltage to the power cables 11a and 11b, the leakage current flowing through the degradation point resistance R5 is 200 mA. is there. When the leakage current is 200 mA, the insulation deterioration point P can be detected by the current Mare loop method without providing the noise intrusion prevention circuit 14. However, the insulation degradation point P having the degradation point resistance R5 of 50 kΩ is a short circuit failure until the repair after the insulation degradation point P is detected because the time until the insulation breakdown advances and a short circuit failure occurs is relatively short. May end up.

一方、絶縁劣化点Pの劣化点抵抗R5が200MΩである場合には、短絡故障となるまでの時間が長くなり、絶縁劣化点Pを検出してから補修するまでに短絡故障となることはほとんどない。そこで、本発明の実施の形態では絶縁劣化点Pの劣化点抵抗R5が200MΩ程度である場合にも、絶縁劣化点Pを検出できるようにする。   On the other hand, when the degradation point resistance R5 of the insulation degradation point P is 200 MΩ, the time until a short circuit failure occurs becomes long, and a short circuit failure is rarely detected after the insulation degradation point P is detected and repaired. Absent. Therefore, in the embodiment of the present invention, the insulation deterioration point P can be detected even when the deterioration point resistance R5 of the insulation deterioration point P is about 200 MΩ.

絶縁劣化点Pの劣化点抵抗R5が200MΩである場合には、劣化点抵抗R5に流れる漏れ電流は50μAである。漏れ電流が50μAである場合には、電力ケーブル11a、11bに重畳するノイズとの識別が困難となるので、ノイズ侵入防止回路14を設け、電力ケーブル11a、11bに重畳するノイズを除去する。   When the deterioration point resistance R5 at the insulation deterioration point P is 200 MΩ, the leakage current flowing through the deterioration point resistance R5 is 50 μA. When the leakage current is 50 μA, it is difficult to distinguish the noise superimposed on the power cables 11a and 11b. Therefore, the noise intrusion prevention circuit 14 is provided to remove the noise superimposed on the power cables 11a and 11b.

図2は、本発明の実施の形態に係わるノイズ侵入防止回路14の回路構成図である。ノイズ侵入防止回路14は接続端子19に接続された電力ケーブル11a、11bに重畳するノイズをそれぞれ除去するための入力フィルタ回路23a、23bを有する。入力フィルタ回路23aは電力ケーブル11aに重畳するノイズを除去し、入力フィルタ回路23bは電力ケーブル11bに重畳するノイズを除去する。   FIG. 2 is a circuit configuration diagram of the noise intrusion prevention circuit 14 according to the embodiment of the present invention. The noise intrusion prevention circuit 14 has input filter circuits 23a and 23b for removing noise superimposed on the power cables 11a and 11b connected to the connection terminal 19, respectively. The input filter circuit 23a removes noise superimposed on the power cable 11a, and the input filter circuit 23b removes noise superimposed on the power cable 11b.

入力フィルタ回路23a、23bの出力は動増幅回路24に入力され、その差分が演算増幅され、さらに、2段増幅回路25で増幅されて零調整回路26に入力される。2段増幅回路25で増幅されて零調整回路26に入力される。2段増幅回路25を設けているのは増幅率を高めるためである。零調整回路26は、2本の電力ケーブル11a、11bに直流電圧が印加されない状態で差動増幅回路24の出力が零となるように検流計メータ15の零調整を行うものである。2本の電力ケーブル11a、11bに直流電圧が印加されていない状態では、本来的には動増幅回路24の出力は0Vであるが、実際には電力ケーブル11a、11bに発生している直流電圧や、動増幅回路24自身で発生しているオフセットのために0Vにならない。そこで、電圧をキャンセルするために零調整を行う。
Input filter circuit 23a, the output of 23b is input to the differential amplifier circuit 24, the difference is calculated amplified, further input is amplified by two-stage amplifier circuit 25 to the zero-adjusting circuit 26. Amplified by the two-stage amplifier circuit 25 and input to the zero adjustment circuit 26. The reason why the two-stage amplifier circuit 25 is provided is to increase the amplification factor. The zero adjustment circuit 26 performs zero adjustment of the galvanometer meter 15 so that the output of the differential amplifier circuit 24 becomes zero when no DC voltage is applied to the two power cables 11a and 11b. Two power cables 11a, in a state where the DC voltage is not applied to 11b, the output of the differential amplifier circuit 24 is inherently is 0V, actually occurring power cables 11a, 11b, DC not voltage or to 0V for offset occurring in the differential amplifier circuit 24 itself. Therefore, zero adjustment is performed to cancel the voltage.

零調整回路26の出力は、感度調整回路27を介して検流計メータ15に入力される。感度調整回路27は検流計メータ15の感度を調整するものであり、劣化点抵抗R5に流れる漏れ電流の大きさ、すなわち、絶縁劣化点Pにおける劣化点抵抗R5を測定する感度に合わせて調整される。測定しようとする絶縁劣化点Pの劣化点抵抗R5が200MΩ(漏れ電流が50μA)である場合には、最大感度に設定される。   The output of the zero adjustment circuit 26 is input to the galvanometer meter 15 via the sensitivity adjustment circuit 27. The sensitivity adjustment circuit 27 adjusts the sensitivity of the galvanometer meter 15 and adjusts according to the magnitude of the leakage current flowing through the deterioration point resistor R5, that is, the sensitivity for measuring the deterioration point resistance R5 at the insulation deterioration point P. Is done. When the degradation point resistance R5 of the insulation degradation point P to be measured is 200 MΩ (leakage current is 50 μA), the maximum sensitivity is set.

次に、工夫点(3)について説明する。工夫点(2)で述べたように、本発明の実施の形態では絶縁劣化点Pの劣化点抵抗R5が200MΩ程度である場合、すなわち、絶縁劣化点Pでの漏れ電流が50μAである微少電流の場合にも、絶縁劣化点Pを検出できるようにするので、自己の測定表示装置18の各要素からの漏れ電流が電力ケーブル11a、11bに流れ込まないように配慮する。   Next, the device point (3) will be described. As described in the contrivance point (2), in the embodiment of the present invention, when the deterioration point resistance R5 at the insulation deterioration point P is about 200 MΩ, that is, the leakage current at the insulation deterioration point P is 50 μA. Also in this case, since the insulation deterioration point P can be detected, it is considered that the leakage current from each element of its own measurement display device 18 does not flow into the power cables 11a and 11b.

そのため、測定表示装置18を構成する各要素であるノイズ侵入防止回路14、検流計メータ15、レシオアーム16、比率演算部20、按分比率表示器21、バッテリ22等の絶縁性能を向上させる。例えば、これら要素を絶縁材料で覆い測定表示装置18の筐体に漏れ電流が流出しないようにする。これにより、大地間と所定の絶縁強度を保ち漏れ電流を小さくしている。   Therefore, the insulation performance of the noise intrusion prevention circuit 14, the galvanometer meter 15, the ratio arm 16, the ratio calculation unit 20, the proration ratio indicator 21, the battery 22, and the like, which are the elements constituting the measurement display device 18, is improved. For example, these elements are covered with an insulating material to prevent leakage current from flowing into the housing of the measurement display device 18. As a result, the leakage current is reduced while maintaining a predetermined insulation strength between the ground.

また、測定表示装置18の操作部、例えば、零調整回路26の操作つまみ、感度調整回路27の操作ダイヤル、レシオアーム16の操作つまみ、測定表示装置18の電源の入切スイッチ等についても絶縁性能を向上させる。例えば、これら操作部が測定表示装置18の筐体に接触する部分に絶縁材料を施し、大地間と所定の絶縁強度を保ち漏れ電流を小さくする。なお、測定表示装置18の筐体は、直流電圧電源17から直流電圧が印加されるので安全のために大地に接地する。   Insulation performance is also applied to the operation section of the measurement display device 18, such as the operation knob of the zero adjustment circuit 26, the operation dial of the sensitivity adjustment circuit 27, the operation knob of the ratio arm 16, and the power on / off switch of the measurement display device 18. To improve. For example, an insulating material is applied to a portion where these operation units come into contact with the housing of the measurement display device 18 to maintain a predetermined insulation strength between the ground and reduce a leakage current. The casing of the measurement display device 18 is grounded to the ground for safety because a DC voltage is applied from the DC voltage power source 17.

本発明の実施の形態によれば、直流電圧電源17として、電力ケーブル11a、11bに接続されるガス絶縁開閉装置(GIS)の許容直流電圧値以下の直流電圧を発生する直流安定化電源を採用したので、ガス絶縁開閉装置に接続された電力ケーブルに対しても絶縁劣化箇所を非破壊で特定できる。   According to the embodiment of the present invention, a DC stabilized power supply that generates a DC voltage that is less than the allowable DC voltage value of the gas insulated switchgear (GIS) connected to the power cables 11a and 11b is adopted as the DC voltage power supply 17. Therefore, the insulation deterioration location can be specified nondestructively also for the power cable connected to the gas insulated switchgear.

また、ガス絶縁開閉装置(GIS)の許容直流電圧値以下の直流電圧としたことに伴い漏れ電流が微少な電流となることから、ノイズ侵入防止回路14を設け、電力ケーブル11a、11bの電流変化を高感度で入力できるようにしたので、絶縁劣化箇所の絶縁抵抗R5が大きな場合であっても絶縁劣化を検出できる。また、測定表示装置18を構成する各要素や操作部の絶縁性能を向上させ、漏れ電流の流出を抑制しているので、測定表示装置18の感度を高感度に保つことができる。   In addition, since the leakage current becomes very small due to the DC voltage lower than the allowable DC voltage value of the gas insulated switchgear (GIS), a noise intrusion prevention circuit 14 is provided to change the current of the power cables 11a and 11b. Can be input with high sensitivity, so that the insulation deterioration can be detected even when the insulation resistance R5 of the insulation deterioration portion is large. Moreover, since the insulation performance of each element and operation part which comprises the measurement display apparatus 18 is improved and the outflow of leakage current is suppressed, the sensitivity of the measurement display apparatus 18 can be kept highly sensitive.

以上の説明では、電力ケーブルの接続点がない電力線路の場合について説明したが、電力ケーブルの接続点がある電力線路の場合には、その接続点の長さや抵抗値を電力ケーブルの等価長や等価抵抗に換算して絶縁劣化位置を特定することになる。   In the above description, the case of a power line without a power cable connection point has been described. However, in the case of a power line with a power cable connection point, the length and resistance value of the connection point are set to the equivalent length of the power cable. Insulation deterioration position is specified in terms of equivalent resistance.

本発明の実施の形態に係わる絶縁劣化位置評定装置の構成図。The block diagram of the insulation degradation position evaluation apparatus concerning embodiment of this invention. 本発明の実施の形態におけるノイズ侵入防止回路の回路構成図。The circuit block diagram of the noise intrusion prevention circuit in embodiment of this invention. 本発明の実施の形態で使用するマーレーループ法での電力線路の絶縁劣化位置を評定する原理の説明図。Explanatory drawing of the principle which evaluates the insulation degradation position of the power line by the Murray loop method used by embodiment of this invention.

符号の説明Explanation of symbols

11…電力ケーブル、12…短絡ケーブル、13…測定辺抵抗、14…ノイズ侵入防止回路、15…検流計メータ、16…レシオアーム、17…直流電圧電源、18…測定表示装置、19…接続端子、20…比率演算部、21…按分比率表示器、22…バッテリ、23…入力フィルタ回路、24…動増幅回路、25…2段増幅回路、26…零調整回路、27…感度調整回路 DESCRIPTION OF SYMBOLS 11 ... Power cable, 12 ... Short-circuit cable, 13 ... Measurement side resistance, 14 ... Noise intrusion prevention circuit, 15 ... Galvanometer meter, 16 ... Ratio arm, 17 ... DC voltage power supply, 18 ... Measurement display apparatus, 19 ... Connection terminal, 20 ... rate calculating section, 21 ... proportioner ratio indicator, 22 ... battery, 23 ... input filter circuit, 24 ... differential amplifier circuit, 25 ... two-stage amplifier circuit, 26 ... zero adjustment circuit, 27 ... sensitivity adjustment circuit

Claims (3)

電力ケーブルで形成された電力線路の一方端が短絡された2本の電力線路の他方端に測定辺抵抗を接続するとともに測定辺抵抗に並列に検流計メータを接続してホイートストンブリッジ回路を形成し、前記ホイートストンブリッジ回路の測定辺抵抗を按分した位置に直流電圧を印加してマーレーループ法で電力線路の絶縁劣化位置を評定する絶縁劣化位置評定装置において、前記電力線路の絶縁劣化位置を評定する際に前記電力線路に接続されるガス絶縁開閉装置の許容直流電圧値以下の直流電圧を前記ホイートストンブリッジ回路の測定辺抵抗の按分位置に印加する直流電圧電源と、大地間と所定の絶縁強度を保って形成され前記ホイートストンブリッジ回路における2本の電力線路と測定辺抵抗との接続点間に流れる電流を指示する検流計メータと、大地間と所定の絶縁強度を保って形成され2本の電力線路の各々の電力線路に重畳するノイズが前記検流計メータに入力されることを防止するノイズ侵入防止回路と、大地間と所定の絶縁強度を保って形成され前記ホイートストンブリッジ回路の測定辺抵抗の按分位置を変化させ前記検流計メータに流れる電流を零に調整するレシオアームとを備えたことを特徴とする絶縁劣化位置評定装置。   A Wheatstone bridge circuit is formed by connecting a measurement side resistor to the other end of two power lines that are short-circuited at one end of the power line formed by the power cable and connecting a galvanometer meter in parallel to the measurement side resistance. In the insulation degradation position evaluation device, which evaluates the insulation deterioration position of the power line by the Murray loop method by applying a DC voltage to the position where the measurement side resistance of the Wheatstone bridge circuit is apportioned, the insulation deterioration position of the power line is evaluated. A DC voltage power source for applying a DC voltage equal to or less than a permissible DC voltage value of the gas insulated switchgear connected to the power line to the measurement side resistance of the Wheatstone bridge circuit, and a predetermined insulation strength between the ground Current detection that indicates the current that flows between the connection points of the two power lines and the measurement side resistance in the Wheatstone bridge circuit. A noise intrusion prevention circuit for preventing noise input to the galvanometer meter from being input to the galvanometer meter, and a noise superimposed on each of the two power lines formed with a predetermined insulation strength between the meter and the ground And a ratio arm that adjusts the current flowing through the galvanometer meter to zero by changing the apportioning position of the measurement side resistance of the Wheatstone bridge circuit and maintaining a predetermined insulation strength. Degradation position rating device. 前記ノイズ侵入防止回路は、2本の電力線路の各々の電力線路から入力される電流に含まれるノイズを除去する入力フィルタ回路と、前記入力フィルタ回路の出力の差分を演算する動増幅回路と、2本の電力線路に直流電圧が印加されない状態で前記動増幅回路の出力が零となるように前記検流計メータの零調整を行う零調整回路とを備えたことを特徴とする請求項1記載の絶縁劣化位置評定装置。
The noise intrusion prevention circuit includes an input filter circuit that removes noise contained in the current input from each of the power lines of the two power lines, the differential amplifier circuit for calculating the difference between the output of the input filter circuit , claims, characterized in that the output of the differential amplifier circuit in a state in which a DC voltage to the two power lines is not applied has a zero adjustment circuit for performing the zero adjustment of the galvanometer meter so that the zero Item 1. An insulation deterioration position evaluation device according to item 1.
電力ケーブルで形成された電力線路の一方端が短絡された2本の電力線路の他方端に測定辺抵抗を接続するとともに測定辺抵抗に並列に検流計メータを接続してホイートストンブリッジ回路を形成し、前記ホイートストンブリッジ回路の測定辺抵抗を按分した位置に直流電圧を印加してマーレーループ法で電力線路の絶縁劣化位置を評定する絶縁劣化位置評定方法において、2本の電力線路に流れる電流を大地間と所定の絶縁強度を保って形成されたノイズ侵入防止回路を介して検流計メータに入力し、2本の電力線路に直流電圧が印加されていない状態で大地間と所定の絶縁強度を保って形成された検流計メータの零調整を行い、前記直流電圧電源から前記電力線路に接続されるガス絶縁開閉装置の許容直流電圧値以下の直流電圧を前記ホイートストンブリッジ回路の測定辺抵抗の按分位置に印加し、大地間と所定の絶縁強度を保って形成されたレシオアームにより前記ホイートストンブリッジ回路の測定辺抵抗の按分位置を変化させて前記検流計メータに流れる電流を零に調整し、前記レシオアームで調整された測定辺抵抗の按分位置の比率に基づいて電力線路の絶縁劣化位置を評定することを特徴とする絶縁劣化位置評定方法。

A Wheatstone bridge circuit is formed by connecting a measurement side resistor to the other end of two power lines that are short-circuited at one end of the power line formed by the power cable and connecting a galvanometer meter in parallel to the measurement side resistance. In the insulation degradation position evaluation method in which a DC voltage is applied to a position where the measurement side resistance of the Wheatstone bridge circuit is apportioned and the insulation deterioration position of the power line is evaluated by the Murray loop method, the current flowing through the two power lines is Input to a galvanometer meter through a noise intrusion prevention circuit formed with a predetermined insulation strength between the ground and a predetermined insulation strength between the ground and a DC voltage applied to the two power lines Is adjusted to zero, and a DC voltage equal to or lower than an allowable DC voltage value of a gas-insulated switchgear connected to the power line from the DC voltage power supply is adjusted to zero. Applied to the apportioning position of the measurement side resistance of the Toestone bridge circuit, and changing the apportioning position of the measurement side resistance of the Wheatstone bridge circuit by a ratio arm formed with a predetermined insulation strength between the ground and the galvanometer An insulation deterioration position evaluation method characterized in that the current flowing through the meter is adjusted to zero, and the insulation deterioration position of the power line is evaluated based on the proportion of the proportional position of the measured side resistance adjusted by the ratio arm.

JP2005088263A 2005-03-25 2005-03-25 Insulation degradation position evaluation apparatus and method Active JP4984411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088263A JP4984411B2 (en) 2005-03-25 2005-03-25 Insulation degradation position evaluation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088263A JP4984411B2 (en) 2005-03-25 2005-03-25 Insulation degradation position evaluation apparatus and method

Publications (2)

Publication Number Publication Date
JP2006267002A JP2006267002A (en) 2006-10-05
JP4984411B2 true JP4984411B2 (en) 2012-07-25

Family

ID=37203129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088263A Active JP4984411B2 (en) 2005-03-25 2005-03-25 Insulation degradation position evaluation apparatus and method

Country Status (1)

Country Link
JP (1) JP4984411B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026179B2 (en) * 2007-07-23 2012-09-12 関西電力株式会社 Cable fault point measuring instrument
JP6069051B2 (en) * 2013-03-19 2017-01-25 九州電力株式会社 Power cable high resistance insulation failure location method and apparatus
JP6358562B2 (en) * 2014-10-28 2018-07-18 住友電気工業株式会社 Degradation position measurement method for superconducting cable lines
CN106885934B (en) * 2017-03-09 2019-10-01 华北电力大学 A kind of bus voltage measurement device established in three-phase integrated GIS tank body closed end
JP7287036B2 (en) * 2019-03-20 2023-06-06 中国電力株式会社 Simulation program and simulation method

Also Published As

Publication number Publication date
JP2006267002A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US20150077891A1 (en) Power supply monitoring system
KR20060045773A (en) Method of and device for insulation monitoring
JP4984411B2 (en) Insulation degradation position evaluation apparatus and method
KR101911057B1 (en) Leakage current tester on hot line state
RU2695278C1 (en) Method for determining single-phase fault of feeder to ground in medium voltage cable networks
CN107850640A (en) DC meter and application method
KR101179062B1 (en) On-line cable monitoring system
US10520539B2 (en) System for detecting and indicating partial discharges and voltage in high-voltage electric power distribution systems
US20060226850A1 (en) Ground circuit impedance measurement
JP2008175696A (en) Insulation level monitoring device
US7068040B2 (en) Ground circuit impedance measurement apparatus and method
RU2377581C1 (en) Method of measurement and monitoring of insulation resistance of unearthed power electrical ac networks under operation voltage and device for its implementation
KR102634953B1 (en) Portable test device for Surge protective device
CA2868454C (en) Method and apparatus for detecting a glowing contact in a power circuit
KR101336860B1 (en) Detecting apparatus for fault location of power line
JP5428030B1 (en) Insulation monitoring device
CN209446673U (en) A kind of detection system and insulation tester of insulation resistance
KR20070027481A (en) On-line low-voltage cable fault locating system
Schei Diagnostics techniques for surge arresters with main reference to on-line measurement of resistive leakage current of metal-oxide arresters
KR20050048407A (en) Apparatus for measuring earth resistance
KR20080024350A (en) Earth resistance measurement apparatus and method by clamp-on type current comparison
Singh et al. Under ground cable fault detection using IOT
RU2321009C1 (en) Method and device for measurement of earth rod resistance
JP6069051B2 (en) Power cable high resistance insulation failure location method and apparatus
RU2526221C2 (en) Device to measure and monitor resistance of insulation in ac networks with resistive neutral under working voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350