JP4984377B2 - Solid-state imaging device and method for manufacturing solid-state imaging device - Google Patents

Solid-state imaging device and method for manufacturing solid-state imaging device Download PDF

Info

Publication number
JP4984377B2
JP4984377B2 JP2004140798A JP2004140798A JP4984377B2 JP 4984377 B2 JP4984377 B2 JP 4984377B2 JP 2004140798 A JP2004140798 A JP 2004140798A JP 2004140798 A JP2004140798 A JP 2004140798A JP 4984377 B2 JP4984377 B2 JP 4984377B2
Authority
JP
Japan
Prior art keywords
light receiving
optical waveguide
solid
insulating film
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004140798A
Other languages
Japanese (ja)
Other versions
JP2005322824A (en
Inventor
勇三 福崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004140798A priority Critical patent/JP4984377B2/en
Publication of JP2005322824A publication Critical patent/JP2005322824A/en
Application granted granted Critical
Publication of JP4984377B2 publication Critical patent/JP4984377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、半導体基板に形成された受光部の上方に光導波路領域が形成されている固体撮像装置および固体撮像装置の製造方法に関する。   The present invention relates to a solid-state imaging device in which an optical waveguide region is formed above a light receiving portion formed on a semiconductor substrate, and a method for manufacturing the solid-state imaging device.

固体撮像素子は画質の向上への要請から、画素数を増やして解像度を高くすることが必要である。コストを増加させずに画素数を増やすためには画素サイズを縮小する必要があるが、画素サイズを縮小すると一つの画素に入力できる光量は減少し、感度が低くなってしまう。一方、感度を高くするために遮光膜の開口部を大きくすると、隣接画素への光の混入が発生してしまう。   In order to improve the image quality of a solid-state image sensor, it is necessary to increase the number of pixels and increase the resolution. In order to increase the number of pixels without increasing the cost, it is necessary to reduce the pixel size. However, when the pixel size is reduced, the amount of light that can be input to one pixel is reduced and the sensitivity is lowered. On the other hand, if the opening of the light shielding film is enlarged in order to increase the sensitivity, light is mixed into adjacent pixels.

そこで、画素の感度の向上と光の混入の防止を達成するために、半導体装置表面にオンチップレンズを設けることが行われている。また、微細化による隣接画素への光の混入が防げない状態になってきているため、オンチップレンズと受光部との間に設けられた絶縁膜内に光透過材料の膜で構成される光導波路を設ける構造も考えられている。光導波路は、隣接受光部への光の混入を防ぎ、目的の受光部への光を誘導するものである(例えば、特許文献1、特許文献2参照。)。   Therefore, in order to achieve an improvement in pixel sensitivity and prevention of light contamination, an on-chip lens is provided on the surface of the semiconductor device. In addition, since it is not possible to prevent light from being mixed into adjacent pixels due to miniaturization, an optical film composed of a light transmitting material film is formed in an insulating film provided between the on-chip lens and the light receiving unit. A structure in which a waveguide is provided is also considered. The optical waveguide prevents light from being mixed into the adjacent light receiving section and guides light to the target light receiving section (see, for example, Patent Document 1 and Patent Document 2).

特開2002−118245号公報JP 2002-118245 A 特開2003−60179号公報JP 2003-60179 A

しかしながら、受光部への導波路の形成には、光導波路形成用穴を開口する必要がある。光導波路は従来、受光部まで達しているために、前記光導波路形成用穴を加工する際に受光部がエッチングダメージを受けてしまい、感度特性の劣化をきたす。また、光導波路側面に反射用材料を形成するためには、一旦反射用材料を一律に形成したのち、異方性エッチングを行う必要があり、その際にも受光部はエッチングストップのための材料となり、ダメージを受けてしまう。このエッチングダメージに対する感度低下は、微細化が進む程に相対的に影響が大きくなる。   However, in order to form a waveguide in the light receiving portion, it is necessary to open an optical waveguide forming hole. Conventionally, since the optical waveguide has reached the light receiving portion, the light receiving portion is subjected to etching damage when the optical waveguide forming hole is processed, resulting in deterioration of sensitivity characteristics. In addition, in order to form the reflective material on the side surface of the optical waveguide, it is necessary to form the reflective material once and then perform anisotropic etching. And take damage. This decrease in sensitivity to etching damage has a relatively large effect as the miniaturization progresses.

本発明はこのような課題を解決するために成されたものである。すなわち、本発明は、半導体基板上に設けられる受光部と、半導体基板上を覆う絶縁膜と、絶縁膜の受光部上方に対応する位置に設けられる光導波路領域とを備える固体撮像装置において、光導波路領域は、受光部側の端部から反対側の端部に徐々に開口が広げられ、光導波路領域における受光部側の端部と受光部の受光面との間に、当該光道波路領域の底部から前記絶縁膜を等方的にエッチングした部分を光道波路となる材料で埋め込んだ部分を含む所定の間隔が設けられているものである。 The present invention has been made to solve such problems. That is, the present invention provides a solid-state imaging device including a light receiving portion provided on a semiconductor substrate, an insulating film covering the semiconductor substrate, and an optical waveguide region provided at a position corresponding to the light receiving portion above the insulating film. waveguide region, gradually opening is widened in the end opposite from the end portion of the light receiving portion side, between the light receiving surface of the light receiving portion and the end portion of the light receiving unit side of the optical waveguide region, the optical path waveguide region A predetermined interval including a portion in which the portion where the insulating film is isotropically etched from the bottom portion is embedded with a material which becomes an optical path waveguide is provided.

このような本発明では、受光部の上方に光導波領域が設けられる固体撮像装置において、受光部の受光面と光導波領域の受光部側の端部との間に所定の間隔が設けられているため、光導波領域をエッチングによって構成する際、受光部へのエッチングダメージを回避できるようになる。   In the present invention, in the solid-state imaging device in which the optical waveguide region is provided above the light receiving unit, a predetermined interval is provided between the light receiving surface of the light receiving unit and the end of the optical waveguide region on the light receiving unit side. Therefore, when the optical waveguide region is formed by etching, etching damage to the light receiving portion can be avoided.

また、本発明は、半導体基板上に受光部を形成し、その受光部の上に所定の厚さの第1絶縁膜を介してストッパメタル層を形成し、このストッパメタル層の上に第2絶縁膜を形成する工程と、受光部と対応する位置の第2絶縁膜をストッパメタル層までエッチングし、このエッチングによってストッパメタル層から上方に向けて徐々に開口が広がる孔を形成する工程と、孔の内壁に光反射材もしくは第2絶縁膜と屈折率の異なる材料から成る薄膜を形成する工程と、孔を介してストッパメタル層をエッチングするとともに、そのエッチング部分から第1絶縁膜を等方性エッチングする工程と、孔および第1絶縁膜を等方性エッチングした部分に光導波路となる材料を埋め込む工程とを備える固体撮像装置の製造方法である。   According to the present invention, a light receiving portion is formed on a semiconductor substrate, a stopper metal layer is formed on the light receiving portion via a first insulating film having a predetermined thickness, and a second metal is formed on the stopper metal layer. A step of forming an insulating film, a step of etching the second insulating film at a position corresponding to the light receiving portion to the stopper metal layer, and forming a hole in which the opening gradually widens upward from the stopper metal layer by this etching; Forming a thin film made of a material having a refractive index different from that of the light reflecting material or the second insulating film on the inner wall of the hole, etching the stopper metal layer through the hole, and isolating the first insulating film from the etched portion; And a step of embedding a material to be an optical waveguide in a portion where the hole and the first insulating film are isotropically etched.

このような本発明では、受光部の上にストッパメタル層を形成し、このストッパメタル層まで第2絶縁膜をエッチングして光導波領域を構成する孔を形成し、その後、孔を介してストッパメタル層をエッチングするとともに、そのエッチング部分から第1絶縁膜を等方性エッチングすることで、受光部の上に所定の間隔を開けた状態で光導波領域の端部を配置できるようになる。   In the present invention, a stopper metal layer is formed on the light receiving portion, the second insulating film is etched to the stopper metal layer to form a hole constituting the optical waveguide region, and then the stopper is formed through the hole. By etching the metal layer and isotropically etching the first insulating film from the etched portion, the end portion of the optical waveguide region can be disposed on the light receiving portion at a predetermined interval.

したがって、本発明によれば、受光部の上に設けられる光導波領域の受光部側の端部を受光面から所定間隔離した状態で設けることができ、光導波領域形成を形成する際のエッチングで、受光部がダメージを受けることがなくなり、受光部の特性劣化を防止することが可能となる。これにより、光導波領域を備える固体撮像装置の微細化および感度向上を図ることが可能となる。   Therefore, according to the present invention, the end portion on the light receiving portion side of the optical waveguide region provided on the light receiving portion can be provided in a state of being separated from the light receiving surface by a predetermined distance, and etching when forming the optical waveguide region formation Thus, the light receiving portion is not damaged, and it is possible to prevent deterioration of the characteristics of the light receiving portion. As a result, it is possible to reduce the size and improve the sensitivity of the solid-state imaging device including the optical waveguide region.

以下、本発明の実施の形態を図に基づき説明する。図1は、第1実施形態に係る固体撮像装置を説明する模式断面図である。すなわち、この固体撮像装置は、半導体基板1に設けられる受光部2と、半導体基板1の受光部2側を覆う絶縁膜3と、絶縁膜3の受光部2の上方に対応する位置に設けられる光導波領域4とを備えているもので、この光導波領域4における受光部2側の端部と受光部2の表面(受光面2a)との間に所定の間隔が設けられている点に特徴がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating the solid-state imaging device according to the first embodiment. That is, the solid-state imaging device is provided at a position corresponding to the light receiving portion 2 provided on the semiconductor substrate 1, the insulating film 3 covering the light receiving portion 2 side of the semiconductor substrate 1, and the light receiving portion 2 of the insulating film 3. The optical waveguide region 4 is provided, and a predetermined interval is provided between the end of the optical waveguide region 4 on the light receiving unit 2 side and the surface of the light receiving unit 2 (light receiving surface 2a). There are features.

光導波領域4は、この内側に入射した光を受光部2の受光面2aまで導くためのもので、本実施形態では光導波領域4の内壁となる光反射面4aの角度が徐々に変化して光を受光部2の中央部分へ集められるようになっている。つまり、図1に示す一点鎖線矢印のように、光導波領域4の光反射面4aに反射しないで直接受光部2へ到達する光のほか、光反射面4aで反射を繰り返して受光部2へ到達する光もあり、集光力を向上できることになる。   The optical waveguide region 4 is for guiding the light incident on the inside to the light receiving surface 2a of the light receiving unit 2. In the present embodiment, the angle of the light reflecting surface 4a that is the inner wall of the optical waveguide region 4 is gradually changed. Thus, the light can be collected at the central portion of the light receiving unit 2. That is, as indicated by the one-dot chain line arrow shown in FIG. 1, in addition to the light that directly reaches the light receiving unit 2 without being reflected by the light reflecting surface 4a of the optical waveguide region 4, the light reflecting surface 4a repeatedly reflects to the light receiving unit 2. There is also light that reaches, and the light collecting power can be improved.

なお、図1に示す例では、光導波領域4の光反射面4aが多角形状に段階的に変化しているが、曲面状に連続的に変化するようにしてもよい。このような角度変化によって、光導波領域4の光入射端では広く光を集め、光出射端では集めた光を受光部2へ集中させることが可能となる。ここで、光反射面4aの角度変化は、入射側から出射側にかけて受光面2aに対して45度から90度まで変化するように設定するのが望ましい。   In the example shown in FIG. 1, the light reflecting surface 4 a of the optical waveguide region 4 is gradually changed to a polygonal shape, but may be continuously changed to a curved shape. By such an angle change, it is possible to collect light widely at the light incident end of the optical waveguide region 4 and concentrate the collected light on the light receiving unit 2 at the light emitting end. Here, it is desirable that the angle change of the light reflecting surface 4a is set so as to change from 45 degrees to 90 degrees with respect to the light receiving surface 2a from the incident side to the emission side.

また、光導波路領域4における受光部2側の端部の口径は、受光部2が受光面2aにおける口径よりも小さくなっている。これは、光導波領域4の受光部2側の端部が受光部2の受光面2aと間隔を開けて設けている関係から、この隙間から光が受光部2の外側へ逃げてしまうことが考えられ、これを防止する観点から、光導波領域4の受光部2側の端部の口径を受光部2の受光面2aにおける口径よりも小さく設けて、端部から広がる光を確実に受光面2aに当てるようにするためである。   Further, the diameter of the end portion on the light receiving portion 2 side in the optical waveguide region 4 is smaller than the diameter of the light receiving portion 2 in the light receiving surface 2a. This is because the end of the optical waveguide region 4 on the side of the light receiving unit 2 is provided at a distance from the light receiving surface 2a of the light receiving unit 2, and light may escape to the outside of the light receiving unit 2 from this gap. In order to prevent this problem, the diameter of the end of the optical waveguide region 4 on the side of the light receiving unit 2 is set smaller than the diameter of the light receiving surface 2a of the light receiving unit 2 so that light spreading from the end can be reliably received. This is to make it hit 2a.

また、光導波路領域4の受光部2とは反対側の端部(光入射端)の口径は、受光部2の受光面2aの口径よりも大きくなっている。光入射端の口径が受光面2aの口径よりも大きいことで、受光面2aの微細化が進んでも多くの光を集めて受光できるようになる。   In addition, the diameter of the end portion (light incident end) of the optical waveguide region 4 opposite to the light receiving portion 2 is larger than the diameter of the light receiving surface 2 a of the light receiving portion 2. Since the aperture of the light incident end is larger than the aperture of the light receiving surface 2a, a large amount of light can be collected and received even if the light receiving surface 2a is miniaturized.

さらに、光導波路領域4の内壁である光反射面4aの光反射効率を高めるため、光反射面4aに絶縁膜3よりも高反射率の薄膜を形成したり、光導波領域4の内部に埋め込まれる材料よりも低屈折率の薄膜を形成しておく。   Further, in order to increase the light reflection efficiency of the light reflection surface 4a which is the inner wall of the optical waveguide region 4, a thin film having a higher reflectance than the insulating film 3 is formed on the light reflection surface 4a or embedded in the light waveguide region 4. A thin film having a refractive index lower than that of the material to be formed is formed.

次に、第1実施形態に係る固体撮像装置の製造方法を図2〜図7の模式断面図に沿って説明する。先ず、図2に示すように半導体基板1に受光部2を形成し、この受光部2の上に絶縁膜3を介してストッパメタル層Mを形成する。ストッパメタル層Mの材質としては、他の配線としても使用できるアルミニウムやタングステンが好適である。ここで、タングステンは過酸化水素水で選択的にエッチングされ、酸化シリコン系から成る絶縁膜3のへのダメージが最小である。ストッパメタル層Mの厚さは50nm〜300nmの間で適宜選択する。   Next, the manufacturing method of the solid-state imaging device according to the first embodiment will be described along schematic sectional views of FIGS. First, as shown in FIG. 2, the light receiving portion 2 is formed on the semiconductor substrate 1, and the stopper metal layer M is formed on the light receiving portion 2 via the insulating film 3. As the material of the stopper metal layer M, aluminum or tungsten which can be used as other wiring is preferable. Here, tungsten is selectively etched with hydrogen peroxide, and damage to the insulating film 3 made of silicon oxide is minimal. The thickness of the stopper metal layer M is appropriately selected between 50 nm and 300 nm.

また、ストッパメタル層Mの上に絶縁膜3を設ける。ここで、実際には絶縁膜3は多層となるが、説明の便宜上、受光部2とストッパメタル層Mとの間の絶縁膜3を第1絶縁膜3a、その上の絶縁膜3を第2絶縁膜3bと言うものとする。   An insulating film 3 is provided on the stopper metal layer M. Here, although the insulating film 3 is actually a multilayer, for convenience of explanation, the insulating film 3 between the light receiving portion 2 and the stopper metal layer M is the first insulating film 3a, and the insulating film 3 thereon is the second. It shall be called the insulating film 3b.

次に、図3に示すように、第2絶縁膜3bの上にレジストRを塗布し、受光部2の受光面2aの位置に対応して受光面2aより大きな開口を開けた状態で、例えばRIE(Reactive Ion Etching)法によって第2絶縁膜3bを異方的にエッチングする。これにより、上方が広がっている孔がストッパメタル層Mまで形成される。この孔は光導波路領域となるため、孔の内面の角度が光導波路領域の光反射面の角度となる。したがって、RIE法による異方性エッチングの条件を制御することで、孔の内面の角度を調整する。また、孔の下端部の口径はストッパメタル層Mよりも片側100nm程度小さくしておく。ストッパメタル層Mによって確実にエッチングを止めるためである。   Next, as shown in FIG. 3, a resist R is applied on the second insulating film 3 b, and an opening larger than the light receiving surface 2 a corresponding to the position of the light receiving surface 2 a of the light receiving unit 2 is opened, for example, The second insulating film 3b is anisotropically etched by RIE (Reactive Ion Etching). As a result, a hole extending upward is formed up to the stopper metal layer M. Since this hole becomes an optical waveguide region, the angle of the inner surface of the hole becomes the angle of the light reflecting surface of the optical waveguide region. Therefore, the angle of the inner surface of the hole is adjusted by controlling the conditions of anisotropic etching by the RIE method. Further, the diameter of the lower end portion of the hole is made smaller than the stopper metal layer M by about 100 nm on one side. This is because etching is surely stopped by the stopper metal layer M.

RIE法のエッチング条件としては、例えば、Cxy、Ar、O2、CHFz系のガス種を使用し、2ステップ以上のマルチステップとし、後のステップでCHFz流量比を下げ、O2流量比を上げるようにする。ここでx,y,zは数字であり、Cxyは具体的にはC48、CHFzはCHF3である。 The etching conditions for the RIE method, for example, C x F y, using Ar, the O 2, CHF z based gas species, a more multi-step two-step, lowering the CHF z flow ratio in a later step, O 2 Increase the flow rate ratio. Here, x, y, z are numbers, C x F y is specifically C 4 F 8 , and CHF z is CHF 3 .

次に、図4に示すように、第2絶縁膜3bに設けた孔の内壁に金属材料を一部もしくは全部使用した光反射のための薄膜4b、もしくは孔に埋め込まれる材料よりも屈曲率の低い材料から成る薄膜4cを形成する。その後、ストッパメタル層Mの上に被着している薄膜4b(4c)をRIE法によってエッチング除去し、図5に示すようにストッパメタル層Mが露出する状態にする。   Next, as shown in FIG. 4, the light reflection thin film 4b using a metal material partially or entirely on the inner wall of the hole provided in the second insulating film 3b, or a bending rate higher than that of the material embedded in the hole. A thin film 4c made of a low material is formed. Thereafter, the thin film 4b (4c) deposited on the stopper metal layer M is removed by etching by the RIE method so that the stopper metal layer M is exposed as shown in FIG.

次に、この孔を介してウェットエッチングを行い、ストッパメタル層Mを除去し、続いてストッパメタル層Mが除去された部分から第1絶縁膜3aをウェットエッチングして等法的に除去する。このエッチング後の状態が図6に示される。第1絶縁膜3aの等法性エッチングによって、孔の下端における口径が広がる状態となる。この際、受光部2の受光面2aから約500nmほど上の部分までしかエッチングが行われないことから、受光面2aに対するエッチングダメージを防止できる。その後、図7に示すように、孔の内部に光導波路材となる材料を埋め込む。これにより、孔の部分に光導波路領域4が構成される。   Next, wet etching is performed through the hole to remove the stopper metal layer M, and then the first insulating film 3a is wet-etched from the portion from which the stopper metal layer M has been removed by isotropic removal. The state after this etching is shown in FIG. By the isotropic etching of the first insulating film 3a, the diameter at the lower end of the hole is expanded. At this time, since etching is performed only up to about 500 nm above the light receiving surface 2a of the light receiving portion 2, etching damage to the light receiving surface 2a can be prevented. Thereafter, as shown in FIG. 7, a material to be an optical waveguide material is embedded in the hole. Thereby, the optical waveguide region 4 is formed in the hole portion.

このような第1実施形態に係る固体撮像装置では、光導波路領域4の受光部2とは反対側の端部(光入射端)の口径が受光部2の受光面2aの口径より大きいため、より多くの光を光導波路領域4内に導くことができる。また、光導波路領域4の形成時に受光部2をエッチストップに使用しないので、受光面2aへのエッチングダメージを発生させずに済む。このため、光導波路領域4の下端は受光部2と一定の間隔で離れているが、光導波路領域4の受光部2側の端部の口径は受光部2の受光面2の口径よりも小さいので、導波路内に導入した光を無駄なく、有効に受光部2へ当てることが可能となる。   In the solid-state imaging device according to the first embodiment, since the diameter of the end portion (light incident end) of the optical waveguide region 4 opposite to the light receiving portion 2 is larger than the diameter of the light receiving surface 2a of the light receiving portion 2, More light can be guided into the optical waveguide region 4. Further, since the light receiving portion 2 is not used for etching stop when the optical waveguide region 4 is formed, etching damage to the light receiving surface 2a can be avoided. For this reason, the lower end of the optical waveguide region 4 is separated from the light receiving unit 2 at a constant interval, but the diameter of the end of the optical waveguide region 4 on the light receiving unit 2 side is smaller than the diameter of the light receiving surface 2 of the light receiving unit 2. Therefore, the light introduced into the waveguide can be effectively applied to the light receiving unit 2 without waste.

次に、第2実施形態に係る固体撮像装置を説明する。図8は、第2実施形態に係る固体撮像装置を説明する模式断面図である。すなわち、この固体撮像装置は、半導体基板1に設けられる受光部2、半導体基板1の受光部2側を覆う絶縁膜3、絶縁膜3の受光部2の上方に対応する位置に設けられる光導波領域4を備え、この光導波領域4における受光部2側の端部と受光部2の表面(受光面2a)との間に所定の間隔が設けられている点、先に説明した第1実施形態と同様であるが、光導波路領域4の受光部2側の端部にレンズLが設けられている点で相違する。   Next, a solid-state imaging device according to the second embodiment will be described. FIG. 8 is a schematic cross-sectional view illustrating a solid-state imaging device according to the second embodiment. That is, this solid-state imaging device includes a light receiving portion 2 provided on the semiconductor substrate 1, an insulating film 3 covering the light receiving portion 2 side of the semiconductor substrate 1, and an optical waveguide provided at a position corresponding to the upper side of the light receiving portion 2 of the insulating film 3. The first embodiment described above is provided with a region 4, and a predetermined interval is provided between the end of the optical waveguide region 4 on the light receiving unit 2 side and the surface of the light receiving unit 2 (light receiving surface 2 a). Although it is the same as that of a form, it differs in the point by which the lens L is provided in the edge part by the side of the light-receiving part 2 of the optical waveguide area | region 4. FIG.

つまり、光導波路領域4を形成する際、ストッパメタル層の形状を変えることでストッパメタル層の除去後の形状から絶縁膜3を等法性エッチングすることでレンズ形状を構成している。また、このレンズLに光学的な特性を持たせるため、光導波路領域4の内部に埋め込む材料40の屈折率を絶縁膜3の屈折率より大きくすることで、レンズLによる集光力を高めるようにしている。このようなレンズLを設けることで、光導波路領域4に導かれた光(図中一点鎖線矢印参照)は、直接受光部2へ到達するもののほか、光反射面4aで反射を繰り返していくとともに、レンズLで集光して受光部2へ確実に到達できるようになる。   That is, when the optical waveguide region 4 is formed, the shape of the stopper metal layer is changed to form a lens shape by isotropically etching the insulating film 3 from the shape after the stopper metal layer is removed. Further, in order to give this lens L optical characteristics, the light condensing power by the lens L is increased by making the refractive index of the material 40 embedded in the optical waveguide region 4 larger than the refractive index of the insulating film 3. I have to. By providing such a lens L, the light guided to the optical waveguide region 4 (see the dashed line arrow in the figure) reaches the light receiving part 2 directly and is repeatedly reflected by the light reflecting surface 4a. The light is condensed by the lens L and can be surely reached the light receiving unit 2.

光導波路領域4の光反射面4aの角度は第1実施形態と同様に、光入射側から光出射側にかけて受光面2aに対して45度から90度まで変化するように設定するのが望ましい。また、光導波路領域4の光入射側の端部の開口は受光面2の開口より大きく、光出射側の端部の開口は受光面2の開口より小さくなっている。さらに、光導波路領域4の内壁である光反射面4aの光反射効率を高めるため、光反射面4aに絶縁膜3よりも高反射率の薄膜を形成したり、光導波領域4の内部に埋め込まれる材料40よりも低屈折率の薄膜を形成しておく。   As in the first embodiment, the angle of the light reflecting surface 4a of the optical waveguide region 4 is desirably set so as to change from 45 degrees to 90 degrees with respect to the light receiving surface 2a from the light incident side to the light emitting side. The opening at the light incident side end of the optical waveguide region 4 is larger than the opening at the light receiving surface 2, and the opening at the light emitting side end is smaller than the opening at the light receiving surface 2. Further, in order to increase the light reflection efficiency of the light reflection surface 4a which is the inner wall of the optical waveguide region 4, a thin film having a higher reflectance than the insulating film 3 is formed on the light reflection surface 4a or embedded in the light waveguide region 4. A thin film having a refractive index lower than that of the material 40 to be formed is formed.

次に、第2実施形態に係る固体撮像装置の製造方法を図9〜図14の模式断面図に沿って説明する。先ず、図9に示すように半導体基板1に受光部2を形成し、この受光部2の上に絶縁膜3を介してストッパメタル層Mを形成する。また、ストッパメタル層Mの上に絶縁膜3を設ける。ここで、実際には絶縁膜3は多層となるが、説明の便宜上、受光部2とストッパメタル層Mとの間の絶縁膜3を第1絶縁膜3a、その上の絶縁膜3を第2絶縁膜3bと言うものとする。   Next, a manufacturing method of the solid-state imaging device according to the second embodiment will be described along schematic sectional views of FIGS. First, as shown in FIG. 9, the light receiving portion 2 is formed on the semiconductor substrate 1, and the stopper metal layer M is formed on the light receiving portion 2 via the insulating film 3. An insulating film 3 is provided on the stopper metal layer M. Here, although the insulating film 3 is actually a multilayer, for convenience of explanation, the insulating film 3 between the light receiving portion 2 and the stopper metal layer M is the first insulating film 3a, and the insulating film 3 thereon is the second. It shall be called the insulating film 3b.

第2実施形態では、このストッパメタル層Mの形状として、受光面2a側の周縁にトレンチ形状を設けておく。トレンチ形状を形成するには、第1絶縁膜3aを形成した後にトレンチ部分に対応した溝を形成し、その溝にストッパメタル層Mと同じ金属材料を埋め込み平坦化する。その後、トレンチ部分と一体となるようストッパメタル層Mを形成する。   In the second embodiment, as the shape of the stopper metal layer M, a trench shape is provided at the periphery on the light receiving surface 2a side. In order to form the trench shape, after forming the first insulating film 3a, a groove corresponding to the trench portion is formed, and the same metal material as that of the stopper metal layer M is buried and planarized. Thereafter, a stopper metal layer M is formed so as to be integrated with the trench portion.

トレンチ部分の溝の形成は、エッチング・ガスの調整によって行う。条件は、例えば、Cxy、Ar、O2、CHFz系のガス種を使用し、所望の深さが得られたのち、トレンチ部分の形成ステップとして、ガス比を以下のように変更する。すなわちCHFz流量比を上げ、O2流量比を下げる。Cxyは具体的にはC48、CHFzはCHF3である。 The formation of the trench in the trench portion is performed by adjusting the etching gas. The conditions are, for example, using C x F y , Ar, O 2 , and CHF z gas species, and after the desired depth is obtained, the gas ratio is changed as follows as a trench formation step To do. That is, the CHF z flow rate ratio is increased and the O 2 flow rate ratio is decreased. C x F y is specifically C 4 F 8 and CHF z is CHF 3 .

次に、図10に示すように、第2絶縁膜3bの上にレジストRを塗布し、受光部2の受光面2aの位置に対応して受光面2aより大きな開口を開けた状態で、例えばRIE法によって第2絶縁膜3bを異方的にエッチングする。これにより、上方が広がっている孔がストッパメタル層Mまで形成される。この孔は光導波路領域となるため、孔の内面の角度が光導波路領域の光反射面の角度となる。したがって、RIE法による異方性エッチングの条件を制御することで、孔の内面の角度を調整する。また、孔の下端部の口径はストッパメタル層Mよりも片側100nm程度小さくしておく。ストッパメタル層Mによって確実にエッチングを止めるためである。RIE法のエッチング条件は、例えば第1実施形態と同様である。   Next, as shown in FIG. 10, a resist R is applied on the second insulating film 3 b, and a larger opening than the light receiving surface 2 a is opened corresponding to the position of the light receiving surface 2 a of the light receiving unit 2. The second insulating film 3b is anisotropically etched by the RIE method. As a result, a hole extending upward is formed up to the stopper metal layer M. Since this hole becomes an optical waveguide region, the angle of the inner surface of the hole becomes the angle of the light reflecting surface of the optical waveguide region. Therefore, the angle of the inner surface of the hole is adjusted by controlling the conditions of anisotropic etching by the RIE method. Further, the diameter of the lower end portion of the hole is made smaller than the stopper metal layer M by about 100 nm on one side. This is because etching is surely stopped by the stopper metal layer M. The etching conditions of the RIE method are the same as those in the first embodiment, for example.

次に、図11に示すように、第2絶縁膜3bに設けた孔の内壁に金属材料を一部もしくは全部使用した光反射のための薄膜4b、もしくは孔に埋め込まれる材料よりも屈曲率の低い材料から成る薄膜4cを形成する。その後、ストッパメタル層Mの上に被着している薄膜4b(4c)をRIE法によってエッチング除去し、図12に示すようにストッパメタル層Mが露出する状態にする。   Next, as shown in FIG. 11, the light reflection thin film 4b using a metal material partially or entirely on the inner wall of the hole provided in the second insulating film 3b, or a bending rate higher than that of the material embedded in the hole. A thin film 4c made of a low material is formed. Thereafter, the thin film 4b (4c) deposited on the stopper metal layer M is removed by etching by the RIE method so that the stopper metal layer M is exposed as shown in FIG.

次に、この孔を介してウェットエッチングを行い、ストッパメタル層Mを除去し、続いてストッパメタル層Mが除去された部分から第1絶縁膜3aをウェットエッチングして等法的に除去する。このエッチング後の状態が図13に示される。第2実施形態では、ストッパメタル層Mにトレンチ形状が設けられていることから、このストッパメタル層Mを除去した形状にもトレンチ部分が転写されており、この状態で第1絶縁膜3aを等法性エッチングすることによって、孔の下端における口径が広がるとともにレンズ形状が構成される。   Next, wet etching is performed through the hole to remove the stopper metal layer M, and then the first insulating film 3a is wet-etched from the portion from which the stopper metal layer M has been removed by isotropic removal. The state after this etching is shown in FIG. In the second embodiment, since the stopper metal layer M is provided with a trench shape, the trench portion is also transferred to the shape in which the stopper metal layer M is removed. By legal etching, the diameter at the lower end of the hole is widened and a lens shape is formed.

また、この際、受光部2の受光面2aまで達するエッチングは行わないことから、受光面2aに対するエッチングダメージを防止できる。その後、図14に示すように、孔の内部に光導波路材となる材料40を埋め込む。この材料40は、第1絶縁膜3aの屈折率の低いものを用いる。これにより、孔の部分に光導波路領域4が構成されるとともに、レンズ形状にエッチングされた部分に材料40が埋め込まれてレンズLが形成されることになる。   At this time, the etching reaching the light receiving surface 2a of the light receiving unit 2 is not performed, so that etching damage to the light receiving surface 2a can be prevented. Thereafter, as shown in FIG. 14, a material 40 to be an optical waveguide material is embedded in the hole. As this material 40, a material having a low refractive index of the first insulating film 3a is used. Thereby, the optical waveguide region 4 is formed in the hole portion, and the material L is formed by embedding the material 40 in the portion etched into the lens shape.

このような第2実施形態に係る固体撮像装置では、第1実施形態での効果に加え、光導波路領域4の下端にレンズLが埋め込まれるため、光導波路領域4内に導入した光を受光部2へ効率良く集光することが可能となる。特に微細化が進んで受光部2の面積がさらに縮小された場合に特に有効である。   In such a solid-state imaging device according to the second embodiment, in addition to the effects of the first embodiment, since the lens L is embedded at the lower end of the optical waveguide region 4, the light introduced into the optical waveguide region 4 is received by the light receiving unit. 2 can be efficiently condensed. This is particularly effective when the area of the light receiving unit 2 is further reduced due to the progress of miniaturization.

なお、いずれの実施形態に係る固体撮像装置でも、光導波路領域4の光入射端側にオンチップレンズを設けるようにして、より一層集光能力を高めるようにしてもよい。   In any of the solid-state imaging devices according to any of the embodiments, an on-chip lens may be provided on the light incident end side of the optical waveguide region 4 to further increase the light collecting ability.

第1実施形態に係る固体撮像装置を説明する模式断面図である。1 is a schematic cross-sectional view illustrating a solid-state imaging device according to a first embodiment. 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その1)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 1). 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その2)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 2). 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その3)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 3). 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その4)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 4). 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その5)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 5). 第1実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その6)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 1st embodiment (the 6). 第2実施形態に係る固体撮像装置を説明する模式断面図である。It is a schematic cross section explaining the solid-state imaging device concerning a 2nd embodiment. 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その1)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 2nd embodiment (the 1). 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その2)である。It is a schematic cross section explaining the manufacturing method of the solid imaging device concerning a 2nd embodiment (the 2). 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その3)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 2nd embodiment (the 3). 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その4)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 2nd embodiment (the 4). 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その5)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 2nd embodiment (the 5). 第2実施形態に係る固体撮像装置の製造方法を説明する模式断面図(その6)である。It is a schematic cross section explaining the manufacturing method of the solid-state imaging device concerning a 2nd embodiment (the 6).

符号の説明Explanation of symbols

1…半導体基板、2…受光部、2a…受光面、3…絶縁膜、3a…第1絶縁膜、3b…第2絶縁膜、4…光導波路領域、4a…光反射面   DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Light-receiving part, 2a ... Light-receiving surface, 3 ... Insulating film, 3a ... 1st insulating film, 3b ... 2nd insulating film, 4 ... Optical waveguide area, 4a ... Light reflection surface

Claims (12)

半導体基板上に設けられる受光部と、前記半導体基板上を覆う絶縁膜と、前記絶縁膜の前記受光部上方に対応する位置に設けられる光導波路領域とを備える固体撮像装置において、
前記光導波路領域は、前記受光部側の端部から反対側の端部に徐々に開口が広げられ、
前記光導波路領域における前記受光部側の端部と前記受光部の受光面との間に、当該光道波路領域の底部から前記絶縁膜を等方的にエッチングした部分を光道波路となる材料で埋め込んだ部分を含む所定の間隔が設けられている
固体撮像装置。
In a solid-state imaging device, comprising: a light receiving portion provided on a semiconductor substrate; an insulating film covering the semiconductor substrate; and an optical waveguide region provided at a position corresponding to the light receiving portion above the insulating film.
In the optical waveguide region, the opening is gradually widened from the end on the light receiving unit side to the end on the opposite side,
A material that becomes an optical path waveguide by isotropically etching the insulating film from the bottom of the optical waveguide area between the end of the optical waveguide area on the light receiving section side and the light receiving surface of the light receiving section A solid-state image pickup device provided with a predetermined interval including a portion embedded in .
前記光導波路領域における前記受光部側の端部の口径は、前記受光部の受光面における口径よりも小さくなっている
請求項1記載の固体撮像装置。
The solid-state imaging device according to claim 1, wherein a diameter of an end portion on the light receiving unit side in the optical waveguide region is smaller than a diameter of a light receiving surface of the light receiving unit.
前記光導波路領域における前記受光部とは反対側の端部の口径は、前記受光部の受光面における口径よりも大きくなっている
請求項1または2記載の固体撮像装置。
3. The solid-state imaging device according to claim 1, wherein a diameter of an end of the optical waveguide region opposite to the light receiving unit is larger than a diameter of a light receiving surface of the light receiving unit.
前記光導波路領域の内壁には、前記絶縁膜よりも高反射率の薄膜が形成されている
請求項1〜3の何れかに記載の固体撮像装置。
The solid-state imaging device according to claim 1, wherein a thin film having a higher reflectance than the insulating film is formed on an inner wall of the optical waveguide region.
前記光導波路領域の内壁には、前記光導波路領域の内部に埋め込まれる材料よりも低屈折率の薄膜が形成されている
請求項1〜4の何れかに記載の固体撮像装置。
The solid-state imaging device according to claim 1, wherein a thin film having a refractive index lower than that of a material embedded in the optical waveguide region is formed on an inner wall of the optical waveguide region.
前記光導波路領域は、当該光導波路領域の内壁で構成される光反射面と前記受光面とのなす角度が、当該受光面に近いほど垂直に近づくように徐々に変化している
請求項1〜5の何れかに記載の固体撮像装置。
The optical waveguide region is gradually changing so that an angle formed between a light reflection surface formed by an inner wall of the optical waveguide region and the light receiving surface is closer to the light receiving surface. The solid-state imaging device according to any one of 5.
前記光導波路領域における前記受光部とは反対側の端部にはレンズが設けられている
請求項1〜6の何れかに記載の固体撮像装置。
The solid-state imaging device according to claim 1, wherein a lens is provided at an end of the optical waveguide region opposite to the light receiving unit.
前記光導波路領域における前記受光部側の端部にはレンズが設けられている
請求項1〜7の何れかに記載の固体撮像装置。
The solid-state imaging device according to claim 1, wherein a lens is provided at an end portion on the light receiving portion side in the optical waveguide region.
前記レンズの屈折率は、前記レンズの周辺における前記絶縁膜の屈折率よりも大きい
請求項8記載の固体撮像装置。
The solid-state imaging device according to claim 8, wherein a refractive index of the lens is larger than a refractive index of the insulating film around the lens.
半導体基板上に受光部を形成し、その受光部の上に所定の厚さの第1絶縁膜を介してストッパメタル層を形成し、このストッパメタル層の上に第2絶縁膜を形成する工程と、
前記受光部と対応する位置の前記第2絶縁膜を前記ストッパメタル層までエッチングし、このエッチングによって前記ストッパメタル層から上方に向けて徐々に開口が広がる孔を形成する工程と、
前記孔の内壁に光反射材もしくは前記第2絶縁膜と屈折率の異なる材料から成る薄膜を形成する工程と、
前記孔を介して前記ストッパメタル層をエッチングするとともに、そのエッチング部分から前記第1絶縁膜を等方性エッチングする工程と、
前記孔および前記第1絶縁膜を等方性エッチングした部分に光導波路となる材料を埋め込む工程と
を備えることを特徴とする固体撮像装置の製造方法。
Forming a light receiving portion on the semiconductor substrate, forming a stopper metal layer on the light receiving portion via a first insulating film having a predetermined thickness, and forming a second insulating film on the stopper metal layer; When,
Etching the second insulating film at a position corresponding to the light receiving portion to the stopper metal layer, and forming a hole gradually opening upward from the stopper metal layer by this etching;
Forming a light reflecting material or a thin film made of a material having a refractive index different from that of the second insulating film on the inner wall of the hole;
Etching the stopper metal layer through the hole and isotropically etching the first insulating film from the etched portion;
And a step of embedding a material to be an optical waveguide in a portion where the hole and the first insulating film are isotropically etched.
前記孔を形成する工程では、当該孔の内面と前記受光部の受光面とのなす角度が、当該受光面に近いほど垂直に近づくように徐々に変化している
請求項10記載の固体撮像装置の製造方法。
The solid-state imaging device according to claim 10, wherein in the step of forming the hole, an angle formed between an inner surface of the hole and a light receiving surface of the light receiving unit gradually changes so as to approach the vertical as the light receiving surface is closer. Manufacturing method.
前記ストッパメタル層の前記受光部側の周縁にトレンチ形状を形成する
ことを特徴とする請求項10または11記載の固体撮像装置の製造方法。
The method for manufacturing a solid-state imaging device according to claim 10 or 11, wherein a trench shape is formed in a peripheral edge of the stopper metal layer on the light receiving portion side.
JP2004140798A 2004-05-11 2004-05-11 Solid-state imaging device and method for manufacturing solid-state imaging device Expired - Fee Related JP4984377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140798A JP4984377B2 (en) 2004-05-11 2004-05-11 Solid-state imaging device and method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140798A JP4984377B2 (en) 2004-05-11 2004-05-11 Solid-state imaging device and method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2005322824A JP2005322824A (en) 2005-11-17
JP4984377B2 true JP4984377B2 (en) 2012-07-25

Family

ID=35469861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140798A Expired - Fee Related JP4984377B2 (en) 2004-05-11 2004-05-11 Solid-state imaging device and method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4984377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465839B2 (en) * 2016-07-06 2019-02-06 キヤノン株式会社 Photoelectric conversion device, imaging system, moving body, and method of manufacturing photoelectric conversion device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168074A (en) * 1997-08-13 1999-03-09 Sony Corp Solid state image sensor
JP4281132B2 (en) * 1998-11-11 2009-06-17 ソニー株式会社 Solid-state image sensor
JP2000164839A (en) * 1998-11-25 2000-06-16 Sony Corp Solid camera device
JP2001044406A (en) * 1999-07-26 2001-02-16 Sony Corp Solid-state image pickup element and manufacture thereof
JP3672085B2 (en) * 2000-10-11 2005-07-13 シャープ株式会社 Solid-state imaging device and manufacturing method thereof
JP2005175442A (en) * 2003-11-20 2005-06-30 Matsushita Electric Ind Co Ltd Solid state imaging apparatus and its fabricating process

Also Published As

Publication number Publication date
JP2005322824A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP3672085B2 (en) Solid-state imaging device and manufacturing method thereof
US8546173B2 (en) Photoelectric conversion device and fabrication method therefor
US7816641B2 (en) Light guide array for an image sensor
TWI406404B (en) Solid-state imaging device, method for manufacturing the same and imaging apparatus
TWI447903B (en) Method for manufaturing light pipe
JP4427949B2 (en) Solid-state imaging device and manufacturing method thereof
KR101232282B1 (en) Image sensor and method for fabricating the same
JPH1168074A (en) Solid state image sensor
US20050116271A1 (en) Solid-state imaging device and manufacturing method thereof
JP2006049825A (en) Solid state imaging device and its manufacturing method
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP2007095791A (en) Method of manufacturing imaging device
JPH10163462A (en) Solid-state image sensing device of mass type filter structure and its manufacture
JP4984377B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
US8455811B2 (en) Light guide array for an image sensor
JP2006319037A (en) Solid-state imaging element
JP2007287819A (en) Solid imaging element and its manufacturing method, and electronic information device
JP2006339339A (en) Solid-state image sensing device and its manufacturing method
JP2007227474A (en) Solid-state imaging apparatus
JP2008066409A (en) Solid-state imaging apparatus, and its manufacturing method
JP2009283637A (en) Solid state imaging device and method of manufacturing the same
JP5383124B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006086320A (en) Solid state imaging element and its manufacturing method
JP2005166919A (en) Solid-state imaging device and its manufacturing method
KR100875174B1 (en) A method of manufacturing a micro lens for an image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees