JP4980014B2 - Gas separation membrane and use thereof - Google Patents

Gas separation membrane and use thereof Download PDF

Info

Publication number
JP4980014B2
JP4980014B2 JP2006251638A JP2006251638A JP4980014B2 JP 4980014 B2 JP4980014 B2 JP 4980014B2 JP 2006251638 A JP2006251638 A JP 2006251638A JP 2006251638 A JP2006251638 A JP 2006251638A JP 4980014 B2 JP4980014 B2 JP 4980014B2
Authority
JP
Japan
Prior art keywords
group
gas separation
polymer material
separation membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006251638A
Other languages
Japanese (ja)
Other versions
JP2008068238A (en
Inventor
伸吾 風間
照彦 甲斐
貴之 纐纈
淑紅 段
興一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Original Assignee
Research Institute of Innovative Technology for Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2006251638A priority Critical patent/JP4980014B2/en
Publication of JP2008068238A publication Critical patent/JP2008068238A/en
Application granted granted Critical
Publication of JP4980014B2 publication Critical patent/JP4980014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

本発明は、二酸化炭素を含有する混合ガスから二酸化炭素を分離するためのガス分離膜、ガス分離膜モジュール、およびガス分離方法に関する。   The present invention relates to a gas separation membrane, a gas separation membrane module, and a gas separation method for separating carbon dioxide from a mixed gas containing carbon dioxide.

従来より、高分子素材には、その素材に特有の気体透過性があるため、高分子素材から構成された膜によって、気体成分を分離できることが知られている(たとえば、非特許文献1参照)。特に、膜による気体成分の分離技術は、エネルギーが少ない、装置が小型化できる、装置のメンテナンスが容易になるなどの利点があり、種々の分野で使用されている。
近年、膜により気体成分を分離する技術の中でも、二酸化炭素を選択的に分離する技術が精力的に検討されている。この技術は、油田のオフガス、ゴミ焼却や火力発電の排ガス、天然ガスなどからの二酸化炭素の分離回収に利用することができる。
Conventionally, since a polymer material has gas permeability specific to the material, it is known that a gas component can be separated by a film made of the polymer material (see, for example, Non-Patent Document 1). . In particular, a gas component separation technique using a membrane has advantages such as low energy, a small apparatus, and easy maintenance of the apparatus, and is used in various fields.
In recent years, a technique for selectively separating carbon dioxide among techniques for separating a gas component by a membrane has been energetically studied. This technology can be used for separation and recovery of carbon dioxide from off-gas of oil fields, waste incineration and exhaust gas from thermal power generation, natural gas, and the like.

しかしながら、従来の高分子膜では二酸化炭素の選択性(二酸化炭素の膜透過速度/分離対象ガスの膜透過速度)が不十分で、目的とする濃度で二酸化炭素を回収することが出来なかった。そのため、二酸化炭素選択性に優れた分離膜の開発が望まれていた。
このような膜を得るために、二酸化炭素に対して選択的に親和性が高い素材を用いることが提案されている。たとえば、室温で液状物質であるポリアミドアミンデンドリマーを、微多孔質の支持体に含浸させた分離膜が提案されている(非特許文献2および3)。この含浸膜の分離性能を、ヘリウムキャリアー法と言う膜に圧力差を設けない方法を用いて測定すると、二酸化炭素選択性が1000を超える優れた二酸化炭素選択性を示した。
しかしながら、液状物質であるポリアミドアミンデンドリマーを微多孔質の支持体に含浸させた分離膜では、この膜に圧力を掛けると、含浸させたデンドリマーが時間と共に支持体から抜け出して、性能を維持できないため、実用に供することが困難である。
However, the conventional polymer membrane has insufficient carbon dioxide selectivity (the membrane permeation rate of carbon dioxide / the membrane permeation rate of the separation target gas), and carbon dioxide could not be recovered at the target concentration. Therefore, development of a separation membrane having excellent carbon dioxide selectivity has been desired.
In order to obtain such a membrane, it has been proposed to use a material having a high selective affinity for carbon dioxide. For example, a separation membrane in which a polyamidoamine dendrimer, which is a liquid substance at room temperature, is impregnated in a microporous support has been proposed (Non-Patent Documents 2 and 3). When the separation performance of this impregnated membrane was measured by using a method called a helium carrier method in which no pressure difference was provided to the membrane, the carbon dioxide selectivity was excellent and the carbon dioxide selectivity exceeding 1000 was shown.
However, in a separation membrane in which a polyamidoamine dendrimer, which is a liquid material, is impregnated in a microporous support, if the pressure is applied to the membrane, the impregnated dendrimer escapes from the support over time, and the performance cannot be maintained. It is difficult to put to practical use.

したがって、ポリアミドアミンデンドリマーのような二酸化炭素に選択的に強い親和性を有する物質を固定して、実用的な圧力差をかけることが可能な分離膜の開発が切望されていた。
ガス分離技術の新展開、東レリサーチセンター調査研究事業部編、株式会社東レリサーチセンター発行、1990年、第345〜362頁 J.Am.Chem.Soc.122(2000)7594〜7595 Ind.Eng.Chem.Res.40(2001)2502〜2511
Accordingly, there has been a strong demand for the development of a separation membrane capable of immobilizing a substance having a selective strong affinity for carbon dioxide such as a polyamidoamine dendrimer and applying a practical pressure difference.
New development of gas separation technology, Toray Research Center Research Division, Toray Research Center Co., Ltd., 1990, pages 345-362 J. et al. Am. Chem. Soc. 122 (2000) 7594-7595 Ind. Eng. Chem. Res. 40 (2001) 2502-2511

本発明は、高い選択性をもって二酸化炭素を他のガスから分離するためのガス分離膜、ガス分離膜モジュール、およびガス分離方法を提供することを目的とする。   An object of the present invention is to provide a gas separation membrane, a gas separation membrane module, and a gas separation method for separating carbon dioxide from other gases with high selectivity.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、多孔質性の支持膜の表面部分に、架橋剤で架橋された吸水性高分子材料のマトリックス中に特定のアミン化合物を包含させた気体分離層を形成させた複合膜であって、前記吸水性高分子材料を特定の吸水量のものにすることによって、高い選択性を有すると共に、圧力差に耐え実用に供することが可能な分離膜を得ることを見出した。本発明は、かかる知見に基づいて、さらに検討を重ねることにより完成したものである。   As a result of intensive studies in order to solve the above problems, the present inventors have found that a specific amine compound is present in the matrix of a water-absorbing polymer material crosslinked with a crosslinking agent on the surface portion of the porous support membrane. A composite membrane in which a gas separation layer is formed, and has high selectivity by using the water-absorbing polymer material with a specific water absorption amount, and can withstand pressure differences and be put to practical use. It has been found that a separation membrane capable of being obtained is obtained. The present invention has been completed by further studies based on this finding.

すなわち、本発明は、
[1] 多孔質性の支持膜(A)の表面に、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料と、式(1)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有するアミン化合物(c)とからなる気体分離層を形成した複合膜であって、前記吸水性高分子材料100重量部に対する吸水量が50〜1000重量部であることを特徴とするガス分離膜、
[2] 気体分離層が、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料の層のマトリックス中に、式(1)で示される基、または式(2)で示される基を有するアミン化合物(c)が包含された構造である前記[1]に記載のガス分離膜、
[3] アミノ基および/または水酸基を有する高分子材料(a)が、キトサン、ヒアルロン酸、セルロース、ポリビニルアルコール、ポリ(p−ヒドロキシスチレン)、ポリ(p−アミノスチレン)、ポリ[スチレン−co−(p−ヒドロキシスチレン)]、ポリアリルアミンまたはポリビニルオキシエタノールである前記〔1〕または〔2〕に記載のガス分離膜、
[4] 多官能性の架橋剤(b)が、官能基としてエポキシ基またはアルデヒド基を有する架橋剤である前記[1]〜[3]のいずれかに記載のガス分離膜、
[5] 官能基としてエポキシ基を有する架橋剤が、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルまたはグリセリンジグリシジルエーテルである前記[4]に記載のガス分離膜、
[6] 官能基としてアルデヒド基を有する架橋剤が、グルタルアルデヒド、スクシンアルデヒド、マロンジアルデヒド、テレフタルアルデヒドまたはイソフタルアルデヒドである前記[4]に記載のガス分離膜、
[7] アミン化合物(c)が、ポリアミドアミン系デンドリマーである前記[1]〜[6]のいずれかに記載のガス分離膜、
[8] ポリアミドアミン系デンドリマーが、式
からなる群から選択される化合物である前記[7]に記載のガス分離膜、
[9] 前記[1]〜[8]のいずれかに記載のガス分離膜を組み込んでなるガス分離膜モジュール、および
[10] 二酸化炭素を含む混合ガスを、前記[1]〜[9]のいずれかに記載のガス分離膜に接触させて、該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする二酸化炭素の分離方法、
に関する。
That is, the present invention
[1] A water-absorbing polymer material obtained by crosslinking a polymer material (a) having an amino group and / or a hydroxyl group with a polyfunctional crosslinking agent (b) on the surface of a porous support membrane (A) And the formula (1)
[Wherein, A 1 represents a C 1-3 divalent organic residue, and n represents an integer of 0 or 1. ]
Or a group represented by formula (2)
[Wherein, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and n represents an integer of 0 or 1. ]
A composite membrane formed with a gas separation layer comprising an amine compound (c) having a group represented by formula (1), wherein the water absorption amount relative to 100 parts by weight of the water-absorbing polymer material is 50 to 1000 parts by weight. Gas separation membrane,
[2] In the matrix of the layer of the water-absorbing polymer material in which the gas separation layer is formed by crosslinking the polymer material (a) having an amino group and / or a hydroxyl group with a polyfunctional crosslinking agent (b) The gas separation membrane according to [1], wherein the amine compound (c) having the group represented by (1) or the group represented by formula (2) is included,
[3] The polymer material (a) having an amino group and / or a hydroxyl group is chitosan, hyaluronic acid, cellulose, polyvinyl alcohol, poly (p-hydroxystyrene), poly (p-aminostyrene), poly [styrene-co -(P-hydroxystyrene)], polyallylamine or polyvinyloxyethanol, the gas separation membrane according to [1] or [2],
[4] The gas separation membrane according to any one of [1] to [3], wherein the polyfunctional crosslinking agent (b) is a crosslinking agent having an epoxy group or an aldehyde group as a functional group.
[5] The gas separation membrane according to [4], wherein the crosslinking agent having an epoxy group as a functional group is ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether or glycerin diglycidyl ether.
[6] The gas separation membrane according to [4], wherein the crosslinking agent having an aldehyde group as a functional group is glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde, or isophthalaldehyde.
[7] The gas separation membrane according to any one of [1] to [6], wherein the amine compound (c) is a polyamidoamine-based dendrimer,
[8] The polyamidoamine dendrimer has the formula
The gas separation membrane according to [7], which is a compound selected from the group consisting of:
[9] A gas separation membrane module in which the gas separation membrane according to any one of [1] to [8] is incorporated, and [10] a mixed gas containing carbon dioxide, according to the above [1] to [9]. A method for separating carbon dioxide, comprising a step of selectively contacting carbon dioxide in the mixed gas by contacting with the gas separation membrane according to any one of the above,
About.

本発明によれば、高い選択性をもって二酸化炭素を他のガスから分離できるガス分離膜および該ガス分離膜を組み込んだガス分離膜モジュールが提供される。また、本発明によれば、該ガス分離膜を用いて効率よく二酸化炭素を他のガスから分離する方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the gas separation membrane which can isolate | separate a carbon dioxide from other gas with high selectivity, and the gas separation membrane module incorporating this gas separation membrane are provided. Moreover, according to this invention, the method of isolate | separating a carbon dioxide from another gas efficiently using this gas separation membrane is provided.

本発明のガス分離膜は、多孔質性の支持膜(A)の表面に、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料と、式(1)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有するアミン化合物(c)とからなる気体分離層を形成した複合膜であって、前記吸水性高分子材料100重量部に対する吸水量が50〜1000重量部であることを特徴とする。
The gas separation membrane of the present invention is obtained by crosslinking a polymer material (a) having an amino group and / or a hydroxyl group with a polyfunctional crosslinking agent (b) on the surface of a porous support membrane (A). Water-absorbing polymer material and formula (1)
[Wherein, A 1 represents a C 1-3 divalent organic residue, and n represents an integer of 0 or 1. ]
Or a group represented by formula (2)
[Wherein, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and n represents an integer of 0 or 1. ]
A composite membrane formed with a gas separation layer comprising an amine compound (c) having a group represented by formula (1), wherein the water absorption amount relative to 100 parts by weight of the water-absorbing polymer material is 50 to 1000 parts by weight. To do.

上記気体分離層は、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料のマトリックス中に、式(1)で示される基、または式(2)で示される基を有するアミン化合物(c)が包含された構造になっている。   In the matrix of the water-absorbing polymer material obtained by crosslinking the polymer material (a) having an amino group and / or a hydroxyl group with a polyfunctional crosslinking agent (b), the gas separation layer is represented by the formula (1). The amine compound (c) having the group shown or the group shown by the formula (2) is included.

多孔質性の支持膜としては、従来公知の各種高分子膜が用いられ、その種類は特に制約されない。このような多孔質性の支持膜としては、たとえば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン/プロピレン共重合体などのポリオレフィン系樹脂や、ポリフッ化ビニリデン、ポリエステル、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアレート、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリウレタン、酢酸セルロース、硝酸セルロースなどの各種の樹脂から形成された多孔質性の支持膜を挙げることができる。多孔質性の支持膜において、その平均細孔径は0.1μm以下、好ましくは、0.05μm以下であり、より好ましくは、0.03μm以下である。また、その厚さは気体透過量が大きく、十分な機械強度を得ることが出来れば特に制約は受けないが、50〜1000μm、好ましくは、200〜700μmである。多孔質性の支持膜の形状は、フィルム状の他、中空糸状、筒状体などの各種の形状であることができる。具体的には、たとえば、ポリスルホン製の中空糸限外ろ過膜が好適に挙げられる。   Conventionally known various polymer membranes are used as the porous support membrane, and the type thereof is not particularly limited. Examples of such porous support membranes include polyolefin resins such as polyethylene, polypropylene, polybutene, and ethylene / propylene copolymers, polyvinylidene fluoride, polyester, polyamide, polysulfone, polyethersulfone, polyimide, poly Mention may be made of porous support membranes formed from various resins such as etherimide, polyarate, polyphenylene sulfide, polytetrafluoroethylene, polyurethane, cellulose acetate, and cellulose nitrate. In the porous support membrane, the average pore diameter is 0.1 μm or less, preferably 0.05 μm or less, and more preferably 0.03 μm or less. The thickness is not particularly limited as long as the gas permeation amount is large and sufficient mechanical strength can be obtained, but it is 50 to 1000 μm, preferably 200 to 700 μm. The shape of the porous support membrane can be various shapes such as a hollow fiber shape and a cylindrical shape in addition to a film shape. Specifically, for example, a polysulfone hollow fiber ultrafiltration membrane can be preferably mentioned.

吸水性高分子材料のマトリックス中に取り込まれるアミン化合物(c)は、前記式(1)または(2)で示される基を有するアミン化合物であるが、式(1)または(2)中、Aで示される炭素数1〜3の二価有機残基としては、たとえば、直鎖状または分枝状の炭素数1〜3のアルキレン基が挙げられる。このようなアルキレン基の具体例としては、−CH−、−CH−CH−、−CH−CH−CH−、−CH−CH(CH)−などが挙げられ、これらのうち特に−CH−が好ましい。本発明のアミン化合物(c)は、式(1)または式(2)で示される基が1個以上含まれている限り、該基の数については特に制限されないが、好ましくは該基が2〜4096個、更に好ましくは該基を3〜128個有するものが例示される。
また、本発明で使用されるアミン化合物(c)において、式(1)または式(2)の基が占める重量分率は、特に制限されるものではない。二酸化炭素と水素の分離能を高めるという観点から、該アミン化合物に占める式(1)または式(2)で示される基の重量分率が15%以上、好ましくは35〜95%、更に好ましくは55〜85%であるのが望ましい。
The amine compound (c) incorporated into the matrix of the water-absorbing polymer material is an amine compound having a group represented by the formula (1) or (2), but in the formula (1) or (2), A Examples of the divalent organic residue having 1 to 3 carbon atoms represented by 1 A 2 include a linear or branched alkylene group having 1 to 3 carbon atoms. Specific examples of such alkylene groups, -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (CH 3) - is like, Of these, —CH 2 — is particularly preferable. In the amine compound (c) of the present invention, the number of the groups is not particularly limited as long as at least one group represented by the formula (1) or the formula (2) is contained. Examples having ˜4096, more preferably 3 to 128 such groups are exemplified.
In the amine compound (c) used in the present invention, the weight fraction occupied by the group of the formula (1) or the formula (2) is not particularly limited. From the viewpoint of improving the separation ability of carbon dioxide and hydrogen, the weight fraction of the group represented by formula (1) or formula (2) in the amine compound is 15% or more, preferably 35 to 95%, more preferably It is desirable that it is 55 to 85%.

本発明で使用されるアミン化合物(c)において、式(1)または(2)で示される基が結合する骨格を示すと、たとえば次のものが挙げられる。
[式中、nは0〜10の整数を示す。]
In the amine compound (c) used in the present invention, examples of the skeleton to which the group represented by the formula (1) or (2) is bonded include the following.
[Wherein n represents an integer of 0 to 10. ]

すなわち、本発明で使用されるアミン化合物(c)は、式(1)または(2)で示される基が、上記式において米印の結合子の一部または全部に、直接またはアルキレン基を介して結合し、式(1)または(2)で示される基が結合してない結合子には、水素原子、アルキル基、アミノアルキル基、ヒドロキシアルキル基などが結合した化合物である。   That is, in the amine compound (c) used in the present invention, the group represented by the formula (1) or (2) is bonded directly or via an alkylene group to a part or all of the rice-marked binder in the above formula. A compound in which a hydrogen atom, an alkyl group, an aminoalkyl group, a hydroxyalkyl group, or the like is bonded to a connector to which the group represented by the formula (1) or (2) is not bonded.

本発明で使用されるアミン化合物(c)の具体的な化合物は、たとえば、下記の式で示されるポリアミドアミン系デンドリマーが好適に挙げられる。
A specific example of the amine compound (c) used in the present invention is preferably a polyamidoamine-based dendrimer represented by the following formula.

上記ポリアミドアミン系デンドリマーのうち、特に好適な化合物の一例として、下記ポリアミドアミンデンドリマーが挙げられる。
Among the polyamidoamine dendrimers, the following polyamidoamine dendrimers are listed as examples of particularly suitable compounds.

なお、本発明で用いるポリアミドアミン系デンドリマーは、枝の長さがすべて等しいものと、そのうちの少なくとも1つがヒドロキシアルキル基またはアルキル基で置換され、枝の長さが異なるものを含む。また、ポリアミドアミン系デンドリマーは、表面基[すなわち、式(1)または(2)で示される基]の数が異なる各種のポリアミドアミンデンドリマーが市販されており、本発明においては市販品(たとえば、アルドリッチ社製の第0〜10世代のPAMAMデンドリマー)を使用することもできる。   The polyamidoamine dendrimers used in the present invention include those having all the same branch lengths and those having at least one of them substituted with a hydroxyalkyl group or an alkyl group and having different branch lengths. In addition, as the polyamidoamine dendrimer, various polyamidoamine dendrimers having different numbers of surface groups [that is, groups represented by the formula (1) or (2)] are commercially available. Aldrich PAMAM dendrimers of 0th to 10th generation) can also be used.

式(1)で示される基を有するアミン化合物(c)は、公知の有機合成法に従って製造することができる。当該アミン化合物の合成方法の一例として、メチルエステル基を有する母核化合物と、下記式(1a)で示されるアミン化合物を反応させる方法が例示される。かかる方法によれば、メチルエステル基を有する化合物の該メチルエステル基が式(1)で示される基に変換されて、式(2)で示される基を有するアミン化合物を製造することができる。下式は、当該合成法において、メチルエステル基が式(1)で示される基に変換される式である。
[式中、Aおよびnは前記と同意義を示す。]
The amine compound (c) having a group represented by the formula (1) can be produced according to a known organic synthesis method. As an example of the method for synthesizing the amine compound, a method of reacting a mother nucleus compound having a methyl ester group with an amine compound represented by the following formula (1a) is exemplified. According to this method, the methyl ester group of the compound having a methyl ester group is converted into a group represented by the formula (1), and an amine compound having a group represented by the formula (2) can be produced. The following formula is a formula in which a methyl ester group is converted into a group represented by formula (1) in the synthesis method.
[Wherein, A 1 and n are as defined above. ]

メチルエステル基を有する化合物と、式(1a)で示されるアミン化合物との反応は、メチルエステル基を有する化合物1モルに対して、式(1a)で示されるアミン化合物を、通常3〜20モル、好ましくは5〜10モルの割合で使用して行われる。
メチルエステル基を有する化合物と、式(1a)で示されるアミン化合物との反応は、通常、適当な溶媒中で行われる。溶媒としては、反応を阻害しない溶媒であれば公知のものを広く使用できる。このような溶媒としては、たとえば、メタノール、エタノール、2−プロパノール、テトラヒドロフラン、1,4−ジオキサンなどが挙げられる。これらの溶媒には、水が含まれていていることを妨げるものではない。
メチルエステル基を有する化合物と、(1a)で示されるアミン化合物との反応は、通常0〜40℃、好ましくは20〜30℃で、90〜180時間、好ましくは160〜170時間攪拌を続けることにより行われる。
原料として用いられるメチルエステル基を有する化合物、および式(1a)で示されるアミン化合物は公知化合物の化合物を用いることができる。
上記反応によって得られた反応混合物を、たとえば、冷却した後、濾過、濃縮、抽出などの単離操作に供して粗反応生成物を分離し、更に必要に応じてカラムクロマトグラフィー、再結晶などの通常の精製操作を行うことによって式(1)で示される基を有するアミン化合物(c)を単離精製することができる。
The reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually performed by converting the amine compound represented by the formula (1a) to 3 to 20 mol per 1 mol of the compound having a methyl ester group. , Preferably 5 to 10 moles.
The reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually carried out in a suitable solvent. As the solvent, known solvents can be widely used as long as they do not inhibit the reaction. Examples of such a solvent include methanol, ethanol, 2-propanol, tetrahydrofuran, 1,4-dioxane and the like. These solvents do not prevent water from being contained.
The reaction between the compound having a methyl ester group and the amine compound represented by (1a) is usually 0 to 40 ° C., preferably 20 to 30 ° C., and the stirring is continued for 90 to 180 hours, preferably 160 to 170 hours. Is done.
As the compound having a methyl ester group used as a raw material and the amine compound represented by the formula (1a), compounds of known compounds can be used.
For example, after cooling the reaction mixture obtained by the above reaction, it is subjected to an isolation operation such as filtration, concentration, extraction, etc. to separate the crude reaction product, and further, if necessary, column chromatography, recrystallization, etc. The amine compound (c) having a group represented by the formula (1) can be isolated and purified by performing a normal purification operation.

また、式(2)で示される基を有するアミン化合物(c)は、アミノ基を有する母核化合物と下記式(2a)で示される末端にメチルエステル基を有するアミン化合物を、前記と同様に反応させることにより製造することができる。
[式中、Aおよびnは前記と同意義を示す。]
In addition, the amine compound (c) having a group represented by the formula (2) is prepared by combining a mother nucleus compound having an amino group and an amine compound having a methyl ester group at the terminal represented by the following formula (2a) in the same manner as described above. It can be produced by reacting.
[Wherein, A 2 and n are as defined above. ]

アミノ基および/または水酸基を有する高分子材料(a)としては、分枝中にアミノ基および/または水酸基を有する単位が繰り返された高分子化合物が挙げられる。本高分子材料(a)の重量平均分子量は、5千〜500万、好ましくは1万〜200万、より好ましくは2万〜100万であるのが望ましい。かかる高分子化合物としては、たとえば、下記式で示されるキトサン、ヒアルロン酸、セルロース、ポリビニルアルコール、ポリ(p−ヒドロキシスチレン)、ポリ(p−アミノスチレン)、ポリ[スチレン−co−(p−ヒドロキシスチレン)]、ポリアリルアミン、ポリビニルオキシエタノールなどが挙げられる。
Examples of the polymer material (a) having an amino group and / or a hydroxyl group include a polymer compound in which a unit having an amino group and / or a hydroxyl group is repeated in a branch. The polymer material (a) has a weight average molecular weight of 5,000 to 5,000,000, preferably 10,000 to 2,000,000, more preferably 20,000 to 1,000,000. Examples of such a polymer compound include chitosan, hyaluronic acid, cellulose, polyvinyl alcohol, poly (p-hydroxystyrene), poly (p-aminostyrene), and poly [styrene-co- (p-hydroxy) represented by the following formula. Styrene)], polyallylamine, polyvinyloxyethanol and the like.

上記のうち、とりわけキトサンとヒアルロン酸が好ましい。   Of the above, chitosan and hyaluronic acid are particularly preferred.

また、多官能性の架橋剤としては、特に限定されるものでなく、エポキシ基、アルデヒド基、ハロゲン原子などの官能基を2個以上有する化合物が挙げられる。エポキシ基を有する架橋剤としては、たとえば、エポキシクロロヒドリン、ジエポキシアルカン、ジエポキシアルケン、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルなどのジグリシジルエーテル化合物が挙げられ、とくにエチレングリコールジグリシジルエーテルが好ましい。また、アルデヒド基を有する架橋剤としては、グルタルアルデヒド、スクシンアルデヒド、マロンジアルデヒド、テレフタルアルデヒド、イソフタルアルデヒドなどのジアルデヒド化合物が挙げられ、とくにグルタルアルデヒドが好ましい。   In addition, the polyfunctional crosslinking agent is not particularly limited, and examples thereof include compounds having two or more functional groups such as an epoxy group, an aldehyde group, and a halogen atom. Examples of the crosslinking agent having an epoxy group include epoxy chlorohydrin, diepoxy alkane, diepoxy alkene, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether. The diglycidyl ether compound is particularly preferable ethylene glycol diglycidyl ether. Examples of the crosslinking agent having an aldehyde group include dialdehyde compounds such as glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde, and isophthalaldehyde, and glutaraldehyde is particularly preferable.

本発明に係る吸水性高分子材料は、アミノ基および/または水酸基を有する高分子材料(a)に多官能性の架橋剤(b)を混合することにより調製できる。ここで調製された吸水性高分子材料100重量部(乾燥重量)当りの吸水量は、50〜1000重量部の範囲であり、好ましくは100〜800重量部、より好ましくは130〜700重量部の範囲である。吸水量が50重量部未満であると、アミノ化合物(c)が包含され難くなり分離性能が発現されず、1000重量部を超えると含水量が多くこの場合もアミン化合物に固有の高い分離性能を得ることが出来ずに、好ましくない。
吸水性高分子材料の吸水量を上記の範囲になるようにするには、高分子材料(a)と架橋剤(b)との種類および使用比率を適宜選択することにより行うことができる。たとえば、高分子材料(a)として分子量50万のキトサンを用い、架橋剤(b)としてエチレングリコールジクリシジルエーテルを用いる場合は、高分子材料(a)のアミノ基、水酸基のモル当量に対する架橋剤(b)の官能基のモル当量の比率[モル当量(a)/モル当量(b)]が0.05〜1.2の範囲で選ばれ、好ましくは0.1〜1の範囲であり、より好ましくは0.3〜0.8の範囲である。なお、吸水量の範囲が前記の範囲である架橋された吸水性高分子材料であれば、市販の吸水性高分子材料でもよい。
The water-absorbing polymer material according to the present invention can be prepared by mixing a polyfunctional crosslinking agent (b) with a polymer material (a) having an amino group and / or a hydroxyl group. The water absorption amount per 100 parts by weight (dry weight) of the water-absorbing polymer material prepared here is in the range of 50 to 1000 parts by weight, preferably 100 to 800 parts by weight, more preferably 130 to 700 parts by weight. It is a range. When the water absorption is less than 50 parts by weight, the amino compound (c) is hardly included and separation performance is not expressed. When the water absorption exceeds 1000 parts by weight, the water content is high, and in this case too, the high separation performance inherent to the amine compound is obtained. It is not preferable because it cannot be obtained.
In order to make the water absorption amount of the water-absorbing polymer material fall within the above range, it can be carried out by appropriately selecting the kind and the use ratio of the polymer material (a) and the crosslinking agent (b). For example, when chitosan having a molecular weight of 500,000 is used as the polymer material (a) and ethylene glycol diglycidyl ether is used as the crosslinking agent (b), the crosslinking agent for the molar equivalents of amino groups and hydroxyl groups of the polymer material (a) The molar equivalent ratio [molar equivalent (a) / molar equivalent (b)] of the functional group (b) is selected in the range of 0.05 to 1.2, preferably in the range of 0.1 to 1, More preferably, it is the range of 0.3-0.8. In addition, a commercially available water-absorbing polymer material may be used as long as the water-absorbing polymer has a cross-linked water-absorbing polymer material in the above range.

(複合膜の製造)
多孔質性の支持膜(A)の表面に、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料と、式(1)または式(2)で示される基を有するアミン化合物(c)とからなる気体分離層を形成した複合膜からなる分離膜を製造するには、たとえば、In−Situモジュール化により製造することができ、一例を示すと次の通りである。
多孔質性の支持膜、たとえば、ポリスルホン製の中空糸限外ろ過膜を組み込んだペンシル型モジュールを作製する。モジュールに組み込んだ中空糸限外ろ過膜の内側に透過側を減圧にして、架橋剤(b)を含む高分子材料(a)の溶液を循環させ、その後中空糸限外ろ過膜の内側に不活性ガスを導入しながら加温(たとえば、40〜80℃)下に乾燥させる。これにより、高分子材料(a)が架橋剤(b)で架橋されて、生成した吸水性高分子材料で中空糸限外ろ過膜の内側(すなわち、膜の表面近傍)がコーティングされた状態になる。なお、高分子材料(a)としてキトサンを使用し、架橋剤(b)としてグルタルアルデヒドを使用したときの、架橋反応を模式的に示せば、下式の通りである。
(Manufacture of composite membrane)
A water-absorbing polymer material obtained by crosslinking a polymer material (a) having an amino group and / or a hydroxyl group on the surface of a porous support membrane (A) with a polyfunctional crosslinking agent (b); In order to manufacture a separation membrane comprising a composite membrane in which a gas separation layer comprising an amine compound (c) having a group represented by (1) or formula (2) is formed, for example, it is produced by In-Situ modularization. An example is as follows.
A pencil type module incorporating a porous support membrane, for example, a hollow fiber ultrafiltration membrane made of polysulfone is prepared. The permeate side is depressurized inside the hollow fiber ultrafiltration membrane incorporated in the module, the polymer material (a) solution containing the crosslinking agent (b) is circulated, and then the hollow fiber ultrafiltration membrane is not inside the hollow fiber ultrafiltration membrane. Drying is performed under heating (for example, 40 to 80 ° C.) while introducing the active gas. As a result, the polymer material (a) is crosslinked with the crosslinking agent (b), and the inside of the hollow fiber ultrafiltration membrane (that is, near the surface of the membrane) is coated with the generated water-absorbing polymer material. Become. The cross-linking reaction when chitosan is used as the polymer material (a) and glutaraldehyde is used as the cross-linking agent (b) is schematically shown in the following formula.

ついで、中空糸限外ろ過膜の内側にアミン化合物(c)の含水溶液を循環させたのち、不活性ガスを導入しながら加温下に乾燥することにより、支持膜の表面に、アミン化合物(c)と吸水性高分子材料とからなる気体分離層(該気体分離層は、吸水性高分子材料のマトリックス中に、アミン化合物(c)が包含された構造である)が形成されて、複合膜である本発明のガス分離膜が生成される。ここで、アミン化合物(c)の溶液の溶媒は、吸水性高分子材料を十分に膨潤させる溶媒であることが重要であり、含水溶媒を用いることが好ましい。
なお、上記製造法において、架橋剤(b)を含む高分子材料(a)の溶液を循環させるに先立ち、中空糸限外ろ過膜の内側をシリカ粒子でコーティング処理しておくと、支持膜の穴を微細化でき、高分子材料(a)が架橋剤(b)からなる吸水性高分子材料の損失を少なくすることができるので好ましい。
Next, an aqueous solution of the amine compound (c) is circulated inside the hollow fiber ultrafiltration membrane, and then dried under heating while introducing an inert gas, whereby the amine compound ( c) and a water-absorbing polymer material (which is a structure in which the amine compound (c) is included in the matrix of the water-absorbing polymer material) A gas separation membrane of the present invention which is a membrane is produced. Here, it is important that the solvent of the solution of the amine compound (c) is a solvent that sufficiently swells the water-absorbing polymer material, and it is preferable to use a hydrous solvent.
In the above production method, before the solution of the polymer material (a) containing the crosslinking agent (b) is circulated, if the inside of the hollow fiber ultrafiltration membrane is coated with silica particles, This is preferable because the holes can be made finer and the loss of the water-absorbing polymer material in which the polymer material (a) is composed of the crosslinking agent (b) can be reduced.

(炭酸ガス分離方法)
本発明の他の一つは、上記で得られたガス分離膜を用いて、二酸化炭素を含む混合ガスから、二酸化炭素を分離する方法である。すなわち、本発明のガス分離方法は、二酸化炭素を含む混合ガスを上記で得られたガス分離膜に接触させて該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする。
当該ガス分離方法は、分離膜のガス供給側とガス透過側との間に圧力差を設けておくのが好ましい。この圧力差は、通常、ガス透過側を減圧にすることにより設けられる。また、本分離方法は、通常5〜80℃、好ましくは室温〜50℃の温度条件下で実施するのが望ましい。
本発明の分離方法に適用できる混合ガスは、二酸化炭素を含む混合ガスであれば特に制限されないが、二酸化炭素と他のガスとの分離性能を向上させるためには、混合ガスの相対湿度を30%以上、好ましくは60〜100%、さらに好ましくは80〜100%に調製しておくのが好ましい。
上記ガス分離方法は、たとえば、火力発電所、鉄鋼プラントなどで発生する燃焼排ガスから二酸化炭素(CO)を分離するのに適用することができる。
(CO2 separation method)
Another aspect of the present invention is a method for separating carbon dioxide from a mixed gas containing carbon dioxide using the gas separation membrane obtained above. That is, the gas separation method of the present invention includes a step of bringing a mixed gas containing carbon dioxide into contact with the gas separation membrane obtained above to selectively permeate carbon dioxide in the mixed gas. .
In the gas separation method, it is preferable to provide a pressure difference between the gas supply side and the gas permeation side of the separation membrane. This pressure difference is usually provided by reducing the pressure on the gas permeation side. Moreover, it is desirable to carry out this separation method under a temperature condition of usually 5 to 80 ° C., preferably room temperature to 50 ° C.
The mixed gas applicable to the separation method of the present invention is not particularly limited as long as it is a mixed gas containing carbon dioxide. However, in order to improve the separation performance between carbon dioxide and other gases, the relative humidity of the mixed gas is set to 30. % Or more, preferably 60 to 100%, more preferably 80 to 100%.
The gas separation method can be applied to, for example, separating carbon dioxide (CO 2 ) from combustion exhaust gas generated in a thermal power plant, a steel plant, or the like.

以下に実施例を用いて本発明を説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例において、吸水性高分子材料の吸水量は次のように測定した。すなわち、実施例および比較例に記載の方法で調製した高分子材料(a)と架橋剤(b)の溶液を用いて吸水性高分子材料のフィルムを調製し、60℃で1時間熱処理して乾燥フィルムとした。乾燥フィルムの重量(W0)を測定した後、該フィルムを25℃のイオン交換水に一晩浸漬し、浸漬後のフィルムの重量(W1)を測定し、下記式により吸水量を算出した。
吸水量(重量部)=W0−W1
The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, the water absorption of the water-absorbing polymer material was measured as follows. That is, a film of a water-absorbing polymer material is prepared using a solution of the polymer material (a) and the crosslinking agent (b) prepared by the method described in Examples and Comparative Examples, and heat-treated at 60 ° C. for 1 hour. A dry film was obtained. After measuring the weight (W0) of the dried film, the film was immersed in ion-exchanged water at 25 ° C. overnight, the weight (W1) of the film after immersion was measured, and the water absorption was calculated according to the following formula.
Water absorption (parts by weight) = W0−W1

[合成例1]
窒素置換した反応フラスコにメチルアクリレート(アルドリッチ社製)18.3mL(204mmol)およびメタノール(和光純薬工業株式会社製)60mLを入れ、0℃まで冷却した。別途、1,2−ジアミノエタン(アルドリッチ社製)2.77mL(41.5mmol)をメタノール(和光純薬工業株式会社製)60mLに混合し、これを前述の0℃に冷却したメチルアクリレート/メタノール混合液に3時間かけて滴下した。この混合溶液を0℃で更に1時間撹拌した後、室温で48時間撹拌した。得られた混合溶液の溶媒と過剰のメチルアクリレートを減圧で留去して、更に50℃で一晩減圧乾燥した後、シリカゲルクロマトグラフィー(SiO、MeOH/CHCl=6/94)で精製し、無色液体のエステル体14.2g(収率85%)を得た。
次いで、窒素置換した反応フラスコに1,3−ジアミノ−2−プロパノール(東京化成工業株式会社製)55.6g(617mmol)とメタノール(和光純薬工業株式会社製)80mLを添加し、0℃まで冷却し、激しく撹拌しながら、前述のエステル体5.00g(12.4mmol)の40mLメタノール溶液を3時間かけて滴下した。得られた混合溶液を0℃で更に1時間撹拌した後、室温で1週間撹拌した。次いで、この混合溶液の溶媒を減圧で留去し、更に50℃で一晩減圧乾燥し、粗精製物を得た。この粗精製物に対してクーゲロール蒸留し、淡黄色のガム状化合物である標記ポリアミドアミンデンドリマー7.23g(収率92%)を得た。構造は、IR、H−NMR、13C−NMR、LC−MSを用いて同定した。
[Synthesis Example 1]
Methyl acrylate (manufactured by Aldrich) 18.3 mL (204 mmol) and methanol (manufactured by Wako Pure Chemical Industries, Ltd.) 60 mL were placed in a nitrogen-substituted reaction flask and cooled to 0 ° C. Separately, 1.77 mL (41.5 mmol) of 1,2-diaminoethane (manufactured by Aldrich) was mixed with 60 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.), and this was cooled to 0 ° C. as described above. It was dripped at the liquid mixture over 3 hours. The mixed solution was further stirred at 0 ° C. for 1 hour and then at room temperature for 48 hours. The solvent of the obtained mixed solution and excess methyl acrylate were distilled off under reduced pressure, and further dried under reduced pressure at 50 ° C. overnight, followed by silica gel chromatography (SiO 2 , MeOH / CH 2 Cl 2 = 6/94). Purification was performed to obtain 14.2 g (yield 85%) of a colorless liquid ester.
Then, 55.6 g (617 mmol) of 1,3-diamino-2-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 80 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) are added to the nitrogen-substituted reaction flask, and the temperature is reduced to 0 ° C. While cooling and vigorously stirring, a 40 mL methanol solution of 5.00 g (12.4 mmol) of the aforementioned ester compound was added dropwise over 3 hours. The resulting mixed solution was further stirred at 0 ° C. for 1 hour, and then stirred at room temperature for 1 week. Subsequently, the solvent of this mixed solution was distilled off under reduced pressure, and further dried under reduced pressure at 50 ° C. overnight to obtain a crude product. The crude purified product was subjected to Kugelol distillation to obtain 7.23 g (yield 92%) of the title polyamidoamine dendrimer which is a pale yellow gum-like compound. The structure was identified using IR, 1 H-NMR, 13 C-NMR, and LC-MS.

[合成例2]
窒素置換した反応フラスコにメチルアクリレート(アルドリッチ社製)51.33mL(570mmol)およびメタノール(和光純薬工業株式会社製)50mLを入れ、0℃まで冷却した。別途、7.0Nアンモニアのメタノール溶液(アルドリッチ社製)13.58mL(94.71mmol)を前述の0℃に冷却したメチルアクリレート/メタノール混合液に3時間かけて滴下した。この混合溶液を0℃で更に1時間撹拌した後、室温で48時間撹拌した。得られた混合溶液の溶媒と過剰のメチルアクリレートを減圧で留去して、更に50℃で一晩減圧乾燥した後、シリカゲルクロマトグラフィー(SiO、CHCl=100)で精製し、無色液体のエステル体23.6g(収率91%)を得た。
次いで、窒素置換した反応フラスコに1,3−ジアミノ−2−プロパノール(東京化成工業株式会社製)100.0g(1.11mol)とメタノール(和光純薬工業株式会社製)50mLを添加し、0℃まで冷却し、激しく撹拌しながら、前述のエステル体8.48g(30.8mmol)の100mLメタノール溶液を3時間かけて滴下した。得られた混合溶液を0℃で更に1時間撹拌した後、室温で1週間撹拌した。次いで、この混合溶液の溶媒を減圧で留去し、更に50℃で一晩減圧乾燥し、粗精製物を得た。この粗精製物に対してクーゲロール蒸留し、淡黄色のガム状化合物である標記ポリアミドアミンデンドリマー11.84g(収率86%)を得た。構造は、IR、H−NMR、13C−NMR、LC−MSを用いて同定した。
[Synthesis Example 2]
Methyl acrylate (manufactured by Aldrich) 51.33 mL (570 mmol) and methanol (manufactured by Wako Pure Chemical Industries, Ltd.) 50 mL were placed in a nitrogen-substituted reaction flask and cooled to 0 ° C. Separately, 7.08 mL (94.71 mmol) of 7.0N ammonia in methanol (Aldrich) was added dropwise to the methyl acrylate / methanol mixture cooled to 0 ° C. over 3 hours. The mixed solution was further stirred at 0 ° C. for 1 hour and then at room temperature for 48 hours. The solvent of the obtained mixed solution and excess methyl acrylate were distilled off under reduced pressure, further dried under reduced pressure at 50 ° C. overnight, and then purified by silica gel chromatography (SiO 2 , CH 3 Cl = 100) to obtain a colorless liquid 23.6 g (yield 91%) of was obtained.
Next, 100.0 g (1.11 mol) of 1,3-diamino-2-propanol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 50 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) are added to the nitrogen-substituted reaction flask. While cooling to 0 ° C. and vigorously stirring, a 100 mL methanol solution of the aforementioned ester body 8.48 g (30.8 mmol) was added dropwise over 3 hours. The resulting mixed solution was further stirred at 0 ° C. for 1 hour, and then stirred at room temperature for 1 week. Subsequently, the solvent of this mixed solution was distilled off under reduced pressure, and further dried under reduced pressure at 50 ° C. overnight to obtain a crude product. The crude purified product was subjected to Kugelol distillation to obtain 11.84 g (yield 86%) of the title polyamidoamine dendrimer which is a pale yellow gum-like compound. The structure was identified using IR, 1 H-NMR, 13 C-NMR, and LC-MS.

[合成例3]
窒素置換した反応フラスコにメチルアクリレート(アルドリッチ社製)70.08g(814mmol)およびメタノール(和光純薬工業株式会社製)60mLを入れ、0℃まで冷却した。別途、1,2−ジアミノエタン(アルドリッチ社製)9.98g(166mmol)をメタノール(和光純薬工業株式会社製)60mLに混合し、これを前述の0℃に冷却したメチルアクリレート/メタノール混合液に3時間かけて滴下した。この混合溶液を0℃で更に1時間撹拌した後、室温で48時間撹拌した。得られた混合溶液の溶媒と過剰のメチルアクリレートを減圧で留去して、更に50℃で一晩減圧乾燥した後、シリカゲルクロマトグラフィー(SiO、MeOH/CHCl=6/94)で精製し、無色液体のエステル体65.8g(収率98%)を得た。
次いで、窒素置換した反応フラスコに1,2−ジアミノエタン(アルドリッチ社製)148.38g(2.46mol)とメタノール(和光純薬工業株式会社製)200mLを添加し、0℃まで冷却し、激しく撹拌しながら、前述のエステル体20.0g(49.44mmol)の40mLメタノール溶液を3時間かけて滴下した。得られた混合溶液を0℃で更に1時間撹拌した後、室温で1週間撹拌した。次いで、この混合溶液の溶媒を減圧で留去し、更に50℃で一晩減圧乾燥し、標記ポリアミドアミンデンドリマー25.3g(収率99%)を得た。構造は、IR、H−NMR、13C−NMR、LC−MSを用いて同定した。
[Synthesis Example 3]
70.08 g (814 mmol) of methyl acrylate (manufactured by Aldrich) and 60 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a nitrogen-substituted reaction flask and cooled to 0 ° C. Separately, 1.98 g (166 mmol) of 1,2-diaminoethane (manufactured by Aldrich) was mixed with 60 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.), and this was cooled to 0 ° C. as described above to a methyl acrylate / methanol mixed solution. Over 3 hours. The mixed solution was further stirred at 0 ° C. for 1 hour and then at room temperature for 48 hours. The solvent of the obtained mixed solution and excess methyl acrylate were distilled off under reduced pressure, and further dried under reduced pressure at 50 ° C. overnight, followed by silica gel chromatography (SiO 2 , MeOH / CH 2 Cl 2 = 6/94). Purification gave 65.8 g (yield 98%) of a colorless liquid ester.
Next, 148.38 g (2.46 mol) of 1,2-diaminoethane (manufactured by Aldrich) and 200 mL of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added to the nitrogen-substituted reaction flask, cooled to 0 ° C., and vigorously While stirring, a 40 mL methanol solution of 20.0 g (49.44 mmol) of the aforementioned ester was dropped over 3 hours. The resulting mixed solution was further stirred at 0 ° C. for 1 hour, and then stirred at room temperature for 1 week. Subsequently, the solvent of this mixed solution was distilled off under reduced pressure, and further dried under reduced pressure at 50 ° C. overnight to obtain 25.3 g (yield 99%) of the title polyamidoamine dendrimer. The structure was identified using IR, 1 H-NMR, 13 C-NMR, and LC-MS.

[実施例1]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
蒸留水97.5g、酢酸2.0gの酢酸水溶液を調製し、分子量50万のキトサン(商品名:キトサンH、キミカ株式会社製)を0.455g、分子量5万のキトサン(商品名:キトサンLL、キミカ株式会社製)を0.0455g入れ、60分攪拌して0.5wt%のキトサン溶液を調製した。キトサンの酢酸水溶液を1.0μmのろ紙でろ過し、その後、エチレングリコールジグリシジルエーテル(EGDGE)(東京化成工業株式会社製)を0.1142g入れ、30分攪拌した。EGDGEを含むキトサンの酢酸水溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分間循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で1時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環した。引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環し、中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は130重量部である。
第0世代のポリアミドアミン(PAMAM)デンドリマー(表面基:−CONHCHCHNH;表面基の数:4個)(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。本モジュールの分離膜の走査電子顕微鏡(SEM)写真を図1に示す。左図が分離膜の全体像を、右図が内表面の拡大図である。図1から、支持膜の表面に、吸水性高分子層とポリアミドアミンデンドリマーとからなる気体分離層(1層)が形成されていることがわかる。
[Example 1]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Prepare an acetic acid aqueous solution of 97.5 g of distilled water and 2.0 g of acetic acid, 0.455 g of chitosan having a molecular weight of 500,000 (trade name: Chitosan H, manufactured by Kimika Co., Ltd.), chitosan having a molecular weight of 50,000 (trade name: chitosan LL) , Manufactured by Kimika Co., Ltd.) and stirred for 60 minutes to prepare a 0.5 wt% chitosan solution. An acetic acid aqueous solution of chitosan was filtered through a 1.0 μm filter paper, and then 0.1142 g of ethylene glycol diglycidyl ether (EGDGE) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred for 30 minutes. An aqueous acetic acid solution of chitosan containing EGDGE was circulated for 30 minutes with the permeation side reduced in pressure at a linear velocity of 8 m / min inside the hollow fiber membrane incorporated in the pencil module. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated for 1 hour at 60 ° C.. A 0.1 M sodium hydroxide aqueous solution was circulated for 10 minutes at a linear velocity of 8 m / min inside the hollow fiber membrane. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated at a linear velocity of 8 m / min for 60 minutes, N 2 gas was circulated inside the hollow fiber membrane at a linear velocity of 15 m / min, and at 60 ° C. for 8 hours. Dried. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is 130 parts by weight.
25 g of 0th generation polyamidoamine (PAMAM) dendrimer (surface group: —CONHCH 2 CH 2 NH 2 ; number of surface groups: 4) (20 wt% methanol solution; manufactured by Aldrich) 25 g of distilled water was added at room temperature to 60 Stir for minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours. A scanning electron microscope (SEM) photograph of the separation membrane of this module is shown in FIG. The left figure is an overview of the separation membrane, and the right figure is an enlarged view of the inner surface. 1 that a gas separation layer (one layer) composed of a water-absorbing polymer layer and a polyamidoamine dendrimer is formed on the surface of the support membrane.

[実施例2]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
蒸留水99.0g、酢酸0.8gの酢酸水溶液を調製し、分子量50万のキトサン(商品名:キトサンH、キミカ株式会社製)を0.182g、分子量5万のキトサン(商品名:キトサンLL、キミカ株式会社製)を0.0182g入れ、60分攪拌して0.2wt%のキトサン溶液を調製した。キトサンの酢酸水溶液を1.0μmのろ紙でろ過し、その後、GAの50%水溶液を0.0105g入れ、30分攪拌した。グルタルアルデヒド(GA)(東京化成工業株式会社製)を含むキトサンの酢酸水溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分間循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で2時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は150重量部である。
実施例1で使用したものと同様の第0世代のPAMAMデンドリマー(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Example 2]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
An aqueous acetic acid solution containing 99.0 g of distilled water and 0.8 g of acetic acid was prepared, 0.182 g of chitosan having a molecular weight of 500,000 (trade name: Chitosan H, manufactured by Kimika Co., Ltd.), and chitosan having a molecular weight of 50,000 (trade name: chitosan LL). , Manufactured by Kimika Co., Ltd.) and stirred for 60 minutes to prepare a 0.2 wt% chitosan solution. The acetic acid aqueous solution of chitosan was filtered through a 1.0 μm filter paper, and then 0.0105 g of a 50% aqueous solution of GA was added and stirred for 30 minutes. An aqueous acetic acid solution of chitosan containing glutaraldehyde (GA) (manufactured by Tokyo Chemical Industry Co., Ltd.) was circulated for 30 minutes at a linear velocity of 8 m / min with a permeation side reduced in pressure inside a hollow fiber membrane incorporated in a pencil module. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated 2 hours at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is 150 parts by weight.
25 g of distilled water was added to 25 g of a 0th generation PAMAM dendrimer (20 wt% methanol solution; manufactured by Aldrich) similar to that used in Example 1, and stirred at room temperature for 60 minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[実施例3]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
ペンシルモジュールに組み込んだ中空糸膜の内側に蒸留水を室温で8m/分の線速度で透過側を減圧にして2分間循環し、引き続き、1.0wt%のシリカ粒子(45nm)(触媒化成工業株式会社製)を室温で8m/分の線速度で10分間循環した。その後、蒸留水を室温で8m/分の線速度で60分間循環した。
蒸留水97.5g、酢酸2.0gの酢酸水溶液を調製し、分子量50万のキトサン(商品名:キトサンH、キミカ株式会社製)を0.455g、分子量5万のキトサン(商品名:キトサンLL、キミカ株式会社製)を0.0455g入れ、60分攪拌して0.5wt%のキトサン溶液を調製した。キトサンの酢酸水溶液を1.0μmのろ紙でろ過し、その後、エチレングリコールジグリシジルエーテル(EGDGE)(東京化成工業株式会社製)を0.1142g入れ、30分攪拌した。EGDGEを含むキトサンの酢酸水溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で1時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は130重量部である。
実施例1で使用したものと同様の第0世代のPAMAMデンドリマー(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Example 3]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Inside the hollow fiber membrane incorporated in the pencil module, distilled water was circulated at room temperature at a linear velocity of 8 m / min for 2 minutes under reduced pressure on the permeate side, followed by 1.0 wt% silica particles (45 nm) (Catalytic Chemical Industry) Was circulated at room temperature for 10 minutes at a linear velocity of 8 m / min. Thereafter, distilled water was circulated at room temperature for 60 minutes at a linear velocity of 8 m / min.
Prepare an acetic acid aqueous solution of 97.5 g of distilled water and 2.0 g of acetic acid, 0.455 g of chitosan having a molecular weight of 500,000 (trade name: Chitosan H, manufactured by Kimika Co., Ltd.), chitosan having a molecular weight of 50,000 (trade name: chitosan LL) , Manufactured by Kimika Co., Ltd.) and stirred for 60 minutes to prepare a 0.5 wt% chitosan solution. An acetic acid aqueous solution of chitosan was filtered through a 1.0 μm filter paper, and then 0.1142 g of ethylene glycol diglycidyl ether (EGDGE) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred for 30 minutes. The acetic acid aqueous solution of chitosan containing EGDGE was circulated for 30 minutes with the permeation side reduced in pressure at a linear velocity of 8 m / min inside the hollow fiber membrane incorporated in the pencil module. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated for 1 hour at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is 130 parts by weight.
25 g of distilled water was added to 25 g of a 0th generation PAMAM dendrimer (20 wt% methanol solution; manufactured by Aldrich) similar to that used in Example 1, and stirred at room temperature for 60 minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[実施例4]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
ペンシルモジュールに組み込んだ中空糸膜の内側に蒸留水を室温で8m/分の線速度で透過側を減圧にして2分間循環し、引き続き、1.0wt%のシリカ粒子(45nm)(触媒化成工業株式会社製)を室温で8m/分の線速度で循環し、10分間循環した。その後、蒸留水を室温で8m/分の線速度で60分間循環した。
蒸留水99.0g、酢酸0.8gの酢酸水溶液を調製し、分子量50万のキトサン(商品名:キトサンH、キミカ株式会社製)を0.182g、分子量5万のキトサン(商品名:キトサンLL、キミカ株式会社製)を0.0182g入れ、60分攪拌して0.2wt%のキトサン溶液を調製した。キトサンの酢酸水溶液を1.0μmのろ紙でろ過し、その後、グルタルアルデヒド(GA)(東京化成工業株式会社製)の50%水溶液を0.0105g入れ、30分攪拌した。GAを含むキトサンの酢酸水溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分間循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で2時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は150重量部である。
実施例1で使用したものと同様の第0世代のPAMAMデンドリマー(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Example 4]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Inside the hollow fiber membrane incorporated in the pencil module, distilled water was circulated at room temperature at a linear velocity of 8 m / min for 2 minutes under reduced pressure on the permeate side, followed by 1.0 wt% silica particles (45 nm) (Catalytic Chemical Industry) Co., Ltd.) was circulated at room temperature at a linear velocity of 8 m / min and circulated for 10 minutes. Thereafter, distilled water was circulated at room temperature for 60 minutes at a linear velocity of 8 m / min.
An aqueous acetic acid solution containing 99.0 g of distilled water and 0.8 g of acetic acid was prepared, 0.182 g of chitosan having a molecular weight of 500,000 (trade name: Chitosan H, manufactured by Kimika Co., Ltd.), and chitosan having a molecular weight of 50,000 (trade name: chitosan LL). , Manufactured by Kimika Co., Ltd.) and stirred for 60 minutes to prepare a 0.2 wt% chitosan solution. An acetic acid aqueous solution of chitosan was filtered through a 1.0 μm filter paper, and then 0.0105 g of a 50% aqueous solution of glutaraldehyde (GA) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred for 30 minutes. A chitosan-acetic acid aqueous solution containing GA was circulated for 30 minutes with the permeation side reduced in pressure at a linear velocity of 8 m / min inside a hollow fiber membrane incorporated in a pencil module. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated 2 hours at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is 150 parts by weight.
25 g of distilled water was added to 25 g of a 0th generation PAMAM dendrimer (20 wt% methanol solution; manufactured by Aldrich) similar to that used in Example 1, and stirred at room temperature for 60 minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[実施例5]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
蒸留水97.5g、酢酸2.0gの酢酸水溶液を調製し、0.5gの高分子材料(a)を下記表1に示す重量比で加えて、高分子材料(a)の酢酸水溶液を調製した。ここで、高分子材料(a)は、ヒアルロン酸(東京化成工業株式会社製)と、実施例1で使用したものと同様のキトサン(キミカ株式会社製)を使用した。高分子材料(a)の酢酸水溶液を1.0μmのろ紙でろ過し、その後、グルタルアルデヒド(GA)(東京化成工業株式会社製)を下記表1に示す重量比で加え、30分攪拌した。作製した溶液を、ペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分間循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で1時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は下記表1に示す通りである。
下記表1に示すアミン化合物(c)5gを25gの蒸留水と20gのメタノール混合溶液に入れ室温で60分攪拌した。当該アミン化合物(c)のメタノール/蒸留水溶液を室温で8m/分の線速度で30分間、中空糸膜の内部に循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Example 5]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Prepare an acetic acid aqueous solution of 97.5 g of distilled water and 2.0 g of acetic acid, and add 0.5 g of the polymer material (a) at a weight ratio shown in Table 1 below to prepare an acetic acid aqueous solution of the polymer material (a). did. Here, as the polymer material (a), hyaluronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and chitosan similar to that used in Example 1 (manufactured by Kimika Co., Ltd.) were used. The acetic acid aqueous solution of the polymer material (a) was filtered through a 1.0 μm filter paper, and then glutaraldehyde (GA) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added at a weight ratio shown in Table 1 below and stirred for 30 minutes. The prepared solution was circulated for 30 minutes inside the hollow fiber membrane incorporated in the pencil module at a linear velocity of 8 m / min with the permeation side reduced in pressure. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated for 1 hour at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is as shown in Table 1 below.
5 g of the amine compound (c) shown in Table 1 below was placed in a mixed solution of 25 g of distilled water and 20 g of methanol and stirred at room temperature for 60 minutes. The methanol / distilled aqueous solution of the amine compound (c) was circulated in the hollow fiber membrane for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[実施例6〜8]
高分子材料(a)、架橋剤(b)およびアミン化合物(c)を下記表1の通りとする以外は、実施例5と同様に処理して、ガス分離膜モジュールを得た。得られた吸水性高分子材料100重量部当りの吸水量は下記表1に示す通りである。
[Examples 6 to 8]
A gas separation membrane module was obtained in the same manner as in Example 5 except that the polymer material (a), the crosslinking agent (b) and the amine compound (c) were as shown in Table 1 below. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is as shown in Table 1 below.

[比較例1]
(PSF、キトサン(H/LL)、PAMAMデンドリマー)
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
蒸留水97.5g、酢酸2.0gの酢酸水溶液を調製し、分子量50万のキトサン(商品名:キトサンH、キミカ株式会社製)を0.455g、分子量5万のキトサン(商品名:キトサンLL、キミカ株式会社製)を0.0455g入れ、60分攪拌して0.5wt%のキトサン溶液を調製した。キトサンの酢酸水溶液を1.0μmのろ紙でろ過し、キトサンの酢酸水溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で1時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は200重量部である。
実施例1で使用したものと同様の第0世代のPAMAMデンドリマー(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Comparative Example 1]
(PSF, chitosan (H / LL), PAMAM dendrimer)
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Prepare an acetic acid aqueous solution of 97.5 g of distilled water and 2.0 g of acetic acid, 0.455 g of chitosan having a molecular weight of 500,000 (trade name: Chitosan H, manufactured by Kimika Co., Ltd.), chitosan having a molecular weight of 50,000 (trade name: chitosan LL) , Manufactured by Kimika Co., Ltd.) and stirred for 60 minutes to prepare a 0.5 wt% chitosan solution. The aqueous acetic acid solution of chitosan was filtered through a 1.0 μm filter paper, and the aqueous acetic acid solution of chitosan was circulated for 30 minutes at a linear velocity of 8 m / min with the permeation side reduced in pressure inside the hollow fiber membrane. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated for 1 hour at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is 200 parts by weight.
25 g of distilled water was added to 25 g of a 0th generation PAMAM dendrimer (20 wt% methanol solution; manufactured by Aldrich) similar to that used in Example 1, and stirred at room temperature for 60 minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[比較例2〜3]
ポリスルホン(PSF)製の中空糸限外ろ過膜(日東電工株式会社製、分画分子量:6000)を3本組み込んだペンシルモジュール(全長200mm)を作製した。
蒸留水97.5g、酢酸2.0gの酢酸水溶液を調製し、0.5gの高分子材料(a)を下記表1に示す重量比で加えて、高分子材料(a)の酢酸水溶液を調製した。ここで、高分子材料(a)は、ヒアルロン酸(東京化成工業株式会社製)と、実施例1で使用したものと同様のキトサン(キミカ株式会社製)を使用した。高分子材料(a)の酢酸水溶液を1.0μmのろ紙でろ過し、その後、エチレングリコールジグリシジルエーテル(EGDGE)(東京化成工業株式会社製)を下記表1に示す重量比で加え、30分攪拌した。作製した溶液をペンシルモジュールに組み込んだ中空糸膜の内側に8m/分の線速度で透過側を減圧にして30分間循環した。その後、中空糸膜の内側にNガスを15m/分の速度で流通し、60℃で1時間熱処理した。中空糸膜の内側に0.1Mの水酸化ナトリウム水溶液を8m/分の線速度で10分間循環し、引き続き、蒸留水とエタノール1:1の混合溶媒を8m/分の線速度で60分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥した。得られた吸水性高分子材料100重量部当りの吸水量は下記表1に示す通りである。
実施例1で使用したものと同様の第0世代のポリアミドアミン(PAMAM)デンドリマー(表面基:−CONHCHCHNH;表面基の数:4個)(20wt%メタノール溶液;アルドリッチ社製)25gに蒸留水を25g入れ室温で60分攪拌した。PAMAMデンドリマーのメタノール/蒸留水溶液を室温で8m/分の線速度で30分間循環した。中空糸膜の内側にNガスを15m/分の線速度で流通し、60℃で8時間乾燥することにより、ガス分離膜モジュールを得た。
[Comparative Examples 2-3]
A pencil module (total length 200 mm) incorporating three polysulfone (PSF) hollow fiber ultrafiltration membranes (manufactured by Nitto Denko Corporation, fractional molecular weight: 6000) was prepared.
Prepare an acetic acid aqueous solution of 97.5 g of distilled water and 2.0 g of acetic acid, and add 0.5 g of the polymer material (a) at a weight ratio shown in Table 1 below to prepare an acetic acid aqueous solution of the polymer material (a). did. Here, as the polymer material (a), hyaluronic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and chitosan similar to that used in Example 1 (manufactured by Kimika Co., Ltd.) were used. The acetic acid aqueous solution of the polymer material (a) is filtered through a 1.0 μm filter paper, and then ethylene glycol diglycidyl ether (EGDGE) (manufactured by Tokyo Chemical Industry Co., Ltd.) is added at a weight ratio shown in Table 1 below, and 30 minutes Stir. The prepared solution was circulated for 30 minutes inside the hollow fiber membrane incorporated in the pencil module at a linear velocity of 8 m / min with the permeation side reduced in pressure. Thereafter, N 2 gas flows at 15 m / min inside the hollow fiber membrane was heat treated for 1 hour at 60 ° C.. A 0.1M sodium hydroxide aqueous solution was circulated inside the hollow fiber membrane for 10 minutes at a linear velocity of 8 m / min. Subsequently, a mixed solvent of distilled water and ethanol 1: 1 was circulated for 60 minutes at a linear velocity of 8 m / min. did. N 2 gas was circulated at a linear velocity of 15 m / min inside the hollow fiber membrane and dried at 60 ° C. for 8 hours. The amount of water absorption per 100 parts by weight of the obtained water-absorbing polymer material is as shown in Table 1 below.
0th generation polyamidoamine (PAMAM) dendrimer similar to that used in Example 1 (surface group: —CONHCH 2 CH 2 NH 2 ; number of surface groups: 4) (20 wt% methanol solution; manufactured by Aldrich) 25 g of distilled water was added to 25 g and stirred at room temperature for 60 minutes. A methanol / distilled aqueous solution of PAMAM dendrimer was circulated for 30 minutes at a linear velocity of 8 m / min at room temperature. A gas separation membrane module was obtained by circulating N 2 gas inside the hollow fiber membrane at a linear velocity of 15 m / min and drying at 60 ° C. for 8 hours.

[試験例]二酸化炭素と窒素の分離試験
実施例1〜4および比較例1で得たガス分離膜モジュールを用いてCO分離能を測定した。すなわち、該モジュールに混合ガス(二酸化炭素ガス5%、窒素ガス95%)を供給し、分離膜を透過したガスの透過速度QCO2およびQN2(cm(STP)/cm・sec・cmHg)をガスクロマトグラフィーと流量計を用いて測定し、QCO2/QN2選択性を算出した。その結果は表1の通りである。
<ガス透過測定装置の設定条件>
供給ガス量:100cc/分、測定温度:40℃、供給ガス組成:CO/N=5/95(vol/vol)、透過側循環ガス:He(乾燥)、相対湿度:>95%、圧力:供給側;101kPa、透過側;1kPa
<ガスクロマトグラフィー分析条件>
Heキャリアーガス量:約100cc/分、PDD温度:80℃、オーブン温度:50℃、カラム1:シリコ 1/8inch×4m/MS/シリコ 1/8inch×2m、カラム2:ユニビーズ 2S 1/8inch×4m
[Test Example] Carbon dioxide and nitrogen separation test CO 2 separation ability was measured using the gas separation membrane modules obtained in Examples 1 to 4 and Comparative Example 1. That is, a mixed gas (carbon dioxide gas 5%, nitrogen gas 95%) is supplied to the module, and the permeation speeds Q CO2 and Q N2 (cm 3 (STP) / cm 2 · sec · cmHg) of the gas that has permeated the separation membrane. ) Was measured using gas chromatography and a flow meter, and Q CO2 / Q N2 selectivity was calculated. The results are shown in Table 1.
<Setting conditions of gas permeation measuring device>
Supply gas amount: 100 cc / min, measurement temperature: 40 ° C., supply gas composition: CO 2 / N 2 = 5/95 (vol / vol), permeate side circulation gas: He (dry), relative humidity:> 95%, Pressure: supply side: 101 kPa, permeation side: 1 kPa
<Gas chromatography analysis conditions>
He carrier gas amount: about 100 cc / min, PDD temperature: 80 ° C., oven temperature: 50 ° C., column 1: silico 1/8 inch × 4 m / MS / silico 1/8 inch × 2 m, column 2: Unibead 2S 1/8 inch × 4m

本発明のガス分離膜は、窒素と二酸化炭素を分離するための用途に使用されるものであり、たとえば、火力発電所、鉄鋼プラントなどで発生する燃焼排ガスからのCO分離などにおいて有用である。 The gas separation membrane of the present invention is used for an application for separating nitrogen and carbon dioxide, and is useful for, for example, CO 2 separation from combustion exhaust gas generated in a thermal power plant, a steel plant, or the like. .

図1は、実施例1で得られたガス分離膜モジュール中のガス分離膜の断面の走査電子顕微鏡(SEM)写真である。左の写真:全体像(撮影倍率:50倍)、右の写真:内表面の拡大図(撮影倍率:5万倍)1 is a scanning electron microscope (SEM) photograph of a cross section of a gas separation membrane in the gas separation membrane module obtained in Example 1. FIG. Left photo: overall image (photographing magnification: 50 times), right photo: enlarged view of the inner surface (photographing magnification: 50,000 times)

Claims (9)

多孔質性の支持膜(A)の表面に、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料と、式(1)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基、または式(2)
[式中、Aは炭素数1〜3の二価有機残基を示し、nは0または1の整数を示す。]
で示される基を有するポリアミドアミン系デンドリマーであるアミン化合物(c)とからなる気体分離層を形成した複合膜であって、前記吸水性高分子材料100重量部に対する吸水量が50〜1000重量部であることを特徴とするガス分離膜。
A water-absorbing polymer material obtained by crosslinking a polymer material (a) having an amino group and / or a hydroxyl group on the surface of a porous support membrane (A) with a polyfunctional crosslinking agent (b); (1)
[Wherein, A 1 represents a C 1-3 divalent organic residue, and n represents an integer of 0 or 1. ]
Or a group represented by formula (2)
[Wherein, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and n represents an integer of 0 or 1. ]
A composite membrane formed with a gas separation layer comprising an amine compound (c) which is a polyamidoamine-based dendrimer having a group represented by formula (1), wherein the water absorption amount relative to 100 parts by weight of the water-absorbing polymer material is 50 to 1000 parts by weight A gas separation membrane characterized by
気体分離層が、アミノ基および/または水酸基を有する高分子材料(a)が多官能性の架橋剤(b)で架橋されてなる吸水性高分子材料のマトリックス中に、式(1)で示される基、または式(2)で示される基を有するアミン化合物(c)が包含された構造である請求項1に記載のガス分離膜。   The gas separation layer is represented by the formula (1) in a matrix of a water-absorbing polymer material in which a polymer material (a) having an amino group and / or a hydroxyl group is crosslinked with a multifunctional crosslinking agent (b). The gas separation membrane according to claim 1, which has a structure including an amine compound (c) having a group represented by formula (2) or a group represented by formula (2). アミノ基および/または水酸基を有する高分子材料(a)が、キトサン、ヒアルロン酸、セルロース、ポリビニルアルコール、ポリ(p−ヒドロキシスチレン)、ポリ(p−アミノスチレン)、ポリ[スチレン−co−(p−ヒドロキシスチレン)]、ポリアリルアミンまたはポリビニルオキシエタノールである請求項1または2に記載のガス分離膜。   The polymer material (a) having an amino group and / or a hydroxyl group is chitosan, hyaluronic acid, cellulose, polyvinyl alcohol, poly (p-hydroxystyrene), poly (p-aminostyrene), poly [styrene-co- (p -Hydroxystyrene)], polyallylamine, or polyvinyloxyethanol. 多官能性の架橋剤(b)が、官能基としてエポキシ基またはアルデヒド基を有する架橋剤である請求項1〜3のいずれかに記載のガス分離膜。   The gas separation membrane according to any one of claims 1 to 3, wherein the polyfunctional crosslinking agent (b) is a crosslinking agent having an epoxy group or an aldehyde group as a functional group. 官能基としてエポキシ基を有する架橋剤が、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテルまたはグリセリンジグリシジルエーテルである請求項4に記載のガス分離膜。   The gas separation membrane according to claim 4, wherein the crosslinking agent having an epoxy group as a functional group is ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether or glycerin diglycidyl ether. 官能基としてアルデヒド基を有する架橋剤が、グルタルアルデヒド、スクシンアルデヒド、マロンジアルデヒド、テレフタルアルデヒドまたはイソフタルアルデヒドである請求項4に記載のガス分離膜。   The gas separation membrane according to claim 4, wherein the cross-linking agent having an aldehyde group as a functional group is glutaraldehyde, succinaldehyde, malondialdehyde, terephthalaldehyde or isophthalaldehyde. ポリアミドアミン系デンドリマーであるアミン化合物(c)が、式
からなる群から選択される化合物である請求項1〜6のいずれかに記載のガス分離膜。
The amine compound (c) , which is a polyamidoamine dendrimer , has the formula
The gas separation membrane according to any one of claims 1 to 6, which is a compound selected from the group consisting of:
請求項1〜のいずれかに記載のガス分離膜を組み込んでなるガス分離膜モジュール。 A gas separation membrane module comprising the gas separation membrane according to any one of claims 1 to 7 . 二酸化炭素を含む混合ガスを、請求項1〜のいずれかに記載のガス分離膜に接触させて、該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする二酸化炭素の分離方法。 A carbon dioxide comprising a step of bringing a mixed gas containing carbon dioxide into contact with the gas separation membrane according to any one of claims 1 to 7 and selectively permeating carbon dioxide in the mixed gas. Separation method.
JP2006251638A 2006-09-15 2006-09-15 Gas separation membrane and use thereof Active JP4980014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251638A JP4980014B2 (en) 2006-09-15 2006-09-15 Gas separation membrane and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251638A JP4980014B2 (en) 2006-09-15 2006-09-15 Gas separation membrane and use thereof

Publications (2)

Publication Number Publication Date
JP2008068238A JP2008068238A (en) 2008-03-27
JP4980014B2 true JP4980014B2 (en) 2012-07-18

Family

ID=39290301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251638A Active JP4980014B2 (en) 2006-09-15 2006-09-15 Gas separation membrane and use thereof

Country Status (1)

Country Link
JP (1) JP4980014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921377A (en) * 2015-08-13 2018-04-17 旭化成株式会社 Gas separation membrane

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914875B2 (en) * 2007-10-29 2011-03-29 Corning Incorporated Polymer hybrid membrane structures
JP2009241006A (en) * 2008-03-31 2009-10-22 Research Institute Of Innovative Technology For The Earth Composite membrane and its manufacturing method
JP4991686B2 (en) * 2008-12-26 2012-08-01 株式会社クラレ Method for producing composite hollow fiber membrane
FR2943559B1 (en) * 2009-03-30 2011-04-08 Centre Nat Rech Scient AUTOSUPPORTED DYNAMIC POLYMERIC MEMBRANE, PROCESS FOR PREPARATION AND USE.
FR2943558B1 (en) * 2009-03-30 2011-04-08 Centre Nat Rech Scient AUTOSUPPORTED DYNAMIC POLYMERIC MEMBRANE, PROCESS FOR PREPARATION AND USE.
JP2010246460A (en) * 2009-04-15 2010-11-04 Sharp Corp Gas composition-controlling unit
JP2010246475A (en) * 2009-04-16 2010-11-04 Sharp Corp Food-preserving chamber
JP5577928B2 (en) * 2009-10-21 2014-08-27 株式会社Ihi Method for producing polymer membrane
WO2011057384A1 (en) 2009-11-12 2011-05-19 National Research Council Of Canada Polymers of intrinsic microporosity containing tetrazole groups
US8721774B2 (en) * 2010-02-16 2014-05-13 Research Institute Of Innovative Technology For The Earth Gas separation composite membrane
JP5241751B2 (en) * 2010-02-16 2013-07-17 公益財団法人地球環境産業技術研究機構 Gas separation composite membrane
JP5563503B2 (en) * 2011-03-15 2014-07-30 公益財団法人地球環境産業技術研究機構 Gas separation composite membrane
CN102327747B (en) * 2011-08-01 2014-04-09 大连理工大学 Fluorine-containing polysiloxane rubber state composite gas separation membrane, preparation method and application thereof
JP5945478B2 (en) 2012-09-04 2016-07-05 日東電工株式会社 Separation membrane, composite separation membrane and method for producing separation membrane
JP6235479B2 (en) * 2012-11-12 2017-11-22 公益財団法人地球環境産業技術研究機構 CO2 gas separation membrane and method for producing the same
JP6231927B2 (en) * 2014-03-28 2017-11-15 次世代型膜モジュール技術研究組合 Gas separation membrane
JP6223255B2 (en) * 2014-03-28 2017-11-01 次世代型膜モジュール技術研究組合 Gas separation membrane
JP6231928B2 (en) * 2014-03-28 2017-11-15 次世代型膜モジュール技術研究組合 Gas separation membrane
JP6613112B2 (en) * 2015-11-16 2019-11-27 旭化成株式会社 Gas separation membrane
JP7030490B2 (en) * 2017-03-03 2022-03-07 東ソー株式会社 Polymer membrane, its manufacturing method, and carbon dioxide separation method
JP6960825B2 (en) * 2017-11-01 2021-11-05 旭化成株式会社 Gas separation membrane
KR102637332B1 (en) * 2018-05-03 2024-02-19 주식회사 엘지화학 Preparation method for gas separation membrane, composition for forming active layer, gas separation membrane, and gas separation membrane module
CN114632430B (en) * 2020-12-15 2023-04-18 中国科学院大连化学物理研究所 Covalent organic polymer material nanosheet composite matrix membrane for gas separation and preparation method thereof
CN113527875B (en) * 2021-08-23 2022-05-13 安徽农业大学 Bio-based nylon composite material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176773A (en) * 1997-09-10 1999-03-23 Lignyte Co Ltd Tubular separation membrane and its production
JP2001106916A (en) * 1999-10-01 2001-04-17 Toyota Central Res & Dev Lab Inc Resin composition containing dendritic polymer and permselective membrane
US7169885B2 (en) * 2003-03-13 2007-01-30 National University Of Singapore Polyimide membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921377A (en) * 2015-08-13 2018-04-17 旭化成株式会社 Gas separation membrane

Also Published As

Publication number Publication date
JP2008068238A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP4980014B2 (en) Gas separation membrane and use thereof
JP6037804B2 (en) Gas separation membrane
US11071953B2 (en) Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator
AU2011281326B2 (en) Asymmetric membranes for use in nanofiltration
JP5629751B2 (en) Gas separation composite membrane
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016136294A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
JP2007054710A (en) Gas separation membrane and gas separation method
JP2015536240A (en) Crosslinked polyimide membrane for separation
JP6038058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
EP3344372A1 (en) Membranes for gas separation
JP2015535036A (en) Fluorinated ethylene-propylene polymer membrane for gas separation
WO2017038285A1 (en) Production method for gas separation composite membrane, liquid composition, gas separation composite membrane, gas separation module, gas separation device, and gas separation method
JP5329207B2 (en) Polymer membrane and use thereof
KR20200012863A (en) Gas separators, gas separator elements, gas separators and gas separation methods
WO2015033772A1 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP7162308B2 (en) Draw solute and water treatment equipment
JP6355058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
KR101559563B1 (en) Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPWO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound
JP2018171545A (en) Ga separation composite membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation composite membrane
US20180280892A1 (en) Gas separation membrane, method of producing gas separation membrane, gas separation membrane module, and gas separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4980014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250