JP4975162B2 - 紫外線用自己クローニングフォトニック結晶 - Google Patents

紫外線用自己クローニングフォトニック結晶 Download PDF

Info

Publication number
JP4975162B2
JP4975162B2 JP2010500557A JP2010500557A JP4975162B2 JP 4975162 B2 JP4975162 B2 JP 4975162B2 JP 2010500557 A JP2010500557 A JP 2010500557A JP 2010500557 A JP2010500557 A JP 2010500557A JP 4975162 B2 JP4975162 B2 JP 4975162B2
Authority
JP
Japan
Prior art keywords
refractive index
substrate
periodic structure
self
photonic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010500557A
Other languages
English (en)
Other versions
JPWO2009107355A1 (ja
Inventor
喜彦 井上
貴之 川嶋
彰二郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonic Lattice Inc
Original Assignee
Photonic Lattice Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice Inc filed Critical Photonic Lattice Inc
Priority to JP2010500557A priority Critical patent/JP4975162B2/ja
Publication of JPWO2009107355A1 publication Critical patent/JPWO2009107355A1/ja
Application granted granted Critical
Publication of JP4975162B2 publication Critical patent/JP4975162B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3075Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state for use in the UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)

Description

【技術分野】
【0001】
本発明は,紫外線領域で用いることができる自己クローニングフォトニック結晶などに関する。より具体的に説明すると,高屈折率層にハフニウム酸化物を用いることで,紫外線領域の光を制御できる自己クローニングフォトニック結晶などに関する。
【背景技術】
【0002】
自己クローニングフォトニック結晶は,偏光素子や波長板として利用でき,大変優れた光学結晶である(たとえば,特許第3325825号公報を参照)。
【0003】
一方,自己クローニングフォトニック結晶は,300nm以下の短波長領域では吸収による透過損失が大きい。このため,自己クローニングフォトニック結晶は,紫外線領域で用いることが困難であった。また,自己クローニングフォトニック結晶法は,特殊な製造方法であるため,高い屈折材料として,ニオブ酸化物又はタンタル酸化物以外は用いられていなかった。
【特許文献1】
特許第3325825号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は,紫外線領域で用いることができる自己クローニングフォトニック結晶を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明は,基本的には,高屈折率層にハフニウム酸化物を用いることで,紫外線領域の光を制御できる自己クローニングフォトニック結晶を得ることができるという知見に基づくものである。また,本発明は,従来の自己クローニングフォトニック結晶よりも,基板の周期を小さくし,高屈折率層にハフニウム酸化物を用いることで,紫外線領域の光を制御できる自己クローニングフォトニック結晶を得ることができるという知見に基づく。
【0006】
本発明の第1の側面は,基板と,基板上に形成された積層体とを含む,自己クローニングフォトニック結晶に関する。積層体は,高屈折率層と低屈折率層とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有する。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。
【0007】
このように高屈折率層にハフニウム酸化物を用いることで,本発明の自己クローニングフォトニック結晶は,紫外線領域の光を制御できる。
【0008】
第1の側面の好ましい態様(パターン)は,基板上に形成された周期構造における周期が,130nm以下である上記の自己クローニングフォトニック結晶に関する。
【0009】
後述する実施例において実証されたとおり,従来の自己クローニングフォトニック結晶よりも,基板の周期を小さくし,高屈折率層にハフニウム酸化物を用いることで,紫外線領域の光を制御できる自己クローニングフォトニック結晶を得ることができる。
【0010】
第1の側面の好ましい態様(パターン)は,上記いずれかに記載の自己クローニングフォトニック結晶を用いた光学機器に関する。
【0011】
本発明の自己クローニングフォトニック結晶は,特に紫外線用の偏光板や波長板として機能する。よって,光学機器が本発明の自己クローニングフォトニック結晶を含むことで,光学機器は,紫外線を制御することができる。
【0012】
本発明の第2の側面は,波長板に関する。この波長板は,基板と,基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む。そして,この波長板の基本構成は,先に説明した自己クローニング結晶と同一である。すなわち,積層体は,高屈折率層と低屈折率層とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有し,周期構造の周期は130nm以下である。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。そして,この波長板は,波長が220nm〜300nmの光を制御することができる。
【0013】
本発明の第2の側面に係る波長板として好ましいものは,高屈折率層の厚さが,70nm以下である。また,低屈折率層の厚さが,80nm以下である。そして,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さの合計が300nm以下である。波長板として機能するためには,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さの合計が波長以下となるようにすればよい。なお,高屈折率層が酸化ハフニウムからなり,低屈折率層が酸化シリコンからなる場合を想定する。たとえば,300nmの光に対する波長板を設計する場合,低屈折率層の厚さが0であるとすると,酸化ハフニウムを含む高屈折率層の厚さは,約150nm以下であれば良いこととなる。また,高屈折率層の厚さが,70nm以下であるとき,高屈折層の光学厚さは約140nm以下となる。一方,低屈折率層の光学厚さは,約128nm以下となる。よって,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さとして,268nm以下が好ましい。
【0014】
本発明の第3の側面は,偏光子に関する。この偏光子は,基板と,基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む。そして,この偏光子の基本構成は,先に説明した自己クローニング結晶と同一である。すなわち,積層体は,高屈折率層と低屈折率層とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有し,周期構造の周期は130nm以下である。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。そして,この偏光子は,波長が220nm〜300nmの光の偏光状態を制御できる。
【0015】
本発明の第3の側面に係る偏光子として好ましいものは,高屈折率層の厚さが60nm以上70nm以下であり,低屈折率層の厚さが,74nm以上86nm以下の偏光子である。すなわち,高屈折率層の光学厚さ及び低屈折率層の光学厚さが,それぞれ波長の半分の近傍となるようにすることで,偏光子として機能する。酸化ハフニウムの屈折率は,約1.9〜2.1である。また,自己クローニング法に基づいて酸化ハフニウム層を形成する際に,好ましい膜厚の範囲とすることが望ましい。このような観点から,高屈折率層の厚さとして,60nm以上70nm以下が,好ましい。また,酸化シリコンの屈折率は約1.5〜1.6である。よって,低屈折率層の厚さを,74nm以上86nm以下とすることが好ましい。これらの範囲とすることで,好ましい物性を担保しつつ,偏光子として機能する結晶を得ることができる。
【発明の効果】
【0016】
本発明によれば,紫外線領域で用いることができる自己クローニングフォトニック結晶を提供できる。
【発明を実施するための最良の形態】
【0017】
以下,図面を用いて,本発明を説明する。図1は,自己クローニングフォトニック結晶の例を示す図である。図1Aは,基板の例を示す。図1Bは,膜を形成した後の自己クローニングフォトニック結晶を示す。図1に示されるように,本発明の第1の側面は,自己クローニングフォトニック結晶(1)に関する。そして,自己クローニングフォトニック結晶は,基板(2)と,基板(2)上に形成された積層体(3)とを含む。積層体(3)は,高屈折率層(4)と低屈折率層(5)とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有する。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。
【0018】
このように高屈折率層にハフニウム酸化物を用いることで,本発明の自己クローニングフォトニック結晶は,紫外線領域の光を制御できる。自己クローニングフォトニック結晶,及び自己クローニングフォトニック結晶法は,公知である(上記特許文献1,S.Kawakami, T.Kawashima, and T.Sato, “Mechanism of shape formation of three dimensional nanostructures by bias sputtering,”Appl. Phys. Lett., vol.74, no.3, pp.463-465, January 1999.)。よって,本発明においては,公知の方法を適宜採用することができる。また,自己クローニングフォトニック結晶の周期構造も,公知のものを適宜用いることができる。
【0019】
第1の側面の好ましい態様(パターン)は,基板上に形成された周期構造における周期が,130nm以下である上記の自己クローニングフォトニック結晶に関する。また,基板上の周期は,波長板の位相差,偏光子の消光比にも影響を与える。紫外線領域にける自己クローニングフォトニック結晶として機能するためには,基板上に形成された周期構造における周期が,130nm以下であるものが好ましい。実施例においては,基板に,120nmの周期を有する溝を形成した。この周期として,90nm以上130nm以下が好ましい。この周期があまりに小さいと,規則正しい周期を有する基板を製造できなくなる。
【0020】
後述する実施例において実証されたとおり,従来の自己クローニングフォトニック結晶よりも,基板の周期を小さくし,高屈折率層にハフニウム酸化物を用いることで,紫外線領域の光を制御できる自己クローニングフォトニック結晶を得ることができる。
【0021】
第1の側面の好ましい態様(パターン)は,上記いずれかに記載の自己クローニングフォトニック結晶を用いた光学機器に関する。後述するように,本発明の自己クローニングフォトニック結晶は,たとえば,偏光子又は波長板として機能する。よって,本発明の自己クローニングフォトニック結晶は,偏光子又は波長板を含む光学機器に好適に利用できる。このような光学機器として,光学的記録装置,光通信機器,撮影機器があげられる。また,自己クローニングフォトニック結晶として,基板を複数の領域に分けて,領域ごとに異なる周期を持たせたものもある。このような自己クローニングフォトニック結晶は,導波路としても機能しうる。
【0022】
本発明の自己クローニングフォトニック結晶は,特に紫外線用の偏光板や波長板として機能する。よって,光学機器が本発明の自己クローニングフォトニック結晶を含むことで,光学機器は,紫外線を制御することができる。
【0023】
本発明の第2の側面は,波長板に関する。この波長板は,基板と,基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む。そして,この波長板の基本構成は,先に説明した自己クローニング結晶と同一である。すなわち,積層体は,高屈折率層と低屈折率層とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有し,周期構造の周期は130nm以下である。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。そして,この波長板は,波長が220nm〜300nm(220nm以上,300nm以下)の光を制御することができる。なお,本発明の波長板が制御する光の波長として,240nm以上280nm以下でも良く,220nm以上260nm以下でもよい。
【0024】
波長板は,波長板を通過した光の偏光状態を変えるために用いられる。この偏光状態の変化は,2つの偏光成分が波長板を透過するために要する時間に差が生ずることにより引き起こされる。すなわち,偏光状態によって,光学距離が異なる材料が波長板として機能する。ただし,波長板は,2つの偏光成分を透過させる必要がある。よって,波長板は,偏光によらず,透過率が高くなるものとすることが好ましい。一方,自己クローニングフォトニック結晶は,周期構造を有しているので,必ず偏光成分によって光学距離が異なる。よって,自己クローニングフォトニック結晶は,通常は,波長板として機能する(T.Sato, et al., “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Optical and Quantum Electronics, special issue on PECS-II, vol.34, no.1, pp.63-70, January 2002.)。ただし,上記のとおり,波長板では,2つの偏光成分を透過させる必要がある。よって,一方の偏光成分が透過できない状態となれば,波長板としての機能が損なわれ,偏光子として機能することとなる。この2つの偏光成分に対する透過率は,各層の膜厚や,基板の凹凸の周期に大きく起因する。
【0025】
具体的には,高屈折率層の光学厚さ(厚さ×屈折率)と低屈折率層の光学厚さの合計が透過する波長以下となるように設計すればよい。すなわち,本発明の第2の側面に係る波長板として好ましいものは,高屈折率層の厚さが,70nm以下である。また,低屈折率層の厚さが,80nm以下である。そして,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さの合計が300nm以下である。なお,高屈折率層が酸化ハフニウムからなり,低屈折率層が酸化シリコンからなる場合を想定する。たとえば,300nmの光に対する波長板を設計する場合,低屈折率層の厚さが0であるとすると,酸化ハフニウムを含む高屈折率層の厚さは,150nm以下であれば良いこととなる。一方,高屈折率層の厚さがほぼ0の場合,低屈折率層の屈折率を1.6とすると,300nmの光に対する波長板を設計する場合,188nm以下であれば良いこととなる。また,高屈折率層の厚さが,70nm以下であるとき,高屈折層の光学厚さは約140nm以下となる。一方,低屈折率層の光学厚さは,約128nm以下となる。よって,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さとして,268nm以下が好ましい。さらに,酸化シリコンの屈折率は,たとえば1.5の場合がある。この場合,低屈折率層の光学厚さは,120nm以下となる。よって,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さとして,260nm以下が好ましい。一方,実施例では,高屈折率層の厚さが20nmであり,低屈折率層の厚さが20nmであった。この実施例における高屈折率層の光学厚さは,38nm〜42nmである。一方,この実施例における低屈折率層の光学厚さは,30nm〜32nmである。よって,高屈折率層一層の光学厚さと低屈折率層一層の光学厚さとして,68nm以上74nmの範囲でも,波長板として良好に機能する。
【0026】
本発明の第3の側面は,偏光子に関する。この偏光子は,基板と,基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む。そして,この偏光子の基本構成は,先に説明した自己クローニング結晶と同一である。すなわち,積層体は,高屈折率層と低屈折率層とが交互に積層されたものである。基板は,少なくとも,積層体が形成される面に,1次元又は2次元の周期構造を有し,周期構造の周期は130nm以下である。高屈折率層は,基板に形成された周期構造を反映した周期構造を有し,ハフニウムの酸化物からなる。低屈折率層は,基板に形成された周期構造を反映した周期構造を有し,シリコン酸化物又はアルミニウム酸化物からなる。そして,この偏光子は,波長が220nm〜300nmの光の偏光状態を制御できる。なお,本発明の偏光子が制御する光の波長として,240nm以上280nm以下でも良く,220nm以上260nm以下でもよい。
【0027】
先に説明したとおり,自己クローニングフォトニック結晶は,一方の偏光成分が透過できない条件では,偏光子として機能する。多層膜においては,ある波長範囲で光が反射し,透過しない現象が起こる。自己クローニングフォトニック結晶では,この波長範囲のうち上限又は下限の近傍では,一方の偏光成分は透過し,他方の偏光は反射する現象が観測される。この現象を積極的に用いることで,自己クローニングフォトニック結晶を,偏光子として利用することができる(T.Kawashima, T.Sato, W.Ishikawa, and S.Kawakami, “Photonic Crystal Polarization Beam Splitters and Their Applications - First Industrialization of Photonic Crystals - ,” Optical Fiber Communication Conference & Exposition (OFC 2003), Atlanta, Georgia, USA, March 2003, ThI2.)。すなわち,自己クローニングフォトニック結晶を偏光子として使用する場合は,その自己クローニングフォトニック結晶が透過できなくなる波長範囲の端付近の波長を有する光が動作波長となるようにすればよい。具体的には,高屈折率層の光学厚が波長の半分以下となり,かつ低屈折率層の光学厚が波長の半分以下となるように設計すればよい。
【0028】
本発明の第3の側面に係る偏光子として好ましいものは,高屈折率層の厚さが60nm以上70nm以下であり,低屈折率層の厚さが,74nm以上86nm以下の偏光子である。酸化ハフニウムの屈折率は,約1.9〜2.1である。また,自己クローニング法に基づいて酸化ハフニウム層を形成する際に,好ましい膜厚の範囲とすることが望ましい。このような観点から,高屈折率層の厚さとして,60nm以上70nm以下が,好ましい。また,酸化シリコンの屈折率は約1.5〜1.6である。よって,低屈折率層の厚さを,74nm以上86nm以下とすることが好ましい。これらの範囲とすることで,好ましい物性を担保しつつ,偏光子として機能する結晶を得ることができる。
【0029】
なお,先に説明したとおり,偏光子では,光のうち一方の偏光成分を透過させ,残りの偏光成分を透過させないものが好ましい。透過成分と透過しない成分との強度比(消光比)は,1/50より小さくなることが好ましい。具体的には,消光比が1/100や1/10000のような値をとる。そして,層の数が多いほど,消光比が高くなる。よって,要求される消光比に応じて,層の数を増減すればよい。
【実施例1】
【0030】
紫外線用自己クローニングフォトニック結晶偏光子の製造
本実施例では,自己クローニングフォトニック結晶製造法に基づいて,紫外線用の偏光子を製造した。基板として石英基板を用いた。基板に,120nm周期ピッチの周期的な凹凸を形成した。基板に周期ピッチを形成するために,公知のフォトリソグラフィープロセスを用いた。スパッタリング装置を用いて,低屈折率材料としてSiO,高屈折率材料としてHfOを交互に積層した。いずれの材料も,成膜雰囲気は4:1の分圧でArと酸素ガスとを流しながら0.8Paのガス圧で電圧印加し,スパッタリングを行った。基板バイアスを同時に印加することにより,成膜とエッチングとを同時に行った。基板バイアスに印加する電力は,成膜電力の8%近傍に設定した。低屈折率在の一層当りの膜厚は80nm,高屈折率材料の一層当りの膜厚は62nmとした。合計積層数は,50層とした。
【0031】
このようにして作製した偏光子の光学特性を評価した。その結果を図2に示す。図2は,周期が120nmの偏光子の光学特性を示すグラフである。図2Aは,垂直入射についての透過率を示すグラフである。図2Bは,x方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図2Cは,y方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図中実線は,TMモード成分を示し,点線はTEモード成分を示す。図2A〜図2Bに示されるように,偏光子の光学特性として,波長266nmの光に対し,25dB以上の消光比が得られた。すなわち,本発明の自己クローニングフォトニック結晶は,紫外線用の偏光子として機能することがわかる。
【実施例2】
【0032】
基板の周期ピッチを140nmとした以外は,実施例1と同様にして自己クローニングフォトニック結晶を製造した。このようにして作製した偏光子の光学特性を評価した。その結果を図2に示す。図3は,周期が140nmの偏光子の光学特性を示すグラフである。図3Aは,垂直入射についての透過率を示すグラフである。図3Bは,x方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図3Cは,y方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図中実線は,TMモード成分を示し,点線はTEモード成分を示す。偏光子は,たとえば,TMモード成分を透過し,TEモード成分を透過しないものが好ましい。図2Bと,図3Bとを比較すると,図3Bでは,TE成分が一部透過している。よって,基板の周期が140nmのものに比べて,基板の周期が120nmのものの方が,偏光子として優れていることがわかる。
実施例3
[0033]
紫外線用自己クローニングフォトニック結晶波長板の製造
本実施例では,自己クローニングフォトニック結晶製造法に基づいて,紫外線用の波長板を製造した。基板として石英基板を用いた。基板に,120nm周期ピッチの周期的な凹凸を形成した。基板に周期ピッチを形成するために,公知のフォトリソグラフィープロセスを用いた。スパッタリング装置を用いて,低屈折率材料としてSiO,高屈折率材料としてHfOを交互に積層した。いずれの材料も,成膜雰囲気は4:1の分圧でArと酸素ガスとを流しながら0.8Paのガス圧で電圧印加し,スパッタリングを行った。基板バイアスを同時に印加することにより,成膜とエッチングとを同時に行った。基板バイアスに印加する電力は,成膜電力の8%近傍に設定した。低屈折率在の一層当りの膜厚は20nm,高屈折率材料の一層当りの膜厚は20nmとした。合計積層数は,120層とした。
[0034]
このようにして作製した波長板の光学特性を図4に示す光学系にて評価した。図4は,波長板の光学特性を測定するために用いた光学系のブロック図である。この光学系は,レーザ光源と,固定偏光子と,自己クローニングフォトニック結晶波長板と,回転偏光子と,フォトディテクタとをこの順番で含む。なお,光源として波長266nmのレーザを用いた。作製した波長板の異方性軸を,入射光の偏光方向に45度の角度で配置し,出射側の偏光子を回転させたときにフォトディテクタで検出される光量の変化を測定した。得られた回転偏光子の角度と透過光の強さとの関係を図5に示す。図5は,紫外線用自己クローニングフォトニック結晶波長板の偏光特性を示すグラフである。図5に示されるように,入射偏光と平行(図中90度)にした場合に最も光量が低下し,入射偏光に直交させた場合と比べて約30dBの消光比が得られることがわかった。つまり,得られた波長板は,90度の向きの直線偏光を0度の直線偏光に変換させる。また,この出射光に含まれる0度方向の偏光性分は,90度方向の偏光成分の約1000倍の強度になっていた。すなわち,本発明の紫外線用自己クローニングフォトニック結晶は,良好な二分の一波長板として機能していることが確認された。
【産業上の利用可能性】
【0035】
本発明は,光学機器などの分野で好適に利用されうる。
【図面の簡単な説明】
【0036】
【図1】図1は,自己クローニングフォトニック結晶の例を示す図である。図1Aは,基板の例を示す。図1Bは,膜を形成した後の自己クローニングフォトニック結晶を示す。
【図2】図2は,周期が120nmの偏光子の光学特性を示すグラフである。図2Aは,垂直入射についての透過率を示すグラフである。図2Bは,x方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図2Cは,y方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。
【図3】図3は,周期が140nmの偏光子の光学特性を示すグラフである。図3Aは,垂直入射についての透過率を示すグラフである。図3Bは,x方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。図3Cは,y方向へ10度ずれた位置からの入射光に対する透過率を示すグラフである。
【図4】図4は,波長板の光学特性を測定するために用いた光学系のブロック図である。
【図5】図5は,紫外線用自己クローニングフォトニック結晶波長板の偏光特性を示すグラフである。
【符号の説明】
【0037】
1 自己クローニングフォトニック結晶
2 基板
3 積層体
4 高屈折率層
5 低屈折率層

Claims (11)

  1. 基板と,前記基板上に形成された積層体とを含む,自己クローニングフォトニック結晶であって,
    前記積層体は,高屈折率層と低屈折率層とが交互に積層されたものであり,
    前記基板は,
    少なくとも,前記積層体が形成される面に,1次元又は2次元の周期構造を有し,
    前記高屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    ハフニウムの酸化物からなり,
    前記低屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    シリコン酸化物又はアルミニウム酸化物からなる,
    紫外線用自己クローニングフォトニック結晶。
  2. 前記基板上に形成された周期構造における周期が,130nm以下である,
    請求項1に記載の自己クローニングフォトニック結晶。
  3. 請求項1又は請求項2に記載の紫外線用自己クローニングフォトニック結晶を含む,
    光学機器。
  4. 基板と,前記基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む波長板であって,
    前記積層体は,高屈折率層と低屈折率層とが交互に積層されたものであり,
    前記基板は,
    少なくとも,前記積層体が形成される面に,1次元又は2次元の周期構造を有し,
    前記周期構造の周期は130nm以下であり
    前記高屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    ハフニウムの酸化物からなり,
    前記低屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    シリコン酸化物又はアルミニウム酸化物からなり,
    波長が220nm〜300nmの光を制御する,紫外線用波長板。
  5. 前記基板は,周期的な溝を有する1次元の周期構造であり,
    前記高屈折率層の厚さが,70nm以下であり,
    前記低屈折率層の厚さが,80nm以下であり,
    前記高屈折率層一層の光学厚さと前記低屈折率層一層の光学厚さの合計が300nm以下である,
    請求項4に記載の紫外線用波長板。
  6. 基板と,前記基板上に形成された積層体とを含む,自己クローニングフォトニック結晶を含む偏光子であって,
    前記積層体は,高屈折率層と低屈折率層とが交互に積層されたものであり,
    前記基板は,
    少なくとも,前記積層体が形成される面に,1次元又は2次元の周期構造を有し,
    前記周期構造の周期は130nm以下であり,
    前記高屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    ハフニウムの酸化物からなり,
    前記低屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    シリコン酸化物又はアルミニウム酸化物からなり,
    波長が220nm〜300nmの光の偏光状態を制御する,紫外線用偏光子。
  7. 前記基板は,周期的な溝を有する1次元の周期構造であり,
    前記高屈折率層の厚さが60nm以上75nm以下であり,
    前記低屈折率層の厚さが,74nm以上86nm以下である,
    請求項6に記載の偏光子。
  8. 波長が260nm〜280nmの入射光のTEモードにおける透過率が35%以下である,
    請求項6に記載の紫外線用偏光子。
  9. 前記低屈折率層は,アルミニウム酸化物からなる,
    請求項1に記載の紫外線用自己クローニングフォトニック結晶。
  10. 自己クローニングフォトニック結晶を用いた調光方法であって,
    前記自己クローニングフォトニック結晶は,
    基板と,前記基板上に形成された積層体とを含むものであり,
    前記自己クローニングフォトニック結晶において,
    前記積層体は,高屈折率層と低屈折率層とが交互に積層されたものであり,
    前記基板は,
    少なくとも,前記積層体が形成される面に,1次元又は2次元の周期構造を有し,
    前記高屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    ハフニウムの酸化物からなり,
    前記低屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    シリコン酸化物又はアルミニウム酸化物からなり,
    前記調光方法は,
    前記自己クローニングフォトニック結晶に紫外光を入射させて透過させるステップ,
    を含み,
    これにより,前記紫外光は,前記自己クローニングフォトニック結晶の前記周期構造によって2つの偏光成分をもち,その結果,前記自己クローニングフォトニック結晶が紫外線用の波長板として機能する,
    調光方法。
  11. 自己クローニングフォトニック結晶を用いた調光方法であって,
    前記自己クローニングフォトニック結晶は,
    基板と,前記基板上に形成された積層体とを含むものであり,
    前記自己クローニングフォトニック結晶において,
    前記積層体は,高屈折率層と低屈折率層とが交互に積層されたものであり,
    前記基板は,
    少なくとも,前記積層体が形成される面に,1次元又は2次元の周期構造を有し,
    前記高屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    ハフニウムの酸化物からなり,
    前記低屈折率層は,
    前記基板に形成された周期構造を反映した周期構造を有し,
    シリコン酸化物又はアルミニウム酸化物からなり,
    前記調光方法は,
    前記自己クローニングフォトニック結晶に紫外光を入射させて透過させるステップ,
    を含み,
    これにより,前記自己クローニングフォトニック結晶を紫外線用の偏光子として機能させ,当該紫外線用の偏光子によって,前記紫外光の波長260nm〜280nmの光のTMモードにおける透過率が60%以上となるように,かつ,前記紫外光の波長260nm〜280nmの光のTEモードにおける透過率が35%以下となるように維持する,
    調光方法。
JP2010500557A 2008-02-25 2009-02-24 紫外線用自己クローニングフォトニック結晶 Active JP4975162B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500557A JP4975162B2 (ja) 2008-02-25 2009-02-24 紫外線用自己クローニングフォトニック結晶

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008042393 2008-02-25
JP2008042393 2008-02-25
PCT/JP2009/000776 WO2009107355A1 (ja) 2008-02-25 2009-02-24 紫外線用自己クローニングフォトニック結晶
JP2010500557A JP4975162B2 (ja) 2008-02-25 2009-02-24 紫外線用自己クローニングフォトニック結晶

Publications (2)

Publication Number Publication Date
JPWO2009107355A1 JPWO2009107355A1 (ja) 2011-06-30
JP4975162B2 true JP4975162B2 (ja) 2012-07-11

Family

ID=41015762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010500557A Active JP4975162B2 (ja) 2008-02-25 2009-02-24 紫外線用自己クローニングフォトニック結晶

Country Status (2)

Country Link
JP (1) JP4975162B2 (ja)
WO (1) WO2009107355A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946052B2 (ja) * 2011-03-03 2016-07-05 国立研究開発法人情報通信研究機構 フォトニック結晶を用いた光検出方法
JP7103082B2 (ja) * 2018-03-29 2022-07-20 株式会社ニデック 固体レーザ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008196A1 (ja) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. 偏光解析装置
WO2004113974A1 (ja) * 2003-06-25 2004-12-29 Photonic Lattice Inc. 偏光子および偏光分離素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008196A1 (ja) * 2002-07-13 2004-01-22 Autocloning Technology Ltd. 偏光解析装置
WO2004113974A1 (ja) * 2003-06-25 2004-12-29 Photonic Lattice Inc. 偏光子および偏光分離素子

Also Published As

Publication number Publication date
WO2009107355A1 (ja) 2009-09-03
JPWO2009107355A1 (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
US7265834B2 (en) Polarization analyzer
US7203001B2 (en) Optical retarders and related devices and systems
JP4294264B2 (ja) 集積型光学素子
Sato et al. Photonic crystals for the visible range fabricated by autocloning technique and their application
JP5118311B2 (ja) 位相差および光軸方位の測定装置
JP3288976B2 (ja) 偏光子とその作製方法
JP2006517307A (ja) 汎用広帯域偏光器、それを含むデバイスおよびその製造方法
JP2005534981A (ja) 精密位相遅れ装置およびそれを製造する方法
WO2018097892A1 (en) Wire grid polarizer with high reflectivity on both sides
WO2015020744A1 (en) Multi-layer absorptive wire grid polarizer
JP2012027221A (ja) ワイヤーグリッド偏光子
JP2010066571A (ja) 偏光素子及びその製造方法、並びに液晶プロジェクタ
JP2011191688A (ja) 光学フィルタ及び表示装置
JP2001051122A (ja) 複屈折性周期構造体、位相板、回折格子型の偏光ビームスプリッタ及びそれらの作製方法
JPH0366642B2 (ja)
EP4143612A1 (en) Reflective optical metasurface films
JP4975162B2 (ja) 紫外線用自己クローニングフォトニック結晶
WO2004113974A1 (ja) 偏光子および偏光分離素子
US10317599B2 (en) Wavelength plate and optical device
KR100657725B1 (ko) 다층 광학 코팅
JP2003279707A (ja) 1次元フォトニック結晶への反射防止膜の構造およびその形成方法
JP2001083321A (ja) 偏光子とその作製方法
JP2000131522A (ja) 偏光子とその製造方法及びこれを用いた導波型光デバイス
JP3616349B2 (ja) 偏光素子付き磁気光学結晶板
TWI424205B (zh) 具非均向性薄膜的低色差相位延遲器及其製作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4975162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250