JP4974341B2 - High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance - Google Patents

High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance Download PDF

Info

Publication number
JP4974341B2
JP4974341B2 JP2006156442A JP2006156442A JP4974341B2 JP 4974341 B2 JP4974341 B2 JP 4974341B2 JP 2006156442 A JP2006156442 A JP 2006156442A JP 2006156442 A JP2006156442 A JP 2006156442A JP 4974341 B2 JP4974341 B2 JP 4974341B2
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
ferrite
delayed fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006156442A
Other languages
Japanese (ja)
Other versions
JP2007321237A (en
Inventor
道治 中屋
陽一 向井
公一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006156442A priority Critical patent/JP4974341B2/en
Priority to KR1020087031958A priority patent/KR20090016500A/en
Priority to CN2007800208296A priority patent/CN101460646B/en
Priority to US12/303,566 priority patent/US20100221138A1/en
Priority to PCT/JP2007/061301 priority patent/WO2007142197A1/en
Priority to GB0900057.1A priority patent/GB2452230B/en
Publication of JP2007321237A publication Critical patent/JP2007321237A/en
Application granted granted Critical
Publication of JP4974341B2 publication Critical patent/JP4974341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Description

本発明は、例えば980MPa級以上の引張強度を有すると共に、成形性と耐遅れ破壊性、更にはスポット溶接性に優れ、自動車用構造部材(ピラー、メンバー、リンフォース類などのボディー骨格部材、バンパー、ドアガードバー、シート部品、足回り部品その他の強化部材)などとして有用な高強度の複合組織鋼板に関するものである。   The present invention has a tensile strength of, for example, a 980 MPa class or more, is excellent in formability, delayed fracture resistance, and spot weldability, and is a structural member for automobiles (body skeleton members such as pillars, members, and reinforcements, bumpers) , Door guard bars, seat parts, underbody parts, and other reinforcing members).

近年、自動車などの車体重量の軽量化による燃費の軽減や、衝突時の安全性確保などを目的として高強度鋼板の需要はますます増大している。それに伴って、鋼板の引張強度に対する要望も、従来の590MPa級から980MPa級以上が求められる様になっている。しかし、980MPa級以上の高強度鋼板になると成形性の低下が避けられず、複雑形状の部品には適用し難いため用途面の制約を受ける。   In recent years, the demand for high-strength steel sheets has been increasing for the purpose of reducing fuel consumption by reducing the weight of automobile bodies and the like and ensuring safety in the event of a collision. In connection with it, the request | requirement with respect to the tensile strength of a steel plate is also calculated | required from the conventional 590 MPa class to the 980 MPa class or more. However, when it becomes a high-strength steel plate of 980 MPa class or higher, a decrease in formability is unavoidable, and it is difficult to apply it to a component having a complicated shape.

また、引張強度が980MPa級以上の高強度鋼板になると、プレス成形時に生じる残留応力も大きくなって遅れ破壊の危険性が高まる。即ち遅れ破壊は、特に高強度の鋼板において、腐食環境もしくは雰囲気中の水素が鋼材組織中の転位や空孔、粒界などに拡散・集積して材料を脆化させ、応力が付加された時に破壊を起こす現象であり、鋼材の延性や靭性に重大な影響をもたらす。   Further, when a high-strength steel sheet having a tensile strength of 980 MPa or higher is obtained, the residual stress generated during press forming is increased and the risk of delayed fracture is increased. In other words, delayed fracture occurs especially in high-strength steel sheets when hydrogen in a corrosive environment or atmosphere diffuses and accumulates in dislocations, vacancies, and grain boundaries in the steel structure, embrittles the material, and stress is applied. It is a phenomenon that causes fracture, and has a significant effect on the ductility and toughness of steel.

従って、上述した様な高強度化の要請に応えるには、強度に加えて成形性(即ち、伸びと伸びフランジ性)と耐遅れ破壊性の改善が極めて重要となる。   Therefore, in order to meet the demand for higher strength as described above, improvement in formability (ie, elongation and stretch flangeability) and delayed fracture resistance in addition to strength is extremely important.

ところで、優れた成形性を示す高強度鋼板としては、金属組織中に残留オーステナイトを含む種々の鋼板が実用化されている。   By the way, as a high-strength steel sheet exhibiting excellent formability, various steel sheets containing retained austenite in a metal structure have been put into practical use.

例えば、非特許文献1には、金属組織がベイニティックフェライト主体でラス状残留オーステナイトを有する複合組織とすることで、高強度を確保しつつ穴拡げ性(即ち、伸びフランジ性)を高めた鋼板が開示されている。しかしこの鋼板は、引張強度(TS)が980MPa級以上になると、強度(TS)・延性(El)の指標となるTS×Elでせいぜい9000〜10300を示すに止まり、満足し得るものとはいえない。   For example, in Non-Patent Document 1, the metal structure is a composite structure mainly composed of bainitic ferrite and having lath-like retained austenite, so that the hole expandability (that is, stretch flangeability) is improved while ensuring high strength. A steel sheet is disclosed. However, when the tensile strength (TS) becomes 980 MPa class or more, this steel sheet can only satisfy 9000 to 10300 in TS × El, which is an index of strength (TS) and ductility (El), and can be said to be satisfactory. Absent.

また、連続焼鈍炉を用いた実操業の量産ラインでの最高加熱温度は900℃程度、加熱時間は5分以下とされているが、この文献に開示されている製造条件では、950℃で1200秒の焼鈍の後、ソルトバスで350〜400℃まで冷却することを求めており、実操業にそぐわない。   Moreover, the maximum heating temperature in the mass production line of the actual operation using the continuous annealing furnace is about 900 ° C., and the heating time is 5 minutes or less. However, in the manufacturing conditions disclosed in this document, 1200 at 950 ° C. is 1200. After annealing for 2 seconds, it is required to cool to 350 to 400 ° C. with a salt bath, which is not suitable for actual operation.

また特許文献1には、母相をベイニティックフェライト主体の組織とし、3%以上の残留オーステナイトを含有させることで、980MPa級以上の引張強度を確保しつつ、伸び(El)で20%程度、伸びフランジ性(λ)で55%レベルを得ている。しかしこの技術では、高価な合金元素であるMoやNi,Cuなどの添加が不可欠であり、コスト的に改善の余地を残している。   Patent Document 1 discloses that the matrix is composed mainly of bainitic ferrite and contains 3% or more of retained austenite, thereby securing a tensile strength of 980 MPa or more and an elongation (El) of about 20%. Further, 55% level is obtained in stretch flangeability (λ). However, in this technique, addition of expensive alloy elements such as Mo, Ni, and Cu is indispensable, leaving room for improvement in terms of cost.

更に特許文献2には、母相組織を焼戻しマルテンサイトおよびフェライトとし、残留オーステナイトを占積率で5〜30%とすることで、高レベルの伸びと伸びフランジ性を得ている。しかしこの技術で求める金属組織を得るには、焼鈍前のミクロ組織が重要となるため、熱延工程で低温巻取りを行うことで適正な金属組織を取込んだ後に連続焼鈍を行うか、連続焼鈍を2回以上行う必要がある。ところが、熱延工程で低温巻取りを行った場合は、その後の冷間圧延率を低く抑えないと焼鈍前の組織が崩れて意図する金属組織が得られないため、板厚や板厚公差に著しい制約が加わる。また連続焼鈍を2回行う場合は、板厚などの制約は受けないものの、常法に比べて工程数が増えるためコストアップが避けられない。   Furthermore, Patent Document 2 obtains a high level of elongation and stretch flangeability by setting the matrix structure to tempered martensite and ferrite and the retained austenite to be 5 to 30% in space factor. However, since the microstructure before annealing is important for obtaining the metal structure required by this technique, continuous annealing is performed after the proper metal structure is taken in by performing low-temperature winding in the hot rolling process, or continuous It is necessary to perform annealing twice or more. However, when low-temperature winding is performed in the hot rolling process, if the subsequent cold rolling rate is not kept low, the structure before annealing will collapse and the intended metal structure will not be obtained, so the thickness and thickness tolerance will be Significant restrictions are added. Further, when continuous annealing is performed twice, although there are no restrictions such as plate thickness, the number of processes is increased as compared with the conventional method, and thus an increase in cost is inevitable.

更に特許文献3には、母相組織を焼戻しベイナイト主体とすることで全伸びと伸びフランジ性を高めた鋼板が開示されている。しかしこの鋼種は、引張強度で900MPa級以下を中心に検討されているため、980MPa級以上で特に問題となる遅れ破壊については十分考慮されていない。
ISIJ International,Vol.40(2000),No.9.p920-926 特開2004−332099号公報 特開2003−171735号公報 特開2002−309334号公報
Further, Patent Document 3 discloses a steel sheet having a total phase structure and stretch flangeability improved by using a matrix structure mainly composed of tempered bainite. However, since this steel type has been studied mainly with a tensile strength of 900 MPa class or less, delayed fracture, which is a particular problem at 980 MPa class or more, has not been sufficiently considered.
ISIJ International, Vol.40 (2000), No.9.p920-926 JP 2004-332099 A JP 2003-171735 A JP 2002-309334 A

本発明は上記の様な従来技術に鑑みてなされたものであり、その目的は、Mo,Ni,Cuといった高価な合金元素を添加することなく、自動車用構造部品などとして有用な980MPa級の引張強度を有し、且つ優れた成形性(伸び−伸びフランジ性)を有する他、スポット溶接性や耐遅れ破壊性にも優れた高強度鋼板を提供することにある。   The present invention has been made in view of the prior art as described above. The purpose of the present invention is to provide a tensile of 980 MPa class useful as a structural component for automobiles without adding expensive alloy elements such as Mo, Ni, and Cu. Another object of the present invention is to provide a high-strength steel sheet having strength and excellent formability (elongation-stretch flangeability), as well as excellent spot weldability and delayed fracture resistance.

上記課題を解決することのできた本発明の高強度複合組織鋼板とは、C:0.12〜0.25%、Si:1.0〜3.0%、Mn:1.5〜3.0%、P:0.15%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Al:0.4%以下(0%を含まない)、を満足し、残部が鉄および不可避不純物よりなる鋼からなり、上記Si,Al,Mnの含有量が下記式(I)の関係を満たし、
(Si+Al)/Mn:0.74〜1.26……(I)
或は、C:0.12〜0.25%、Si:1.0〜3.0%、Mn:1.5〜3.0%、Cr:1.0%以下(0%を含まない)、P:0.15%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Al:0.4%以下(0%を含まない)、を満足し、残部が鉄および不可避不純物よりなる鋼からなり、上記Si,Al,Mn,Crの含有量が下記式(II)の関係を満たし、
(Si+Al)/(Mn+Cr):0.74〜1.26……(II)
なお且つ、縦断面のミクロ組織が、全組織に対する占積率で、
1)ベイニティックフェライト:50%以上、
2)ポリゴナルフェライト:5〜35%、
3)ポリゴナルフェライトの平均粒径:10μm以下、
4)残留オーステナイト:5%以上
であることを特徴とする、成形性と耐遅れ破壊性優れた高強度複合組織鋼板である。
The high-strength composite steel sheet according to the present invention that has solved the above problems is C: 0.12-0.25%, Si: 1.0-3.0%, Mn: 1.5-3.0. %, P: 0.15% or less (not including 0%), S: 0.02% or less (not including 0%), Al: 0.4% or less (not including 0%) The balance is made of steel consisting of iron and inevitable impurities, and the content of Si, Al, Mn satisfies the relationship of the following formula (I)
(Si + Al) / Mn: 0.74 to 1.26 (I)
Or, C: 0.12-0.25%, Si: 1.0-3.0%, Mn: 1.5-3.0%, Cr: 1.0% or less (excluding 0%) , P: 0.15% or less (not including 0%), S: 0.02% or less (not including 0%), Al: 0.4% or less (not including 0%), The balance is made of steel consisting of iron and inevitable impurities, and the content of Si, Al, Mn, Cr satisfies the relationship of the following formula (II),
(Si + Al) / (Mn + Cr): 0.74 to 1.26 (II)
In addition, the microstructure of the longitudinal section is the space factor for the entire structure,
1) Bainitic ferrite: 50% or more
2) Polygonal ferrite: 5-35%,
3) Average particle size of polygonal ferrite: 10 μm or less,
4) Residual austenite: A high-strength steel sheet with excellent formability and delayed fracture resistance, characterized by being 5% or more.

本発明に係る上記複合組織鋼板は、必要により上記元素以外に、Ti:0.15%以下(0%を含まない)および/またはNb:0.1%以下(0%を含まない)が含まれていてもよく、あるいは更に他の元素として、Ca:30ppm以下(0%を含まない)および/またはREM:30ppm以下(0%を含まない)を含むものであってもよい。   The composite structure steel plate according to the present invention includes Ti: 0.15% or less (not including 0%) and / or Nb: 0.1% or less (not including 0%), if necessary, in addition to the above elements. Alternatively, as another element, Ca: 30 ppm or less (not including 0%) and / or REM: 30 ppm or less (not including 0%) may be included.

本発明の高強度複合組織鋼板は、その優れた強度をより有効に生かすため、引張強さで980MPa以上を有するものが特に好ましい。   The high-strength composite steel sheet of the present invention preferably has a tensile strength of 980 MPa or more in order to make effective use of its excellent strength.

本発明によれば、上記の様に鋼材の化学成分を特定し、特に(Si+Al)/Mn比または(Si+Al)/(Mn+Cr)比を特定範囲に制御すると共に、金属組織をベイニティックフェライト(BF)主体で、ポリゴナルフェライト(PF)と残留オーステナイト(残留γ)を含む複合組織とすることで、引張強さで例えば980MPaレベル以上を確保しつつ、なお且つ成形性(伸び−伸びフランジ性)が良好で、しかもスポット溶接性や耐遅れ破壊性にも優れた複合組織鋼板を安価に提供できる。   According to the present invention, the chemical composition of the steel material is specified as described above, and in particular, the (Si + Al) / Mn ratio or the (Si + Al) / (Mn + Cr) ratio is controlled to a specific range, and the metal structure is bainitic ferrite ( By forming a composite structure containing mainly BF) and polygonal ferrite (PF) and retained austenite (residual γ), for example, a tensile strength of, for example, a level of 980 MPa or more is secured, and the formability (stretch-stretch flangeability) ) And a composite structure steel plate having excellent spot weldability and delayed fracture resistance can be provided at low cost.

本発明者らは前述した様な解決課題の下で、ベイニティックフェライトを母相とする980MPa級以上のTRIP(TRansformation Induced Plasticity:変態誘起塑性)鋼板に焦点を絞り、その成形性やスポット溶接性、耐遅れ破壊特性を更に改善すべく、金属組織中の第2相の形態と、化学成分、特にSi,Al,Mn(あるいは更にCr)に着目して改質研究を重ねた結果、次の様な知見を得た。   Under the above-mentioned problems, the present inventors focused on TRIP (TRansformation Induced Plasticity) steel sheets having bainitic ferrite as a matrix and having a 980 MPa class or higher, and their formability and spot welding. As a result of repeated modification studies focusing on the morphology of the second phase in the metal structure and chemical components, especially Si, Al, Mn (or even Cr), in order to further improve the properties and delayed fracture resistance The following knowledge was obtained.

1)その第1は、ベイニティックフェライト主体の組織に微細なポリゴナルフェライトを所定量混入させると、伸びが著しく改善されることである。しかも、混入させるフェライトが微細なものであれば、強度や伸びフランジ性の低下が抑えられ、なお且つ該組織は耐遅れ破壊特性においても優れた性能を示すこと。   1) The first is that when a predetermined amount of fine polygonal ferrite is mixed in the structure mainly composed of bainitic ferrite, the elongation is remarkably improved. In addition, if the ferrite to be mixed is fine, deterioration of strength and stretch flangeability can be suppressed, and the structure also exhibits excellent performance in delayed fracture resistance.

2)鋼の化学成分のうち、(Si+Al)とMnまたは(Mn+Cr)が所定比率となる様に調整すれば、スポット溶接性の低下を抑えつつ、980MPa級以上の強度をもった所望の組織が得られること。   2) Among the chemical components of steel, (Si + Al) and Mn or (Mn + Cr) are adjusted so as to have a predetermined ratio, and a desired structure having a strength of 980 MPa or higher is obtained while suppressing deterioration of spot weldability. To be obtained.

そこでこうした知見を生かし、鋼成分中のSi,Al,Mn,Cr含量と金属組織が、当該鋼板の強度や成形性、更にはスポット溶接性や遅れ破壊特性に及ぼす影響を主体にして研究を重ねてきた。その結果、前述した如く特定成分組成の鋼材を使用することを前提として、金属組織中に占めるベイニティックフェライトの占積率を制御すると共に、ポリゴナルフェライトと残留γの占積率、更にはポリゴナルフェライトの平均粒径を特定値以下に制御してやれば、上記目的に叶う高性能の高強度複合組織鋼板が得られることを確認し、本発明に想到した。   Therefore, by making use of these findings, research was conducted mainly on the effects of the Si, Al, Mn, Cr content and metal structure in steel components on the strength and formability of the steel sheet, as well as spot weldability and delayed fracture characteristics. I came. As a result, on the premise of using a steel material with a specific component composition as described above, the space factor of bainitic ferrite in the metal structure is controlled, and the space factor of polygonal ferrite and residual γ, It was confirmed that if the average grain size of polygonal ferrite was controlled to a specific value or less, a high-performance, high-strength composite steel sheet meeting the above purpose could be obtained, and the present invention was conceived.

以下、鋼材の化学成分および金属組織を定めた理由を追って、本発明の具体的な構成を明らかにしていく。   Hereinafter, the specific configuration of the present invention will be clarified following the reasons for determining the chemical composition and the metal structure of the steel material.

まず、鋼材の化学成分を定めた理由について説明する。   First, the reason for determining the chemical composition of the steel material will be described.

C:0.10%以上、0.25%以下
Cは、高強度を保障すると共に残留γを確保する上でも欠くことのできない元素であり、γ相中に十分な量のCを含有せしめ、室温でも所望量のγ相を残留させるために重要な元素である。こうした作用を有効に発揮させるには、Cを0.10%以上含有させることが必要であり、好ましくは0.12%以上、より好ましくは0.15%以上含有させるのがよい。但し、C量が多過ぎるとスポット溶接性に顕著な悪影響が現れてくるので、スポット溶接性確保の観点から上限を0.25%とした。好ましくは0.23%以下、より好ましくは0.20%以下である。
C: 0.10% or more and 0.25% or less C is an element indispensable for ensuring high strength and securing residual γ, and a sufficient amount of C is contained in the γ phase, It is an important element for leaving a desired amount of γ phase even at room temperature. In order to exhibit such an action effectively, it is necessary to contain 0.10% or more of C, preferably 0.12% or more, more preferably 0.15% or more. However, if the amount of C is too large, a remarkable adverse effect appears on spot weldability, so the upper limit was made 0.25% from the viewpoint of securing spot weldability. Preferably it is 0.23% or less, More preferably, it is 0.20% or less.

Si:1.0〜3.0%
Siは、固溶強化元素として有効に作用する他、残留γが分解して炭化物が生成するのを抑える上でも必須の元素であり、これらの作用を有効に発揮させるには、1.0%以上含有させねばならず、好ましくは1.2%以上含有させるのがよい。但し、それらの効果は3.0%で飽和し、それ以上になると、スポット溶接性の劣化や熱間脆性を起こすなどの障害を招くので、多くとも3.0%以下、望ましくは2.5%以下に抑えるのがよい。
Si: 1.0-3.0%
Si effectively acts as a solid solution strengthening element, and is an essential element for suppressing the formation of carbides by decomposition of residual γ, and 1.0% is required to effectively exhibit these effects. It should be contained above, preferably 1.2% or more. However, those effects saturate at 3.0%, and if it exceeds this, it causes troubles such as deterioration of spot weldability and hot brittleness, so at most 3.0% or less, preferably 2.5. It is good to keep it below%.

Mn:1.5〜3.0%
Mnは、過度のポリゴナルフェライトの生成を抑えてベイニティックフェライト主体の組織とするために必要な元素である。また、γを安定化し所望の残留γを確保する上でも重要な元素であり、少なくとも1.5%以上、好ましくは2.0%以上含有させるのがよい。
Mn: 1.5 to 3.0%
Mn is an element necessary for suppressing the formation of excessive polygonal ferrite and forming a structure mainly composed of bainitic ferrite. Further, it is an important element for stabilizing γ and securing a desired residual γ, and it is preferable to contain at least 1.5% or more, preferably 2.0% or more.

しかし、過度の添加はスポット溶接性や耐遅れ破壊特性を劣化させるので、多くとも3.0%以下、好ましくは2.5%以下に抑えるのがよい。   However, excessive addition degrades spot weldability and delayed fracture resistance, so it should be suppressed to 3.0% or less, preferably 2.5% or less at most.

P:0.15%以下、S:0.02%以下
これらの元素は、鋼内に不可避的に混入してくる元素であるが、含有量が多くなると加工性やスポット溶接性を劣化させるので、それぞれ上限値以下に抑えねばならない。
P: 0.15% or less, S: 0.02% or less These elements are inevitably mixed in the steel, but if the content increases, workability and spot weldability deteriorate. Each must be kept below the upper limit.

Al:0.4%以下
Alは、Siと同様に炭化物の生成を抑えて残留γを確保するうえで有用な元素であるが、多過ぎるとポリゴナルフェライトが生成し易くなるので、多くとも0.4%以下、好ましくは0.2%以下に抑えるべきである。
Al: 0.4% or less Al, like Si, is an element useful for suppressing the formation of carbides and securing residual γ, but if it is too much, polygonal ferrite is likely to be formed, so at most 0 .4% or less, preferably 0.2% or less.

Cr:1.0%以下
Crは、ポリゴナルフェライトの生成を抑えて強度を高める作用を有しているので、必要に応じて添加することができる。しかし、過度に添加すると、本発明で狙いとする金属組織の生成に悪影響を及ぼす恐れがあるので、多くとも1.0%以下に抑えるべきである。
Cr: 1.0% or less Cr has the effect of suppressing the formation of polygonal ferrite and increasing the strength, and can be added as necessary. However, if excessively added, there is a possibility of adversely affecting the formation of the metal structure targeted in the present invention, so it should be suppressed to 1.0% or less at most.

(Si+Al)/Mn(またはMn+Cr):0.74〜1.26(質量比)
本発明で意図する金属組織を得るには、過度のポリゴナルフェライト(PF)の生成を抑えてベイニティックフェライト(BF)変態を促進させる必要がある。しかも、ベイニティックフェライトから排出されるC(炭素)はラス状の残留γ中に濃縮されるため、ベイニティックフェライト変態の促進はラス状残留γを得る上でも重要となる。
(Si + Al) / Mn (or Mn + Cr): 0.74 to 1.26 (mass ratio)
In order to obtain the metal structure intended in the present invention, it is necessary to suppress the formation of excessive polygonal ferrite (PF) and promote the bainitic ferrite (BF) transformation. In addition, since C (carbon) discharged from bainitic ferrite is concentrated in the lath-like residual γ, promotion of bainitic ferrite transformation is important in obtaining the lath-like residual γ.

また本発明では、金属組織中に微細なフェライトを適量分散させることが必要であるが、そのためには、フェライト生成促進元素であるSiやAlと、フェライト抑制元素であるMn(またはMn+Cr)の含有比率が一定の関係を満たす様に制御することが極めて有効であることが分かった。しかも、これらのフェライト生成促進元素/抑制元素の含有比率を制御することは、耐遅れ破壊特性を高める上でも有効であることが確認された。   In the present invention, it is necessary to disperse an appropriate amount of fine ferrite in the metal structure. For this purpose, Si and Al that are ferrite formation promoting elements and Mn (or Mn + Cr) that is a ferrite suppressing element are included. It was found that it is extremely effective to control the ratio so as to satisfy a certain relationship. Moreover, it has been confirmed that controlling the content ratio of these ferrite formation promoting elements / inhibiting elements is also effective in improving the delayed fracture resistance.

ちなみに、(Si+Al)/Mn(またはMn+Cr)比が0.74未満では、適度のポリゴナルフェライトの確保が困難になるばかりでなく、ベイニティックフェライトすらも十分に確保できなくなる。しかも、残留γ中にCを十分濃縮できず、残留γの安定性が低下して伸びが劣化し、更には、マルテンサイト量が増大して伸びフランジ性も悪化する。   Incidentally, when the (Si + Al) / Mn (or Mn + Cr) ratio is less than 0.74, it is difficult to secure an adequate polygonal ferrite, and even bainitic ferrite cannot be sufficiently secured. Moreover, C cannot be sufficiently concentrated in the residual γ, the stability of the residual γ is lowered and the elongation is deteriorated, and further, the amount of martensite is increased and the stretch flangeability is also deteriorated.

更に加えて、上記元素の比率を適正範囲にコントロールすることで耐遅れ破壊性も改善される。この理由の詳細は不明であるが、次の様なことが考えられる。即ちMnは、粒界偏析により粒界強度を低下させることで遅れ破壊を助長する他、上述した様にマルテンサイトの生成を通じて加工時に遅れ破壊の起点となるボイド生成を促進するのに対し、SiとAlは、遅れ破壊を誘発する水素の許容量を増加させる効果があるため、両者の比により遅れ破壊性が変化するものと考えられる。   In addition, the delayed fracture resistance is also improved by controlling the ratio of the above elements within an appropriate range. Although the details of this reason are unknown, the following can be considered. That is, Mn promotes delayed fracture by reducing the grain boundary strength by grain boundary segregation, and also promotes void formation that becomes the starting point of delayed fracture during processing through the formation of martensite as described above. Since Al and Al have the effect of increasing the allowable amount of hydrogen that induces delayed fracture, the delayed fracture property is considered to change depending on the ratio of the two.

一方、上記(Si+Al)/Mn(またはMn+Cr)比が1.26を超えると、ポリゴナルフェライトの生成が過度に促進されてその占積率が過大となる上に、フェライトの粒径も10μmを超え易くなり、強度、伸びフランジ性が共に低下してくる。また、フェライト粒径が粗大化するとフェライト粒界が減少するため、耐遅れ破壊性も低下する。   On the other hand, if the (Si + Al) / Mn (or Mn + Cr) ratio exceeds 1.26, the formation of polygonal ferrite is excessively promoted and the space factor is excessive, and the ferrite grain size is also reduced to 10 μm. The strength and stretch flangeability both decrease. Moreover, since the ferrite grain boundary decreases when the ferrite grain size becomes coarse, the delayed fracture resistance also decreases.

よって本発明では、(Si+Al)/Mn(またはMn+Cr)比が0.74〜1.26の範囲となる様に成分調整することが重要であり、より好ましくは0.84以上、1.16以下に調整するのがよい。   Therefore, in the present invention, it is important to adjust the components so that the (Si + Al) / Mn (or Mn + Cr) ratio is in the range of 0.74 to 1.26, more preferably 0.84 or more and 1.16 or less. It is good to adjust to.

Nb:0.1%以下、Ti:0.15%以下
これらの元素は、いずれも金属組織を微細化して靭性を高める作用があるため、必要に応じて少量添加することができる。しかし、上限値を超えて添加してもそれ以上の効果は得られず、コストアップを招くだけであるので無駄である。
Nb: 0.1% or less, Ti: 0.15% or less All of these elements have the effect of increasing the toughness by refining the metal structure, and can be added in small amounts as necessary. However, adding more than the upper limit is useless because no further effect can be obtained and only the cost is increased.

Ca:0.01%以下、REM:0.01%以下
CaとREMは、少量の添加で何れも伸びフランジ性を高める作用を有しているため、必要によっては少量添加してもよいが、その効果は各々0.01%程度で飽和するので、それ以上の添加は全く無駄である。
Ca: 0.01% or less, REM: 0.01% or less Ca and REM both have the effect of increasing stretch flangeability with a small amount of addition, and if necessary, a small amount may be added. Since the effect is saturated at about 0.01%, addition beyond that is completely useless.

Mo,Cu,Ni:各々0.1%程度以下
これらの元素は、従来技術でも記載した様に強度や耐遅れ破壊性の向上に有効であるが、本発明では、これらの元素を添加せずとも十分に優れた性能を確保することができ、またこれらの元素は高価でコストアップを招くので、あえて添加する必要はない。しかし、不純物レベルでの混入まで規制する理由はなく、それぞれ0.1%程度までの添加は許容範囲である。
Mo, Cu, Ni: each about 0.1% or less These elements are effective in improving strength and delayed fracture resistance as described in the prior art, but in the present invention, these elements are not added. In both cases, sufficiently excellent performance can be ensured, and these elements are expensive and incur costs, so there is no need to add them. However, there is no reason to restrict the contamination at the impurity level, and the addition up to about 0.1% is acceptable.

次に金属組織の限定理由について説明する。   Next, the reason for limiting the metal structure will be described.

ベイニティックフェライト≧50%
ベイニティックフェライトは、転位密度がある程度高く、高強度を容易に達成できるばかりか、第2相との硬度差を低減して伸びフランジ性を高める作用を発揮する。また、耐遅れ破壊性を高める上でも有用な組織であり、これは、遅れ破壊の亀裂起点となるセメンタイトがないか極めて少なく、また転位が多いため水素吸蔵効果も高いためと考えられる。これらの効果を有効に発揮させるには、ベイニティックフェライトを50%以上存在させる必要がある。より好ましくは60%以上である。
Bainitic ferrite ≧ 50%
Bainitic ferrite not only has a high dislocation density and can easily achieve high strength, but also exhibits the effect of reducing the hardness difference from the second phase and enhancing stretch flangeability. It is also a useful structure for enhancing delayed fracture resistance, which is thought to be due to the fact that there is no or very little cementite as a crack initiation point for delayed fracture and that the hydrogen storage effect is high due to many dislocations. In order to exhibit these effects effectively, it is necessary to make bainitic ferrite 50% or more. More preferably, it is 60% or more.

なお、このベイニティックフェライトは、組織内に炭化物を有していない点で、ベイナイト組織とは明らかに異なり、また、転位がないかあるいは極めて少ない下部組織を有するポリゴナルフェライト組織や、細かいサブグレイン等の下部組織を持った準ポリゴナルフェライト組織とも異なっており、これらの違いはTEM(透過型電子顕微鏡)観察などによって容易に識別できる。   This bainitic ferrite is clearly different from the bainite structure in that it does not have carbides in the structure, and is a polygonal ferrite structure having no or few dislocations or a fine substructure. It is also different from a quasi-polygonal ferrite structure having a substructure such as a grain, and these differences can be easily identified by TEM (transmission electron microscope) observation.

ポリゴナルフェライト(PF):5〜35%
ベイニティックフェライト(BF)を母相とする引張強度980MPa級以上の鋼板に、後述する様な平均粒径のポリゴナルフェライトを所定量含有させると、伸びが更に向上する。こうした効果を有効に発揮させるには、ポリゴナルフェライトを5%以上含有させねばならない。但し、ポリゴナルフェライトが多過ぎると、引張強度や伸びフランジ性の確保が困難となるので、多くとも35%以下に抑えるべきである。ポリゴナルフェライトのより好ましい占積率は10%以上、30%以下である。
Polygonal ferrite (PF): 5 to 35%
When a predetermined amount of polygonal ferrite having an average particle diameter as described later is contained in a steel sheet having a tensile strength of 980 MPa or more having bainitic ferrite (BF) as a matrix, elongation is further improved. In order to exert such an effect effectively, 5% or more of polygonal ferrite must be contained. However, if there is too much polygonal ferrite, it will be difficult to ensure tensile strength and stretch flangeability, so it should be kept at most 35%. The more preferable space factor of polygonal ferrite is 10% or more and 30% or less.

ポリゴナルフェライトの平均粒径:10μm以下
ポリゴナルフェライトの平均粒径は10μm以下にしなければならない。フェライトを微細化することで第2相としての分散を均一にし、伸びフランジ性、強度を共に高めると共に、耐遅れ破壊性をも向上させるためである。これは、ポリゴナルフェライトを微細化することで増加するフェライト粒界に水素がトラップされ、危険部位への水素の集中が抑制されるためと考えられる。
The average particle diameter of polygonal ferrite: 10 μm or less The average particle diameter of polygonal ferrite must be 10 μm or less. This is because by making the ferrite finer, the dispersion as the second phase is made uniform, the stretch flangeability and strength are both improved, and the delayed fracture resistance is also improved. This is presumably because hydrogen is trapped at the ferrite grain boundaries that increase as the polygonal ferrite is refined, and the concentration of hydrogen at the hazardous site is suppressed.

残留γ≧5%
残留γは、材料が歪を受けて変形する際にマルテンサイトに変態することで変形部の硬化を促し、歪の集中を防ぐ効果がある(TRIP効果)。こうした効果を有効に発揮させるには、残留γを5%以上含有させる必要がある。残留γ量に上限は存在しないが、過度の残留γを生成させるには多量のCが必要になるため、スポット溶接性との両立が困難になり、また加工性、特に伸びフランジ性が低下傾向となるので、好ましくは30%程度以下に抑えるのがよい。
Residual γ ≧ 5%
Residual γ has an effect of accelerating hardening of the deformed portion by transforming into martensite when the material is deformed due to strain and preventing concentration of strain (TRIP effect). In order to exert such an effect effectively, it is necessary to contain 5% or more of residual γ. There is no upper limit to the amount of residual γ, but a large amount of C is required to generate excessive residual γ, making it difficult to achieve compatibility with spot weldability, and workability, especially stretch flangeability, tends to decrease Therefore, it is preferable to keep it to about 30% or less.

本発明の複合組織鋼板では、上記以外の残部組織としてマルテンサイト、ベイナイト、パーライトなどが存在し得るが、これら他の組織は、上述した作用効果に悪影響を及ぼさない様、5%以下に抑えることが望ましい。   In the composite structure steel sheet of the present invention, martensite, bainite, pearlite and the like may exist as the remaining structure other than the above, but these other structures should be suppressed to 5% or less so as not to adversely affect the above-described effects. Is desirable.

次に、本発明で定める上記の金属組織を得るための製造条件に格別の制限はなく、一般的な鋼板の製造手順、例えば、連続鋳造→熱間圧延→酸洗→冷間圧延→連続焼鈍の中で、加熱温度や昇温速度、保持温度、冷却開始温度や冷却速度などを適正に制御すればよく、また溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板の場合は、連続溶融亜鉛めっきラインを含めて適正な温度制御を行なえばよいが、上記金属組織を得る上で最も重要となるのは、連続焼鈍ラインにおける熱処理条件であるので、以下、連続焼鈍ラインにおける好ましい熱処理条件を主体にして説明を加える。   Next, there is no particular limitation on the production conditions for obtaining the above-described metal structure defined in the present invention, and a general steel sheet production procedure, for example, continuous casting → hot rolling → pickling → cold rolling → continuous annealing Among them, the heating temperature, heating rate, holding temperature, cooling start temperature, cooling rate, etc. can be controlled appropriately. In the case of hot-dip galvanized steel sheets and galvannealed steel sheets, continuous hot-dip galvanizing lines However, since it is the heat treatment condition in the continuous annealing line that is most important in obtaining the above metal structure, the preferred heat treatment condition in the continuous annealing line will be mainly described below. Add a description.

焼鈍時の加熱温度:Ac+10℃以上
ベイニティックフェライトリッチの金属組織を得るため、ポリゴナルフェライトの生成を抑えるには、焼鈍時の加熱温度を「Ac+10℃以上」とするのがよい。ちなみに、Ac点以下で連続焼鈍を行うと、その後の冷却過程で、残存するフェライトを核にしてポリゴナルフェライトが生成し易くなり、本発明で意図する金属組織が得られ難くなる。より好ましい加熱温度は「Ac+30℃以上」である。
Heating temperature during annealing: Ac 3 + 10 ° C. or higher In order to suppress the formation of polygonal ferrite in order to obtain a metal structure rich in bainitic ferrite, the heating temperature during annealing is set to “Ac 3 + 10 ° C. or higher”. Good. Incidentally, if continuous annealing is performed at Ac 3 points or less, polygonal ferrite is likely to be generated with the remaining ferrite as a nucleus in the subsequent cooling process, and the metal structure intended in the present invention is difficult to obtain. A more preferable heating temperature is “Ac 3 + 30 ° C. or higher”.

焼鈍後の冷却速度:
焼鈍後の冷却速度は、ポリゴナルフェライトの生成を抑制するため速い方が好ましいが、設備的な制約や温度コントロールの困難性を考えると、個別の成分系に応じてポリゴナルフェライトを一定量以下に抑え得る様、好ましくは25℃/sec以上、より好ましくは30℃/sec以上とするのがよい。
Cooling rate after annealing:
The cooling rate after annealing is preferably faster in order to suppress the formation of polygonal ferrite, but considering the restrictions on equipment and the difficulty of temperature control, the amount of polygonal ferrite is less than a certain amount depending on the individual component system. The temperature is preferably 25 ° C./sec or more, more preferably 30 ° C./sec or more.

焼鈍後の急冷停止温度:
焼鈍後の急冷を停止する温度は、微細ポリゴナルフェライトが生成する温度以下にすべきであり、好ましくは650℃以下、より好ましくは600℃以下にするのがよい。急冷停止温度が高くなるとポリゴナルフェライトが粗大となり、本発明の目的が果たせなくなる。但し、あまりに低温になると十分な量のポリゴナルフェライトが得られなくなるので、360℃程度以上、より好ましくは400℃までにすべきである。
Rapid cooling stop temperature after annealing:
The temperature at which the rapid cooling after annealing is stopped should be lower than the temperature at which fine polygonal ferrite is generated, preferably 650 ° C. or lower, more preferably 600 ° C. or lower. If the quenching stop temperature increases, polygonal ferrite becomes coarse, and the object of the present invention cannot be achieved. However, since a sufficient amount of polygonal ferrite cannot be obtained when the temperature is too low, it should be about 360 ° C. or higher, more preferably 400 ° C. or higher.

冷却後の保持温度:
上記冷却後には、一定温度に保持することでベイニティックフェライト変態が進行し、また、オーステナイトへのCの濃縮が進んで残留γとなるので、冷却後の保持温度を適正にコントロールすることも重要である。本発明の金属組織を得る上で好ましい保持温度は360〜440℃の範囲である。この温度は、上記冷却停止温度と同じである必要はない。好ましい保持時間は1分以上である。
Holding temperature after cooling:
After the cooling, the bainitic ferrite transformation proceeds by holding at a constant temperature, and the concentration of C to austenite proceeds to become residual γ, so that the holding temperature after cooling can be controlled appropriately. is important. A preferable holding temperature for obtaining the metal structure of the present invention is in the range of 360 to 440 ° C. This temperature need not be the same as the cooling stop temperature. A preferable holding time is 1 minute or more.

本発明の高強度複合組織鋼板は、上記の様に化学成分の特定された鋼材を使用し、且つ冷却条件や保持条件などを含めて適正な熱処理条件を採用することで所定の金属組織を確保することにより、980MPa級以上の高強度を有すると共に、成形性が良好でスポット溶接性や耐遅れ破壊特性にも優れた複合組織鋼板を安価に提供できる。   The high-strength composite structure steel sheet of the present invention uses a steel material with a specified chemical composition as described above, and secures a predetermined metal structure by adopting appropriate heat treatment conditions including cooling conditions and holding conditions. By doing so, a composite structure steel plate having high strength of 980 MPa class or more, good formability, and excellent spot weldability and delayed fracture resistance can be provided at low cost.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実験例
表1に示す成分組成の鋼材を溶製し、連続鋳造の後、下記の条件で熱間圧延、酸洗、冷間圧延を行い、次いで、表2(図1も参照)に示す条件で熱処理(焼鈍)することにより冷延鋼板を得た。
Experimental Example Steel materials having the composition shown in Table 1 were melted, and after continuous casting, hot rolling, pickling and cold rolling were performed under the following conditions, and then the conditions shown in Table 2 (see also FIG. 1). A cold-rolled steel sheet was obtained by heat treatment (annealing).

[熱間圧延]
加熱温度:1200℃×60分
仕上温度:880℃
冷却:40℃/秒で720℃まで冷却し、10秒間空冷した後40℃/秒で500℃まで冷却し、その後500℃で60分間保持してから炉冷した。
仕上げ板厚:3.2mm。
[Hot rolling]
Heating temperature: 1200 ° C x 60 minutes Finishing temperature: 880 ° C
Cooling: Cooled to 720 ° C. at 40 ° C./second, air-cooled for 10 seconds, then cooled to 500 ° C. at 40 ° C./second, held at 500 ° C. for 60 minutes, and then cooled in the furnace.
Finished plate thickness: 3.2 mm.

[酸洗、冷間圧延]
酸洗後、板厚1.2mmまで冷間圧延した。
[Pickling, cold rolling]
After pickling, it was cold rolled to a plate thickness of 1.2 mm.

[熱処理(焼鈍)]
表2に示す如く、所定の焼鈍温度に加熱して180秒間保持した後、所定の速度で所定の冷却停止温度まで冷却し、所定温度で6分間保持してから炉冷した。
[Heat treatment (annealing)]
As shown in Table 2, after heating to a predetermined annealing temperature and holding it for 180 seconds, it was cooled to a predetermined cooling stop temperature at a predetermined speed, held at the predetermined temperature for 6 minutes, and then cooled in the furnace.

得られた冷延鋼板の金属組織を下記の方法で確認すると共に、各供試鋼板について引張試験、穴拡げ試験、スポット溶接試験、耐遅れ破壊試験を行い、表3に一括して示す結果を得た。   While confirming the metal structure of the obtained cold-rolled steel sheet by the following method, each test steel sheet was subjected to a tensile test, a hole expansion test, a spot welding test, and a delayed fracture resistance test. Obtained.

[金属組織]
組織同定方法:
A: レペラー腐食による光学顕微鏡観察(1000倍)、1視野。
B:SEM観察(4000倍)、4視野。
[Metal structure]
Tissue identification method:
A: Observation with an optical microscope (1000 times) due to repeller corrosion, 1 field of view.
B: SEM observation (4000 times), 4 fields of view.

ポリゴナルフェライト(PF):
上記Aにより撮影した写真から算出する。残留γとマルテンサイトの白に対し、PFはグレーに腐食されるため識別できる。
Polygonal ferrite (PF):
Calculated from the photograph taken by A above. The residual γ and the white martensite are identifiable because PF corrodes gray.

残留γ、マルテンサイト(M)、ベイナイト(B):
透過型電子顕微鏡(TEM:倍率15000)によって残留γ、M、Bであることを確認した上で、占積率は、上記Bにより撮影した写真から算出した。
Residual γ, martensite (M), bainite (B):
After confirming the residual γ, M, and B with a transmission electron microscope (TEM: 15000 magnification), the space factor was calculated from the photograph taken by B above.

ベイニティックフェライト(BF):
透過型電子顕微鏡(TEM:倍率15000)により、ベイナイトや擬フェライトの如き他の組織でないことを確認した上で、占積率は、100%からポリゴナルフェライト量と上記残留γ量および残部のマルテンサイト(M)とベイナイト(B)を減じた値とした。
Bainitic ferrite (BF):
After confirming by transmission electron microscope (TEM: magnification 15000) that the structure is not other structures such as bainite and pseudoferrite, the space factor is from 100% to the amount of polygonal ferrite, the amount of residual γ, and the remaining martensite. It was set as the value which reduced the site (M) and the bainite (B).

[性能評価試験]
引張試験:JIS 5号引張試験片によって測定した。
穴広げ試験:鉄鋼連盟規格JFST 1001に準じて実施した。
スポット溶接性:
下記の条件でスポット溶接を行い、ナゲット径5√tの時の延性比が0.25以上あれば、スポット溶接性が良好(○)とした。
[Performance evaluation test]
Tensile test: Measured with a JIS No. 5 tensile test piece.
Hole expansion test: It was carried out in accordance with the Steel Federation standard JFST 1001.
Spot weldability:
Spot welding was performed under the following conditions, and if the ductility ratio at a nugget diameter of 5√t was 0.25 or more, the spot weldability was good (◯).

<溶接条件 >
供試材厚さ:1.2mm、
電極:ドームラジアス型(先端直径6mm)、
加圧力:375kg、
アップスロープ;1サイクル、通電時間;12サイクル、ホールド;1サイクル(60Hz)、
ナゲット径の調整:溶接電流により調整、
延性比:十字引張強度/せん断引張強度。
<Welding conditions>
Test material thickness: 1.2 mm,
Electrode: Dome radius type (tip diameter 6mm),
Applied pressure: 375 kg,
Upslope; 1 cycle, energization time; 12 cycles, hold; 1 cycle (60 Hz),
Nugget diameter adjustment: Adjust by welding current
Ductility ratio: Cross tensile strength / shear tensile strength.

[耐遅れ破壊性]
R=3mmの60°Vブロックを用いてV字曲げを施した後、曲げ部に1500MPaの応力を負荷して5%塩酸水溶液中に浸漬し、割れ発生までの時間を測定した。48時間で割れなかったものを耐遅れ破壊良好(○)とした。
[Delayed fracture resistance]
After performing V-shaped bending using a 60 ° V block of R = 3 mm, a stress of 1500 MPa was applied to the bent portion and immersed in a 5% hydrochloric acid aqueous solution, and the time until cracking was measured. Those that did not crack in 48 hours were regarded as good delayed fracture resistance (◯).

Figure 0004974341
Figure 0004974341

Figure 0004974341
Figure 0004974341

Figure 0004974341
Figure 0004974341

表1〜3より、次の様に考えることができる。   From Tables 1 to 3, it can be considered as follows.

実験No.1〜10は、本発明の規定要件を全て満たす実施例であり、何れも980MPa級以上の引張強度を有すると共に、強度×伸び特性、強度×伸びフランジ特性によって評価される成形性が良好であり、更にスポット溶接性や耐遅れ破壊性においても良好な結果が得られている。   Experiment No. Nos. 1 to 10 are examples that satisfy all of the prescribed requirements of the present invention, all of which have a tensile strength of 980 MPa class or higher, and good formability evaluated by strength × elongation characteristics and strength × stretch flange characteristics. In addition, good results have been obtained in spot weldability and delayed fracture resistance.

これらに対し実験No.11は、鋼材のC含量が不足し、金属組織中のベイニティックフェライト量も不足するため、強度不足で、強度×伸び特性、強度×伸びフランジ特性によって評価される成形性も悪い。また実験No.12は、用いた鋼材のSi含量が不足すると共に(Si+Al)/(Mn+Cr)比が規定範囲を外れるため、金属組織中に残留γが存在せず、強度×伸び特性、強度×伸びフランジ特性によって評価される成形性が劣悪で耐遅れ破壊性も悪い。   For these, Experiment No. No. 11 has an insufficient C content in the steel material and an insufficient amount of bainitic ferrite in the metal structure. Therefore, the strength is insufficient, and the formability evaluated by strength × elongation characteristics and strength × elongation flange characteristics is also poor. In addition, Experiment No. No. 12, because the Si content of the steel material used is insufficient and the (Si + Al) / (Mn + Cr) ratio is outside the specified range, there is no residual γ in the metal structure, and the strength × elongation characteristics and strength × elongation flange characteristics The formability evaluated is poor and the delayed fracture resistance is also poor.

実験No.13は、Mn量が規定範囲を外れると共に(Si+Al)/Mn比が規定範囲を超えているため、ポリゴナルフェライトが増え過ぎてベイニティックフェライト量が大幅に少なくなっており、強度不足で加工性も劣悪である。実験No.14は、個々の含有元素量は規定要件を満たしているが、(Si+Al)/Mn比が規定範囲を超えており、ポリゴナルフェライトが粗大で平均粒径が規定値を超えているため、強度不足で加工性も悪く、且つスポット溶接性もよくない。   Experiment No. In No. 13, since the amount of Mn is out of the specified range and the (Si + Al) / Mn ratio exceeds the specified range, the amount of polygonal ferrite is excessively increased, and the amount of bainitic ferrite is greatly reduced. Sex is also poor. Experiment No. No. 14, the content of each element satisfies the specified requirements, but the (Si + Al) / Mn ratio exceeds the specified range, the polygonal ferrite is coarse, and the average particle size exceeds the specified value. Insufficient workability and poor spot weldability.

実験No.15は、鋼成分は規定要件を満たしているが、熱処理条件が不適切であるため組織中のポリゴナルフェライト量が過多となってベイニティックフェライト量が不足し、強度×伸び特性、強度×伸びフランジ特性によって評価される成形性が劣悪で、耐遅れ破壊性も悪い。   Experiment No. No. 15, the steel component satisfies the prescribed requirements, but the heat treatment conditions are inappropriate, so the amount of polygonal ferrite in the structure becomes excessive, the amount of bainitic ferrite is insufficient, and the strength × elongation characteristics, strength × Formability evaluated by stretch flange characteristics is poor, and delayed fracture resistance is also poor.

実験例で採用した熱処理のヒートパターンを示す説明図である。It is explanatory drawing which shows the heat pattern of the heat processing employ | adopted by the experiment example.

Claims (5)

C:0.12〜0.25%(化学成分の場合は質量%を表す、以下同じ)、
Si:1.0〜3.0%、
Mn:1.5〜3.0%、
P:0.15%以下(0%を含まない)、
S:0.02%以下(0%を含まない)、
Al:0.4%以下(0%を含まない)、
を満足し、残部が鉄および不可避不純物よりなる鋼からなり、上記Si,Al,Mnの含有量が下記式(I)の関係を満たし、
(Si+Al)/Mn:0.74〜1.26……(I)
且つ、縦断面のミクロ組織が、全組織に対する占積率で、
1)ベイニティックフェライト:50%以上、
2)ポリゴナルフェライト:5〜35%、
3)ポリゴナルフェライトの平均粒径:10μm以下、
4)残留オーステナイト:5%以上
であり、
引張強さTSが980MPa以上であり、且つ、引張強さTS(MPa)×伸びEl(%)が19304以上を満足することを特徴とする、成形性、スポット溶接性、および耐遅れ破壊性に優れた高強度複合組織鋼板。
C: 0.12 to 0.25% (in the case of chemical components, represents mass%, the same shall apply hereinafter),
Si: 1.0-3.0%,
Mn: 1.5-3.0%
P: 0.15% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Al: 0.4% or less (excluding 0%),
And the balance is made of steel consisting of iron and inevitable impurities, the content of Si, Al, Mn satisfies the relationship of the following formula (I),
(Si + Al) / Mn: 0.74 to 1.26 (I)
And the microstructure of the longitudinal section is the space factor for the whole structure,
1) Bainitic ferrite: 50% or more
2) Polygonal ferrite: 5-35%,
3) Average particle size of polygonal ferrite: 10 μm or less,
4) retained austenite: Ri der 5% or more,
Tensile strength TS of not less than 980 MPa, and the tensile strength TS (MPa) × elongation El (%) is characterized that you meet the above 19304, formability, spot weldability, and resistance to delayed fracture Excellent high-strength composite steel sheet.
C:0.12〜0.25%、
Si:1.0〜3.0%、
Mn:1.5〜3.0%、
Cr:1.0%以下(0%を含まない)、
P:0.15%以下(0%を含まない)、
S:0.02%以下(0%を含まない)、
Al:0.4%以下(0%を含まない)、
を満足し、残部が鉄および不可避不純物よりなる鋼からなり、上記Si,Al,Mn,Crの含有量が下記式(II)の関係を満たし、
(Si+Al)/(Mn+Cr):0.74〜1.26……(II)
且つ、縦断面のミクロ組織が、全組織に対する占積率で、
1)ベイニティックフェライト:50%以上、
2)ポリゴナルフェライト:5〜35%、
3)ポリゴナルフェライトの平均粒径:10μm以下、
4)残留オーステナイト:5%以上
であり、
引張強さTSが980MPa以上であり、且つ、引張強さTS(MPa)×伸びEl(%)が19304以上を満足することを特徴とする、成形性、スポット溶接性、および耐遅れ破壊性に優れた高強度複合組織鋼板。
C: 0.12-0.25%,
Si: 1.0-3.0%,
Mn: 1.5-3.0%
Cr: 1.0% or less (excluding 0%),
P: 0.15% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Al: 0.4% or less (excluding 0%),
And the balance is made of steel consisting of iron and inevitable impurities, the content of Si, Al, Mn, Cr satisfies the relationship of the following formula (II),
(Si + Al) / (Mn + Cr): 0.74 to 1.26 (II)
And the microstructure of the longitudinal section is the space factor for the whole structure,
1) Bainitic ferrite: 50% or more
2) Polygonal ferrite: 5-35%,
3) Average particle size of polygonal ferrite: 10 μm or less,
4) retained austenite: Ri der 5% or more,
Tensile strength TS of not less than 980 MPa, and the tensile strength TS (MPa) × elongation El (%) is characterized that you meet the above 19304, formability, spot weldability, and resistance to delayed fracture Excellent high-strength composite steel sheet.
Cは0.14%以上である請求項1または2に記載の高強度複合組織鋼板。The high-strength composite steel sheet according to claim 1 or 2, wherein C is 0.14% or more. 鋼が、他の元素として、
Ti:0.15%以下(0%を含まない)および/またはNb:0.1%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の高強度複合組織鋼板。
Steel is another element
The high strength according to any one of claims 1 to 3, which contains Ti: 0.15% or less (not including 0%) and / or Nb: 0.1% or less (not including 0%). Composite steel sheet.
鋼が、更に他の元素として、
Ca:30ppm以下(0%を含まない)および/またはREM:30ppm以下(0%を含まない)を含むものである請求項1〜のいずれかに記載の高強度複合組織鋼板。
Steel is another element,
The high-strength composite steel sheet according to any one of claims 1 to 4 , which contains Ca: 30 ppm or less (not including 0%) and / or REM: 30 ppm or less (not including 0%).
JP2006156442A 2006-06-05 2006-06-05 High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance Active JP4974341B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006156442A JP4974341B2 (en) 2006-06-05 2006-06-05 High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance
KR1020087031958A KR20090016500A (en) 2006-06-05 2007-06-04 High-strength composite steel sheet having excellent moldability and delayed fracture resistance
CN2007800208296A CN101460646B (en) 2006-06-05 2007-06-04 High-strength composite steel sheet having excellent moldability and delayed fracture resistance
US12/303,566 US20100221138A1 (en) 2006-06-05 2007-06-04 High-strength composite steel sheet having excellent moldability and delayed fracture resistance
PCT/JP2007/061301 WO2007142197A1 (en) 2006-06-05 2007-06-04 High-strength composite steel sheet having excellent moldability and delayed fracture resistance
GB0900057.1A GB2452230B (en) 2006-06-05 2007-06-04 High-strength composite steel sheet having excellent formability and anti-delayed fraction property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156442A JP4974341B2 (en) 2006-06-05 2006-06-05 High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2007321237A JP2007321237A (en) 2007-12-13
JP4974341B2 true JP4974341B2 (en) 2012-07-11

Family

ID=38801448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156442A Active JP4974341B2 (en) 2006-06-05 2006-06-05 High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance

Country Status (6)

Country Link
US (1) US20100221138A1 (en)
JP (1) JP4974341B2 (en)
KR (1) KR20090016500A (en)
CN (1) CN101460646B (en)
GB (1) GB2452230B (en)
WO (1) WO2007142197A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998756B2 (en) * 2009-02-25 2012-08-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5883211B2 (en) 2010-01-29 2016-03-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5671359B2 (en) * 2010-03-24 2015-02-18 株式会社神戸製鋼所 High strength steel plate with excellent warm workability
JP5662902B2 (en) 2010-11-18 2015-02-04 株式会社神戸製鋼所 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5667472B2 (en) 2011-03-02 2015-02-12 株式会社神戸製鋼所 High-strength steel sheet excellent in deep drawability at room temperature and warm, and its warm working method
EP2695961B1 (en) * 2011-03-31 2019-06-19 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in workability and manufacturing method thereof
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
JP5636347B2 (en) 2011-08-17 2014-12-03 株式会社神戸製鋼所 High strength steel sheet with excellent formability at room temperature and warm, and its warm forming method
JP5860308B2 (en) * 2012-02-29 2016-02-16 株式会社神戸製鋼所 High strength steel plate with excellent warm formability and method for producing the same
JP5632904B2 (en) 2012-03-29 2014-11-26 株式会社神戸製鋼所 Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
CN104245971B (en) 2012-03-30 2017-09-12 奥钢联钢铁有限责任公司 High strength cold rolled steel plate and the method for producing the steel plate
EP2831299B2 (en) 2012-03-30 2020-04-29 Voestalpine Stahl GmbH High strength cold rolled steel sheet and method of producing such steel sheet
EP2684975B1 (en) * 2012-07-10 2016-11-09 ThyssenKrupp Steel Europe AG Cold rolled steel flat product and method for its production
JP5860354B2 (en) * 2012-07-12 2016-02-16 株式会社神戸製鋼所 High-strength hot-dip galvanized steel sheet with excellent yield strength and formability and method for producing the same
JP5860373B2 (en) * 2012-09-20 2016-02-16 株式会社神戸製鋼所 High-strength hot-dip galvanized steel sheet with excellent yield strength and warm formability and method for producing the same
JP5632947B2 (en) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 High-strength steel sheet excellent in workability and low-temperature toughness and method for producing the same
JP5821912B2 (en) 2013-08-09 2015-11-24 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
JP5728115B1 (en) 2013-09-27 2015-06-03 株式会社神戸製鋼所 High strength steel sheet excellent in ductility and low temperature toughness, and method for producing the same
WO2016001710A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel having improved strength and ductility and obtained sheet
WO2016001700A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
WO2016001706A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016001702A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
CN104513927B (en) * 2014-12-19 2017-04-05 宝山钢铁股份有限公司 A kind of tensile strength 800MPa grade high-strength high-tenacity steel plate and its manufacture method
WO2017109540A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
JP6601253B2 (en) * 2016-02-18 2019-11-06 日本製鉄株式会社 High strength steel plate
US11492687B2 (en) * 2018-03-30 2022-11-08 Nippon Steel Corporation Steel sheet
CN110777297B (en) * 2019-10-12 2022-07-05 河钢股份有限公司 High-hole-expansibility high-drawability high-strength steel plate and manufacturing method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172505B2 (en) * 1998-03-12 2001-06-04 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent formability
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4266343B2 (en) * 2003-11-11 2009-05-20 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent formability
JP4412727B2 (en) * 2004-01-09 2010-02-10 株式会社神戸製鋼所 Super high strength steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
US20050150580A1 (en) * 2004-01-09 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
US7591977B2 (en) * 2004-01-28 2009-09-22 Kabuhsiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
JP4411221B2 (en) * 2004-01-28 2010-02-10 株式会社神戸製鋼所 Low yield ratio high-strength cold-rolled steel sheet and plated steel sheet excellent in elongation and stretch flangeability, and manufacturing method thereof
JP2005213640A (en) * 2004-02-02 2005-08-11 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in ductility and stretch-flanging property and manufacturing method for the same
JP4506971B2 (en) * 2004-04-22 2010-07-21 株式会社神戸製鋼所 High-strength cold-rolled and plated steel sheets with excellent formability
ATE426686T1 (en) * 2004-04-22 2009-04-15 Kobe Steel Ltd HIGH STRENGTH AND COLD ROLLED STEEL SHEET WITH EXCELLENT FORMABILITY AND PLATED STEEL SHEET
JP4288364B2 (en) * 2004-12-21 2009-07-01 株式会社神戸製鋼所 Composite structure cold-rolled steel sheet with excellent elongation and stretch flangeability
CA2531616A1 (en) * 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability
CA2531615A1 (en) * 2004-12-28 2006-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength thin steel sheet having high hydrogen embrittlement resisting property
JP4716359B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High strength cold-rolled steel sheet excellent in uniform elongation and method for producing the same
JP4716358B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and plated steel sheet with excellent balance between strength and workability
GB2450066B (en) * 2006-03-31 2011-03-30 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in chemical conversion treatment property

Also Published As

Publication number Publication date
GB0900057D0 (en) 2009-02-11
CN101460646B (en) 2012-10-10
JP2007321237A (en) 2007-12-13
KR20090016500A (en) 2009-02-13
GB2452230B (en) 2012-02-22
CN101460646A (en) 2009-06-17
GB2452230A (en) 2009-03-04
WO2007142197A1 (en) 2007-12-13
US20100221138A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4974341B2 (en) High-strength composite steel sheet with excellent formability, spot weldability, and delayed fracture resistance
JP5030200B2 (en) High strength steel plate with excellent elongation, stretch flangeability and weldability
US10745775B2 (en) Galvannealed steel sheet and method for producing the same
KR102197431B1 (en) High-strength cold rolled steel sheet and its manufacturing method
JP6620474B2 (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP5402007B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
JP5141811B2 (en) High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP6586776B2 (en) High strength steel plate with excellent formability and method for producing the same
JP2017002384A (en) Steel plate superior in spot weld zone fracture resistance characteristics and production method thereof
JP5741456B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6601253B2 (en) High strength steel plate
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
JP6237963B1 (en) High strength steel plate and manufacturing method thereof
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
JP6950826B2 (en) High-strength steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full-hard steel sheet manufacturing method, and high-strength steel sheet manufacturing method
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2004269920A (en) High ductility, high strength cold rolled steel sheet having excellent spot weldability, and production method therefor
JP4324227B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP6541504B2 (en) High strength high ductility steel sheet excellent in production stability, method for producing the same, and cold rolled base sheet used for production of high strength high ductility steel sheet
JP2006083471A (en) Method for producing hot dip galvanized steel sheet having excellent strain age hardening property
JP2005187947A (en) Hot dip galvanized steel sheet having excellent strain age hardening property, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4974341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3