JP4965516B2 - Glass molded body manufacturing method and glass molded body manufacturing apparatus - Google Patents

Glass molded body manufacturing method and glass molded body manufacturing apparatus Download PDF

Info

Publication number
JP4965516B2
JP4965516B2 JP2008159278A JP2008159278A JP4965516B2 JP 4965516 B2 JP4965516 B2 JP 4965516B2 JP 2008159278 A JP2008159278 A JP 2008159278A JP 2008159278 A JP2008159278 A JP 2008159278A JP 4965516 B2 JP4965516 B2 JP 4965516B2
Authority
JP
Japan
Prior art keywords
receiving
mold
molding
molten glass
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008159278A
Other languages
Japanese (ja)
Other versions
JP2010001168A (en
Inventor
亮介 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008159278A priority Critical patent/JP4965516B2/en
Publication of JP2010001168A publication Critical patent/JP2010001168A/en
Application granted granted Critical
Publication of JP4965516B2 publication Critical patent/JP4965516B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ガラス成形体製造方法及びガラス成形体製造装置に関する。   The present invention relates to a glass molded body manufacturing method and a glass molded body manufacturing apparatus.

近年、光学素子、例えばデジタルカメラ等のレンズには、所定の形状に成形された光学レンズが用いられる。この光学レンズを高精度且つ大量に製造するため、まず、溶融ガラスを用いてプリフォームを形成し、このプリフォームをプレス加工する技術が知られている。   In recent years, optical lenses formed into a predetermined shape have been used for lenses of optical elements such as digital cameras. In order to manufacture this optical lens with high accuracy and in large quantities, a technique is first known in which a preform is formed using molten glass and this preform is pressed.

従来のプリフォーム製造装置は、ノズルの先端から溶融ガラスを流下する流下装置と、この流下装置の下方に設けられ流下された溶融ガラスを受け止める下側成形型と、この下側成形型に嵌合する上側成形型と、を備える(特許文献1参照)。しかし、このプリフォーム製造装置では、高温の溶融ガラスが、直接、上側成形型及び下側成形型に接触するため、成形型、特に下側成形型は、表面が酸化して荒れやすい。このため、成形型を頻繁に交換する必要があり、製造コストが嵩んでいた。   A conventional preform manufacturing apparatus includes a flow-down device that flows molten glass from the tip of a nozzle, a lower mold that is provided below the flow-down device and receives the molten glass that has flowed down, and is fitted to the lower mold. An upper mold (see Patent Document 1). However, in this preform manufacturing apparatus, high-temperature molten glass directly comes into contact with the upper mold and the lower mold, so that the mold, particularly the lower mold, is easily roughened due to surface oxidation. For this reason, it is necessary to frequently replace the mold, which increases the manufacturing cost.

また、溶融ガラスを多孔質製の成形型の上に流出し、この成形型から噴出する気体により浮上成形させるプリフォーム製造装置が公知である(特許文献2参照)。しかし、このプリフォーム製造装置では、流出する溶融ガラスの粘度が低いと、噴出気体によってガラスの形状が崩れやすくなり、所望の形状を有するプリフォームを得ることが困難であった。   Further, a preform manufacturing apparatus is known in which molten glass flows out onto a porous mold and is float-molded by a gas ejected from the mold (see Patent Document 2). However, in this preform manufacturing apparatus, when the viscosity of the molten glass flowing out is low, the shape of the glass tends to collapse due to the jet gas, and it is difficult to obtain a preform having a desired shape.

これに対して、特許文献3に示される方法では、分割可能な受け型で溶融ガラスを受け止めて溶融ガラス塊を形成した後、受け型を分割することで、下方に配置された成形型へと溶融ガラス塊を落下する。そして、成形型で溶融ガラス塊をプリフォームへと成形する。これにより、成形型の表面が酸化するのが抑制されるため、成形型の交換頻度を低下でき、プリフォームの製造コストを削減できる。
特開平7−165431号公報 特開平6−122526号公報 特開2006−265085号公報
On the other hand, in the method shown in Patent Document 3, after receiving molten glass with a separable receiving mold to form a molten glass lump, the receiving mold is divided into a molding mold disposed below. The molten glass lump is dropped. And a molten glass lump is shape | molded into a preform with a shaping | molding die. Thereby, since it is suppressed that the surface of a shaping | molding die is oxidized, the replacement frequency of a shaping | molding die can be reduced and the manufacturing cost of a preform can be reduced.
JP-A-7-165431 JP-A-6-122526 JP 2006-265085 A

しかし、特許文献3に示される方法では、溶融ガラス塊が受け型から成形型へと落下して移されるため、この衝撃で溶融ガラス塊が大きく変形し、所望の形状のプリフォームを製造できない場合がある。また、溶融ガラス塊が真下に落下せず、成形型で受けられないことが稀にある。   However, in the method shown in Patent Document 3, since the molten glass lump is dropped and transferred from the receiving mold to the forming die, the molten glass lump is greatly deformed by this impact, and a preform having a desired shape cannot be manufactured. There is. In addition, rarely the molten glass lump does not fall directly below and cannot be received by the mold.

本発明は、以上の実情に鑑みてなされたものであり、成形型の交換頻度を低下でき且つ歩留まり良くプリフォーム等のガラス成形体を製造できる方法及び装置を提供することを目的とする。   This invention is made | formed in view of the above situation, and it aims at providing the method and apparatus which can manufacture glass molded objects, such as a preform, with the yield which can reduce the replacement frequency of a shaping | molding die.

本発明者らは、受け型から成形型への溶融ガラス塊の移送を、受け型又は成形型のいずれかに接触する状態を維持しつつ行うことで、溶融ガラス塊の変形が抑制されることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The inventors of the present invention can suppress the deformation of the molten glass lump by performing the transfer of the molten glass lump from the receiving mold to the forming mold while maintaining a state in contact with either the receiving mold or the forming mold. As a result, the present invention has been completed. Specifically, the present invention provides the following.

(1) 受け面を有する受け型と、成形面を有する成形型とを用いて、溶融ガラスからガラス成形体を製造するガラス成形体製造方法であって、
前記受け面上に溶融ガラスの液滴を受けて、溶融ガラス塊を形成する溶融ガラス塊形成工程と、
前記溶融ガラス塊を前記受け型から前記成形型へと移送する移送工程と、
前記成形面上に溶融ガラス塊を受けて、ガラス成形体へと成形する成形工程と、を有し、
前記移送工程では、前記受け型及び前記成形型を互いに近接しつつ、前記受け型、又は前記受け型及び前記成形型を回転することで、前記受け面上の溶融ガラス塊を、前記成形面に接触する接触状態を維持しつつ前記成形面へと移すガラス成形体製造方法。
(1) A glass molded body manufacturing method for manufacturing a glass molded body from molten glass using a receiving mold having a receiving surface and a molding mold having a molding surface,
A molten glass lump forming step for receiving molten glass droplets on the receiving surface to form a molten glass lump,
A transfer step of transferring the molten glass mass from the receiving mold to the mold;
Receiving a molten glass lump on the molding surface and molding into a glass molded body,
In the transfer step, the receiving mold or the receiving mold and the forming mold are rotated while the receiving mold and the forming mold are brought close to each other, so that the molten glass lump on the receiving surface is transferred to the forming surface. The glass molded object manufacturing method which moves to the said molding surface, maintaining the contact state which contacts.

(2) 前記受け型、又は前記受け型及び前記成形型の回転を、互いに傾斜した傾斜状態で行う(1)記載のガラス成形体製造方法。   (2) The glass molded body manufacturing method according to (1), wherein the receiving mold or the receiving mold and the forming mold are rotated in an inclined state.

(3) 前記傾斜状態を、前記受け面及び前記成形面が実質的に連続する面連続状態とし、
前記受け面上の溶融ガラス塊を前記成形面へと移動させる(2)記載のガラス成形体製造方法。
(3) The inclined state is a surface continuous state in which the receiving surface and the molding surface are substantially continuous,
The glass molded body manufacturing method according to (2), wherein the molten glass lump on the receiving surface is moved to the molding surface.

(4) 前記受け面及び/又は前記成形面は、前記受け型及び/又は前記成形型の側縁近傍まで形成され、
前記移送工程では、前記受け型及び前記成形型の側縁を近接して前記面連続状態とする(3)記載のガラス成形体製造方法。
(4) The receiving surface and / or the molding surface is formed up to the vicinity of a side edge of the receiving die and / or the molding die,
In the transferring step, the glass molded body manufacturing method according to (3), wherein side edges of the receiving mold and the mold are brought close to each other to form the surface continuous state.

(5) 前記受け型及び前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送工程では、前記切り欠け部同士を当接することで前記面連続状態とする(3)又は(4)記載のガラス成形体製造方法。
(5) The side edges of the receiving mold and the molding surface have notched portions that are notched toward the side,
In the transferring step, the glass molded body manufacturing method according to (3) or (4), wherein the notched portions are brought into contact with each other so as to be in the surface continuous state.

(6) 溶融ガラス塊が前記受け面及び前記成形面で包囲される包囲状態とし、
前記受け面上の溶融ガラス塊を、前記受け型及び前記成形型とともに回転させる(1)記載のガラス成形体製造方法。
(6) A surrounding state in which the molten glass block is surrounded by the receiving surface and the molding surface,
The method for producing a glass molded body according to (1), wherein the molten glass lump on the receiving surface is rotated together with the receiving mold and the forming mold.

(7) 前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送工程では、前記切り欠け部を前記受け面に沿わせることで前記包囲状態とする(6)記載のガラス成形体製造方法。
(7) The side edge portion of the molding surface has a notch portion that is notched toward the side,
In the transferring step, the glass molded body manufacturing method according to (6), wherein the notched portion is placed in the enclosed state by being along the receiving surface.

(8) (1)から(7)いずれか記載のガラス成形体製造方法で製造したガラス成形体を精密プレス成形する光学素子製造方法。   (8) An optical element manufacturing method for precision press-molding a glass molded body manufactured by the glass molded body manufacturing method according to any one of (1) to (7).

(9) (8)記載の光学素子製造方法で製造した光学素子を用いて光学機器を製造する光学機器製造方法。   (9) An optical device manufacturing method for manufacturing an optical device using the optical element manufactured by the optical element manufacturing method according to (8).

(10) 溶融ガラスからガラス成形体を製造するガラス成形体製造装置であって、
受け面上に溶融ガラスの液滴を受けて、溶融ガラス塊を形成する受け型と、
成形面上に溶融ガラス塊を受けて、ガラス成形体へと成形する成形型と、
溶融ガラス塊を前記受け型から前記成形型へと移送する移送手段と、を備え、
前記移送手段は、前記受け型及び前記成形型を近接しつつ、前記受け型、又は前記受け型及び前記成形型を回転し、前記受け面上の溶融ガラス塊が、前記成形面に接触する接触状態を維持しつつ前記成形面へと移されるガラス成形体製造装置。
(10) A glass molded body manufacturing apparatus for manufacturing a glass molded body from molten glass,
A receiving mold that receives molten glass droplets on the receiving surface to form a molten glass lump,
A mold for receiving a molten glass lump on the molding surface and molding it into a glass molded body,
A transfer means for transferring the molten glass lump from the receiving mold to the forming mold,
The transfer means rotates the receiving mold or the receiving mold and the forming mold while bringing the receiving mold and the forming mold close to each other, and the molten glass lump on the receiving surface comes into contact with the forming surface. The glass molded object manufacturing apparatus transferred to the said molding surface, maintaining a state.

(11) 前記移送手段は、前記受け型、又は前記受け型及び前記成形型の回転を、互いに傾斜した傾斜状態で行う(10)記載のガラス成形体製造装置。   (11) The glass molded body manufacturing apparatus according to (10), wherein the transfer unit performs rotation of the receiving mold or the receiving mold and the forming mold in an inclined state with respect to each other.

(12) 前記移送手段は、前記傾斜状態を、前記受け面及び前記成形面が実質的に連続する面連続状態とし、前記受け面上の溶融ガラス塊が前記成形面へと移動する(11)記載のガラス成形体製造装置。   (12) The transfer means sets the inclined state to a surface continuous state in which the receiving surface and the forming surface are substantially continuous, and the molten glass lump on the receiving surface moves to the forming surface (11). The glass molded object manufacturing apparatus of description.

(13) 前記受け面及び/又は前記成形面は、前記受け型及び/又は前記成形型の側縁近傍まで形成され、
前記移送手段は、前記受け型及び前記成形型の側縁を近接して前記面連続状態とする(12)記載のガラス成形体製造装置。
(13) The receiving surface and / or the molding surface is formed to the vicinity of a side edge of the receiving die and / or the molding die,
The said transfer means is a glass molded object manufacturing apparatus of the (12) description which adjoins the side edge of the said receiving die and the said shaping | molding die, and makes the said surface continuous state.

(14) 前記受け型及び前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送手段は、前記切り欠け部同士を当接することで前記面連続状態とする(12)又は(13)記載のガラス成形体製造装置。
(14) The receiving mold and the side edge portion of the molding surface have a notch portion that is notched toward the side,
The said transfer means is a glass molded object manufacturing apparatus of the (12) or (13) description which makes the said surface continuous state by contact | abutting the said notch parts.

(15) 前記移送手段は、溶融ガラス塊が前記受け面及び前記成形面で包囲される包囲状態とし、前記受け面上の溶融ガラス塊が、前記受け型及び前記成形型とともに回転する(10)記載のガラス成形体製造装置。   (15) The transfer means is in an enclosed state in which the molten glass lump is surrounded by the receiving surface and the molding surface, and the molten glass lump on the receiving surface rotates together with the receiving mold and the molding die (10). The glass molded object manufacturing apparatus of description.

(16) 前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送手段は、前記切り欠け部を前記受け面に沿わせることで前記包囲状態とする(15)記載のガラス成形体製造装置。
(16) The side edge portion of the molding surface has a notch portion that is notched toward the side,
The said transfer means is a glass molded object manufacturing apparatus of (15) description which makes the said surrounding state by making the said notch part along the said receiving surface.

(17) (10)から(16)いずれか記載のガラス成形体製造装置と、このガラス成形体製造装置で製造されるガラス成形体を精密プレス成形する成形手段と、を備える光学素子製造装置。   (17) An optical element manufacturing apparatus comprising: the glass molded body manufacturing apparatus according to any one of (10) to (16); and molding means for precision press-molding the glass molded body manufactured by the glass molded body manufacturing apparatus.

(18) (17)記載の光学素子製造装置と、この光学素子製造装置で製造される光学素子を用いて光学機器を製造する光学機器製造装置。   (18) An optical device manufacturing apparatus that manufactures an optical device using the optical element manufacturing device according to (17) and the optical element manufactured by the optical element manufacturing device.

本発明によれば、受け型及び成形型を互いに近接しつつ、受け型、又は受け型及び成形型を回転することで、受け面上の溶融ガラス塊は成形面に接触する状態を維持しつつ成形面へと移される。これにより、確実に成形型へと移送できるし、移送時に溶融ガラス塊に負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   According to the present invention, the molten glass lump on the receiving surface is kept in contact with the molding surface by rotating the receiving die or the receiving die and the molding die while bringing the receiving die and the molding die close to each other. It is transferred to the molding surface. Thereby, since it can transfer to a shaping | molding die reliably and the impact loaded on a molten-glass lump at the time of transfer is suppressed largely, the glass molded object of a desired shape can be manufactured.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、第1実施形態以外の各実施形態の説明において、第1実施形態と共通するものについては、同一符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in description of each embodiment other than 1st Embodiment, the same code | symbol is attached | subjected about what is common in 1st Embodiment, and the description is abbreviate | omitted.

<第1実施形態>
図1は、本発明の第1実施形態に係るガラス成形体製造装置を用いたガラス成形体製造方法の手順を示す図である。図2は、図1(c)において点線で囲んだ部分の拡大図である。かかるガラス成形体製造装置は、受け型20、成形型30、及び図示しない移送手段を備える。各構成要素を以下詳細に説明する。
<First Embodiment>
Drawing 1 is a figure showing the procedure of the glass fabrication object manufacturing method using the glass fabrication object manufacturing device concerning a 1st embodiment of the present invention. FIG. 2 is an enlarged view of a portion surrounded by a dotted line in FIG. Such a glass molded body manufacturing apparatus includes a receiving mold 20, a molding mold 30, and a transfer means (not shown). Each component will be described in detail below.

〔受け型〕
図1(a)に示されるように、受け型20は、受け面211上に供給ノズル50からの溶融ガラスMGの液滴を受けて、溶融ガラス塊GAを形成する。本実施形態では、受け面211は多孔体21で形成され、この多孔体21は、気密性素材(通常、金属)からなる受け枠体23によって包囲され、又はメッキ等がされていることが好ましい。多孔体21には気体供給部40aから気体が供給され、この気体は受け面211から噴出される。これにより、高温の溶融ガラスMG及び溶融ガラス塊GAが受け面211に癒着するのを抑制できる。
[Receiving type]
As shown in FIG. 1A, the receiving mold 20 receives droplets of molten glass MG from the supply nozzle 50 on the receiving surface 211 to form a molten glass lump GA. In the present embodiment, the receiving surface 211 is formed of a porous body 21, and the porous body 21 is preferably surrounded by a receiving frame body 23 made of an airtight material (usually metal) or plated. . Gas is supplied to the porous body 21 from the gas supply part 40 a, and this gas is ejected from the receiving surface 211. Thereby, it can suppress that high temperature molten glass MG and molten glass lump GA adhere to the receiving surface 211. FIG.

多孔体21への気体の供給速度は、溶融ガラスMG及び溶融ガラス塊GAの硬度に応じて制御されることが好ましい。これにより、いまだ柔らかい溶融ガラスMG及び溶融ガラス塊GAの中に気体が侵入して気泡化するのを抑制できる。このようにして、溶融ガラス塊GAは受け面211上である程度冷却された後、後述の移送手段によって次の成形面311上に移送される。   The gas supply rate to the porous body 21 is preferably controlled according to the hardness of the molten glass MG and the molten glass lump GA. Thereby, it can suppress that gas penetrate | invades into still molten glass MG and molten glass lump GA, and it is bubbled. In this way, the molten glass block GA is cooled to some extent on the receiving surface 211 and then transferred onto the next molding surface 311 by the transfer means described later.

〔成形型〕
図1(d)に示されるように、成形型30は、成形面311上に溶融ガラス塊GAを受けて、ガラス成形体へと成形する。本実施形態では、成形面311は多孔体31で形成され、この多孔体31は、気密性素材(通常、金属)からなる成形枠体33によって包囲され、又はメッキ等がされていることが好ましい。多孔体31には気体供給部40bから気体が供給され、この気体は成形面311から噴出される。これにより、いまだ高温の溶融ガラス塊GAが成形面311に癒着するのを抑制できる。
[Molding mold]
As shown in FIG. 1D, the mold 30 receives the molten glass lump GA on the molding surface 311 and molds it into a glass molded body. In the present embodiment, the molding surface 311 is formed of a porous body 31, and the porous body 31 is preferably surrounded by a molding frame body 33 made of an airtight material (usually metal) or plated. . Gas is supplied to the porous body 31 from the gas supply unit 40 b, and this gas is ejected from the molding surface 311. Thereby, it is possible to suppress the fusion of the molten glass lump GA that is still hot to the molding surface 311.

多孔体31への気体の供給速度は、溶融ガラス塊GAの硬度に応じて制御してもよいし、しなくてもよい。供給速度を制御しなくても、この時点の溶融ガラス塊GAはある程度固まっているため、気体が侵入して気泡化することは少ないし、制御機構を設けることによる大型化を予防できる点で有利である。ただし、供給速度を制御する場合は、溶融ガラス塊GAの中に気体が侵入して気泡化するのを確実に抑制できる点で有利である。   The gas supply rate to the porous body 31 may or may not be controlled according to the hardness of the molten glass lump GA. Even if the supply speed is not controlled, the molten glass lump GA at this point is hardened to some extent, so that it is less likely that gas will invade and bubble, and an increase in size due to the provision of a control mechanism can be prevented. It is. However, when the supply speed is controlled, it is advantageous in that gas can be reliably prevented from entering the molten glass lump GA and forming bubbles.

〔移送手段〕
移送手段は、受け型20、又は受け型20及び成形型30を回転することで、溶融ガラス塊GAを受け型20から成形型30へと移送する。本実施形態における移送手段は、受け型20及び成形型30を互いに近接しつつ回転することで、受け面211上の溶融ガラス塊GAを、成形面311に接触する状態を維持しつつ成形面311へと移す(図1(c)参照)。これにより、受け型から成形型への移送の間に落下という非接触状態を挟む従来の方法とは異なって、溶融ガラス塊GAを確実に成形型30へと移送でき、更に、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。
[Transportation means]
The transfer means transfers the molten glass lump GA from the receiving mold 20 to the forming mold 30 by rotating the receiving mold 20 or the receiving mold 20 and the forming mold 30. The transfer means in the present embodiment rotates the receiving mold 20 and the forming mold 30 while approaching each other, thereby maintaining the state in which the molten glass lump GA on the receiving surface 211 is in contact with the forming surface 311. (See FIG. 1 (c)). Thus, unlike the conventional method in which a non-contact state of dropping is sandwiched during the transfer from the receiving mold to the forming mold, the molten glass lump GA can be reliably transferred to the forming mold 30, and the molten glass is further transferred during the transfer. Since the impact applied to the lump GA is greatly suppressed, a glass molded body having a desired shape can be manufactured.

図1では、受け型20及び成形型30の双方を回転させる態様を示したが、これに限られず、少なくとも受け型20を回転すればよい。この態様においては、受け型20及び成形型30を互いに近接しつつ(図8(a))、受け型20のみを成形型30側へと回転させることで、受け面211上の溶融ガラス塊GAを、成形面311に接触する状態を維持しつつ成形面311へと移す(図8(b)、(c))。かかる態様によれば、回転させる駆動源を受け型20のみに設ければよいため、構成を簡略化できる。   In FIG. 1, although the aspect which rotates both the receiving die 20 and the shaping | molding die 30 was shown, it is not restricted to this, What is necessary is just to rotate the receiving die 20 at least. In this aspect, the molten glass lump GA on the receiving surface 211 is rotated by rotating only the receiving mold 20 toward the forming mold 30 while the receiving mold 20 and the forming mold 30 are close to each other (FIG. 8A). Is moved to the molding surface 311 while maintaining the state in contact with the molding surface 311 (FIGS. 8B and 8C). According to this aspect, the drive source to be rotated only needs to be provided in the receiving mold 20, so the configuration can be simplified.

本明細書における「互いに近接」とは、溶融ガラス塊GAが端縁212,312(図2参照)の隙間に侵入して変形するのを所望の程度に抑制できる程度の接近状態を指す。つまり、「近接」の範囲は、溶融ガラス塊GAの粘度等に応じて適宜設定されてよい。   The term “close to each other” in the present specification refers to an approaching state in which the molten glass block GA can be suppressed to a desired degree by intruding into the gap between the end edges 212 and 312 (see FIG. 2) and deforming. That is, the “proximity” range may be appropriately set according to the viscosity of the molten glass lump GA.

本実施形態の移送手段は、図1(b)〜(c)に示されるように、受け型20及び成形型30の回転を、互いに傾斜した傾斜状態で行う。ここで傾斜状態とは、受け面211及び成形面311の開口方向が互いに異なるような状態を指す。かかる傾斜状態で受け型20及び成形型30が互いに近接すると、非傾斜状態に比べ、受け面211及び成形面311の不連続性が緩和されるとともに、受け面211の端縁212と、成形面311の端縁312との距離が狭まる(図2参照)。これにより、受け面211上の溶融ガラス塊GAが成形面311に接触しつつ成形面311へと移されるため、溶融ガラス塊GAを確実に成形型30へと移送できるし、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   As shown in FIGS. 1B to 1C, the transfer means of the present embodiment rotates the receiving mold 20 and the forming mold 30 in an inclined state with respect to each other. Here, the inclined state refers to a state in which the opening directions of the receiving surface 211 and the molding surface 311 are different from each other. When the receiving mold 20 and the forming mold 30 are close to each other in such an inclined state, the discontinuity of the receiving surface 211 and the forming surface 311 is alleviated and the edge 212 of the receiving surface 211 and the forming surface are compared with those in the non-inclined state. The distance from the edge 312 of 311 is reduced (see FIG. 2). Thereby, since the molten glass lump GA on the receiving surface 211 is transferred to the molding surface 311 while being in contact with the molding surface 311, the molten glass lump GA can be reliably transferred to the molding die 30, and the molten glass lump is transferred at the time of transfer. Since the impact applied to the GA is greatly suppressed, a glass molded body having a desired shape can be manufactured.

傾斜角度は、移送時における溶融ガラス塊GAの大きさや粘度に応じて適宜設定されてよい。即ち、溶融ガラス塊GAの大きさ又は粘度が小さい場合、溶融ガラス塊GAが端縁212,312の隙間に侵入して変形しやすいため、傾斜角度を高く設定することが好ましい。ただし、傾斜角度が過剰になると、受け面211及び成形面311の不連続性が増すため、受け面211及び成形面311の双方に接触する状態では、受け面211上である程度硬化され受け面211に近似する形状を有する溶融ガラス塊GAの底部が成形面311に沿わず、この結果溶融ガラス塊GAが押し潰されて変形しやすい。   The inclination angle may be appropriately set according to the size and viscosity of the molten glass block GA at the time of transfer. That is, when the size or viscosity of the molten glass lump GA is small, the molten glass lump GA easily enters the gap between the end edges 212 and 312 and easily deforms. Therefore, it is preferable to set the inclination angle high. However, since the discontinuity of the receiving surface 211 and the molding surface 311 increases when the inclination angle becomes excessive, the receiving surface 211 is cured to some extent on the receiving surface 211 in a state where both the receiving surface 211 and the molding surface 311 are in contact. The bottom of the molten glass lump GA having a shape that approximates the shape does not follow the molding surface 311. As a result, the molten glass lump GA is crushed and easily deformed.

そこで、移送手段は、傾斜状態を、受け面211及び成形面311が実質的に連続する面連続状態とし、受け面211上の溶融ガラス塊GAを成形面311へと移動させることが好ましい。これにより、溶融ガラス塊GAの底部が成形面311に沿い、受け面211上の溶融ガラス塊GAが成形面311へと円滑に移動するため、溶融ガラス塊GAの変形をより抑制できる。ここで面連続状態とは、端縁212,312の距離が最短となる断面における受け面211の延長が成形面311に略一致する状態を指す。即ち、図2に示す面非連続状態では、受け面211の延長が成形面311と一致しないのに対して、図3に示す面連続状態では、受け面211の延長が成形面311と略一致している。なお、「実質的に連続する」とは、受け面211及び成形面311の連続性を僅かに低下するような迂回を防止する趣旨であり、その範囲は溶融ガラス塊GAの大きさや硬度に応じて適宜変動する。   Therefore, it is preferable that the transfer means is in a continuous state in which the receiving surface 211 and the forming surface 311 are substantially continuous, and the molten glass lump GA on the receiving surface 211 is moved to the forming surface 311. Thereby, since the bottom part of the molten glass lump GA follows the molding surface 311 and the molten glass lump GA on the receiving surface 211 moves smoothly to the molding surface 311, the deformation of the molten glass lump GA can be further suppressed. Here, the surface continuous state refers to a state in which the extension of the receiving surface 211 in the cross section where the distance between the end edges 212 and 312 is the shortest substantially coincides with the molding surface 311. That is, in the surface discontinuous state shown in FIG. 2, the extension of the receiving surface 211 does not coincide with the molding surface 311, whereas in the surface continuous state shown in FIG. I'm doing it. Note that “substantially continuous” is intended to prevent detours that slightly reduce the continuity of the receiving surface 211 and the molding surface 311, and the range thereof depends on the size and hardness of the molten glass lump GA. Fluctuate accordingly.

本実施形態での受け側部24の受け端面25及び成形側部34の成形端面35は、受け側部24及び成形側部34の設置方向に対して略直交する平坦面であるが、これに限られない。例えば、図4に示されるように、受け端面25Aは受け面211と略同一の曲率を有する曲面であり、成形端面35Aは成形面311と略同一の曲率を有する曲面であることが好ましい。これにより、受け面211及び受け端面25A、並びに成形端面35A及び成形面311がそれぞれ滑らかに連結されるので、受け面211上の溶融ガラス塊GAがより円滑に滑って成形面311へと移ることになる。なお、図4では、受け端面25A,成形端面35Aの双方を曲面としたが、いずれか一方のみを曲面としてもよい。   In this embodiment, the receiving end surface 25 of the receiving side portion 24 and the forming end surface 35 of the forming side portion 34 are flat surfaces that are substantially orthogonal to the installation direction of the receiving side portion 24 and the forming side portion 34. Not limited. For example, as shown in FIG. 4, the receiving end surface 25 </ b> A is preferably a curved surface having substantially the same curvature as the receiving surface 211, and the forming end surface 35 </ b> A is preferably a curved surface having substantially the same curvature as the forming surface 311. Accordingly, the receiving surface 211 and the receiving end surface 25A, and the molding end surface 35A and the molding surface 311 are smoothly connected to each other, so that the molten glass lump GA on the receiving surface 211 slides more smoothly and moves to the molding surface 311. become. In FIG. 4, both the receiving end surface 25A and the molding end surface 35A are curved surfaces, but only one of them may be a curved surface.

受け面211及び成形面311の隙間がより小さいために所望の形状のガラス成形体を製造しやすい点で、受け面211及び/又は成形面311は、図2〜図4に示されるように、受け側縁241及び/又は成形側縁341近傍まで形成されることが好ましいが、これに限られない。例えば、図5に示されるように、多孔体21Bは受け面211の端縁212の外周に介在面213を有し、多孔体31Bは成形面311の端縁312の外周に介在面313を有してもよい。   Since the gap between the receiving surface 211 and the molding surface 311 is smaller, the receiving surface 211 and / or the molding surface 311 are easy to produce a glass molded body having a desired shape, as shown in FIGS. Although it is preferable to form to the reception side edge 241 and / or the shaping | molding side edge 341 vicinity, it is not restricted to this. For example, as shown in FIG. 5, the porous body 21B has an interposition surface 213 on the outer periphery of the end edge 212 of the receiving surface 211, and the porous body 31B has an interposition surface 313 on the outer periphery of the end edge 312 of the molding surface 311. May be.

図6に示されるように、受け型20C及び成形型30Cの側縁部は、側方に向かって切り欠けられた受け端面25C,成形端面35C(切り欠け部)を有することが好ましい。これにより、受け端面25C,成形端面35C同士を当接すると、端縁212,312の隙間が極めて小さくなり且つ受け面211及び成形面311が実質的に連続するような姿勢が安定化するため、所望の形状のガラス成形体をより確実に製造できる。   As shown in FIG. 6, the side edges of the receiving die 20C and the forming die 30C preferably have a receiving end surface 25C and a forming end surface 35C (notched portion) that are notched toward the side. Accordingly, when the receiving end surface 25C and the molding end surface 35C are brought into contact with each other, the gap between the end edges 212 and 312 becomes extremely small and the posture in which the receiving surface 211 and the molding surface 311 are substantially continuous is stabilized. A glass molded body having a desired shape can be more reliably produced.

より好ましくは、図7に示されるように、多孔体21D及び多孔体31Dの介在面213D,313Dが、受け端面25D及び成形端面35Dに沿って内方へと延在する。これにより、受け端面25D,成形端面35D同士を当接すると、端縁212,312の隙間が略なくなり、所望の形状のガラス成形体をより確実に製造できる。このとき、多孔体21D及び多孔体31Dから噴射される気体が受け面211又は成形面311以外の方向へ逃げるのを抑制するため、また、多孔体21D及び多孔体31Dの磨耗を防ぐために、介在面213D、313Dをコーティングしてもよい。   More preferably, as shown in FIG. 7, the interposition surfaces 213D and 313D of the porous body 21D and the porous body 31D extend inward along the receiving end surface 25D and the molding end surface 35D. Thus, when the receiving end surface 25D and the molding end surface 35D are brought into contact with each other, the gap between the end edges 212 and 312 is substantially eliminated, and a glass molded body having a desired shape can be more reliably manufactured. At this time, in order to prevent the gas injected from the porous body 21D and the porous body 31D from escaping in a direction other than the receiving surface 211 or the molding surface 311, and to prevent wear of the porous body 21D and the porous body 31D. Surfaces 213D and 313D may be coated.

前述した実施形態では、受け面211及び成形面311が受け型20及び成形型30の側縁近傍まで形成されているため、端縁212,312の隙間が略存在しない。これにより、受け面211上の溶融ガラス塊GAを極めて高確率に成形面311へと移送できる。   In the embodiment described above, since the receiving surface 211 and the forming surface 311 are formed up to the vicinity of the side edges of the receiving die 20 and the forming die 30, there is substantially no gap between the end edges 212 and 312. Thereby, the molten glass lump GA on the receiving surface 211 can be transferred to the molding surface 311 with extremely high probability.

以上のガラス成形体製造装置を用いて製造されるガラス成形体(例えばプリフォーム)を、図示しない成形手段によって精密プレス成形することで、光学素子(例えば光学レンズ)が製造される。また、この光学素子を用いて光学機器を製造することが好ましい。   An optical element (for example, an optical lens) is manufactured by precision press-molding a glass molded body (for example, a preform) manufactured using the above-described glass molded body manufacturing apparatus by a molding means (not shown). Moreover, it is preferable to manufacture an optical apparatus using this optical element.

〔製造方法〕
以上のガラス成形体製造装置を用いたガラス成形体製造方法の手順を説明する。
〔Production method〕
The procedure of the glass molded object manufacturing method using the above glass molded object manufacturing apparatus is demonstrated.

まず、受け面211上に供給ノズル50からの溶融ガラスMGの液滴を受けて、溶融ガラス塊GAを形成し(溶融ガラス塊形成工程)、続いて溶融ガラス塊GAを受け型20から成形型30へと移送する(移送工程)。   First, molten glass MG droplets from the supply nozzle 50 are received on the receiving surface 211 to form a molten glass lump GA (molten glass lump forming step), and then the molten glass lump GA is received from the mold 20 as a molding die. It transfers to 30 (transfer process).

具体的に移送工程では、受け型20及び成形型30を互いに近接しつつ、受け型20、又は受け型20及び成形型30を回転することで、受け面211上の溶融ガラス塊GAを、成形面311に接触する接触状態を維持しつつ成形面311へと移す。これにより、溶融ガラス塊GAを確実に成形型30へと移送できるし、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   Specifically, in the transfer step, the molten glass block GA on the receiving surface 211 is molded by rotating the receiving mold 20 or the receiving mold 20 and the forming mold 30 while bringing the receiving mold 20 and the forming mold 30 close to each other. It moves to the molding surface 311 while maintaining the contact state in contact with the surface 311. Thereby, since the molten glass lump GA can be reliably transferred to the shaping | molding die 30, and the impact loaded on the molten glass lump GA at the time of transfer is suppressed greatly, the glass molded object of a desired shape can be manufactured.

受け型20、又は受け型20及び成形型30の回転を、互いに傾斜した傾斜状態で行うことが好ましい。これにより、非傾斜状態に比べ、受け面211及び成形面311の不連続性が緩和されるとともに、受け面211の端縁212と、成形面311の端縁312との距離が狭まる(図2参照)。このため、受け面211上の溶融ガラス塊GAが成形面311に接触しつつ成形面311へと移されるため、溶融ガラス塊GAを確実に成形型30へと移送できるし、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   The receiving mold 20 or the receiving mold 20 and the forming mold 30 are preferably rotated in an inclined state. As a result, discontinuity between the receiving surface 211 and the molding surface 311 is alleviated and the distance between the edge 212 of the receiving surface 211 and the edge 312 of the molding surface 311 is reduced as compared to the non-inclined state (FIG. 2). reference). For this reason, since the molten glass lump GA on the receiving surface 211 is transferred to the molding surface 311 while being in contact with the molding surface 311, the molten glass lump GA can be reliably transferred to the mold 30, and the molten glass lump is transferred at the time of transfer. Since the impact applied to the GA is greatly suppressed, a glass molded body having a desired shape can be manufactured.

なお、傾斜状態を、図3に示されるように、受け面211及び成形面311が実質的に連続する面連続状態とし、受け面211上の溶融ガラス塊GAを成形面311へと移動させることがより好ましい。これにより、溶融ガラス塊GAの底部が成形面311に沿い、受け面211上の溶融ガラス塊GAが成形面311へと円滑に移動するため、溶融ガラス塊GAの変形をより抑制できる。   As shown in FIG. 3, the inclined state is a continuous surface state in which the receiving surface 211 and the forming surface 311 are substantially continuous, and the molten glass lump GA on the receiving surface 211 is moved to the forming surface 311. Is more preferable. Thereby, since the bottom part of the molten glass lump GA follows the molding surface 311 and the molten glass lump GA on the receiving surface 211 moves smoothly to the molding surface 311, the deformation of the molten glass lump GA can be further suppressed.

受け面211及び/又は成形面311は、図2〜4に示されるように、受け側縁241及び/又は成形側縁341近傍まで形成され、移送工程では、受け側縁241及び成形側縁341を近接して受け面211及び成形面311を面連続状態とすることが更に好ましい。   2 to 4, the receiving surface 211 and / or the forming surface 311 are formed up to the vicinity of the receiving side edge 241 and / or the forming side edge 341, and in the transfer step, the receiving side edge 241 and the forming side edge 341 are formed. More preferably, the receiving surface 211 and the molding surface 311 are in a continuous surface state.

移送工程では、図6に示されるように、側方に向かって切り欠けられた受け端面25C,成形端面35C(切り欠け部)同士を当接することで面連続状態とすることが好ましい。これにより、端縁212,312の隙間が極めて小さくなり且つ受け面211及び成形面311が実質的に連続するような姿勢が安定化するため、所望の形状のガラス成形体をより確実に製造できる。より好ましくは、図7に示されるように、受け端面25D及び成形端面35Dに沿って内方へと延在する多孔体21D及び多孔体31Dの介在面213D,313D同士も当接することが好ましい。これにより、受け端面25D,成形端面35D同士を当接すると、端縁212,312の隙間が略なくなり、所望の形状のガラス成形体をより確実に製造できる。   In the transfer step, as shown in FIG. 6, it is preferable that the receiving end surface 25C and the molding end surface 35C (notched portions) that are notched toward the side are brought into contact with each other to be in a continuous surface state. As a result, the gap between the end edges 212 and 312 becomes extremely small and the posture in which the receiving surface 211 and the molding surface 311 are substantially continuous is stabilized, so that a glass molded body having a desired shape can be more reliably manufactured. . More preferably, as shown in FIG. 7, it is preferable that the porous body 21D extending inward along the receiving end face 25D and the molding end face 35D and the intervening faces 213D and 313D of the porous body 31D are also in contact with each other. Thus, when the receiving end surface 25D and the molding end surface 35D are brought into contact with each other, the gap between the end edges 212 and 312 is substantially eliminated, and a glass molded body having a desired shape can be more reliably manufactured.

このようにして、移送された溶融ガラス塊GAを成形面上に受けて、ガラス成形体へと成形する(成形工程)。成形工程は従来周知の常法に従って行えばよい。例えば、多孔体31に気体を供給して成形面311から噴出させることで、いまだ高温の溶融ガラス塊GAが成形面311に癒着するのを抑制できる。   In this way, the transferred molten glass lump GA is received on the molding surface and molded into a glass molded body (molding process). The molding step may be performed according to a conventionally known conventional method. For example, by supplying gas to the porous body 31 and ejecting the gas from the molding surface 311, it is possible to suppress the fusion of the still hot molten glass lump GA to the molding surface 311.

このようにして製造されるガラス成形体(例えばプリフォーム)を精密プレス成形することで、光学素子(例えば光学レンズ)が製造される。また、この光学素子を用いて光学機器を製造することが好ましい。   An optical element (for example, an optical lens) is manufactured by precision press-molding the glass molded body (for example, a preform) manufactured in this way. Moreover, it is preferable to manufacture an optical apparatus using this optical element.

<第2実施形態>
図9は、本発明の第2実施形態に係るガラス成形体製造方法の手順を示す図である。図10は、図9(c)において点線で囲んだ部分の拡大図である。本実施形態では、傾斜状態の代わりに包囲状態とする点で第1実施形態と異なる。
Second Embodiment
FIG. 9 is a diagram showing a procedure of a glass molded body manufacturing method according to the second embodiment of the present invention. FIG. 10 is an enlarged view of a portion surrounded by a dotted line in FIG. This embodiment differs from the first embodiment in that it is in an enclosed state instead of an inclined state.

即ち、本実施形態における移送手段は、図9(b)〜(c)に示されるように、溶融ガラス塊GAが受け面211及び成形面311で包囲される包囲状態とし、受け面211上の溶融ガラス塊GAが受け型20及び成形型30とともに回転する。ここで包囲状態とは、溶融ガラス塊GAが受け面211及び成形面311の隙間からこぼれ落ちるのを所望の程度に抑制できるように受け面211及び成形面311で包囲されている状態を指す(図10参照)。かかる包囲状態で受け型20及び成形型30が回転すると、受け面211上の溶融ガラス塊GAが成形面311に接触しつつ成形面311へと移されるため、溶融ガラス塊GAを確実に成形型30へと移送できるし、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   That is, as shown in FIGS. 9B to 9C, the transfer means in the present embodiment is in an enclosed state in which the molten glass lump GA is surrounded by the receiving surface 211 and the molding surface 311, and on the receiving surface 211. Molten glass lump GA rotates with receiving mold 20 and mold 30. Here, the surrounding state refers to a state in which the molten glass lump GA is surrounded by the receiving surface 211 and the molding surface 311 so that the molten glass lump GA can be prevented from spilling from the gap between the receiving surface 211 and the molding surface 311 to a desired level ( (See FIG. 10). When the receiving mold 20 and the forming mold 30 are rotated in such an enclosed state, the molten glass lump GA on the receiving surface 211 is transferred to the forming surface 311 while being in contact with the forming surface 311, so that the molten glass lump GA is reliably formed into the forming mold. Since the impact applied to the molten glass lump GA during the transfer can be greatly suppressed, a glass molded body having a desired shape can be produced.

本実施形態では、図9(d)に示されるように、溶融ガラス塊GAのうち受け面211に面していない部分が成形面311に面することになる。この部分は、受け面211に面する部分に比べて冷却が進行しておらず粘性が小さいため、成形面311から噴出される気体が溶融ガラス塊GA内に混入することが懸念される。そこで、溶融ガラス塊GAのうち受け面211に面していない部分が充分に冷却されるよう、受け面211上での溶融ガラス塊GAの滞留時間を調節したり、溶融ガラス塊GA内への混入しないよう、成形面311からの気体噴出量を調節したりする手段を設けることが好ましい。   In the present embodiment, as shown in FIG. 9 (d), the portion of the molten glass block GA that does not face the receiving surface 211 faces the molding surface 311. Since this portion is not cooled and less viscous than the portion facing the receiving surface 211, there is a concern that the gas ejected from the molding surface 311 may enter the molten glass lump GA. Therefore, the residence time of the molten glass lump GA on the receiving surface 211 is adjusted so that the portion of the molten glass lump GA that does not face the receiving surface 211 is sufficiently cooled, or the molten glass lump GA enters the molten glass lump GA. It is preferable to provide means for adjusting the gas ejection amount from the molding surface 311 so as not to be mixed.

本実施形態での受け側部24の受け端面25は、受け側部24の設置方向に対して略直交する平坦面であるが、これに限られない。例えば図11に示されるように、受け型20Eの側縁部は、側方に向かって切り欠けられた受け端面25E(切り欠け部)を有することが好ましい。これにより、包囲状態の際、受け端面25Eが成形面311に沿い、受け型20E及び成形型30Eの姿勢が安定化するため、所望の形状のガラス成形体をより確実に製造できる。また、図10では、角ばった受け側縁241が成形面311に刺さり、多孔体31Bを損傷するおそれがあるが、図11ではかかる損傷のおそれを低減できる。   In the present embodiment, the receiving end surface 25 of the receiving side portion 24 is a flat surface substantially orthogonal to the installation direction of the receiving side portion 24, but is not limited thereto. For example, as shown in FIG. 11, it is preferable that the side edge portion of the receiving mold 20E has a receiving end face 25E (notched portion) that is notched toward the side. Thereby, in the surrounding state, since the receiving end surface 25E is along the molding surface 311, and the attitude | positions of the receiving die 20E and the shaping | molding die 30E are stabilized, the glass molded object of a desired shape can be manufactured more reliably. In addition, in FIG. 10, the angular receiving side edge 241 may pierce the molding surface 311 and damage the porous body 31 </ b> B. However, in FIG. 11, the risk of such damage can be reduced.

以上のガラス成形体製造装置を用いて製造されるガラス成形体(例えばプリフォーム)を、図示しない成形手段によって精密プレス成形することで、光学素子(例えば光学レンズ)が製造される。また、この光学素子を用いて光学機器を製造することが好ましい。   An optical element (for example, an optical lens) is manufactured by precision press-molding a glass molded body (for example, a preform) manufactured using the above-described glass molded body manufacturing apparatus by a molding means (not shown). Moreover, it is preferable to manufacture an optical apparatus using this optical element.

〔製造方法〕
以上のガラス成形体製造装置を用いたガラス成形体製造方法の手順を説明する。
〔Production method〕
The procedure of the glass molded object manufacturing method using the above glass molded object manufacturing apparatus is demonstrated.

移送工程では、溶融ガラス塊GAが受け面211及び成形面311で包囲される包囲状態とし(図9(b))、受け面211上の溶融ガラス塊GAを、受け型20及び成形型30とともに回転させる(図9(c))ことで、成形面311へと移す(図9(d))。これにより、受け面211上の溶融ガラス塊GAが成形面311に接触しつつ成形面311へと移されるため、溶融ガラス塊GAを確実に成形型30へと移送できるし、移送時に溶融ガラス塊GAに負荷される衝撃が大きく抑制されるため、所望の形状のガラス成形体を製造できる。   In the transfer step, the molten glass lump GA is surrounded by the receiving surface 211 and the molding surface 311 (FIG. 9B), and the molten glass lump GA on the receiving surface 211 is put together with the receiving mold 20 and the molding die 30. By rotating it (FIG. 9C), it moves to the molding surface 311 (FIG. 9D). Thereby, since the molten glass lump GA on the receiving surface 211 is transferred to the molding surface 311 while being in contact with the molding surface 311, the molten glass lump GA can be reliably transferred to the molding die 30, and the molten glass lump is transferred at the time of transfer. Since the impact applied to the GA is greatly suppressed, a glass molded body having a desired shape can be manufactured.

移送工程では、図11に示されるように、受け端面25E(切り欠け部)を成形面311に沿わせることで包囲状態とすることが好ましい。これにより、包囲状態の際、受け端面25Eが成形面311に沿い、受け型20E及び成形型30Eの姿勢が安定化するため、所望の形状のガラス成形体をより確実に製造できるし、多孔体31Bの損傷のおそれを低減できる。   In the transfer step, as shown in FIG. 11, it is preferable that the receiving end surface 25 </ b> E (notch portion) is surrounded by the molding surface 311. Thereby, in the surrounding state, since the receiving end surface 25E is along the molding surface 311 and the postures of the receiving mold 20E and the molding mold 30E are stabilized, a glass molded body having a desired shape can be more reliably manufactured, and the porous body The risk of damage to 31B can be reduced.

このようにして製造されるガラス成形体(例えばプリフォーム)を精密プレス成形することで、光学素子(例えば光学レンズ)が製造される。また、この光学素子を用いて光学機器を製造することが好ましい。   An optical element (for example, an optical lens) is manufactured by precision press-molding the glass molded body (for example, a preform) manufactured in this way. Moreover, it is preferable to manufacture an optical apparatus using this optical element.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

本発明の第1実施形態に係るガラス成形体製造装置を用いたガラス成形体製造方法の手順を示す図である。It is a figure which shows the procedure of the glass molded object manufacturing method using the glass molded object manufacturing apparatus which concerns on 1st Embodiment of this invention. 図1のガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus of FIG. 第1実施形態の一変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on one modification of 1st Embodiment. 別の変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on another modification. 更に別の変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on another modification. 更に別の変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on another modification. 更に別の変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on another modification. 図1のガラス成形体製造装置を用いたガラス成形体製造方法の一変形例を示す図である。It is a figure which shows one modification of the glass molded object manufacturing method using the glass molded object manufacturing apparatus of FIG. 本発明の第2実施形態に係るガラス成形体製造装置を用いたガラス成形体製造方法の手順を示す図である。It is a figure which shows the procedure of the glass molded object manufacturing method using the glass molded object manufacturing apparatus which concerns on 2nd Embodiment of this invention. 図9のガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus of FIG. 第2実施形態の一変形例に係るガラス成形体製造装置の要部拡大図である。It is a principal part enlarged view of the glass molded object manufacturing apparatus which concerns on one modification of 2nd Embodiment.

符号の説明Explanation of symbols

20 受け型
211 受け面
24 受け側部
241 受け側縁
25 受け端面
30 成形型
311 成形面
34 成形側部
341 成形側縁
35 成形端面
20 receiving mold 211 receiving surface 24 receiving side portion 241 receiving side edge 25 receiving end surface 30 forming die 311 forming surface 34 forming side portion 341 forming side edge 35 forming end surface

Claims (18)

受け面を有する受け型と、成形面を有する成形型とを用いて、溶融ガラスからガラス成形体を製造するガラス成形体製造方法であって、
前記受け面上に溶融ガラスの液滴を受けて、プレス成形前の溶融ガラス塊を形成する溶融ガラス塊形成工程と、
前記プレス成形前の溶融ガラス塊を前記受け型から前記成形型へと移送する移送工程と、
前記成形面上に溶融ガラス塊を受けて、ガラス成形体へと成形する成形工程と、を有し、
前記移送工程では、前記受け型及び前記成形型を互いに近接しつつ、前記受け型、又は前記受け型及び前記成形型を回転することで、前記受け面上の溶融ガラス塊を、前記成形面に接触する接触状態を維持しつつ前記成形面へと移すガラス成形体製造方法。
A glass molded body production method for producing a glass molded body from molten glass using a receiving mold having a receiving surface and a molding mold having a molding surface,
A molten glass lump forming step for receiving molten glass droplets on the receiving surface and forming a molten glass lump before press molding ;
A transfer step of transferring the molten glass lump before press molding from the receiving mold to the molding mold;
Receiving a molten glass lump on the molding surface and molding into a glass molded body,
In the transfer step, the receiving mold or the receiving mold and the forming mold are rotated while the receiving mold and the forming mold are brought close to each other, so that the molten glass lump on the receiving surface is transferred to the forming surface. The glass molded object manufacturing method which moves to the said molding surface, maintaining the contact state which contacts.
前記受け型、又は前記受け型及び前記成形型の回転を、互いに傾斜した傾斜状態で行う請求項1記載のガラス成形体製造方法。   The glass molded body manufacturing method according to claim 1, wherein the receiving mold or the receiving mold and the forming mold are rotated in an inclined state. 前記傾斜状態を、前記受け面及び前記成形面が実質的に連続する面連続状態とし、
前記受け面上の溶融ガラス塊を前記成形面へと移動させる請求項2記載のガラス成形体製造方法。
The inclined state is a surface continuous state in which the receiving surface and the molding surface are substantially continuous,
The glass molded body manufacturing method according to claim 2, wherein the molten glass lump on the receiving surface is moved to the molding surface.
前記受け面及び/又は前記成形面は、前記受け型及び/又は前記成形型の側縁近傍まで形成され、
前記移送工程では、前記受け型及び前記成形型の側縁を近接して前記面連続状態とする請求項3記載のガラス成形体製造方法。
The receiving surface and / or the molding surface is formed up to the vicinity of a side edge of the receiving die and / or the molding die,
The method for producing a glass molded body according to claim 3, wherein in the transferring step, side surfaces of the receiving mold and the forming mold are brought close to each other so as to be in the surface continuous state.
前記受け型及び前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送工程では、前記切り欠け部同士を当接することで前記面連続状態とする請求項3又は4記載のガラス成形体製造方法。
The receiving mold and the side edge of the molding surface have a notch cut out toward the side,
5. The glass molded body manufacturing method according to claim 3, wherein, in the transferring step, the notch portions are brought into contact with each other to bring the surface into a continuous state.
溶融ガラス塊が前記受け面及び前記成形面で包囲される包囲状態とし、
前記受け面上の溶融ガラス塊を、前記受け型及び前記成形型とともに回転させる請求項1記載のガラス成形体製造方法。
In a surrounding state where the molten glass lump is surrounded by the receiving surface and the molding surface,
The method for producing a glass molded body according to claim 1, wherein the molten glass lump on the receiving surface is rotated together with the receiving mold and the forming mold.
前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送工程では、前記切り欠け部を前記受け面に沿わせて前記包囲状態とする請求項6記載のガラス成形体製造方法。
The side edge of the molding surface has a notch cut out toward the side,
The glass molded body manufacturing method according to claim 6, wherein in the transferring step, the cutout portion is placed in the enclosed state along the receiving surface.
請求項1から7いずれか記載のガラス成形体製造方法でガラス成形体を製造し、その後精密プレス成形する光学素子製造方法。 The optical element manufacturing method which manufactures a glass molded object by the glass molded object manufacturing method in any one of Claim 1 to 7 , and carries out precision press molding after that . 請求項8記載の光学素子製造方法で光学素子を製造し、その後光学機器を製造する光学機器製造方法。 The optical device manufacturing method which manufactures an optical element with the optical element manufacturing method of Claim 8, and manufactures an optical device after that . 溶融ガラスからガラス成形体を製造するガラス成形体製造装置であって、
受け面上に溶融ガラスの液滴を受けて、溶融ガラス塊を形成する受け型と、
成形面上に溶融ガラス塊を受けて、ガラス成形体へと成形する成形型と、
溶融ガラス塊を前記受け型から前記成形型へと移送する移送手段と、を備え、
前記移送手段は、前記受け型及び前記成形型を近接しつつ、前記受け型、又は前記受け型及び前記成形型を回転し、前記受け面上にあるプレス成形前の溶融ガラス塊が、前記成形面に接触する接触状態を維持しつつ前記成形面へと移されるガラス成形体製造装置。
A glass molded body manufacturing apparatus for manufacturing a glass molded body from molten glass,
A receiving mold that receives molten glass droplets on the receiving surface to form a molten glass lump,
A mold for receiving a molten glass lump on the molding surface and molding it into a glass molded body,
A transfer means for transferring the molten glass lump from the receiving mold to the forming mold,
The transfer means rotates the receiving mold or the receiving mold and the forming mold while bringing the receiving mold and the forming mold close to each other, and the molten glass lump before press forming on the receiving surface is formed into the forming mold. The glass molded object manufacturing apparatus transferred to the said molding surface, maintaining the contact state which contacts a surface.
前記移送手段は、前記受け型、又は前記受け型及び前記成形型の回転を、互いに傾斜した傾斜状態で行う請求項10記載のガラス成形体製造装置。   The glass molded body manufacturing apparatus according to claim 10, wherein the transfer unit rotates the receiving mold or the receiving mold and the forming mold in an inclined state with respect to each other. 前記移送手段は、前記傾斜状態を、前記受け面及び前記成形面が実質的に連続する面連続状態とし、前記受け面上の溶融ガラス塊が前記成形面へと移動する請求項11記載のガラス成形体製造装置。   The glass according to claim 11, wherein the transfer means sets the inclined state to a continuous surface state in which the receiving surface and the forming surface are substantially continuous, and the molten glass lump on the receiving surface moves to the forming surface. Molded body manufacturing equipment. 前記受け面及び/又は前記成形面は、前記受け型及び/又は前記成形型の側縁近傍まで形成され、
前記移送手段は、前記受け型及び前記成形型の側縁を近接して前記面連続状態とする請求項12記載のガラス成形体製造装置。
The receiving surface and / or the molding surface is formed up to the vicinity of a side edge of the receiving die and / or the molding die,
13. The glass molded body manufacturing apparatus according to claim 12, wherein the transfer means brings the receiving mold and a side edge of the molding mold close to each other and makes the surface continuous.
前記受け型及び前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送手段は、前記切り欠け部同士を当接することで前記面連続状態とする請求項12又は13記載のガラス成形体製造装置。
The receiving mold and the side edge of the molding surface have a notch cut out toward the side,
The said transfer means is a glass molded object manufacturing apparatus of Claim 12 or 13 made into the said surface continuation state by contact | abutting the said notch parts.
前記移送手段は、溶融ガラス塊が前記受け面及び前記成形面で包囲される包囲状態とし、前記受け面上の溶融ガラス塊が、前記受け型及び前記成形型とともに回転する請求項10記載のガラス成形体製造装置。   The glass according to claim 10, wherein the transfer means is in an enclosed state in which the molten glass lump is surrounded by the receiving surface and the molding surface, and the molten glass lump on the receiving surface rotates together with the receiving mold and the forming die. Molded body manufacturing equipment. 前記成形面の側縁部は、側方に向かって切り欠けられた切り欠け部を有し、
前記移送手段は、前記切り欠け部を前記受け面に沿わせて前記包囲状態とする請求項15記載のガラス成形体製造装置。
The side edge of the molding surface has a notch cut out toward the side,
The glass transporter manufacturing apparatus according to claim 15, wherein the transfer means brings the cutout portion into the enclosed state along the receiving surface.
請求項10から16いずれか記載のガラス成形体製造装置と、このガラス成形体製造装置で製造されるガラス成形体を精密プレス成形する成形手段と、を備える光学素子製造装置。   An optical element manufacturing apparatus comprising: the glass molded body manufacturing apparatus according to any one of claims 10 to 16; and molding means for precision press-molding the glass molded body manufactured by the glass molded body manufacturing apparatus. 請求項17記載の光学素子製造装置と、この光学素子製造装置で製造される光学素子を用いて光学機器を製造する光学機器製造装置と、を備えるシステム。 A system comprising: the optical element manufacturing apparatus according to claim 17; and an optical apparatus manufacturing apparatus that manufactures an optical apparatus using the optical element manufactured by the optical element manufacturing apparatus .
JP2008159278A 2008-06-18 2008-06-18 Glass molded body manufacturing method and glass molded body manufacturing apparatus Expired - Fee Related JP4965516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159278A JP4965516B2 (en) 2008-06-18 2008-06-18 Glass molded body manufacturing method and glass molded body manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159278A JP4965516B2 (en) 2008-06-18 2008-06-18 Glass molded body manufacturing method and glass molded body manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2010001168A JP2010001168A (en) 2010-01-07
JP4965516B2 true JP4965516B2 (en) 2012-07-04

Family

ID=41583200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159278A Expired - Fee Related JP4965516B2 (en) 2008-06-18 2008-06-18 Glass molded body manufacturing method and glass molded body manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4965516B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149150B2 (en) * 1993-08-31 2001-03-26 キヤノン株式会社 Method of manufacturing optical element, glass lens, and method of molding blank material
JP2000007360A (en) * 1998-06-25 2000-01-11 Canon Inc Production of glass element

Also Published As

Publication number Publication date
JP2010001168A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
US20090315218A1 (en) Injection mold and molding method for resin molding
CN107407861A (en) Enclosed globe shade, camera apparatus, injecting molding die and injection moulding method
JP3849669B2 (en) Optical element manufacturing method
US7415842B2 (en) Optical glass element and manufacturing method thereof
JP4965516B2 (en) Glass molded body manufacturing method and glass molded body manufacturing apparatus
JP2010083724A (en) Manufacturing method of lens and lens
CN102583972B (en) Glass prefabricated member through precision impact molding manufacture method and Optical element manufacturing method
JP4368368B2 (en) Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element
JP5202610B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
JP5222928B2 (en) Manufacturing method of glass preform for precision press molding and manufacturing method of optical element
US8596093B2 (en) Optical element manufacturing method and optical element
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
WO2013118888A1 (en) Glass preform manufacturing method and glass preform, and optical device manufacturing method and optical device
JP2012116687A (en) Method of manufacturing glass preform for precise press molding, and method of manufacturing optical device
CN111902374B (en) Method for molding optical element and mold for molding optical element
JP4949324B2 (en) Glass molded body manufacturing method and glass molded body manufacturing apparatus
JP2006051822A (en) Plastic part and its shaping method
JP2009269761A (en) Manufacturing method and manufacturing device for glass molded article
JP2016003171A (en) Apparatus for producing glass molding and method for producing glass molding
JP4666679B2 (en) Mold press molding apparatus and method for manufacturing molded body
JP2020104301A (en) Resin part and manufacturing method thereof
JP2000176944A (en) Method for producing plastic molded product and mold for molding plastic
CN104708763A (en) Lens manufacturing system and method
JP2000302461A (en) Molding for glass element
JPH0840726A (en) Apparatus for forming glass material for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees