JP4961649B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4961649B2
JP4961649B2 JP2001281435A JP2001281435A JP4961649B2 JP 4961649 B2 JP4961649 B2 JP 4961649B2 JP 2001281435 A JP2001281435 A JP 2001281435A JP 2001281435 A JP2001281435 A JP 2001281435A JP 4961649 B2 JP4961649 B2 JP 4961649B2
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
capacity
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281435A
Other languages
Japanese (ja)
Other versions
JP2003092150A (en
Inventor
義幸 尾崎
敬介 大森
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001281435A priority Critical patent/JP4961649B2/en
Publication of JP2003092150A publication Critical patent/JP2003092150A/en
Application granted granted Critical
Publication of JP4961649B2 publication Critical patent/JP4961649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池、特に長期耐久性に優れたリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
近年、リチウムイオン二次電池は高い作動電圧と高エネルギー密度を有する二次電池として携帯電話やノート型パソコン、ビデオカムコーダーなどのポータブル電子機器の駆動用電源として実用化され、急速な成長を遂げ、小型二次電池をリードする電池系として生産量は増え続けている。しかしながらこれらリチウムイオン二次電池の正極材料には、そのほとんどがリチウムとコバルトの複合酸化物(LiCoO2)が用いられている。
【0003】
LiCoO2は高電圧、高エネルギー密度であり、高温安定性やサイクル寿命特性に優れるなど高性能な正極材料であるが、コバルトは資源的に希少であり、産地が限られることから、高価であり供給安定性に不安がある。
【0004】
最近になって、電力貯蔵用や電気自動車用途の大型リチウムイオン二次電池の開発が進められており、正極材料としてはより安価で資源量が豊富なスピネル構造を有するリチウムマンガン複合酸化物(LiMn24)が有望視されている。LiMn24は4V級の放電を示す材料として古くから知られており(特公昭58−34414号公報)一部実用化はされているが、サイクル寿命特性や高温安定性などにおいてLiCoO2正極に比べて劣っており、それら性能向上に対する様々な取り組みがなされている。一例を挙げると、マンガン原子の一部をコバルト、クロム、ニッケルなど他の遷移金属元素で置換することによって充放電時の結晶構造の安定化を図る試みが報告されているが、サイクル寿命特性は向上するものの、高温安定性に関しては充分な改良には至っていない。
【0005】
またリチウムマンガン複合酸化物と並んで有望視されているのが六方晶構造を有するリチウムニッケル複合酸化物(LiNiO2)である。LiNiO2は非常に高容量密度を有する正極材料であるが、充放電に伴う結晶構造変化を伴うために可逆性が悪く、一般にはNi元素の一部をCoなどの他元素で置換した3元系の複合酸化物の状態で使用される場合が多い。しかしながらサイクル可逆性は改善されるものの、他の正極材料に比べ安全性が低いことが課題となってきた。リチウムニッケル複合酸化物の安全性(熱安定性)は充電時のリチウムのデインターカレート量にほぼ比例しており、安全性を確保するためには充電容量の規制を行ったり、あるいはNi元素の一部をCoで置換するだけでなく、例えばAlやMnなどの異種元素で更に置換した4元系の複合酸化物とすることで熱安定性を向上させる取り組みがなされている。高温安定性についてはLiMn24に比べると顕著な劣化は見られないが、10年以上の長期耐久性が要求される電気自動車やハイブリッド電気自動車用途においては、充分であるとは言えない。
【0006】
一方、負極材料としては、炭素材料が最も一般的であり、その種類、物性が詳細に検討されているが、大きくはリチウムのインターカレート/デインターカレート反応を利用した黒鉛材料を用いる場合と、黒鉛層構造をほとんど持たない低結晶性の炭素材料を用いる場合に大別される。携帯電話などの民生用電子機器の場合、単セルあるいは少数個セルでの駆動のために、電圧がフラットで高エネルギー密度化が図れる黒鉛材料を選択する方が一般的である。
【0007】
【発明が解決しようとする課題】
リチウム含有複合酸化物を正極、炭素材料を負極とする非水電解液二次電池を開発、実用化する上において、特に電力貯蔵用や電気自動車用途の大型二次電池の場合、長期の耐久性、高温での性能安定性の確保が特に要求される。上述の如く、LiMn24を正極活物質とした電池系においては、電池を50℃〜60℃程度の高温で充放電を行ったり、放置した場合、電池の容量劣化が大きくなると共に内部抵抗が増加し出力の低下を招き実使用に耐え得るものではない。このような高温での電池の容量劣化機構、内部抵抗上昇機構については完全に解明された訳ではないが、ひとつには高温で正極活物質からのマンガンの溶解が容量劣化を引き起こしているといわれている。
【0008】
そこで、LiMn24の製造条件や物性の制御、電解液組成の最適な組み合わせにより、マンガンの溶解量を抑制することが特開平11−297322号公報に開示されている。また、高温時にはLiMn24正極の電圧を高電圧部に保ったままで充放電を行うことにより容量劣化を抑制する電池の使用方法が特開2000−58134号公報に開示されている。
【0009】
LiNiO2を正極活物質とした電池系においても高温環境下で充放電あるいは放置した場合、電池の内部抵抗が増加し出力が低下するために長期耐久性に課題を残す。LiNiO2正極と難黒鉛化性炭素負極を組み合わせることにより高温環境下でのサイクル寿命特性を向上することが特開2000−200624号公報に開示されているが、単に正、負極を組み合わせるだけでは充分な効果は得られるものではない。
【0010】
本発明は上記のような問題点に省みてなされたものであって、高温環境下において充放電されたり、放置された場合においても容量劣化および内部抵抗上昇を最小限に抑制し、長期耐久性、高温安定性に優れた非水電解液二次電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の課題を解決するために本発明は、リチウム含有複合酸化物からなる正極と、非水電解液と、リチウムを吸蔵、放出し得る炭素材料からなる負極とを備えた非水電解液二次電池において、前記炭素材料は(d002)が0.30nm以上0.385nm以下である低結晶性炭素であり、且つ満充電時の負極の容量密度が、金属リチウムを対極とした時の充放電可能容量密度の0%以上0%以下としたものである。
【0012】
本発明者らは、上述のようなLiMn24正極と炭素材料負極からなる非水電解液二次電池の高温での容量劣化機構の解析を行った結果、高温環境下において正極からのマンガンの溶解は起こるものの、正極活物質自体の容量劣化はさほど大きいものではなく、むしろマンガン系正極あるいは溶解したマンガンの影響を受けて負極炭素材料に吸蔵されているリチウムが高温環境下において副反応を起こし不活性なリチウム化合物に変化し、充放電反応に関与できなくなることで容量劣化が支配されることを見出したものである。そこで、負極炭素材料の改良、最適化を行うことにより電池としての高温安定性を向上できることを見出したものである。
【0013】
具体的には、充電時に負極炭素材料中に吸蔵されるリチウムの状態によって、高温環境下における電解液とリチウムの副反応の度合いが異なることに着目した。黒鉛のような層構造の発達した炭素材料では、リチウムはインターカレーション反応によって黒鉛層間にインターカレートされ、ステージ構造と呼ばれる極めて異方性が大きい状態でリチウムがイオン状態で格納されている。このような系においては、LiMn24正極系では高温環境下においてリチウムが出入りする黒鉛結晶のエッジ部分で電解液とリチウムとの副反応が選択的に進行し電池の容量劣化が大きくなる。
【0014】
一方、低結晶性炭素を負極に用いた場合では、リチウムはインターカレーション反応による層間への格納よりも炭素結晶構造の空隙部分へ格納される割合が圧倒的に多く、リチウムは等方的に均一にイオン状態で格納されているために高温環境下においても副反応が選択的に進行することは無い。但し、負極中のリチウムの濃度が重要であり、ここでいう濃度とは負極が可逆的に充放電可能な容量密度に対して実際に充放電を繰り返している容量密度の割合を示している。リチウムの濃度が高くなると炭素中でのリチウムーリチウム間の相互作用が強くなり、リチウムがイオン性から金属状態に近づき、電解液の分解を促し副反応が生じやすくなる。このことは炭素負極の充放電曲線からも明らかであり、低結晶性炭素を負極に用いた場合、金属リチウム対極に対して充電が浅い部分では非常に貴な電位を示すが深い充電を行うと、非常に卑な電位を示し黒鉛負極のインターカレーション反応の電位よりも卑な電位であり金属リチウムの電位に極めて近くなる。
【0015】
LiNiO2を正極活物質に用いた場合は、高温に放置したりサイクルを繰り返しても容量劣化は比較的小さい。これはLiMn24正極に比べLiNiO2正極は潜在的に充放電可能なリチウム量が多いために副反応によってリチウムが幾分失われても容量を維持できる構造となっていることに起因する。しかしながら高温環境下での放置により電池の内部抵抗の上昇が大きくなり出力低下が顕著となり寿命を来す。このことは上述の負極中のリチウム濃度に大きな相関があることを示すものである。
【0016】
【発明の実施の形態】
本発明の請求項1に記載の発明は、リチウム含有複合酸化物からなる正極と、非水電解液と、リチウムを吸蔵、放出し得る炭素材料からなる負極とを備えた非水電解液二次電池であって、前記炭素材料は(d002)が0.30nm以上0.385nm以下である低結晶性炭素であり、且つ満充電時の負極の容量密度が、金属リチウムを対極とした時の充放電可能容量密度の0%以上0%以下とすることを特徴とする非水電解液二次電池としたものである。
【0017】
本発明の非水電解液二次電池に用いる負極炭素材料はその黒鉛化が低いことが重要であり、(d002)の値が0.30nm以上0.385nm以下であることが要求される。(d002)の値は002面の格子面間隔の値であり、炭素材料粉末のX線回折測定によって容易に調べることができ、Cu−Kα線をターゲットとした場合、2θが23度から27度付近に002回折線が得られる。高純度ケイ素粉末を内部標準試料として加え、角度を補正することでより精密な値が得られる。(d002)の値が0.30nm未満では幾分黒鉛層構造が発達するために前述の理由で高温環境下での容量劣化が大きくなる傾向にある。逆に0.385nmを越える炭素材料では炭素化が未発達であり、不純物成分が多く残っており、容量低下を招くと共に高温安定性も低下する。また、満充電時の負極の容量密度が、金属リチウムを対極とした時の充放電可能容量密度の0%以上0%以下とすることが重要である。充放電可能容量密度の測定は、例えば後述の実施例に示すようなシート状の炭素電極とシート状の金属リチウム電極とを対向させて電解液を注液した電池を作製し、0.2mA/cm2以下の電流密度で0Vまで充電(リチウムを吸蔵させる方向を充電、放出させる方向を放電とすると)し、更に0Vに到達した段階で1時間の定電圧充電を行い充分にリチウムを吸蔵させ、同じ電流密度で1.5Vまで定電流放電を行い、これを3サイクル繰り返した時の3サイクル目の放電容量の値をリチウム極と対向し得る炭素極の炭素含有質量で除することで得られる。満充電時の負極の容量密度が充放電可能容量密度の0%以上0%以下であることが重要であり、0%未満では高温安定性は確保できても電池容量が大幅に減少することが明白であり、リチウムイオン二次電池の特長を生かすことができない。一方、0%を越えた場合は、負極中のリチウム濃度が高くなり、リチウムの存在状態が金属状態に近づき、高温環境下で放置されると電解液との副反応が起こりやすくなり容量劣化や電池の内部抵抗上昇が顕著となる。
【0018】
請求項2に記載の発明は、炭素材料は、真密度が1.5g/cc〜1.8g/ccであり、難黒鉛化性炭素材料であることを特徴としたものである。本発明の非水電解液二次電池に用いる負極炭素材料の真密度は通常の黒鉛材料であれば2.2g/cc程度の高密度であるが、結晶構造がほとんど発達していない低結晶性炭素であるために真密度としては1.5g/cc〜1.8g/ccであることが好ましい。炭素材料の種類としては、その原料、製造方法において、物性が大きく異なり、低結晶性炭素の中にも高温下で熱処理を施すことにより容易に黒鉛化が進行する易黒鉛化性炭素と高温熱処理を施してもそれほど黒鉛化が進行しない難黒鉛化性炭素の2種に大別されるが、本発明で特に効果が得られるのは、難黒鉛化性炭素である。難黒鉛化性炭素はガラス状炭素に代表される極めて非晶質構造に近い炭素材料であり、一般には熱硬化性樹脂などの有機化合物を熱処理することによって得られる。しかしながら本発明で特に効果が得られるのは、石油ピッチ、石炭ピッチなど通常易黒鉛化性炭素材料の原料に用いられるピッチ類を製造過程において、ランダムな配列のまま炭素化することによって難黒鉛化性炭素としたものが好ましい。
【0019】
請求項3に記載の発明は、正極活物質のリチウム含有複合酸化物がスピネル構造を有するLiMn24、あるいは六方晶構造を有するLiNi1-(x+y)Coxy2(0.1≦x≦0.35)(0.03≦y≦0.15)(M=Al、Ti、Mn、Cr、Sn、Mgから選ばれる少なくとも1つ)としたものである。
【0020】
LiMn24はMnO2とLi2CO3などのマンガン酸化物とリチウム塩とを混合し焼成することで容易に合成することが可能であるが、スピネル構造を維持していれば、更にMnの一部をCrやCoで置換したものも使用可能である。
【0021】
LiNi1-(x+y)Coxy2はCoを10%以上置換することで充放電による結晶相の変化が解消され可逆性が大幅に向上する。また、Co置換した上に更に他元素で置換することで可逆容量密度は幾分低下するものの熱安定性が向上し安全性確保の観点から好ましい。置換元素としてはAl、Ti、Mn、Cr、Sn、Mgが可能であるが、特に好ましいのはAlであり、置換量としては6%〜15%程度が望ましい。
【0022】
【実施例】
以下、実施例および比較例により本発明を詳しく述べる。
【0023】
(実施例1)
図1に本実施例で用いた円筒形電池の断面切欠斜視図を示す。図1において、1はリード板2を取り付けた負極板で3はリード板4を取り付けた正極板である。負極板1と正極板3の間にセパレータ5を介して渦巻き状に捲回された極板群が、その上下に絶縁板6を配置した状態で負極端子を兼ねる電池ケース7内に収納されている。電池ケース7の上縁は絶縁パッキング8を介して、安全弁を設けた正極端子を兼ねる封口板9で密封口されている。以下、正、負極板の製造方法等について詳しく説明する。
【0024】
正極活物質には電解二酸化マンガン(MnO2)と炭酸リチウム(Li2Co3)とをLi/Mnのモル比が0.54になるように混合し、大気中850℃の熱処理によりリチウムマンガン複合酸化物を合成した。得られた酸化物の結晶構造は粉末X線回折によりスピネル型の構造であることを確認し、粉砕、分級の処理を経て平均粒径約10μmの正極活物質粉末とした。この活物質100質量部に導電材としてのアセチレンブラック3質量部を加え、この混合物にN−メチルピロリドン(NMP)の溶剤に結着剤としてのポリフッ化ビニリデン(PVdF)を溶解した溶液を混練してペースト状にした。なお、加えたPVdFの量は活物質100質量部に対して4質量部となるように調製した。次いでこのペーストをアルミニウム箔の両面に塗工し、乾燥後、圧延して厚み0.20mm、幅37mm、長さ350mmの正極板とした。
【0025】
負極には等方性ピッチを原料として熱処理を行った難黒鉛化性炭素を用いた。平均粒径は約10μmであり、(d002)が0.380nmであり真密度は1.54g/ccであった。負極板の作製は正極板の作製とほぼ同様に炭素粉末100質量部にNMPの溶剤に結着剤としてのPVdFを溶解した溶液を混練してペースト状にした。加えたPVdFの量は炭素粉末100質量部に対して8質量部となるように調製した。次いでこのペーストを銅箔の両面に塗工し、乾燥後、圧延して幅39mm、長さ420mmの負極板とした。負極板の塗工質量を変化させ、合剤密度をほぼ一定とし、圧延後の厚みを変化させることで正、負極板の容量バランスを考慮し、満充電時の負極の容量密度が変化可能な電池設計とした。
【0026】
そして正、負極板にそれぞれリードを取り付け、厚み0.025mm、幅45mm、長さ約1000mmのポリエチレン製の微多孔膜からなるセパレータを介して渦巻き状に捲回し、直径17mm、高さ50mmの電池ケース7に収納した。
【0027】
電解液にはプロピレンカーボネート(PC)とジメチルカーボネート(DMC)とを1:1の体積比で混合した溶媒に電解質として1モル/lのLiPF6を溶解したものを注液した。そして電池を封口し完成電池A〜Gの7種類とした。
【0028】
つづいて、本実施例1で使用した炭素負極の充放電可能容量密度を求めるための方法について述べる。
【0029】
電池Aで使用したものと同じ負極板を幅37mm、長さ200mmに加工し、厚み0.20mm、幅39mm、長さ250mmの金属リチウムシートにリードを取り付けたものと上述のセパレータを介して捲回し電池ケース7に収納した。上述の電解液を注液し参考電池Aとした。本参考電池Aは構成上、炭素極側が正極、金属リチウム極が負極の扱いになるが、炭素極にリチウムを吸蔵する側(卑な電位側)を充電、リチウムを放出する側(貴な電位側)を放電とする。電流密度0.15mA/cm2で0Vまで充電を行い、その後、0Vで1時間の定電圧充電を行い、充分に炭素極にリチウムを吸蔵させた。その後、同じ電流密度で1.5Vまで放電を行った。これを5サイクル繰り返し、5サイクル目の放電容量を炭素極の炭素含有質量で除した値を充放電可能容量密度とした。本参考電池Aの場合、450Ah/kgであった。
【0030】
実施例1の電池A〜Gを各5セル用意し、充電電流、放電電流共に100mAとし、充電終止電圧4.3V、放電終止電圧2.5Vとした定電流充放電を25℃環境下で10サイクル行い、9サイクル目の放電容量を初期容量とした。そして満充電状態において、全セルを60℃の環境下に20日間放置した。その後25℃環境下に戻し5サイクルの充放電を行いその4サイクル目の放電容量を回復容量とした。それぞれの電池について容量回復率(%)=(回復容量)/(初期容量)×100を求めた。表1に示した値は各5セルの容量回復率の平均値を示す。
【0031】
【表1】

Figure 0004961649
【0032】
表1より、高温放置での容量回復率が高いのは電池〜電池であり、負極の充放電可能容量密度に対する満充電時の負極容量密度の比が40%〜60%の範囲にある場合、容量回復率は90%以上を達成している。満充電時の負極容量密度が大きく、充放電可能容量密度に対する比率が70%を越える電池Gでは、極端に容量回復率が低下することがわかる。これは負極中のリチウムの濃度が大きくなり、高温放置により、電解液との副反応が進行しやすくなり、リチウムが不可逆に消費されることによって、容量低下を引き起こしているものと考えられる。一方、電池Aのような負極容量密度の小さい電池設計では、電池のエネルギー密度の低下が顕著となり、実使用には適さず、高温放置時の容量回復率もさほど良くはない。
【0033】
以上の結果より、負極の充放電可能容量密度に対する満充電時の負極容量密度の比が40%〜60%に設計された電池において、高温安定性を確保することが可能である。
【0034】
(比較例1)
負極炭素材料として、人造黒鉛を用い、実施例1と同様の電池を作製した。負極の(d002)は0.335nmであり、充放電可能容量密度は350Ah/kgであった。電解液にエチレンカーボネート(EC)とDMCとを1:1の体積比で混合した溶媒に1モル/lのLiPF6を溶解したものを注液した以外は実施例1と同処方の電池とし、満充電時の負極容量密度が210Ah/kg、充放電可能容量密度に対する満充電時の負極容量密度の比が60%となるような電池設計とし、比較例1の電池とした。
【0035】
比較例1の電池を実施例1と同様に60℃の高温放置試験を実施し、容量回復率を求めたところ、71%であった。つまり、黒鉛のような結晶構造の発達した炭素材料では負極中に存在するリチウムの状態が異なるために、充放電可能容量密度に対する満充電時の負極容量密度の比を60%程度としても、高温での電解液との反応性が促進され充分な特性が得られない。
【0036】
(実施例2)
正極活物質にはLiNi0.7Co0.2Al0.12を用いた。NiSO4水溶液に、所定比率のCoおよびAlの硫酸塩を加え、飽和水溶液を調製した。この飽和水溶液を撹拌しながら水酸化ナトリウムを溶解したアルカリ溶液をゆっくりと滴下し中和することによって3元系の水酸化ニッケルNi0.7Co0.2Al0.1(OH)2の沈殿を生成させた。この沈殿物をろ過、水洗し、乾燥を行った。そして、Ni、Co、Alの原子数の和とLiの原子数が等量になるように水酸化リチウムを加え、乾燥空気中800℃で10時間焼成を行うことにより、目的とするLiNi0.7Co0.2Al0.12を得た。得られた複合酸化物は粉末X線回折により単一相の六方晶層状構造であることを確認し、粉砕、分級の処理を経て平均粒径約10μmの正極活物質粉末とした。この活物質を実施例1と同処方にてペースト化し、アルミニウム箔の両面に塗工、圧延し、厚み0.075mm、幅37mm、長さ600mmの正極板とした。
【0037】
負極に焼成炭素化温度が異なる難黒鉛化性炭素を用いたこと以外は、実施例1と同様の処方にて負極板を作製し、幅39mm、長さ670mmとし、厚みを変化させることで正、負極板の容量バランスを考慮し、満充電時の負極の容量密度が変化可能な電池設計とした。この負極の充放電可能容量密度は400Ah/kgであった。
【0038】
そして正、負極板を実施例1と同様のセパレータを介して捲回し電池ケース7に収納した。なお電解液は実施例1と同じ組成のものを使用し、完成電池を電池H〜Nとした。
【0039】
実施例2の電池H〜N各5セルを用意し、実施例1と同様な60℃の高温放置試験を行った。但し、充電終止電圧は4.2Vとした。そして高温放置による各電池の内部抵抗の変化(上昇率)を測定した。内部抵抗の測定方法は以下の手順に従った。まず、電池を60%の充電状態に充電し、図2(a)に示すような0.5A〜2.5Aまでの5種類のパルス電流を1分間隔で印加し、それぞれパルス充電あるいはパルス放電10秒後の電圧をモニターし、図2(b)のような直線近似を最小二乗法を用いて行い、その傾きの値を電池の内部抵抗(DC−IR)とした。この値は電池構成部材が有する抵抗成分と電池の反応抵抗成分が含まれており、電池の入出力特性を示すものであり、内部抵抗が上昇すると電池の入力および出力が低下することになり、好ましくない。
【0040】
実施例2の電池H〜Nについて高温放置後の容量回復率と内部抵抗の上昇率の結果を表2に示した。内部抵抗に関しては60℃放置前に測定した後、電池を満充電状態とし、60℃環境下に20日間放置した。その後25℃環境下に戻し、回復容量を求めた後に、電池を60%充電状態に充電し、再び内部抵抗を測定した。内部抵抗上昇率=(高温放置後内部抵抗−高温放置前内部抵抗)/(高温放置前内部抵抗)×100(%)とした。
【0041】
【表2】
Figure 0004961649
【0042】
表2より、容量回復率については、どの電池も比較的良好であり、正極活物質にLiMn24を用いた実施例1のような顕著な差は見られない。これはLiNi0.7Co0.2Al0.12正極が高温で比較的安定であることを示している。しかしながら、内部抵抗上昇率を比較したところ、電池H〜電池Mの上昇率は10%未満であるのに対し、電池Nでは17.6%と大幅な上昇を示し、電池の入出力低下が顕著である。これは負極の充放電可能容量密度に対する満充電時の負極容量密度の比が75%と大きく、負極中のリチウム濃度が大きくなり、電解液との副反応を促進することによって、反応抵抗成分が上昇したことに起因するものと考えられる。
【0043】
(実施例3)
負極に実施例1と同一の難黒鉛化性炭素(充放電可能容量密度450Ah/kg)を用いた以外は実施例2と全く同様の方法で電池を作製し、実施例3の電池Pとした。満充電時の負極容量密度を300Ah/kgとし、充放電可能容量密度に対する満充電時の負極容量密度比は67%であった。電池Pの60℃高温放置試験を実施し、容量回復率および内部抵抗上昇率を求めたところ、容量回復率は92%、内部抵抗上昇率は9.0%であった。
【0044】
実施例2および3の結果より、高温放置による電池内部抵抗上昇は満充電時の負極容量密度そのものに依存するのではなく、充放電可能容量密度に対する満充電時の負極容量密度の比率に依存することがわかる。
【0045】
なお、本実施例および比較例では、電解液の溶媒にPC、DMCあるいはEC、DMCの混合溶媒を使用したが、エチルメチルカーボネート、ジエチルカーボネートなど従来より公知な他のカーボネート系溶媒を始め、4V級の耐酸化還元電位を有する溶媒が単独あるいは混合溶媒として使用可能である。同じく電解質についてもLiBF4、LiClO4など従来より公知な電解質が使用可能である。
【0046】
また、本実施例では小型の円筒形電池を用いて説明したが、電池形状については、電極を楕円体状に捲回し角形ケースに収納した角形電池や薄型の電極を複数枚数積層して角形の電池ケースに収納した角形電池を用いても同様な効果が得られる。電池サイズに関しては、小型電子機器を想定した小型電池だけではなく、電動工具などの高出力機器用途、電力貯蔵用や電気自動車、ハイブリッド電気自動車用途として想定される大型電池についても同様な効果が得られることは言うまでもなく、これら大型電池が複数個搭載されたモジュール電池、組電池についても同様である。
【0047】
【発明の効果】
以上のように本発明によれば、リチウム含有複合酸化物を正極に、低結晶性炭素を負極に用い、その満充電時の負極容量密度が金属リチウムを対極とした時の充放電可能容量密度の30%〜70%とすることにより、高温安定性に優れた非水電解液二次電池が得られる。
【図面の簡単な説明】
【図1】本実施例および比較例で用いた円筒形電池の断面切欠斜視図
【図2】電池の内部抵抗測定手順を示す図
【符号の説明】
1 負極板
2 リード板
3 正極板
4 リード板
5 セパレータ
6 絶縁板
7 電池ケース
8 絶縁パッキング
9 封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery excellent in long-term durability.
[0002]
[Prior art]
In recent years, lithium-ion secondary batteries have been put into practical use as power sources for portable electronic devices such as mobile phones, notebook computers, and video camcorders as secondary batteries with high operating voltage and high energy density, and have achieved rapid growth. Production volume continues to increase as a battery system that leads small secondary batteries. However, most of the positive electrode materials of these lithium ion secondary batteries are lithium-cobalt composite oxides (LiCoO2) Is used.
[0003]
LiCoO2Is a high-performance positive electrode material with high voltage, high energy density, excellent high-temperature stability and cycle life characteristics, but cobalt is scarce in resources and limited in production area, so it is expensive and stable supply I have anxiety about sex.
[0004]
Recently, development of large-sized lithium ion secondary batteries for power storage and electric vehicle applications has been promoted, and lithium-manganese composite oxides (LiMn) having a spinel structure that is cheaper and rich in resources as a positive electrode material.2OFour) Is promising. LiMn2OFourHas been known for a long time as a material exhibiting 4V class discharge (Japanese Patent Publication No. 58-34414), but it has been put into practical use, but in terms of cycle life characteristics and high-temperature stability, it is LiCoO.2It is inferior to the positive electrode, and various efforts have been made to improve the performance. For example, attempts have been reported to stabilize the crystal structure during charge and discharge by replacing some of the manganese atoms with other transition metal elements such as cobalt, chromium and nickel. Although improved, the stability at high temperature has not been improved sufficiently.
[0005]
In addition to lithium manganese composite oxide, lithium nickel composite oxide having a hexagonal structure (LiNiO) is considered promising.2). LiNiO2Is a positive electrode material having a very high capacity density, but it is not reversible due to a change in crystal structure accompanying charge / discharge, and in general, a ternary system in which a part of Ni element is substituted with other elements such as Co. Often used in the form of complex oxides. However, although cycle reversibility is improved, it has been a problem that safety is lower than other positive electrode materials. The safety (thermal stability) of lithium-nickel composite oxides is almost proportional to the amount of lithium deintercalation during charging. To ensure safety, charge capacity is regulated or Ni elements are used. There are efforts to improve thermal stability by not only substituting a part of these with Co, but also using, for example, a quaternary composite oxide further substituted with a different element such as Al or Mn. LiMn for high temperature stability2OFourHowever, it cannot be said to be sufficient for electric vehicles and hybrid electric vehicles that require long-term durability of 10 years or longer.
[0006]
On the other hand, as a negative electrode material, a carbon material is the most common, and its type and physical properties have been studied in detail. In general, a graphite material using lithium intercalation / deintercalation reaction is used. And when using a low crystalline carbon material having almost no graphite layer structure. In the case of consumer electronic devices such as mobile phones, it is common to select a graphite material that has a flat voltage and a high energy density for driving with a single cell or a small number of cells.
[0007]
[Problems to be solved by the invention]
Long-term durability, especially in the case of large-sized secondary batteries for power storage and electric vehicles, in the development and commercialization of non-aqueous electrolyte secondary batteries using lithium-containing composite oxides as positive electrodes and carbon materials as negative electrodes Securing performance stability at high temperatures is particularly required. As mentioned above, LiMn2OFourIn a battery system using a positive electrode active material, if the battery is charged / discharged at a high temperature of about 50 ° C. to 60 ° C. or left unattended, the capacity of the battery will increase and the internal resistance will increase, leading to a decrease in output. It cannot withstand actual use. The mechanism of battery capacity degradation and internal resistance increase at such high temperatures has not been fully elucidated, but one reason is that dissolution of manganese from the cathode active material at high temperatures causes capacity degradation. ing.
[0008]
Therefore, LiMn2OFourJP-A-11-297322 discloses that the amount of manganese dissolved is suppressed by an optimum combination of the production conditions and physical properties of the electrolyte and the composition of the electrolyte solution. Also, at high temperatures, LiMn2OFourJapanese Patent Application Laid-Open No. 2000-58134 discloses a method of using a battery that suppresses capacity deterioration by charging and discharging while keeping the voltage of the positive electrode at a high voltage portion.
[0009]
LiNiO2Even in a battery system using as a positive electrode active material, when charging / discharging or leaving it in a high temperature environment, the internal resistance of the battery increases and the output decreases, leaving a problem in long-term durability. LiNiO2JP 2000-200064 A discloses that a cycle life characteristic under a high temperature environment can be improved by combining a positive electrode and a non-graphitizable carbon negative electrode. Cannot be obtained.
[0010]
The present invention has been made in view of the above-mentioned problems, and is capable of minimizing capacity deterioration and internal resistance rise even when charged / discharged or left in a high temperature environment, and has long-term durability. An object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in high-temperature stability.
[0011]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a nonaqueous electrolyte secondary comprising a positive electrode made of a lithium-containing composite oxide, a nonaqueous electrolyte, and a negative electrode made of a carbon material capable of occluding and releasing lithium. In the battery, the carbon material (d002) is 0.3.70 nm or more 0.385It is low crystalline carbon that is less than or equal to nm, and the capacity density of the negative electrode when fully charged is the capacity density that can be charged and discharged when metallic lithium is the counter electrode.40% or more60% or less.
[0012]
The inventors have described LiMn as described above.2OFourAs a result of analyzing the capacity deterioration mechanism at high temperature of the non-aqueous electrolyte secondary battery consisting of the positive electrode and the carbon material negative electrode, although dissolution of manganese from the positive electrode occurs in a high temperature environment, the capacity deterioration of the positive electrode active material itself is Rather, the lithium stored in the negative electrode carbon material under the influence of the manganese-based positive electrode or dissolved manganese causes a side reaction in a high-temperature environment and changes to an inactive lithium compound, resulting in a charge-discharge reaction. It has been found that capacity degradation is governed by the inability to participate. Thus, the present inventors have found that the high-temperature stability as a battery can be improved by improving and optimizing the negative electrode carbon material.
[0013]
Specifically, the inventors have focused on the fact that the degree of side reaction between the electrolytic solution and lithium in a high-temperature environment differs depending on the state of lithium occluded in the negative electrode carbon material during charging. In a carbon material having a layered structure such as graphite, lithium is intercalated between graphite layers by an intercalation reaction, and lithium is stored in an ionic state with a very large anisotropy called a stage structure. In such a system, LiMn2OFourIn the positive electrode system, the side reaction between the electrolyte and lithium selectively proceeds at the edge of the graphite crystal where lithium enters and exits in a high temperature environment, and the capacity of the battery is greatly deteriorated.
[0014]
On the other hand, when low crystalline carbon is used for the negative electrode, lithium is stored in the void portion of the carbon crystal structure overwhelmingly more than the intercalation reaction, and lithium isotropically. Since the ions are stored uniformly in an ionic state, the side reaction does not proceed selectively even in a high temperature environment. However, the concentration of lithium in the negative electrode is important, and the concentration referred to here indicates the ratio of the capacity density at which the negative electrode is actually repeatedly charged and discharged with respect to the capacity density at which the negative electrode can be reversibly charged and discharged. As the concentration of lithium increases, the lithium-lithium interaction in the carbon becomes stronger, and the lithium approaches the metallic state from ionicity, facilitating the decomposition of the electrolytic solution and easily causing side reactions. This is clear from the charge / discharge curve of the carbon negative electrode, and when low crystalline carbon is used for the negative electrode, it shows a very noble potential in the shallow charge portion of the metal lithium counter electrode, but deep charge is performed. It shows a very basic potential, which is a lower potential than the potential of the intercalation reaction of the graphite negative electrode, and is very close to the potential of metallic lithium.
[0015]
LiNiO2Is used as the positive electrode active material, the capacity deterioration is relatively small even if it is left at a high temperature or the cycle is repeated. This is LiMn2OFourLiNiO compared to the positive electrode2This is because the positive electrode has a structure in which the capacity can be maintained even if lithium is somewhat lost due to a side reaction because of the large amount of lithium that can be charged and discharged. However, when the battery is left in a high temperature environment, the internal resistance of the battery increases greatly, the output decreases remarkably, and the life is reached. This indicates that there is a large correlation in the lithium concentration in the negative electrode.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
  The invention according to claim 1 of the present invention is a non-aqueous electrolyte secondary comprising a positive electrode made of a lithium-containing composite oxide, a non-aqueous electrolyte, and a negative electrode made of a carbon material capable of occluding and releasing lithium. The carbon material has a (d002) of 0.3.70 nm or more 0.385It is low crystalline carbon that is less than or equal to nm, and the capacity density of the negative electrode when fully charged is the capacity density that can be charged and discharged when metallic lithium is the counter electrode.40% or more6The non-aqueous electrolyte secondary battery is characterized by being 0% or less.
[0017]
  It is important that the negative electrode carbon material used in the nonaqueous electrolyte secondary battery of the present invention has low graphitization, and the value of (d002) is 0.3.70 nm or more 0.385It is required to be nm or less. The value of (d002) is the value of the lattice spacing of the 002 plane, which can be easily examined by X-ray diffraction measurement of the carbon material powder. When Cu—Kα rays are targeted, 2θ is 23 to 27 degrees. A 002 diffraction line is obtained in the vicinity. By adding high-purity silicon powder as an internal standard sample and correcting the angle, a more precise value can be obtained. The value of (d002) is 0.37If the thickness is less than 0 nm, the graphite layer structure is somewhat developed, so that the capacity deterioration under a high temperature environment tends to increase due to the reasons described above. Conversely, 0.385Carbon materials exceeding nm have not yet been carbonized and a large amount of impurity components remain, leading to a decrease in capacity and high temperature stability. In addition, the capacity density of the negative electrode when fully charged is the capacity density that can be charged and discharged when metal lithium is the counter electrode.40% or more6It is important to make it 0% or less. The chargeable / dischargeable capacity density is measured by, for example, producing a battery in which an electrolytic solution is injected with a sheet-like carbon electrode and a sheet-like metal lithium electrode facing each other as shown in the examples described later. cm2Charge to 0V at the following current density (charge is the direction in which lithium is occluded and discharge is the direction in which it is discharged), and when the voltage reaches 0V, it is charged at a constant voltage for 1 hour to fully occlude lithium. It is obtained by carrying out constant current discharge to 1.5 V at a current density and dividing the value of the discharge capacity at the third cycle when this is repeated three cycles by the carbon-containing mass of the carbon electrode that can face the lithium electrode. The capacity density of the negative electrode at full charge is the chargeable / dischargeable capacity density.40% or more6It is important that it is 0% or less,4If it is less than 0%, it is clear that the battery capacity is significantly reduced even if the high temperature stability can be secured, and the features of the lithium ion secondary battery cannot be utilized. on the other hand,6If it exceeds 0%, the lithium concentration in the negative electrode will be high, the presence of lithium will approach the metallic state, and if left in a high temperature environment, side reactions with the electrolyte will easily occur, resulting in capacity deterioration and battery performance. The rise in internal resistance becomes remarkableThe
[0018]
  The invention according to claim 2 is a carbon material.IsTrue density is 1.5g / cc to 1.8g / ccDifficultGraphitizable carbon materialIt is characterized byIt is what. The true density of the negative electrode carbon material used in the non-aqueous electrolyte secondary battery of the present invention is a high density of about 2.2 g / cc if it is a normal graphite material, but has a low crystallinity with little developed crystal structure. Since it is carbon, the true density is preferably 1.5 g / cc to 1.8 g / cc.Yes.As for the types of carbon materials, the raw materials and manufacturing methods differ greatly in physical properties, and graphitized carbon and high-temperature heat treatment that easily progress to graphitization by applying heat treatment to low crystalline carbon even at high temperatures. Although it is roughly classified into two types of non-graphitizable carbon that does not progress so much even if it is applied, it is non-graphitizable carbon that is particularly effective in the present invention. Non-graphitizable carbon is a carbon material having a very amorphous structure typified by glassy carbon, and is generally obtained by heat treatment of an organic compound such as a thermosetting resin. However, the present invention is particularly effective in making it difficult to graphitize pitches, which are usually used as raw materials for graphitizable carbon materials such as petroleum pitch and coal pitch, by carbonizing them in a random arrangement in the production process. Preferred is carbon.
[0019]
The invention according to claim 3 is the LiMn in which the lithium-containing composite oxide of the positive electrode active material has a spinel structure2OFourOr LiNi having a hexagonal crystal structure1- (x + y)CoxMyO2(0.1 ≦ x ≦ 0.35) (0.03 ≦ y ≦ 0.15) (M = at least one selected from Al, Ti, Mn, Cr, Sn, and Mg).
[0020]
LiMn2OFourIs MnO2And Li2COThreeIt is possible to easily synthesize by mixing and firing a manganese oxide such as manganese salt, but if the spinel structure is maintained, a part of Mn may be further substituted with Cr or Co. It can be used.
[0021]
LiNi1- (x + y)CoxMyO2By replacing Co by 10% or more, the change in crystal phase due to charge / discharge is eliminated, and the reversibility is greatly improved. In addition, by substituting Co with another element, the reversible capacity density is somewhat reduced, but the thermal stability is improved, which is preferable from the viewpoint of ensuring safety. Al, Ti, Mn, Cr, Sn, and Mg can be used as the substitution element. Al is particularly preferred, and the substitution amount is preferably about 6% to 15%.
[0022]
【Example】
Hereinafter, the present invention will be described in detail by way of examples and comparative examples.
[0023]
Example 1
FIG. 1 shows a perspective sectional cutaway view of a cylindrical battery used in this example. In FIG. 1, 1 is a negative electrode plate with a lead plate 2 attached, and 3 is a positive electrode plate with a lead plate 4 attached. A group of electrode plates wound in a spiral shape between a negative electrode plate 1 and a positive electrode plate 3 with a separator 5 interposed between them is housed in a battery case 7 that also serves as a negative electrode terminal with insulating plates 6 disposed above and below it. Yes. The upper edge of the battery case 7 is sealed with a sealing plate 9 that also serves as a positive electrode terminal provided with a safety valve via an insulating packing 8. Hereinafter, the manufacturing method of positive and negative electrode plates will be described in detail.
[0024]
For the positive electrode active material, electrolytic manganese dioxide (MnO2) And lithium carbonate (Li2CoThreeAnd a Li / Mn molar ratio of 0.54, and a lithium manganese composite oxide was synthesized by heat treatment at 850 ° C. in the atmosphere. The crystal structure of the obtained oxide was confirmed to be a spinel structure by powder X-ray diffraction, and pulverized and classified to obtain a positive electrode active material powder having an average particle size of about 10 μm. 3 parts by mass of acetylene black as a conductive material is added to 100 parts by mass of this active material, and a mixture of polyvinylidene fluoride (PVdF) as a binder in a solvent of N-methylpyrrolidone (NMP) is kneaded with this mixture. To make a paste. The amount of PVdF added was adjusted to 4 parts by mass with respect to 100 parts by mass of the active material. Next, this paste was applied to both surfaces of an aluminum foil, dried, and rolled to obtain a positive electrode plate having a thickness of 0.20 mm, a width of 37 mm, and a length of 350 mm.
[0025]
For the negative electrode, non-graphitizable carbon that was heat-treated using isotropic pitch as a raw material was used. The average particle size was about 10 μm, (d002) was 0.380 nm, and the true density was 1.54 g / cc. The negative electrode plate was prepared in the same manner as the positive electrode plate by kneading a solution of PVdF as a binder in an NMP solvent into 100 parts by mass of carbon powder into a paste. The amount of added PVdF was adjusted to 8 parts by mass with respect to 100 parts by mass of the carbon powder. Next, this paste was applied to both sides of a copper foil, dried, and rolled to obtain a negative electrode plate having a width of 39 mm and a length of 420 mm. By changing the coating mass of the negative electrode plate, making the mixture density almost constant, and changing the thickness after rolling, the capacity density of the negative electrode at full charge can be changed in consideration of the positive and negative electrode plate capacity balance Battery design.
[0026]
Leads are attached to the positive and negative electrodes, respectively, wound in a spiral through a separator made of a polyethylene microporous film having a thickness of 0.025 mm, a width of 45 mm, and a length of about 1000 mm. A battery having a diameter of 17 mm and a height of 50 mm Stored in Case 7.
[0027]
As the electrolyte, 1 mol / l LiPF was used as an electrolyte in a solvent in which propylene carbonate (PC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1.6The solution in which was dissolved was injected. And the battery was sealed and it was set as seven types of completed battery AG.
[0028]
Next, a method for determining the chargeable / dischargeable capacity density of the carbon negative electrode used in Example 1 will be described.
[0029]
The same negative electrode plate as used in battery A was processed into a width of 37 mm and a length of 200 mm, and a lead was attached to a metal lithium sheet having a thickness of 0.20 mm, a width of 39 mm, and a length of 250 mm. Turned and stored in battery case 7. The above electrolyte solution was injected to obtain a reference battery A. In this reference battery A, the carbon electrode side is treated as a positive electrode and the metal lithium electrode is treated as a negative electrode, but the carbon electrode is charged with the lithium storage side (base potential side) and the lithium is released (noble potential). Side) is discharged. Current density 0.15 mA / cm2Then, the battery was charged up to 0 V, and then charged at 0 V for 1 hour at a constant voltage, and the carbon electrode was sufficiently occluded with lithium. Thereafter, discharging was performed to 1.5 V at the same current density. This was repeated 5 cycles, and the value obtained by dividing the discharge capacity at the 5th cycle by the carbon-containing mass of the carbon electrode was taken as the chargeable / dischargeable capacity density. In the case of this reference battery A, it was 450 Ah / kg.
[0030]
Prepare 5 cells each of batteries A to G of Example 1, charge current and discharge current of 100 mA, charge current discharge of 10 V in a 25 ° C. environment at a charge end voltage of 4.3 V and a discharge end voltage of 2.5 V. The discharge capacity at the ninth cycle was set as the initial capacity. In a fully charged state, all cells were left in an environment of 60 ° C. for 20 days. After returning to the 25 ° C. environment, 5 cycles of charge / discharge were performed, and the discharge capacity at the 4th cycle was defined as the recovery capacity. The capacity recovery rate (%) = (recovery capacity) / (initial capacity) × 100 was determined for each battery. The values shown in Table 1 show the average value of the capacity recovery rate of each 5 cells.
[0031]
[Table 1]
Figure 0004961649
[0032]
  From Table 1, the battery has a high capacity recovery rate when left at high temperature.C~batteryEThe ratio of the negative electrode capacity density at full charge to the chargeable / dischargeable capacity density of the negative electrode4When it is in the range of 0% to 60%, the capacity recovery rate is 90% or more. It can be seen that in the battery G having a large negative electrode capacity density at the time of full charge and a ratio with respect to the chargeable / dischargeable capacity density exceeding 70%, the capacity recovery rate is extremely lowered. This is thought to be due to the fact that the concentration of lithium in the negative electrode increases, the side reaction with the electrolyte easily proceeds when left at high temperature, and the capacity is reduced by irreversibly consuming lithium. On the other hand, in a battery design with a small negative electrode capacity density such as battery A, the energy density of the battery is significantly reduced, which is not suitable for actual use, and the capacity recovery rate when left at high temperature is not so good.
[0033]
  From the above results, the ratio of the negative electrode capacity density at full charge to the chargeable / dischargeable capacity density of the negative electrode4In a battery designed to be 0% to 60%, high temperature stability can be ensured.
[0034]
(Comparative Example 1)
A battery similar to that of Example 1 was produced using artificial graphite as the negative electrode carbon material. The negative electrode (d002) was 0.335 nm, and the chargeable / dischargeable capacity density was 350 Ah / kg. 1 mol / l LiPF in a solvent in which ethylene carbonate (EC) and DMC were mixed at a volume ratio of 1: 1 with the electrolyte.6A battery having the same formulation as in Example 1 except that the solution in which the solution was dissolved was injected, the negative electrode capacity density at full charge was 210 Ah / kg, and the ratio of the negative electrode capacity density at full charge to the chargeable / dischargeable capacity density was 60%. The battery design was such that the battery of Comparative Example 1 was used.
[0035]
The battery of Comparative Example 1 was subjected to a high-temperature standing test at 60 ° C. in the same manner as in Example 1, and the capacity recovery rate was determined to be 71%. In other words, since the state of lithium existing in the negative electrode is different in a carbon material having a crystal structure developed such as graphite, the ratio of the negative electrode capacity density at the time of full charge to the chargeable / dischargeable capacity density is about 60%. In this case, the reactivity with the electrolytic solution is promoted and sufficient characteristics cannot be obtained.
[0036]
(Example 2)
LiNi as the positive electrode active material0.7Co0.2Al0.1O2Was used. NiSOFourA predetermined ratio of Co and Al sulfate was added to the aqueous solution to prepare a saturated aqueous solution. While stirring this saturated aqueous solution, an alkaline solution in which sodium hydroxide is dissolved is slowly dropped and neutralized to neutralize the ternary nickel hydroxide Ni.0.7Co0.2Al0.1(OH)2Produced a precipitate. The precipitate was filtered, washed with water, and dried. Then, lithium hydroxide is added so that the sum of the number of atoms of Ni, Co, and Al and the number of atoms of Li are equal, and firing is performed in dry air at 800 ° C. for 10 hours to obtain the target LiNi.0.7Co0.2Al0.1O2Got. The obtained composite oxide was confirmed to have a single-phase hexagonal layered structure by powder X-ray diffraction, and pulverized and classified to obtain a positive electrode active material powder having an average particle size of about 10 μm. This active material was made into a paste with the same formulation as in Example 1, coated and rolled on both sides of an aluminum foil, and a positive electrode plate having a thickness of 0.075 mm, a width of 37 mm, and a length of 600 mm was obtained.
[0037]
Except for using non-graphitizable carbon having a different calcination carbonization temperature for the negative electrode, a negative electrode plate was prepared according to the same formulation as in Example 1, and the width was 39 mm and the length was 670 mm. In consideration of the capacity balance of the negative electrode plate, the battery design was such that the capacity density of the negative electrode at full charge could be changed. The chargeable / dischargeable capacity density of this negative electrode was 400 Ah / kg.
[0038]
Then, the positive and negative electrode plates were wound through the same separator as in Example 1 and stored in the battery case 7. The electrolyte used was the same composition as in Example 1, and the finished batteries were designated as batteries H to N.
[0039]
5 cells of each of the batteries H to N of Example 2 were prepared, and a high temperature standing test at 60 ° C. similar to that of Example 1 was performed. However, the end-of-charge voltage was 4.2V. And the change (increase rate) of the internal resistance of each battery by leaving at high temperature was measured. The internal resistance was measured according to the following procedure. First, the battery is charged to a 60% charge state, and five kinds of pulse currents from 0.5 A to 2.5 A as shown in FIG. The voltage after 10 seconds was monitored, linear approximation as shown in FIG. 2B was performed using the least square method, and the value of the slope was taken as the internal resistance (DC-IR) of the battery. This value includes the resistance component of the battery component and the reaction resistance component of the battery, and indicates the input / output characteristics of the battery. When the internal resistance increases, the input and output of the battery will decrease. It is not preferable.
[0040]
Table 2 shows the results of the capacity recovery rate after leaving at high temperature and the increase rate of internal resistance for the batteries H to N of Example 2. The internal resistance was measured before being left at 60 ° C., and then the battery was fully charged and left at 60 ° C. for 20 days. Then, after returning to a 25 ° C. environment and obtaining the recovery capacity, the battery was charged to a 60% charge state, and the internal resistance was measured again. Internal resistance increase rate = (internal resistance after standing at high temperature−internal resistance before standing at high temperature) / (internal resistance before standing at high temperature) × 100 (%).
[0041]
[Table 2]
Figure 0004961649
[0042]
From Table 2, the capacity recovery rate is relatively good for all the batteries, and the positive electrode active material is LiMn.2OFourThere is no significant difference as in Example 1 using. This is LiNi0.7Co0.2Al0.1O2It shows that the positive electrode is relatively stable at high temperatures. However, when the rate of increase in the internal resistance is compared, the rate of increase of the batteries H to M is less than 10%, whereas the rate of increase of the battery N is 17.6%, and the input / output decrease of the battery is remarkable. It is. This is because the ratio of the negative electrode capacity density at the time of full charge to the chargeable / dischargeable capacity density of the negative electrode is as large as 75%, the lithium concentration in the negative electrode is increased, and the side reaction with the electrolyte is promoted. This is thought to be due to the rise.
[0043]
(Example 3)
A battery was produced in the same manner as in Example 2 except that the same non-graphitizable carbon (capacitance density capable of charging / discharging of 450 Ah / kg) as in Example 1 was used for the negative electrode. . The negative electrode capacity density at full charge was 300 Ah / kg, and the ratio of negative electrode capacity density at full charge to chargeable / dischargeable capacity density was 67%. The battery P was subjected to a 60 ° C. high-temperature storage test, and the capacity recovery rate and internal resistance increase rate were determined. The capacity recovery rate was 92% and the internal resistance increase rate was 9.0%.
[0044]
From the results of Examples 2 and 3, the increase in battery internal resistance due to standing at high temperature does not depend on the negative electrode capacity density at full charge, but on the ratio of the negative electrode capacity density at full charge to the chargeable / dischargeable capacity density. I understand that.
[0045]
In this example and comparative example, a mixed solvent of PC, DMC or EC, and DMC was used as the solvent of the electrolytic solution, but other known carbonate solvents such as ethyl methyl carbonate and diethyl carbonate were used. Can be used alone or as a mixed solvent. Similarly for electrolytes, LiBFFourLiClOFourConventionally known electrolytes can be used.
[0046]
In this embodiment, a small cylindrical battery has been described. However, the battery shape is a rectangular battery in which an electrode is wound in an elliptical shape and a plurality of rectangular batteries or thin electrodes are stacked in a rectangular case. A similar effect can be obtained by using a rectangular battery housed in a battery case. Regarding battery size, the same effect can be obtained not only for small batteries intended for small electronic devices, but also for large output batteries intended for high-power devices such as electric tools, power storage, electric vehicles, and hybrid electric vehicles. Needless to say, the same applies to module batteries and assembled batteries in which a plurality of these large batteries are mounted.
[0047]
【The invention's effect】
As described above, according to the present invention, chargeable / dischargeable capacity density when lithium-containing composite oxide is used for the positive electrode, low crystalline carbon is used for the negative electrode, and the negative electrode capacity density at the time of full charge is metal lithium as the counter electrode. By setting the content to 30% to 70%, a non-aqueous electrolyte secondary battery excellent in high-temperature stability can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional cutaway perspective view of a cylindrical battery used in Examples and Comparative Examples.
FIG. 2 is a diagram showing a procedure for measuring internal resistance of a battery.
[Explanation of symbols]
1 Negative electrode plate
2 Lead plate
3 Positive plate
4 Lead plate
5 Separator
6 Insulation plate
7 Battery case
8 Insulation packing
9 Sealing plate

Claims (3)

リチウム含有複合酸化物からなる正極と、非水電解液と、リチウムを吸蔵、放出し得る炭素材料からなる負極とを備えた非水電解液二次電池において、前記炭素材料は(d002)が0.30nm以上0.385nm以下である低結晶性炭素であり、満充電時の負極の容量密度が、金属リチウムを対極とした時の充放電可能容量密度の0%以上0%以下とすることを特徴とする非水電解液二次電池。In a non-aqueous electrolyte secondary battery comprising a positive electrode made of a lithium-containing composite oxide, a non-aqueous electrolyte, and a negative electrode made of a carbon material capable of inserting and extracting lithium, the carbon material has a (d002) of 0. .3 7 is a low-crystalline carbon which is 0.3 85 nm or less than 0 nm, the full capacity density of the negative electrode during charging, 6 0 4 0% or more of the charge-discharge capacity density when the metal lithium as a counter electrode % Non-aqueous electrolyte secondary battery. 上記炭素材料は、真密度が1.5g/cc〜1.8g/ccであり、難黒鉛化性炭素材料であることを特徴とする請求項1記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1 , wherein the carbon material has a true density of 1.5 g / cc to 1.8 g / cc and is a non- graphitizable carbon material. リチウム含有複合酸化物がスピネル構造を有するLiMn24、あるいは六方晶構造を有するLiNi1-(x+y)Coxy2(0.1≦x≦0.35)(0≦y≦0.15)(M=Al、Ti、Mn、Cr、Sn、Mgから選ばれる少なくとも1つ)であることを特徴とする請求項1あるいは2記載の非水電解液二次電池。Lithium-containing composite oxide LiMn 2 O 4 or LiNi 1- (x + y) Co x M y O 2 having a hexagonal structure, having a spinel structure (0.1 ≦ x ≦ 0.35) ( 0 ≦ y 3. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein M is at least one selected from Al, Ti, Mn, Cr, Sn, and Mg.
JP2001281435A 2001-09-17 2001-09-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4961649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281435A JP4961649B2 (en) 2001-09-17 2001-09-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281435A JP4961649B2 (en) 2001-09-17 2001-09-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003092150A JP2003092150A (en) 2003-03-28
JP4961649B2 true JP4961649B2 (en) 2012-06-27

Family

ID=19105262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281435A Expired - Fee Related JP4961649B2 (en) 2001-09-17 2001-09-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4961649B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059999A (en) 2006-09-01 2008-03-13 Sony Corp Negative electrode and nonaqueous electrolyte secondary battery using it

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136594B2 (en) * 1990-02-28 2001-02-19 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3653105B2 (en) * 1993-02-25 2005-05-25 呉羽化学工業株式会社 Carbonaceous material for secondary battery electrode
JP3525553B2 (en) * 1995-04-28 2004-05-10 日本電池株式会社 Non-aqueous polymer battery
JP3702318B2 (en) * 1996-02-09 2005-10-05 日本電池株式会社 Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP2000067863A (en) * 1998-08-25 2000-03-03 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001143689A (en) * 1999-11-15 2001-05-25 Shin Kobe Electric Mach Co Ltd Lithium secondary cell
JP3851040B2 (en) * 1999-12-20 2006-11-29 株式会社日立製作所 Lithium secondary battery

Also Published As

Publication number Publication date
JP2003092150A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
CA2055305C (en) Nonaqueous electrolyte secondary battery
KR101023354B1 (en) Lithium titanate with increased electronic conductivity
JP5066798B2 (en) Secondary battery
JP3705728B2 (en) Non-aqueous electrolyte secondary battery
KR20060112823A (en) Positive electrode for a lithium secondary battery and a lithium secondary battery comprising the same
JP4767484B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
US20130260249A1 (en) Lithium ion secondary battery and method for preparing the same
JP2000277116A (en) Lithium secondary battery
CA2522107A1 (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
EP2284934B1 (en) Electrode assembly and lithium secondary battery including the same
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP4215202B2 (en) Non-aqueous electrolyte secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
KR100624970B1 (en) Positive active material for lithium secondary battery, thereof method, and Lithium secondary battery
JPH06349493A (en) Secondary battery
KR100635741B1 (en) Positive active material for lithium secondary battery and thereof method
JP4435498B2 (en) Non-aqueous electrolyte secondary battery
US6613476B2 (en) Positive active material for rechargeable lithium battery and method of preparing same
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP4961649B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees