JP4959139B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4959139B2
JP4959139B2 JP2005019026A JP2005019026A JP4959139B2 JP 4959139 B2 JP4959139 B2 JP 4959139B2 JP 2005019026 A JP2005019026 A JP 2005019026A JP 2005019026 A JP2005019026 A JP 2005019026A JP 4959139 B2 JP4959139 B2 JP 4959139B2
Authority
JP
Japan
Prior art keywords
electrode
element region
semiconductor substrate
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005019026A
Other languages
Japanese (ja)
Other versions
JP2006210539A (en
Inventor
昌士 由良
将弘 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2005019026A priority Critical patent/JP4959139B2/en
Publication of JP2006210539A publication Critical patent/JP2006210539A/en
Application granted granted Critical
Publication of JP4959139B2 publication Critical patent/JP4959139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は誘電体分離半導体装置に係り、特に、信頼性の高い誘電体分離半導体装置に関する。   The present invention relates to a dielectric isolated semiconductor device, and more particularly to a highly reliable dielectric isolated semiconductor device.

SOI(Silicon-On-Insulator)ウエハ等を用いた誘電体分離半導体装置では、底面および側面を分離絶縁膜で囲まれた島状の素子領域が複数存在し、各々の素子領域部の間には素子を有さない半導体領域(非素子領域部)が存在している。   In a dielectric isolation semiconductor device using an SOI (Silicon-On-Insulator) wafer or the like, there are a plurality of island-shaped element regions surrounded by an isolation insulating film on the bottom surface and side surfaces, and between each element region portion. There is a semiconductor region (non-element region portion) having no element.

このような誘電体分離半導体装置では、特に、各素子領域部を分離する絶縁膜の信頼性が重要である。分離絶縁膜が欠損(ピンホール等)していたり、薄かったりして、抵抗的あるいは容量的に結合されてしまうと、動作している素子領域部から発せられるノイズが、非素子領域部に乗り、間接的にあるいは直接的に他の素子領域部に悪影響を及ぼし、半導体装置が誤動作して最悪の場合、それを組んだシステムが破壊に至る危険性がある。   In such a dielectric isolation semiconductor device, in particular, the reliability of the insulating film that isolates each element region is important. If the isolation insulating film is deficient (pinholes, etc.) or is thin and is coupled resistively or capacitively, noise generated from the operating element region will be applied to the non-element region. If the semiconductor device malfunctions in the worst case because it adversely affects other element regions indirectly or directly, there is a risk that the system in which the semiconductor device is assembled will be destroyed.

分離絶縁膜の信頼性を向上させるには、プロセスのクリーン度の向上や絶縁膜厚の増加などが必要となる。プロセスのクリーン度向上は設備投資の増加,管理体制の強化が必要となり、製品の価格向上につながる。また、絶縁膜厚の増加は新たなプロセス開発が必要となり、開発には時間と費用を要する。   In order to improve the reliability of the isolation insulating film, it is necessary to improve the cleanliness of the process and increase the insulating film thickness. Increasing the cleanliness of the process requires an increase in capital investment and strengthening of the management system, leading to an increase in product prices. In addition, an increase in the insulation film thickness requires a new process development, which requires time and cost.

そのため半導体チップ完成段階における分離絶縁膜のチェックが重要であり、素子領域部に形成された電極と非素子領域部に形成された電極との間の電気特性のチェックにより十分な絶縁性を確認することが必要となる。このようにすると半導体チップを実装する際に、非素子領域部の電極の電位を何らかの電位に固定する必要が生ずる。非素子領域部の電極の電位を固定する具体的手段としては、例えばワイヤボンディングによって素子領域部の大地電位(GND)などの適当な電位に接続する方法がある。非素子領域は半導体装置の機能を分担していないため、仮にこのワイヤの接続が不良であっても機能試験等で発見し選別することは困難である。このように、非素子領域部の電位が製品完成段階にて確実に電位固定なされたかどうかのチェックは、半導体装置の電気特性チェックでは確認することができないため、独立のチェック項目を実施する必要がある。   Therefore, it is important to check the isolation insulating film at the completion stage of the semiconductor chip, and sufficient insulation is confirmed by checking the electrical characteristics between the electrode formed in the element region and the electrode formed in the non-element region. It will be necessary. If it does in this way, when mounting a semiconductor chip, it will be necessary to fix the potential of the electrode of a non-element field part to some potential. As a specific means for fixing the potential of the electrode in the non-element region, there is a method of connecting to an appropriate potential such as a ground potential (GND) in the element region by wire bonding, for example. Since the non-element region does not share the function of the semiconductor device, it is difficult to find and select it by a function test or the like even if this wire connection is poor. As described above, since it is not possible to check whether the potential of the non-element region portion is fixed at the product completion stage by checking the electrical characteristics of the semiconductor device, it is necessary to carry out independent check items. is there.

例えば、特開2004−241571号公報には、素子領域部と非素子領域部とに電極を設けた構造が開示されている。しかし、非素子領域部の電位を固定する工夫をしないとICが誤動作するおそれがある。また、非素子領域部の電位を固定するために、非素子領域部のIC上パッドをワイヤボンディングなどによってGND等のある固定電位となる電極に接続したとしても、製品完成段階にてその接続ワイヤに不具合がないかチェックすることは難しい。   For example, Japanese Patent Application Laid-Open No. 2004-241571 discloses a structure in which electrodes are provided in an element region portion and a non-element region portion. However, the IC may malfunction if the device for fixing the potential of the non-element region is not devised. Further, in order to fix the potential of the non-element region portion, even if the pad on the IC in the non-element region portion is connected to an electrode having a certain fixed potential such as GND by wire bonding or the like, the connection wire at the stage of product completion It is difficult to check if there are any defects.

特開2004−349420号公報には、フッ酸系のエッチング液により形成された
SOI層のエッチピットを観察することにより、SOI層の欠陥評価を行う方法が開示されている。また、特開2003−347528号公報には、フォトリソグラフィによって一部のSOI層をエッチング除去し、SOI層を挟む上下の各半導体層に電極を形成(スパッタリング)したサンプルを作製し、電極間に電圧を印加してSOI層の耐圧を評価する方法が開示されている。しかし、いずれの技術も製品完成段階での評価ではない。ロット抜き取り検査となり、全数検査は不可能である。
Japanese Patent Application Laid-Open No. 2004-349420 discloses a method for evaluating defects in an SOI layer by observing etch pits in the SOI layer formed with a hydrofluoric acid-based etching solution. Japanese Patent Laid-Open No. 2003-347528 discloses a sample in which part of an SOI layer is removed by photolithography and electrodes are formed (sputtered) on upper and lower semiconductor layers sandwiching the SOI layer. A method for evaluating the withstand voltage of an SOI layer by applying a voltage is disclosed. However, neither technology is evaluated at the product completion stage. Lot sampling inspection is possible and 100% inspection is impossible.

特開2004−241571号公報JP 2004-241571 A 特開2004−349420号公報JP 2004-349420 A 特開2003−347528号公報JP 2003-347528 A

SOI構造等の誘電体分離型半導体基板を用いた場合において、分離絶縁膜の信頼性を確認するには、素子領域部と非素子領域部とに独立に電極を設け、その間の絶縁性を電気的に確認する。しかし、その後非素子領域部の電位が確実に固定されていないと、ノイズの影響による誤動作,破壊の危険性が高くなる。   In the case of using a dielectric-separated semiconductor substrate such as an SOI structure, in order to confirm the reliability of the isolation insulating film, electrodes are provided independently in the element region portion and the non-element region portion, and the insulation between them is electrically Confirm. However, if the potential of the non-element region is not securely fixed thereafter, the risk of malfunction and destruction due to the influence of noise increases.

上記課題を解決するため、本発明の代表的な半導体装置の一は、半導体基板内部に設けられ、半導体素子が形成された素子領域と前記素子領域から電気的に絶縁された非素子領域と前記素子領域および前記非素子領域それぞれの底面および側面を囲んで電気的に絶縁する分離絶縁膜とを有するSOIウエハと、前記半導体基板内部で前記素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第1電極と、前記半導体基板内部で前記非素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第2電極と、前記第1電極と前記第2電極との間に互いに逆並列に接続された第1ダイオード及び第2ダイオードと、を備え、前記半導体基板の完成段階において、前記第1電極と前記第2電極との間を、前記第1ダイオード及び第2ダイオードの両方に流れる電流が微小な絶縁状態となる範囲内の電圧を印加して、前記分離絶縁膜の絶縁性を評価したことを特徴とする。 In order to solve the above problems, a representative semiconductor device of the present invention includes an element region provided inside a semiconductor substrate, in which a semiconductor element is formed, a non-element region electrically insulated from the element region, and the element region An SOI wafer having an isolation insulating film that surrounds a bottom surface and a side surface of each of the element region and the non-element region and electrically insulates, and is connected to the element region inside the semiconductor substrate, and is connected by a connection wiring outside the semiconductor substrate. A first electrode connected to an external electrode outside the semiconductor substrate; and a second electrode connected to the non-element region inside the semiconductor substrate and connected to the external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate. A semiconductor substrate comprising: an electrode; and a first diode and a second diode connected in antiparallel to each other between the first electrode and the second electrode; In this case, a voltage within a range in which a current flowing through both the first diode and the second diode is in a minute insulating state is applied between the first electrode and the second electrode, and the isolation insulating film It was characterized by the evaluation of the insulating properties.

本発明によれば、非素子領域部の電位が確実に固定されていることを確認できるため、高信頼性を有する誘電体分離半導体装置を提供することができる。   According to the present invention, since it can be confirmed that the potential of the non-element region portion is fixed reliably, a highly reliable dielectric isolation semiconductor device can be provided.

以下、本発明を実施例毎に説明する。   Hereinafter, the present invention will be described for each example.

本発明の実施例1の回路構成図を図1に示す。半導体基板を構成するSOIウエハ10は、酸化膜(SiO2) 等で形成された分離絶縁膜3を有する。分離絶縁膜3は、半導体領域を複数に分割して、それぞれの半導体領域間を電気的に絶縁するように機能する。この分割された半導体領域は、抵抗や容量,MOSFETやIGBT等の半導体素子が形成される素子領域部1と、これらの素子を形成しない非素子領域部2とに分けられる。 FIG. 1 shows a circuit configuration diagram of Embodiment 1 of the present invention. An SOI wafer 10 constituting a semiconductor substrate has an isolation insulating film 3 formed of an oxide film (SiO 2 ) or the like. The isolation insulating film 3 functions to divide a semiconductor region into a plurality of parts and to electrically insulate between the respective semiconductor regions. This divided semiconductor region is divided into an element region portion 1 in which semiconductor elements such as resistors, capacitors, MOSFETs, and IGBTs are formed, and a non-element region portion 2 in which these elements are not formed.

また、半導体基板上には、素子領域部1に形成されている素子領域部の電極41と、非素子領域部2に形成されている非素子領域部の電極42が設けられている。素子領域部の電極41は、実装基材上の電極5にワイヤボンディング等の接続配線61により電気的に接続されている。また、非素子領域部の電極42もまた、実装基材上の電極5にワイヤボンディング等の接続配線62により電気的に接続されている。   On the semiconductor substrate, an electrode 41 in the element region formed in the element region 1 and an electrode 42 in the non-element region formed in the non-element region 2 are provided. The electrode 41 in the element region is electrically connected to the electrode 5 on the mounting substrate by connection wiring 61 such as wire bonding. In addition, the electrode 42 in the non-element region is also electrically connected to the electrode 5 on the mounting substrate by connection wiring 62 such as wire bonding.

半導体基板上には、ダイオード7及び8が設けられている。これらのダイオード7及び8は、素子領域部の電極41に接続されているA点と非素子領域部の電極42に接続されているB点との間において、ダイオード7及び8が並列に、また、ダイオード7及び8がそれぞれ逆極性になるように電気的に接続されている。   Diodes 7 and 8 are provided on the semiconductor substrate. These diodes 7 and 8 are arranged in parallel between the point A connected to the electrode 41 in the element region and the point B connected to the electrode 42 in the non-element region. The diodes 7 and 8 are electrically connected so as to have opposite polarities.

逆並列ダイオード7,8を構成するA−B間の電気特性(Iab−Vab)を図2に示す。ダイオードは、電圧を正方向に印加した場合に電流を流し、負方向に印加した場合には電流を流さないという性質を有する。また、正方向の印加電圧が0V〜0.7 V程度である場合には電流が流れない。このため、A点に対してB点の電位を高くした場合には、ダイオード7にのみ電流は流れ、ダイオード8には電流は流れない。一方、A点に対してB点の電位を低くした場合には、ダイオード8にのみ電流は流れ、ダイオード7には電流は流れない。 FIG. 2 shows the electrical characteristics (I ab −V ab ) between A and B constituting the antiparallel diodes 7 and 8. The diode has such a property that a current flows when a voltage is applied in the positive direction and a current does not flow when a voltage is applied in the negative direction. Further, when the applied voltage in the positive direction is about 0V to 0.7V, no current flows. For this reason, when the potential at point B is made higher than point A, current flows only through diode 7 and no current flows through diode 8. On the other hand, when the potential at point B is lower than point A, current flows only through diode 8 and no current flows through diode 7.

したがって、A−B間の電気特性(Iab−Vab)は、図2に示すように、正負で点対称のグラフとなる。また、電圧が−0.7V〜+0.7Vの間では電流は微小で極めて絶縁状態に近く、電圧が−0.7V以下または0.7V以上の場合には、電圧の絶対値が上昇するにつれて電流の絶対値は急激に大きくなる。 Therefore, the electrical characteristics between A and B (I ab −V ab ) are positive and negative and point-symmetric graphs as shown in FIG. In addition, the current is very small when the voltage is between -0.7 V and +0.7 V, and it is very close to an insulating state. When the voltage is -0.7 V or less or 0.7 V or more, the absolute value of the voltage increases. The absolute value of the current increases rapidly.

このようなダイオード7,8で構成される逆並列ダイオードの電気特性を利用することにより、分離絶縁膜3が絶縁性を確保しているか否かの絶縁状態を評価することができる。すなわち、−0.7V〜+0.7Vの間では、A−B間の逆並列ダイオードには電流は流れない。このため、分離絶縁膜3の絶縁性が確保されていれば、その間では絶縁状態に相当する。一方、分離絶縁膜3の絶縁性が十分に確保できていない場合には、分離絶縁膜3を通じて電流が流れる。したがって、−0.7V〜+0.7Vの範囲の電圧を印加することにより、分離絶縁膜3の絶縁状態を評価することができる。   By utilizing the electrical characteristics of the antiparallel diode composed of the diodes 7 and 8, it is possible to evaluate the insulation state as to whether or not the isolation insulating film 3 has ensured insulation. That is, between −0.7V and + 0.7V, no current flows through the antiparallel diode between A and B. For this reason, if the insulation of the isolation insulating film 3 is ensured, it corresponds to an insulated state in the meantime. On the other hand, when the insulation of the isolation insulating film 3 is not sufficiently ensured, a current flows through the isolation insulating film 3. Therefore, the insulation state of the isolation insulating film 3 can be evaluated by applying a voltage in the range of −0.7 V to +0.7 V.

仮に、ワイヤボンディング等の非素子領域部の接続配線62に不具合があり、非素子領域部の電極42の電位を固定できない場合でも、A−B間の逆並列ダイオードの存在により、非素子領域部の電極42の電位は、素子領域部の電極41の電位に対して±0.7 Vの電圧範囲内に制限されるため、ノイズの悪影響をも抑制することができる。   Even if there is a problem in the connection wiring 62 in the non-element region such as wire bonding and the potential of the electrode 42 in the non-element region cannot be fixed, the presence of the antiparallel diode between A and B causes the non-element region Since the potential of the electrode 42 is limited within a voltage range of ± 0.7 V with respect to the potential of the electrode 41 in the element region portion, it is possible to suppress adverse effects of noise.

本発明の実施例2の回路構成図を図3に示す。本実施例の説明において、実施例1と同じ部分の説明は省略する。   FIG. 3 shows a circuit configuration diagram of Embodiment 2 of the present invention. In the description of this embodiment, the description of the same parts as those in Embodiment 1 is omitted.

実施例2において、実施例1と異なる部分は、逆並列ダイオードを構成するダイオード71及び81をそれぞれ複数個直列に接続した点である。すなわち、n2個のダイオード71を同方向に直列接続し、ダイオード71とは逆極性となるように、n1個のダイオード81を同方向に直列接続している。   The second embodiment is different from the first embodiment in that a plurality of diodes 71 and 81 constituting antiparallel diodes are connected in series. That is, n2 diodes 71 are connected in series in the same direction, and n1 diodes 81 are connected in series in the same direction so as to have a polarity opposite to that of the diode 71.

この接続状態における逆並列ダイオードのA−B間の電気特性(Iab−Vab)を図4に示す。A点に対してB点の電位を高くした場合には、ダイオード71にのみ電流は流れ、ダイオード81には電流は流れない。一方、A点に対してB点の電位を低くした場合には、ダイオード81にのみ電流は流れ、ダイオード71には電流は流れない。 FIG. 4 shows the electrical characteristics (I ab −V ab ) between A and B of the antiparallel diode in this connected state. When the potential at the point B is made higher than the point A, current flows only through the diode 71 and no current flows through the diode 81. On the other hand, when the potential at the point B is lowered with respect to the point A, current flows only through the diode 81, and no current flows through the diode 71.

したがって、A−B間の電気特性は、図4に示すように、ダイオードの直列段数に応じて、−0.7V×n2〜+0.7V×n1の電圧範囲にてほぼ絶縁状態となるため、その電圧範囲において分離絶縁膜3の絶縁状態の評価を行うことができる。   Therefore, as shown in FIG. 4, the electrical characteristics between A and B are almost in an insulated state in a voltage range of −0.7 V × n2 to +0.7 V × n1 depending on the number of series stages of diodes. The insulation state of the isolation insulating film 3 can be evaluated in the voltage range.

特に、半導体素子の性質によっては、例えば半導体チップが大きい場合、素子領域部の電極41あるいは非素子領域部の電極42から遠い位置の分離絶縁膜には、電圧降下により電極41と電極42との間に印加した電圧よりも低い電圧しか印加できないことが懸念され、−0.7V〜+0.7Vの範囲で分離絶縁膜3の絶縁状態を十分に評価できない場合が考えられる。このような場合には、本実施例がより効果的である。   In particular, depending on the nature of the semiconductor element, for example, when the semiconductor chip is large, the isolation insulating film located far from the electrode 41 in the element region portion or the electrode 42 in the non-element region portion has a voltage drop between the electrode 41 and the electrode 42. There is a concern that only a voltage lower than the voltage applied between them can be applied, and there may be a case where the insulation state of the isolation insulating film 3 cannot be sufficiently evaluated in the range of −0.7V to + 0.7V. In such a case, the present embodiment is more effective.

本発明の実施例3の回路構成図を図5に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 5 shows a circuit configuration diagram of Embodiment 3 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

実施例3では、A−B間に2個のダイオード72及び82を逆方向に直列接続した点が、他の実施例とは異なる点である。   The third embodiment is different from the other embodiments in that two diodes 72 and 82 are connected in series in the reverse direction between A and B.

2個のツェナーダイオード72及び82を逆方向に直列接続した場合におけるA−B間の電気特性(Iab−Vab)を図6に示す。ダイオード72の耐圧をVd72、ダイオード82の耐圧をVd82とすると、素子領域部の電極41の電位は、非素子領域部の電極
42の電位に対して−Vd82から+Vd72の電圧範囲において絶縁状態となる。
FIG. 6 shows electric characteristics (I ab −V ab ) between A and B when two zener diodes 72 and 82 are connected in series in the reverse direction. When the withstand voltage of the diode 72 is Vd72 and the withstand voltage of the diode 82 is Vd82, the potential of the electrode 41 in the element region is in an insulating state in the voltage range of −Vd82 to + Vd72 with respect to the potential of the electrode 42 in the non-element region. .

本実施例は、実施例2の場合と同様に、−0.7〜+0.7の範囲で分離絶縁膜3の絶縁状態を十分に評価できない半導体素子を用いた場合に、特に効果的である。   As in the case of the second embodiment, this embodiment is particularly effective when a semiconductor element that cannot sufficiently evaluate the insulating state of the isolation insulating film 3 in the range of −0.7 to +0.7 is used. .

本実施例の構成の場合には、ダイオード72及び82として、ツェナーダイオードを用いるのがより望ましい。ツェナーダイオードはpn接合ダイオードに比べて耐圧が低いため、仮にワイヤボンディング等の非素子領域部の接続配線62に不具合があり、非素子領域部の電極42の電位を固定できない場合でも、A−B間の逆直列ダイオードの存在により、非素子領域部の電極42の電位に対する素子領域部の電極41の電位は、ダイオード72及び82としてpn接合ダイオードを用いた場合に比べて、−Vd82から+Vd72の狭い電圧範囲内に制限されるため、ノイズの悪影響を抑制することができる。   In the case of the configuration of this embodiment, it is more desirable to use Zener diodes as the diodes 72 and 82. Since the Zener diode has a lower withstand voltage than the pn junction diode, there is a problem in the connection wiring 62 in the non-element region such as wire bonding, and even if the potential of the electrode 42 in the non-element region cannot be fixed, AB The potential of the electrode 41 in the element region relative to the potential of the electrode 42 in the non-element region is between −Vd82 and + Vd72 as compared to the case where pn junction diodes are used as the diodes 72 and 82. Since it is limited within a narrow voltage range, the adverse effect of noise can be suppressed.

本発明の実施例2の回路構成図を図7に示す。本実施例の説明において、実施例3と同じ部分の説明は省略する。   FIG. 7 shows a circuit configuration diagram of Embodiment 2 of the present invention. In the description of this embodiment, the description of the same parts as those in Embodiment 3 is omitted.

実施例4において、実施例3と異なる部分は、逆直列ダイオードを構成するダイオード73及び83をそれぞれ複数個直列に接続した点である。すなわち、n2個のダイオード73を同方向に直列接続し、ダイオード73とは逆極性となるように、n1個のダイオード83を同方向に直列接続している。   The fourth embodiment is different from the third embodiment in that a plurality of diodes 73 and 83 constituting anti-series diodes are connected in series. That is, n2 diodes 73 are connected in series in the same direction, and n1 diodes 83 are connected in series in the same direction so as to have a polarity opposite to that of the diode 73.

この接続状態における逆並列ダイオードのA−B間の電気特性(Iab−Vab)を図4に示す。A点に対してB点の電位を高くした場合には、ダイオード73にのみ電流は流れ、ダイオード83には電流は流れない。一方、A点に対してB点の電位を低くした場合には、ダイオード83にのみ電流は流れ、ダイオード73には電流は流れない。 FIG. 4 shows the electrical characteristics (I ab −V ab ) between A and B of the antiparallel diode in this connected state. When the potential at point B is made higher than point A, current flows only through diode 73 and no current flows through diode 83. On the other hand, when the potential at point B is lowered relative to point A, current flows only through diode 83, and no current flows through diode 73.

したがって、A−B間の電気特性は、図8に示すように、ダイオードの直列段数に応じて、−Vd82×n2〜+Vd72×n1の電圧範囲にてほぼ絶縁状態となるため、その電圧範囲において分離絶縁膜3の絶縁状態の評価を行うことができる。   Therefore, as shown in FIG. 8, the electrical characteristics between A and B are substantially insulative in the voltage range of −Vd82 × n2 to + Vd72 × n1 depending on the number of series stages of diodes. The insulation state of the isolation insulating film 3 can be evaluated.

特に、半導体素子の性質によっては、例えば半導体チップが大きい場合、素子領域部の電極41あるいは非素子領域部の電極42から遠い位置の分離絶縁膜には、電圧降下により電極41と電極42との間に印加した電圧よりも低い電圧しか印加できないことが懸念され、−Vd82〜+Vd72の範囲で分離絶縁膜3の絶縁状態を十分に評価できない場合が考えられる。このような場合には、本実施例がより効果的である。   In particular, depending on the nature of the semiconductor element, for example, when the semiconductor chip is large, the isolation insulating film located far from the electrode 41 in the element region portion or the electrode 42 in the non-element region portion has a voltage drop between the electrode 41 and the electrode 42. There is concern that only a voltage lower than the voltage applied between them can be applied, and there may be a case where the insulation state of the isolation insulating film 3 cannot be sufficiently evaluated in the range of −Vd82 to + Vd72. In such a case, the present embodiment is more effective.

本発明の実施例5の回路構成図を図9に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 9 shows a circuit configuration diagram of Embodiment 5 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

本実施例は、他の実施例におけるダイオードに代えて、A−B間に抵抗9を接続した構成となっている。   In this embodiment, a resistor 9 is connected between A and B instead of the diode in the other embodiments.

本実施例では、分離絶縁膜3に欠陥がない場合には、検査電圧を印加したときにA−B間に挿入された抵抗9の抵抗値を確認することができる。一方、分離絶縁膜3に欠陥が存在する場合には、検査電圧を印加したときに抵抗9の抵抗値よりも低い抵抗値が現れ、不良品を選別することが可能となる。   In the present embodiment, when the isolation insulating film 3 has no defect, the resistance value of the resistor 9 inserted between A and B when the inspection voltage is applied can be confirmed. On the other hand, when a defect exists in the isolation insulating film 3, a resistance value lower than the resistance value of the resistor 9 appears when an inspection voltage is applied, and defective products can be selected.

非素子領域部の電極42の接続配線62(ワイヤ)に、万一不具合が生じた場合でも、非素子領域部2には電流が流れないためA−B間の抵抗9における電圧降下はなく、A−B間の抵抗9により、非素子領域部の電極42の電位は素子領域部の電極41の電位に固定される。   Even if a failure occurs in the connection wiring 62 (wire) of the electrode 42 in the non-element region portion, no current flows through the non-element region portion 2, so there is no voltage drop in the resistor 9 between A and B. The potential of the electrode 42 in the non-element region is fixed to the potential of the electrode 41 in the element region by the resistor 9 between A and B.

本発明の実施例6の回路構成図を図10に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 10 shows a circuit configuration diagram of Embodiment 6 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

他の実施例においては、半導体基板上にA−B間に挿入される回路を配置しているが、この回路の挿入位置は半導体基板の内部のみに限られるものではない。   In another embodiment, a circuit to be inserted between A and B is arranged on the semiconductor substrate, but the insertion position of this circuit is not limited to the inside of the semiconductor substrate.

本実施例は、実施例1におけるダイオード7及び8を半導体基板上に設けるのではなく、半導体基板の外部で接続したものである。例えば、半導体基板を実装するリードフレームやインターポーザ等の実装基材上に挿入することができる。特に、インターポーザを利用する場合には、マルチチップモジュール(MCM)構成となる。また、本半導体装置を実装するマザーボード上に挿入することもできる。   In the present embodiment, the diodes 7 and 8 in the first embodiment are not provided on the semiconductor substrate but are connected outside the semiconductor substrate. For example, it can be inserted on a mounting substrate such as a lead frame or an interposer for mounting a semiconductor substrate. In particular, when an interposer is used, a multi-chip module (MCM) configuration is used. It can also be inserted on a motherboard on which the semiconductor device is mounted.

本発明の実施例7の回路構成図を図11に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 11 shows a circuit configuration diagram of Embodiment 7 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

本実施例では、非素子領域部2に接続される電極として、電極42及び電極43の2電極を設けた誘電体分離半導体基板を用いる。非素子領域部2の電極42は、ワイヤボンディング等で素子領域部1の電極41と同一電位の実装基材上の電極51(パッド)に接続されている。一方、非素子領域部2の電極43は、チェック用端子となる実装基材上の電極53(パッド)にワイヤボンディング等で接続されている。   In this example, a dielectric isolation semiconductor substrate provided with two electrodes 42 and 43 is used as an electrode connected to the non-element region 2. The electrode 42 in the non-element region 2 is connected to an electrode 51 (pad) on the mounting substrate having the same potential as the electrode 41 in the element region 1 by wire bonding or the like. On the other hand, the electrode 43 in the non-element region portion 2 is connected to an electrode 53 (pad) on the mounting base material serving as a check terminal by wire bonding or the like.

本実施例では、実装基板上の電極51と、チェック用端子となる実装基板上の電極53との間の電気的チェックが行われる。これにより、ワイヤ等の接続配線62の接続が確実になされていれば短絡状態が示され、接続配線62に不具合があればオープン状態または何らかの抵抗値が示されるため、接続配線62の電気的チェックを確実に行うことが可能となる。非素子領域部2の電位は、ワイヤ等の接続配線62によって確実に素子領域部1の電位に固定され、不具合品が市場に流出することはなくなる。他の実施例と組み合わせた構成とすればさらに信頼性を向上させることができる。   In this embodiment, an electrical check is performed between the electrode 51 on the mounting board and the electrode 53 on the mounting board to be a check terminal. As a result, if the connection wiring 62 such as a wire is securely connected, a short-circuit state is indicated, and if there is a defect in the connection wiring 62, an open state or some resistance value is indicated. Can be reliably performed. The potential of the non-element region portion 2 is reliably fixed to the potential of the element region portion 1 by the connection wiring 62 such as a wire, so that a defective product does not flow out to the market. If the configuration is combined with other embodiments, the reliability can be further improved.

本発明の実施例8の回路構成図を図12に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 12 shows a circuit configuration diagram of Embodiment 8 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

本実施例は、実施例3において、素子領域部の電極41に接続される接続配線61(ワイヤ)の本数を複数n3本にしている。これによって素子領域部の電極41側の寄生インダクタンスを低減することができ、実施例3の場合と比較して、ノイズマージンの低下を補うことができる。他の実施例と組み合わせた構成とすればさらに信頼性を向上させることができる。   In the third embodiment, the number of connection wirings 61 (wires) connected to the electrode 41 in the element region portion is set to a plurality of n3 in the third embodiment. As a result, the parasitic inductance on the electrode 41 side in the element region can be reduced, and a reduction in noise margin can be compensated for as compared with the third embodiment. If the configuration is combined with other embodiments, the reliability can be further improved.

本発明の実施例9の回路構成図を図13に示す。本実施例の説明において、他の実施例と同じ部分の説明は省略する。   FIG. 13 shows a circuit configuration diagram of Embodiment 9 of the present invention. In the description of this embodiment, the description of the same parts as in the other embodiments is omitted.

本実施例は、他の実施例におけるA−B間には特にダイオードや抵抗を接続することなく、非素子領域部の電極42に接続される接続配線62(ワイヤ)の本数を複数n4本にしている。これによって接続配線62が完全断線する不良率は、1本の場合と比べて(1/n4)乗に抑制することが可能となり、大幅に減少する。他の実施例と組み合わせた構成とすればさらに信頼性を向上させることができる。   In this embodiment, the number of connection wirings 62 (wires) connected to the electrode 42 in the non-element region portion is set to a plurality of n4 without particularly connecting a diode or a resistor between A and B in the other embodiments. ing. As a result, the defect rate at which the connection wiring 62 is completely disconnected can be suppressed to the (1 / n4) th power as compared with the case of a single wire, and is greatly reduced. If the configuration is combined with other embodiments, the reliability can be further improved.

実施例1の回路構成図。1 is a circuit configuration diagram of Embodiment 1. FIG. 実施例1のA−B間の電気特性。The electrical characteristic between AB of Example 1. FIG. 実施例2の回路構成図。FIG. 6 is a circuit configuration diagram of Embodiment 2. 実施例2のA−B間の電気特性。The electrical characteristic between AB of Example 2. FIG. 実施例3の回路構成図。FIG. 6 is a circuit configuration diagram of Embodiment 3. 実施例3のA−B間の電気特性。The electrical characteristic between AB of Example 3. FIG. 実施例4の回路構成図。FIG. 6 is a circuit configuration diagram of Embodiment 4. 実施例4のA−B間の電気特性。The electrical characteristic between AB of Example 4. FIG. 実施例5の回路構成図。FIG. 10 is a circuit configuration diagram of Embodiment 5. 実施例6の回路構成図。FIG. 10 is a circuit configuration diagram of Embodiment 6. 実施例7の回路構成図。FIG. 10 is a circuit configuration diagram of Embodiment 7. 実施例8の回路構成図。FIG. 10 is a circuit configuration diagram of an eighth embodiment. 実施例9の回路構成図。FIG. 10 is a circuit configuration diagram of Embodiment 9.

符号の説明Explanation of symbols

1…素子領域部、2…非素子領域部、3…分離絶縁膜、5…実装基材上の電極、7,8…ダイオード、9…抵抗、41…素子領域部の電極、42…非素子領域部の電極、51…素子領域部の電極と接続される実装基材上の電極、52…非素子領域部の電極と接続される実装基材上の電極、53…接続確認用端子の実装基材上の電極、61…素子領域部の接続配線、62…非素子領域部の接続配線。   DESCRIPTION OF SYMBOLS 1 ... Element area | region part, 2 ... Non-element area | region, 3 ... Isolation insulating film, 5 ... Electrode on a mounting base material, 7, 8 ... Diode, 9 ... Resistance, 41 ... Electrode of an element area | region part, 42 ... Non-element Electrode in the region portion, 51... Electrode on the mounting substrate connected to the electrode in the element region portion, 52... Electrode on the mounting substrate connected to the electrode in the non-element region portion, 53. Electrodes on the substrate, 61... Connection wiring in the element region, 62... Connection wiring in the non-element region.

Claims (10)

半導体基板内部に設けられ、半導体素子が形成された素子領域と前記素子領域から電気的に絶縁された非素子領域と前記素子領域および前記非素子領域それぞれの底面および側面を囲んで電気的に絶縁する分離絶縁膜とを有するSOIウエハと、
前記半導体基板内部で前記素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第1電極と、
前記半導体基板内部で前記非素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第2電極と、
前記第1電極と前記第2電極との間に互いに逆並列に接続された第1ダイオード及び第2ダイオードと、を備え
前記半導体基板の完成段階において、前記第1電極と前記第2電極との間を、前記第1ダイオード及び第2ダイオードの両方に流れる電流が微小な絶縁状態となる範囲内の電圧を印加して、前記分離絶縁膜の絶縁性を評価したことを特徴とする半導体装置。
Provided inside the semiconductor substrate and electrically insulated by enclosing the element region in which the semiconductor element is formed, the non-element region electrically insulated from the element region, and the bottom and side surfaces of the element region and the non-element region, respectively. An SOI wafer having an isolation insulating film to be
A first electrode connected to the element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
A second electrode connected to the non-element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
A first diode and a second diode connected in antiparallel to each other between the first electrode and the second electrode ;
In the completion stage of the semiconductor substrate, a voltage is applied between the first electrode and the second electrode within a range in which a current flowing through both the first diode and the second diode is in a minute insulating state. A semiconductor device characterized by evaluating the insulating property of the isolation insulating film .
請求項1記載の半導体装置において、
前記半導体装置は、直列接続された複数の前記第1ダイオードと、直列接続された複数の前記第2ダイオードとを備えたことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device comprises a plurality of first diodes connected in series and a plurality of second diodes connected in series.
半導体基板内部に設けられ、半導体素子が形成された素子領域と前記素子領域から電気的に絶縁された非素子領域と前記素子領域および前記非素子領域それぞれの底面および側面を囲んで電気的に絶縁する分離絶縁膜とを有するSOIウエハと、
前記半導体基板内部で前記素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第1電極と、
前記半導体基板内部で前記非素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第2電極と、
前記第1電極と前記第2電極との間に互いに逆直列に接続された第1のツェナーダイオードと、第2のツェナーダイオードと、を備え
前記半導体基板の完成段階において、前記第1電極と前記第2電極との間を、前記第1のツェナーダイオード及び第2のツェナーダイオードの両方に流れる電流が微小な絶縁状態となる範囲内の電圧を印加して、前記分離絶縁膜の絶縁性を評価したことを特徴とする半導体装置。
Provided inside the semiconductor substrate and electrically insulated by enclosing the element region in which the semiconductor element is formed, the non-element region electrically insulated from the element region, and the bottom and side surfaces of the element region and the non-element region, respectively. An SOI wafer having an isolation insulating film to be
A first electrode connected to the element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
A second electrode connected to the non-element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
A first Zener diode connected in reverse series with each other between the first electrode and the second electrode; and a second Zener diode ;
In the completion stage of the semiconductor substrate, a voltage within a range in which a current flowing through both the first Zener diode and the second Zener diode is in a minute insulating state between the first electrode and the second electrode. Is applied to evaluate the insulating property of the isolation insulating film .
請求項3記載の半導体装置において、
前記半導体装置は、直列接続された複数の前記第1のツェナーダイオードと、直列接続された複数の前記第2のツェナーダイオードとを備えたことを特徴とする半導体装置。
The semiconductor device according to claim 3.
The semiconductor device includes a plurality of first Zener diodes connected in series and a plurality of second Zener diodes connected in series.
半導体基板内部に設けられ、半導体素子が形成された素子領域と前記素子領域から電気的に絶縁された非素子領域と前記素子領域および前記非素子領域それぞれの底面および側面を囲んで電気的に絶縁する分離絶縁膜とを有するSOIウエハと、
前記半導体基板内部で前記素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第1電極と、
前記半導体基板内部で前記非素子領域に接続され、前記半導体基板外部の接続配線によって前記半導体基板外の外部電極に接続される第2電極と、
前記第1電極と前記第2電極との間に電気的に接続された抵抗と、を有し、
前記半導体基板の完成段階において、前記第1電極と前記第2電極との間に検査電圧を印加して、前記抵抗の抵抗値を確認することで、前記分離絶縁膜の絶縁性を評価することを特徴とする半導体装置。
Provided inside the semiconductor substrate and electrically insulated by enclosing the element region in which the semiconductor element is formed, the non-element region electrically insulated from the element region, and the bottom and side surfaces of the element region and the non-element region, respectively. An SOI wafer having an isolation insulating film to be
A first electrode connected to the element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
A second electrode connected to the non-element region inside the semiconductor substrate and connected to an external electrode outside the semiconductor substrate by connection wiring outside the semiconductor substrate;
Have a, a resistor electrically connected between the first electrode and the second electrode,
In the completion stage of the semiconductor substrate, an insulation voltage of the isolation insulating film is evaluated by applying a test voltage between the first electrode and the second electrode and confirming a resistance value of the resistor. A semiconductor device characterized by the above.
請求項1、2のいずれか一に記載の半導体装置において、
前記第1ダイオード及び前記第2ダイオードは、半導体基板の外部に設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device, wherein the first diode and the second diode are provided outside a semiconductor substrate.
請求項5に記載の半導体装置において、
前記抵抗は、半導体基板の外部に設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 5,
The semiconductor device is characterized in that the resistor is provided outside a semiconductor substrate.
請求項1乃至7のいずれか一に記載の半導体装置において、
前記非素子領域に接続される第3電極を有していることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 7,
A semiconductor device comprising a third electrode connected to the non-element region.
請求項8記載の半導体装置において、
前記第1電極及び前記第2電極は、第1外部電極と電気的に接続され、
前記第3電極は、第2外部電極と電気的に接続されていることを特徴とする半導体装置。
The semiconductor device according to claim 8.
The first electrode and the second electrode are electrically connected to a first external electrode,
The semiconductor device, wherein the third electrode is electrically connected to a second external electrode.
請求項1乃至9のいずれか一に記載の半導体装置において、
前記半導体装置は、前記接続配線の本数が複数であることを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 9,
In the semiconductor device, the number of the connection wirings is plural.
JP2005019026A 2005-01-27 2005-01-27 Semiconductor device Expired - Fee Related JP4959139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019026A JP4959139B2 (en) 2005-01-27 2005-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019026A JP4959139B2 (en) 2005-01-27 2005-01-27 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011167977A Division JP5683403B2 (en) 2011-08-01 2011-08-01 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2006210539A JP2006210539A (en) 2006-08-10
JP4959139B2 true JP4959139B2 (en) 2012-06-20

Family

ID=36967057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019026A Expired - Fee Related JP4959139B2 (en) 2005-01-27 2005-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4959139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683403B2 (en) * 2011-08-01 2015-03-11 日立オートモティブシステムズ株式会社 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575073B2 (en) * 1994-09-09 2004-10-06 株式会社デンソー Insulation-isolated semiconductor device inspection method and insulation-isolated semiconductor device
JP4608805B2 (en) * 2001-05-11 2011-01-12 株式会社デンソー Method of manufacturing an isolation semiconductor device
JP4215482B2 (en) * 2002-10-22 2009-01-28 Necエレクトロニクス株式会社 Electrostatic protection circuit and semiconductor device

Also Published As

Publication number Publication date
JP2006210539A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US8461670B2 (en) Semiconductor component and method of manufacture
US7714428B2 (en) High power semiconductor package and method of making the same
CN103367295A (en) Semiconductor device and manufacturing method for same
KR100307060B1 (en) Circuitry and method of forming the same
US7616417B2 (en) Semiconductor device including protection circuit and switch circuit and its testing method
KR100712517B1 (en) Interposer of semiconductor device having air gap structure
JP2003066107A (en) Semiconductor integrated circuit
JP4959139B2 (en) Semiconductor device
TWI236727B (en) Semiconductor device including optimized driver layout for integrated circuit with staggered bond pads
JP4857353B2 (en) Semiconductor device and plasma display driving semiconductor device using the same
JP5683403B2 (en) Semiconductor device
JP2021089971A (en) Photo relay
US7375423B2 (en) Semiconductor device
US8044396B2 (en) Semiconductor device and method of designing the same
JP3575073B2 (en) Insulation-isolated semiconductor device inspection method and insulation-isolated semiconductor device
JPH0410744B2 (en)
JP3495835B2 (en) Semiconductor integrated circuit device and inspection method thereof
JP2005101097A (en) Semiconductor device and its manufacturing method
CN113376908B (en) Array substrate and display panel
JPS62183134A (en) Semiconductor device
JP4114294B2 (en) Semiconductor device and inspection method thereof
JP5780498B2 (en) Inspection method and inspection apparatus for CMOS logic IC package
US20240133944A1 (en) Semiconductor device and inspection method for semiconductor device
KR20010110157A (en) Monitoring resistor element and measuring method of relative preciseness of resistor elements
TWI666755B (en) Electrostatic discharge protection structure, integrated circuit, and method for protecting core circuit of integrated circuit from electrostatic discharge event received by conductive pad of the integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees