JP4959061B2 - Ferritic stainless steel sheet with excellent overhanging property and method for producing the same - Google Patents

Ferritic stainless steel sheet with excellent overhanging property and method for producing the same Download PDF

Info

Publication number
JP4959061B2
JP4959061B2 JP2001050554A JP2001050554A JP4959061B2 JP 4959061 B2 JP4959061 B2 JP 4959061B2 JP 2001050554 A JP2001050554 A JP 2001050554A JP 2001050554 A JP2001050554 A JP 2001050554A JP 4959061 B2 JP4959061 B2 JP 4959061B2
Authority
JP
Japan
Prior art keywords
stainless steel
elongation
ferritic stainless
gsn
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001050554A
Other languages
Japanese (ja)
Other versions
JP2002249857A (en
Inventor
純一 濱田
聡 橋本
豊彦 柿原
義仁 山田
哲郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2001050554A priority Critical patent/JP4959061B2/en
Publication of JP2002249857A publication Critical patent/JP2002249857A/en
Application granted granted Critical
Publication of JP4959061B2 publication Critical patent/JP4959061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、張り出し加工性に優れたフェライト系ステンレス鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼板は、オーステナイト系ステンレス鋼板に比べ、経済的な利点をもつことから広範囲に使用されており、高成形性を有することが要望されている。
近年の精錬技術の向上により、極低炭素・窒素化が可能になり、TiやNbなどの安定化元素を添加して成形性を向上させることができるようになった。
【0003】
ところが、既知技術における成形性向上には、深絞り性すなわちr値を向上させるものが主であり、フェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比べて成形性が劣る。また張り出し性改善についての検討は少ない。
張り出し性の向上には伸びの向上が効果的であり、例えば特開昭56−160560号公報,特開平62−233556号公報,特開平11−2399号公報では、張り出し性を向上させるための成分系に関する技術が開示されているが、これら鋼成分だけでは、十分な伸びすなわち張り出し成形性が得られないのが実状である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、既知技術の問題点を解決するために、鋼成分についてはTiとC,N,Sおよび析出物の制御、製造方法については結晶粒制御を基本的技術思想とし、張り出し性に優れたフェライト系ステンレス鋼板を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明者らはフェライト系ステンレス鋼板の張り出し性性の向上に関して、固溶強化元素、析出物および結晶粒径制御の見地から詳細な研究を行って、本発明を完成したものである。
【0006】
上記に鑑み、本発明の要旨は以下の構成からなる。
(1)質量%にて、
C:0.001〜0.01%、S≦0.01%、
Cr:16〜22%、N:0.010〜0.02%、
B:0.0005〜0.0050%、Ti:0.05〜0.4%
を含有し、残部がFeおよび不可避的不純物より成り、Ti系析出物が0.1面積%以下であり、結晶粒度(GSN)がJISG 0552に従ったGSNで5.5〜8.0であり、伸びが35%以上であり、S/C>32/12を満たすことを特徴とする張り出し性に優れたフェライト系ステンレス鋼板。
なお、S/CのS、Cはそれぞれの含有量(質量%)を指す。
【0007】
(2)質量%にて、
C:0.001〜0.01%、S≦0.01%、
Cr:16〜22%、N:0.010〜0.02%、
B:0.0005〜0.0050%、Ti:0.05〜0.4%
を含有し、残部がFeおよび不可避的不純物より成り、S/C>32/12を満たす組成を有するステンレス鋼スラブを熱間圧延後、熱延板焼鈍し、冷間圧延と再結晶焼鈍を施す際に、加熱温度をTi×C:0.00005〜0.001%の場合は、97000(Ti×C)+850℃以上97000(Ti×C)+1000℃以下とし、Ti×C:0.001%超の場合は、97000(Ti×C)+850℃以上1100℃以下とする温度域で再結晶焼鈍して、結晶粒度(GSN)をJISG 0552に従ったGSNで5.5〜8.0、伸びを35%以上に制御することを特徴とする張り出し性に優れたフェライト系ステンレス鋼板の製造方法。
なお、(Ti×C)のTi、Cはそれぞれの含有量(質量%)を指す。
【0008】
【発明の実施の形態】
以下に本発明の限定理由について説明する。まず、成分の限定理由について述べる。
Cは、加工性を劣化させるためその含有量は少ないほど良いが、過度の低減は精錬コストの増加に繋がるため、0.001〜0.01%とした。更に、耐食性と製造コストを考慮すると、0.002〜0.005%が望ましい。
【0009】
Sは、0.01%超では耐食性を劣化させるため、0.01%以下とした。また、適量の添加によりTiやCと共に析出物(TiS、Ti4 2 2 )を形成し、熱間での再結晶の核として作用し、加工性の向上に寄与する。従って、Sの範囲は0.0001〜0.0100%とすることが好ましい。更に、経済性と特性を考慮すると、0.0010〜0.0050%が望ましい。
【0010】
Crは、耐食性および耐高温酸化性の向上のために16%以上の添加が必要であるが、22%超添加により靭性の劣化が生じ、製造性が劣化する。従って、Crの範囲は16〜22%とした、更に、耐食生と加工性の確保という観点では16〜18%が望ましい。
【0011】
Tiは、C,N,Sと結合して耐食性、耐粒界腐食性および加工性を向上させるが、過度の添加はTi系硬質介在物が生成し、表面疵の原因となる。また、Tiは固溶強化元素であるため、過度の添加は延性低下をもたらすことから、0.05〜0.4%とした。更に、コスト等を考慮すれば0.1〜0.3%が望ましい。
【0012】
Nは、Cと同様に加工性とを劣化させるため、その含有量は少ないほど良いが、過度の低下は凝固時にフェライト粒生成の核となるTiNが析出せず、凝固組織が柱状晶化し、成形時のリジング性が劣化する懸念がある。よって、Nの添加量は0.010〜0.02%とした
【0013】
Ti添加高純度鋼は、深絞りおよび張り出し加工後に再度加工を施した場合に割れが生じる場合が有る。これは、2次加工割れと呼ばれ粒界の強度が低下するために生じる現象である。
【0014】
Bは、結晶粒界に偏析して粒界を強化するため、2次加工性を向上させる。その効果は0.0005%から作用し、過度の添加は加工性の劣化をもたらすことから、Bの範囲は0.0005〜0.0050%とした。更に、経済性を考慮すれば0.0006〜0.0020%が望ましい。
【0015】
本発明では、前記化学成分の他に、Ti系析出物の析出量を抑えることで、フェライト系ステンレス鋼の張り出し性を高めることができることを見出した。
Tiを添加した場合の析出物は、TiC、TiN、TiS、Ti4 2 2 などが有り、この中でTiCは微細な析出物のため、多量に析出すると結晶粒の粒成長が阻害される。
【0016】
図1に、Ti系析出物量と製品板の伸びの関係を示す。これより、Ti系析出物量の減少により伸びが向上し、0.1面積%以下で35%以上の伸びが得られる。
ここで、Ti系析出物量とは、JIS G 0555で定められた方法により求めたものであり、伸びは製品板(0.5mm厚)の圧延方向が引張方向と平行になるようにJIS13号B試験片を採取し、JIS Z 2241に従い引張試験を行った時の破断伸びのことをいう。
【0017】
また図1の中で、S量により伸びが変化しているが、これはTiSやTi4 2 2 の析出が促進され、低温域でのTiC析出を抑制するためである。TiCの析出は、熱延板および冷延板焼鈍時の結晶粒成長を抑制するために、製品板の伸びが低下する。
【0018】
図2にC,S量と製品の伸びの関係を示す。図2に示す様に、S/C>32/12において、製品板の伸びが35%以上となり、張り出し加工性に優れた鋼板が得られる。これは、凝固〜熱延高温域において、Ti4 2 2 によりCが固定されるため、低温域で微細なTiC析出量が減少するためである。
【0019】
更に本発明では、上記化学成分および析出物量の他に、製品板の結晶粒度が伸びに影響し、最適な結晶粒度が存在することを見出した。図3に結晶粒度番号 (GSN)と製品の伸びの関係を示す。ここで、結晶粒度(GSN)は、JISG 0552に従い板厚中心部の結晶粒度を測定した結果である。これより、GSNが5.5〜8.0の範囲で伸びが最大となることがわかる。これは、細粒(GSNが大)の場合は、結晶粒微細化効果により伸びが低減するからである。また、粗粒化しすぎると伸びが低下するのは、変形中にくびれが生じた際に粒界に応力集中し、破断が容易になるためである。
【0020】
次に、本発明における製造方法について説明する。
通常、ステンレス鋼板はスラブを熱間圧延し、熱延板焼鈍を施し、冷間圧延と再結晶焼鈍を1回以上繰り返して製造される。この際、冷延板の再結晶焼鈍温度が不適正であれば、上記のGSNにはならないのは公知であるが、成分によって適正焼鈍温度は変化する。
図4にTi×Cと適正温度域の関係を示す。これより、Ti×Cが0.00005〜0.001%の場合は、97000(Ti×C)+850℃以上、97000(Ti×C)+1000℃以下に加熱することで適正な結晶粒度になる。また、Ti×Cが0.001%超の場合は、97000(Ti×C)+850℃以上、1100℃以下に加熱することで適正な結晶粒度になる。
【0021】
【実施例】
表1示す成分組成のフェライト系ステンレス鋼を溶製、鋳造した。その後、1100〜1200℃に加熱して熱間圧延して、3.8mm厚の熱延板とした。これを連続焼鈍−酸洗後、0.5mm厚まで冷間圧延し、更に連続焼鈍−酸洗、調質圧延を施して製品とした。
【0022】
上記にようにして得られた0.5mm厚の製品板から、圧延方向にJIS13号B引張試験片を採取して引張試験を行うとともに、製品板の結晶粒度を測定した。その結果を表1に併せて示す。
表1から明らかなように、本発明で規定する化学成分を有する鋼は、比較鋼に比べて伸びが高く、張り出し性に優れていることがわかる。
表2に、鋼1,8,10についての焼鈍温度の影響を示すが、本発明範囲で焼鈍した製品は比較鋼に比べて伸びが高く、張り出し性に優れていることがわかる。
【0023】
尚、本発明の効果は、冷間圧延―焼鈍を繰り返す2回冷延法においても有効であり、この場合は張り出し性のみならず深絞り性も一段と向上するため、加工様式に応じて2回冷延法を選択すれば良い。
また、熱延板厚などは適宜設計すれば良い。熱延板焼鈍は本発明範囲成分において、再結晶が完了する温度で焼鈍すれば良いが、r値やリジングなどの他の特性を考慮すると粗粒化しない範囲内で高温焼鈍が望ましい。
更に、冷間圧延においては、ロールなどは適宜選択すれば良く、中間焼鈍と最終焼鈍は、必要であれば光輝焼鈍でも構わない。
【0024】
【表1】

Figure 0004959061
【0025】
【表2】
Figure 0004959061
【0026】
【発明の効果】
以上の説明から明らかなように、本発明によれば伸びが向上し、張り出し性に優れたフェライト系ステンレス鋼板を提供することができる。
【図面の簡単な説明】
【図1】Ti系析出物量と製品の伸びの関係を示す図である。
【図2】S/Cと製品の伸びの関係を示す図である。
【図3】製品の結晶粒度(GSN)と伸びの関係を示す図である。
【図4】Ti×Cと適正最終焼鈍温度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel sheet excellent in overhang workability and a method for producing the same.
[0002]
[Prior art]
Ferritic stainless steel sheets have been used extensively because they have economic advantages compared to austenitic stainless steel sheets, and are required to have high formability.
Improvements in refining technology in recent years have enabled extremely low carbon and nitrogenization, and it has become possible to improve moldability by adding stabilizing elements such as Ti and Nb.
[0003]
However, the improvement of formability in the known technique is mainly to improve deep drawability, that is, the r value, and ferritic stainless steel is inferior in formability compared to austenitic stainless steel. There are few studies on improvement of overhang.
In order to improve the stretchability, it is effective to improve the elongation. For example, in JP-A-56-160560, JP-A-62-2233556, and JP-A-11-2399, a component for improving the stretchability Although the technology related to the system is disclosed, it is the actual condition that sufficient elongation, that is, stretch formability cannot be obtained only with these steel components.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to solve the problems of the known technology, with the basic technical idea of Ti and C, N, S and precipitate control for steel components and crystal grain control for the manufacturing method, and the overhanging property. An object of the present invention is to provide a ferritic stainless steel sheet excellent in the above.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors conducted a detailed study from the viewpoint of solid solution strengthening elements, precipitates, and crystal grain size control with respect to the improvement of the stretchability of the ferritic stainless steel sheet. It has been completed.
[0006]
In view of the above, the gist of the present invention has the following configuration.
(1) In mass%,
C: 0.001 to 0.01%, S ≦ 0.01%,
Cr: 16-22%, N: 0.010-0.02%,
B: 0.0005 to 0.0050%, Ti: 0.05 to 0.4%
The balance is Fe and inevitable impurities, the Ti-based precipitate is 0.1 area% or less, and the crystal grain size (GSN) is 5.5 to 8.0 in terms of GSN according to JISG 0552 A ferritic stainless steel sheet having excellent overhanging characteristics, characterized by having an elongation of 35% or more and satisfying S / C> 32/12.
In addition, S and C of S / C indicate each content (mass%).
[0007]
(2) In mass%,
C: 0.001 to 0.01%, S ≦ 0.01%,
Cr: 16-22%, N: 0.010-0.02%,
B: 0.0005 to 0.0050%, Ti: 0.05 to 0.4%
Containing the balance Ri formed from Fe and unavoidable impurities, after hot rolling a stainless steel slab having a composition satisfying S / C> 32/12, the hot rolled sheet annealing, cold rolling and recrystallization annealing When applying, when the heating temperature is Ti × C: 0.00005 to 0.001% 2 , the heating temperature is 97000 (Ti × C) + 850 ° C. or more and 97000 (Ti × C) + 1000 ° C. or less, and Ti × C = 0. In the case of more than 001% 2 , recrystallization annealing is performed in a temperature range of 97000 (Ti × C) + 850 ° C. or more and 1100 ° C. or less, and the crystal grain size (GSN) is 5.5 to 8.5 in GSN according to JISG 0552. 0. A method for producing a ferritic stainless steel sheet having excellent overhanging characteristics, characterized by controlling elongation to 35% or more .
In addition, Ti and C in (Ti × C) indicate respective contents (mass%).
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limitation of the present invention will be described below. First, the reasons for limiting the components will be described.
The content of C is preferably as low as possible in order to deteriorate the workability, but excessive reduction leads to an increase in refining cost, so 0.001 to 0.01% was set. Furthermore, if considering corrosion resistance and manufacturing cost, 0.002 to 0.005% is desirable.
[0009]
If S exceeds 0.01%, the corrosion resistance deteriorates, so it was made 0.01% or less. Moreover, precipitates (TiS, Ti 4 C 2 S 2 ) are formed together with Ti and C by addition of an appropriate amount, which acts as a hot recrystallization nucleus and contributes to improvement of workability. Therefore, the range of S is preferably 0.0001 to 0.0100%. Furthermore, if considering economy and characteristics, 0.0010 to 0.0050% is desirable.
[0010]
Cr needs to be added in an amount of 16% or more in order to improve corrosion resistance and high-temperature oxidation resistance. However, addition of more than 22% causes deterioration of toughness and deteriorates manufacturability. Therefore, the Cr range is 16 to 22%, and 16 to 18% is desirable from the viewpoint of securing corrosion resistance and workability.
[0011]
Ti combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance and workability, but excessive addition generates Ti-based hard inclusions and causes surface defects. Further, since Ti is a solid solution strengthening element, excessive addition causes a reduction in ductility, so 0.05% to 0.4% was set. Furthermore, if considering the cost and the like, 0.1 to 0.3% is desirable.
[0012]
N is deteriorated in workability as in C, so its content is preferably as small as possible. However, excessive reduction does not precipitate TiN that becomes the nucleus of ferrite grain formation during solidification, and the solidified structure becomes columnar crystals. There is a concern that the ridging property at the time of molding deteriorates. Therefore, the addition amount of N is set to 0.010 to 0.02% .
[0013]
Ti-added high-purity steel may crack when it is processed again after deep drawing and overhanging. This is a phenomenon which is called secondary cracking and occurs because the strength of the grain boundary is lowered.
[0014]
B segregates at the crystal grain boundary and strengthens the grain boundary, so that secondary workability is improved. The effect acts from 0.0005%, and excessive addition causes deterioration of workability. Therefore, the range of B is set to 0.0005 to 0.0050%. Furthermore, if considering the economy, 0.0006 to 0.0020% is desirable.
[0015]
In the present invention, it has been found out that, in addition to the chemical components, the overhangability of ferritic stainless steel can be enhanced by suppressing the amount of Ti-based precipitates deposited.
Precipitates when Ti is added include TiC, TiN, TiS, Ti 4 C 2 S 2, etc. Among them, TiC is a fine precipitate, and if it is precipitated in large quantities, grain growth of the crystal grains is inhibited. The
[0016]
FIG. 1 shows the relationship between the amount of Ti-based precipitates and the elongation of the product plate. Accordingly, the elongation is improved by reducing the amount of the Ti-based precipitate, and an elongation of 35% or more can be obtained at 0.1 area % or less.
Here, the amount of Ti-based precipitate is determined by the method defined in JIS G 0555, and the elongation is JIS No. 13B so that the rolling direction of the product plate (0.5 mm thickness) is parallel to the tensile direction. This refers to the elongation at break when a test piece is collected and a tensile test is performed according to JIS Z 2241.
[0017]
Further, in FIG. 1, the elongation varies depending on the amount of S. This is because the precipitation of TiS and Ti 4 C 2 S 2 is promoted and the TiC precipitation in the low temperature region is suppressed. Precipitation of TiC suppresses the growth of crystal grains during annealing of hot rolled sheets and cold rolled sheets, so that the elongation of the product sheet decreases.
[0018]
FIG. 2 shows the relationship between the amount of C and S and the product elongation. As shown in FIG. 2, when S / C> 32/12, the elongation of the product plate is 35% or more, and a steel plate having excellent overworkability is obtained. This is because C is fixed by Ti 4 C 2 S 2 in the high temperature range from solidification to hot rolling, so that the amount of fine TiC deposited decreases in the low temperature range.
[0019]
Furthermore, in the present invention, in addition to the above chemical components and the amount of precipitates, it has been found that the crystal grain size of the product plate affects the elongation and the optimum crystal grain size exists. FIG. 3 shows the relationship between the grain size number (GSN) and product elongation. Here, the crystal grain size (GSN) is the result of measuring the crystal grain size at the center of the plate thickness in accordance with JISG 0552. From this, it can be seen that the elongation becomes maximum when the GSN is in the range of 5.5 to 8.0. This is because in the case of fine grains (GSN is large), the elongation is reduced due to the effect of crystal grain refinement. Further, when the grain size is excessively coarsened, the elongation decreases because stress is concentrated on the grain boundary when constriction occurs during deformation, and breakage is facilitated.
[0020]
Next, the manufacturing method in this invention is demonstrated.
Usually, a stainless steel plate is manufactured by hot-rolling a slab, performing hot-rolled sheet annealing, and repeating cold rolling and recrystallization annealing one or more times. At this time, if the recrystallization annealing temperature of the cold-rolled sheet is inappropriate, it is known that the above-mentioned GSN is not obtained, but the appropriate annealing temperature varies depending on the components.
FIG. 4 shows the relationship between Ti × C and the appropriate temperature range. From this, when Ti × C is 0.00005 to 0.001% 2 , heating to 97000 (Ti × C) + 850 ° C. or higher and 97000 (Ti × C) + 1000 ° C. or lower results in an appropriate crystal grain size. . When Ti × C is more than 0.001% 2 , heating to 97000 (Ti × C) + 850 ° C. or higher and 1100 ° C. or lower provides an appropriate crystal grain size.
[0021]
【Example】
Ferritic stainless steel having the composition shown in Table 1 was melted and cast. Then, it heated at 1100-1200 degreeC and hot-rolled, and was set as the hot rolled sheet of 3.8 mm thickness. This was subjected to continuous annealing and pickling, then cold rolled to a thickness of 0.5 mm, and further subjected to continuous annealing and pickling and temper rolling to obtain a product.
[0022]
From the 0.5 mm thick product plate obtained as described above, a JIS No. 13 B tensile test piece was taken in the rolling direction to perform a tensile test, and the crystal grain size of the product plate was measured. The results are also shown in Table 1.
As can be seen from Table 1, the steel having the chemical component defined in the present invention has a higher elongation than the comparative steel and is excellent in the stretchability.
Table 2 shows the influence of the annealing temperature on steels 1, 8, and 10. It can be seen that the products annealed within the scope of the present invention have higher elongation than the comparative steels and are excellent in overhanging properties.
[0023]
The effect of the present invention is also effective in the cold rolling method in which cold rolling and annealing are repeated twice. In this case, not only the stretchability but also the deep drawability is further improved. A cold rolling method may be selected.
Moreover, what is necessary is just to design hot-rolled sheet thickness etc. suitably. Hot-rolled sheet annealing may be performed at a temperature at which recrystallization is completed in the range component of the present invention, but considering other characteristics such as r value and ridging, high-temperature annealing is desirable within a range not coarsening.
Further, in cold rolling, the roll diameter and the like may be selected as appropriate, and the intermediate annealing and the final annealing may be bright annealing if necessary.
[0024]
[Table 1]
Figure 0004959061
[0025]
[Table 2]
Figure 0004959061
[0026]
【Effect of the invention】
As is apparent from the above description, according to the present invention, it is possible to provide a ferritic stainless steel sheet having improved elongation and excellent extrudability.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Ti-based precipitates and product elongation.
FIG. 2 is a diagram showing the relationship between S / C and product elongation.
FIG. 3 is a graph showing the relationship between the crystal grain size (GSN) and elongation of a product.
FIG. 4 is a diagram showing a relationship between Ti × C and a proper final annealing temperature.

Claims (2)

質量%にて、
C:0.001〜0.01%、
S≦0.01%、
Cr:16〜22%、
N:0.010〜0.02%、
B:0.0005〜0.0050%、
Ti:0.05〜0.4%
を含有し、残部がFeおよび不可避的不純物より成り、Ti系析出物が0.1面積%以下であり、結晶粒度(GSN)がJISG 0552に従ったGSNで5.5〜8.0であり、伸びが35%以上であり、S/C>32/12を満たすことを特徴とする張り出し性に優れたフェライト系ステンレス鋼板。
なお、S/CのS、Cはそれぞれの含有量(質量%)を指す。
In mass%
C: 0.001 to 0.01%,
S ≦ 0.01%,
Cr: 16-22%,
N: 0.010 to 0.02%,
B: 0.0005 to 0.0050%,
Ti: 0.05 to 0.4%
The balance is Fe and inevitable impurities, the Ti-based precipitate is 0.1 area% or less, and the crystal grain size (GSN) is 5.5 to 8.0 in terms of GSN according to JISG 0552 A ferritic stainless steel sheet having excellent overhanging characteristics, characterized by having an elongation of 35% or more and satisfying S / C> 32/12.
In addition, S and C of S / C indicate each content (mass%).
質量%にて、
C:0.001〜0.01%、
S≦0.01%、
Cr:16〜22%、
N:0.010〜0.02%、
B:0.0005〜0.0050%、
Ti:0.05〜0.4%
を含有し、残部がFeおよび不可避的不純物より成り、S/C>32/12を満たす組成を有するステンレス鋼スラブを熱間圧延後、熱延板焼鈍し、冷間圧延と再結晶焼鈍を施す際に、加熱温度をTi×C:0.00005〜0.001%の場合は、97000(Ti×C)+850℃以上97000(Ti×C)+1000℃以下とし、Ti×C:0.001%超の場合は、97000(Ti×C)+850℃以上1100℃以下とする温度域で再結晶焼鈍して、結晶粒度(GSN)をJISG 0552に従ったGSNで5.5〜8.0、伸びを35%以上に制御することを特徴とする張り出し性に優れたフェライト系ステンレス鋼板の製造方法。
なお、(Ti×C)のTi、Cはそれぞれの含有量(質量%)を指す。
In mass%
C: 0.001 to 0.01%,
S ≦ 0.01%,
Cr: 16-22%,
N: 0.010 to 0.02%,
B: 0.0005 to 0.0050%,
Ti: 0.05 to 0.4%
Containing the balance being Fe and unavoidable impurities, is subjected after hot rolling a stainless steel slab having a composition satisfying S / C> 32/12, the hot rolled sheet annealing, cold rolling and recrystallization annealing At this time, when the heating temperature is Ti × C: 0.00005 to 0.001% 2 , the heating temperature is 97000 (Ti × C) + 850 ° C. or more and 97000 (Ti × C) + 1000 ° C. or less, and Ti × C: 0.001 In the case of more than 2 %, recrystallization annealing is performed in a temperature range of 97000 (Ti × C) + 850 ° C. to 1100 ° C., and the crystal grain size (GSN) is 5.5 to 8.0 as GSN according to JISG 0552. A method for producing a ferritic stainless steel sheet having excellent overhanging characteristics, characterized in that the elongation is controlled to 35% or more .
In addition, Ti and C in (Ti × C) indicate respective contents (mass%).
JP2001050554A 2001-02-26 2001-02-26 Ferritic stainless steel sheet with excellent overhanging property and method for producing the same Expired - Lifetime JP4959061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050554A JP4959061B2 (en) 2001-02-26 2001-02-26 Ferritic stainless steel sheet with excellent overhanging property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050554A JP4959061B2 (en) 2001-02-26 2001-02-26 Ferritic stainless steel sheet with excellent overhanging property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002249857A JP2002249857A (en) 2002-09-06
JP4959061B2 true JP4959061B2 (en) 2012-06-20

Family

ID=18911493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050554A Expired - Lifetime JP4959061B2 (en) 2001-02-26 2001-02-26 Ferritic stainless steel sheet with excellent overhanging property and method for producing the same

Country Status (1)

Country Link
JP (1) JP4959061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110061777A1 (en) 2007-08-20 2011-03-17 Jfe Steel Corporation Ferritic stainless steel sheet having superior punching workability and method for manufacturing the same
WO2014157066A1 (en) 2013-03-25 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent blanking workability and process for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261460A (en) * 1985-05-11 1986-11-19 Nippon Steel Corp Ferritic stainless steel sheet having excellent secondary operation characteristic after deep drawing
JP3446449B2 (en) * 1996-02-20 2003-09-16 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent ridging resistance
JP3455047B2 (en) * 1997-01-23 2003-10-06 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same

Also Published As

Publication number Publication date
JP2002249857A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
KR101602088B1 (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP4498950B2 (en) Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
US20090000703A1 (en) Ferritic stainless steel sheet superior in shapeability and method of production of the same
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
KR20180109865A (en) Nb-containing ferritic stainless steel hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof
EP3591084B1 (en) Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
EP3591083B1 (en) Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
EP3040427B1 (en) High-strength hot-rolled plated steel sheet and method for manufacturing same
US20060225820A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP2023507528A (en) LOW-CARBON LOW-COST ULTRA-HIGH-STRENGTH MULTI-PHASE STEEL STEEL/STRIP AND METHOD FOR MANUFACTURING SAME
JP4959061B2 (en) Ferritic stainless steel sheet with excellent overhanging property and method for producing the same
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
CN114945689A (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP2019173149A (en) Ferritic stainless steel sheet, manufacturing method therefor, and ferritic stainless member
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP4135434B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR20230059478A (en) Ferritic stainless hot-rolled steel plate excellent in formability and method for production thereof
JP5332894B2 (en) Low specific gravity steel sheet excellent in ductility, fatigue characteristics and toughness and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100813

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4959061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term