JP4956863B2 - Cathode active material for alkaline storage battery and alkaline storage battery using the same - Google Patents

Cathode active material for alkaline storage battery and alkaline storage battery using the same Download PDF

Info

Publication number
JP4956863B2
JP4956863B2 JP2001095742A JP2001095742A JP4956863B2 JP 4956863 B2 JP4956863 B2 JP 4956863B2 JP 2001095742 A JP2001095742 A JP 2001095742A JP 2001095742 A JP2001095742 A JP 2001095742A JP 4956863 B2 JP4956863 B2 JP 4956863B2
Authority
JP
Japan
Prior art keywords
particles
cobalt
active material
solid solution
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001095742A
Other languages
Japanese (ja)
Other versions
JP2002298840A (en
Inventor
秀勝 泉
弘之 坂本
陽一 和泉
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001095742A priority Critical patent/JP4956863B2/en
Publication of JP2002298840A publication Critical patent/JP2002298840A/en
Application granted granted Critical
Publication of JP4956863B2 publication Critical patent/JP4956863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ蓄電池用正極活物質とこれを用いたアルカリ蓄電池に関連するものである。
【0002】
【従来の技術】
近年、アルカリ蓄電池は携帯機器の普及に伴い高容量化が強く要望されている。特にニッケル・水素蓄電池は、水酸化ニッケルを主体とした正極と、水素吸蔵合金を主体とした負極からなる二次電池であり、高容量かつ高信頼性の二次電池として普及している。
【0003】
以下、このアルカリ蓄電池用の正極について説明する。
【0004】
アルカリ蓄電池用の正極には、大別して焼結式と非焼結式の2つがある。前者はパンチングメタル等の芯材とニッケル粉末とを焼結させて得た多孔度80%程度のニッケル焼結基板に、硝酸ニッケル水溶液等のニッケル塩溶液を含浸し、続いてアルカリ水溶液に含浸するなどして多孔質ニッケル焼結基板中に水酸化ニッケルを生成させて作製するものである。この正極は基板の多孔度をこれ以上大きくすることが困難であるため、水酸化ニッケル量を増加することができず、高容量化には限界がある。
【0005】
後者の非焼結式正極としては、例えば特開昭50−36935号公報に開示されたように、三次元的に連続した多孔度95%程度の発泡ニッケル基板に、水酸化ニッケル粒子を保持させるものが提案されており、現在、高容量のアルカリ蓄電池の正極として広く用いられている。この非焼結式正極では高容量化の観点から、嵩密度が大きい球状の水酸化ニッケル粒子が使用される。また、放電特性や充電受け入れ性、寿命特性の向上のために、上記の水酸化ニッケル粒子にコバルト、カドミウム、亜鉛等の金属元素を一部固溶させて用いるのが一般的である。
【0006】
また、このような水酸化ニッケル粒子とともに発泡ニッケル基板に保持させる導電剤としては2価のコバルト酸化物(例えば特開平7−77129号公報)等が提案されている。
【0007】
2価のコバルト酸化物の機能は次の通りである。通常、発泡ニッケル基板の孔の大きさは、これに充填する水酸化ニッケルの粒径よりも十分大きく設けられている。したがって、集電が保たれた基板骨格近傍の水酸化ニッケル粒子では充放電反応が円滑に進行するが、骨格から離れた水酸化ニッケル粒子の反応は十分に進行しない。そこで多くの場合、水酸化コバルト、一酸化コバルトのような2価のコバルト酸化物を添加している。これら2価のコバルト酸化物はそれ自身は導電性を有しないものの、電池内での初期の充電において導電性を有するβ−オキシ水酸化コバルトへと電気化学的に酸化され、これが水酸化ニッケル粒子と基板骨格とをつなぐ導電ネットワークとして機能する。この導電ネットワークの存在によって、非焼結式正極では高密度に充填した活物質の利用率を大幅に高めることが可能となり、焼結式正極に比べて高容量化が図られる。
【0008】
しかし、上記のような構成の非焼結式正極やこれを用いたアルカリ蓄電池においても、コバルトによる導電ネットワークの集電性能は完全なものではないため、水酸化ニッケル粒子の利用率には上限があった。さらに上記正極では、電池を過放電あるいは短絡状態で放置したり、長期の保存や高温下での保存等を行うと、その後の充放電で正極容量が低下するという欠点があった。これは、上記したような電池内の電気化学的なコバルトの酸化反応では、2価のコバルト酸化物を完全にβ−オキシ水酸化コバルトへ変化させることができず、導電ネットワークの機能低下が起こりやすいためである。
【0009】
こうしたコバルトによる導電ネットワークの不完全さを改善する手段として、特開平8−148145号公報および特開平8−148146号公報において、正極活物質中の水酸化コバルトを、電池外においてアルカリ水溶液と酸素(空気)との共存下で加熱処理(酸化)し、結晶構造の乱れた2価よりも価数の大きいコバルト酸化物に改質する手法が開示されている。これに類似する内容として、特開平9−147905号公報においてコバルト価数が2.5〜2.93までのコバルト酸化物の改良が、さらに特開平9−259888号公報では同様の手法で作製したβ−オキシ水酸化コバルトを使用した電池の特性が示されている。
【0010】
また、前記の特開平8−148146号公報では、同様の加熱処理を水酸化コバルトの被覆層を有する水酸化ニッケル固溶体粒子に施す点も述べられている。この場合には、あらかじめ水酸化コバルト被覆水酸化ニッケル固溶体粒子を作製しておくことによるコバルトの分散性向上等の理由により、使用するコバルト量を少なくできるという利点がある。一方、特開平9−73900号公報では、この際の製造方法に関して、アルカリ水溶液を含んだ水酸化コバルト被覆水酸化ニッケル固溶体粒子を、流動造粒装置等の中で流動させるかあるいは分散させながら加熱する方法が開示されている。このような処理を行うと、凝集による粒子塊の発生等のトラブルを少なくできるという利点がある。
【0011】
しかし、上記公報に記載のアルカリ蓄電池用正極活物質(酸化を施したコバルト種の被覆層を有する水酸化ニッケル固溶体粒子)では、被覆層を形成するコバルト種の酸化状態は未だ完全なものとは言い難く、改良の余地が残されていた。これは、アルカリ共存下での水酸化コバルトの酸化の進行が、周囲の温度や共存させるアルカリ水溶液の濃度だけでなく、周囲の水分や酸素量にも大きく影響を受け、これらの制御なしには十分に高次な状態にまで酸化させることができないためである。この課題を改善する提案として、特開平11−97008号公報においては、酸化条件を最適に制御することによって被覆層を形成するコバルト種は価数が3.0よりも高次なγ−オキシ水酸化コバルトまで酸化されるという点、そして、この活物質を用いた正極の利用率や耐過放電性能等が、コバルト酸化が不十分な活物質を用いた場合に比べて飛躍的に向上する点が開示された。ここで、このγ−オキシ水酸化コバルトは結晶内にアルカリカチオン(K+あるいはNa+)を多量に含有するといった特徴も併せ持つ。さらに特開平11−147719号公報においては、上記コバルト価数が3.0よりも高次なγ−オキシ水酸化コバルト層の結晶内部に、水酸化リチウムあるいはリチウムイオンを固定化することにより、高温雰囲気下で充放電サイクルを繰り返した場合の容量劣化を抑制できる点が開示されている。
【0012】
近年に出願、公開された以上のような技術は、基本的には電池の初充電時に起こるコバルト酸化反応(通常の条件では満足に進行しない)を、電池外で十分に行わせる主旨のものである。したがって、先述のコバルトによる導電ネットワークの不完全さに起因する欠点の改良を図ることができる。
【0013】
一方、非焼結式ニッケル極は高温雰囲気下での充電効率が低いという欠点を有する。通常、アルカリ蓄電池の充電末期には、水酸化ニッケルからオキシ水酸化ニッケルへの充電反応(酸化反応)の他に、副反応である酸素発生反応が競争的に起こる。特に高温雰囲気下での充電においては、酸素発生過電圧が低下するため、充電電気量の多くが酸素発生反応に消費されることになる。その結果、水酸化ニッケルがオキシ水酸化ニッケルに充分に酸化されず、電池容量の低下をきたす。
【0014】
この問題を解決するために、これまでに数多くの提案がなされてきた。例えば、特開平5−28992号公報には、正極中にイットリウム、インジウム、アンチモン、バリウム、カルシウムおよびベリリウムの化合物のうち少なくとも一種を添加する方法が開示されている。正極中に添加されたこれらの化合物は、活物質である水酸化ニッケルの表面に吸着し、これによって、高温雰囲気下の充電における水酸化ニッケルの利用率が向上する。
【0015】
また、特開平10−294109号公報には、水酸化ニッケル粒子の表面にナトリウム含有コバルト化合物からなる被覆層が形成された複合体粒子からなる活物質粉末に、平均粒径0.5〜20μmの金属イットリウム粉末および/またはイットリウム化合物粉末を添加した正極を用いることで、高温での充電特性を向上できることが開示されている。また、特開平11−273671号公報では、3.0価よりも高次なコバルト酸化物の被覆層を有する水酸化ニッケル固溶体粒子と、前記コバルト酸化物で被覆された水酸化ニッケル固溶体粒子の量に対して0.1〜5.0重量部の金属イットリウム粉末またはイットリウム酸化物粉末の混合物とからなるアルカリ蓄電池用非焼結式正極が、高利用率で耐過放電性能等に優れることが開示されている。
【0016】
さらに、特開平10−21909号公報には、水酸化ニッケル粒子の表面を水酸化イットリウムと水酸化コバルトとの共晶で被覆してなる複合体粒子からなる粉末を正極活物質として用いることで、充放電サイクルの初期はもとより、長期にわたって高い活物質利用率を発現することが開示されている。また、特開平11−260360号公報には、水酸化ニッケル粒子表面の少なくとも一部を、イッテルビウムを含有するコバルト化合物層で被覆してなる複合体粒子を正極活物質として用いることで、利用率および高温雰囲気下での充電効率を向上できることが開示されている。
【0017】
また、特開平11−7949号公報には、水酸化ニッケルを含有する基体粒子と、当該基体粒子を被覆するイットリウム、スカンジウムもしくはランタノイド、または、それらの化合物からなる被覆内層と、当該被覆内層を被覆するコバルトまたはコバルト化合物からなる被覆外層とからなる複合体粒子を正極活物質として用いることで、常温下で充電した場合はもとより、高温雰囲気下で充電した場合にも、高い活物質利用率を発現することが開示されている。さらに、特開平11−7950号公報には、水酸化ニッケルを含有する基体粒子と、当該基体粒子を被覆するコバルトまたはコバルト化合物からなる被覆内層と、当該被覆内層を被覆するイットリウム、スカンジウムもしくはランタノイド、または、それらの化合物からなる被覆外層とからなる複合体粒子を正極活物質として用いることで、常温下で充電した場合はもとより、高温雰囲気下で充電した場合にも、高い活物質利用率を発現することが開示されている。
【0018】
【発明が解決しようとする課題】
上記添加剤は酸素発生過電圧を増大させ、高温充電効率を向上させる効果はあるものの、導電性をほとんど有していない。したがって、コバルト酸化物の被覆による水酸化ニッケル粒子表面の電子伝導性付与効果を阻害し、放電特性、特に高率放電特性に悪影響を与えることになる。特に、上記添加剤をコバルト酸化物被覆層に共晶させた場合、あるいは、コバルト酸化物被覆層の内層あるいは外層として均一に分布させた場合には、高温雰囲気下で充電した場合には優れた活物質利用率を発現するものの、高率放電特性は顕著に劣化することになる。
【0019】
本発明は上記課題を解決するもので、優れた高温充電特性を維持しつつ、高率放電特性にも優れたアルカリ蓄電池用正極活物質およびアルカリ蓄電池を提供するものである。
【0020】
【課題を解決するための手段】
上記課題を解決するために、本発明のアルカリ蓄電池用正極活物質は、水酸化ニッケルを主成分とする固溶体粒子の表面積の1〜30%が、イットリウム、スカンジウムまたはランタノイドから選ばれる少なくとも一種の酸化物粒子にて被覆されており、かつ、その外周をコバルト平均価数が3.0価より大であるコバルト酸化物にて被覆され、前記コバルト酸化物の被覆層が、その結晶内部にカリウムあるいはナトリウムを含有しており、かつ水酸化リチウムあるいはリチウムイオンを固定化していることを特徴とするものである。
【0021】
酸素発生過電圧を増大させる効果を有するイットリウム、スカンジウムまたはランタノイドの酸化物粒子が、水酸化ニッケル固溶体粒子の表面に部分的に被覆されているため、水酸化ニッケル固溶体粒子とその外周のコバルト酸化物被覆層との結合部が存在する。したがって、水酸化ニッケル粒子の表面を水酸化イットリウムと水酸化コバルトとの共晶で被覆する方法、あるいは、水酸化ニッケル粒子の表面をイットリウム、スカンジウムもしくはランタノイド、または、それらの化合物からなる内層にて被覆し、さらにコバルトまたはコバルト化合物からなる外層にて被覆する方法に比べて、活物質内の電子伝導性が向上することになる。また、水酸化ニッケル固溶体粒子の最外周がコバルト酸化物のみで被覆されているため、水酸化ニッケル粒子の表面をコバルトまたはコバルト化合物からなる内層にて被覆し、さらにイットリウム、スカンジウムもしくはランタノイド、または、それらの化合物からなる外層にて被覆する方法に比べて、粒子間および粒子と基板骨格とをつなぐ導電ネットワークが損なわれることもない。それゆえ、優れた高温充電特性を維持しつつ、高率放電特性にも優れたアルカリ蓄電池用正極活物質およびアルカリ蓄電池を提供することが可能となる。
【0022】
【発明の実施の形態】
本発明のアルカリ蓄電池用正極活物質は、水酸化ニッケルを主成分とする固溶体粒子の表面積の1〜30%が、イットリウム、スカンジウムまたはランタノイドから選ばれる少なくとも一種の酸化物粒子にて被覆されており、かつ、その外周をコバルト平均価数が3.0価より大であるコバルト酸化物にて被覆され、前記コバルト酸化物の被覆層が、その結晶内部にカリウムあるいはナトリウムを含有しており、かつ水酸化リチウムあるいはリチウムイオンを固定化していることを特徴とする。
【0023】
ここで、イットリウム、スカンジウムまたはランタノイドから選ばれる少なくとも一種の酸化物粒子の被覆率は、被覆率(%)=((水酸化ニッケル固溶体粒子一粒子当たりに結合する酸化物粒子数×酸化物粒子の最大断面積)/(水酸化ニッケル固溶体粒子一粒子の表面積))×100で定義した。ここで、水酸化ニッケル固溶体粒子一粒子当たりに結合する酸化物粒子数は、水酸化ニッケル固溶体粒子一粒子当たりに結合する酸化物粒子数=(活物質中の酸化物粒子の重量/(酸化物粒子一粒子当たりの体積×酸化物の真密度))/(活物質中の水酸化ニッケル固溶体粒子の重量/(水酸化ニッケル固溶体粒子一粒子当たりの体積×水酸化ニッケル固溶体粒子の真密度))で定義した。なお、前記酸化物粒子および水酸化ニッケル固溶体粒子は、その形状が真球であり、すべての粒子がその平均粒子径を有するものとして仮定し、粒子の断面積、一粒子の表面積、一粒子当たりの体積を算出した。
【0024】
酸素発生過電圧を増大させる効果を有するイットリウム、スカンジウムまたはランタノイドの酸化物粒子が、水酸化ニッケル固溶体粒子の表面に部分的に被覆されているため、水酸化ニッケル固溶体粒子とその外周のコバルト酸化物被覆層との結合部が存在し、活物質内の電子伝導性が向上することになる。また、水酸化ニッケル固溶体粒子の最外周がコバルト酸化物のみで被覆されているため、粒子間および粒子と基板骨格とをつなぐ導電ネットワークが損なわれることもない。それゆえ、優れた高温充電特性を維持しつつ、高率放電特性にも優れたアルカリ蓄電池用正極活物質およびアルカリ蓄電池が得られる。
【0025】
前記正極活物質において、水酸化ニッケル固溶体粒子の表面積に対する、イットリウム、スカンジウムまたはランタノイドの酸化物粒子の被覆率が1%より小さい場合、高温雰囲気下の充電における酸素発生過電圧を十分に増大させることができない。また、被覆率が30%より大きい場合、酸素発生過電圧を増大させるという効果は飽和し、かつコバルト酸化物の被覆層による水酸化ニッケル粒子表面の電子伝導性付与効果を阻害し、高率放電特性に悪影響を与える。
【0026】
また、前記イットリウム、スカンジウムまたはランタノイドの酸化物粒子の水酸化ニッケル固溶体粒子に対する比率が、0.1〜3.0質量%であることを特徴とするアルカリ蓄電池用正極活物質である。前記正極活物質において、イットリウム、スカンジウムまたはランタノイドの酸化物粒子の比率が0.1質量%より少ない場合、高温雰囲気下の充電における酸素発生過電圧を十分に増大させることができない。また、イットリウム、スカンジウムまたはランタノイドの酸化物粒子の比率が3.0質量%より多い場合、酸素発生過電圧を増大させるという効果は飽和し、かつコバルト酸化物の被覆層による水酸化ニッケル粒子表面の電子伝導性付与効果を阻害し、高率放電特性に悪影響を与える。
【0028】
また、前記固溶体粒子に対する前記コバルト酸化物の被覆層の比率が、5〜10質量%であることを特徴とするアルカリ蓄電池用正極活物質である。被覆層の比率が5質量%より少ない場合、導電ネットワークが不十分となり、活物質粒子からの集電を十分に保てない。また、被覆層の比率が10質量%より多い場合、正極容量を決定する水酸化ニッケル粒子の量が相対的に減少することになり、高エネルギー密度の正極が得られなくなる。被覆層の比率が上記範囲内にあって、かつ水酸化ニッケル粒子からの集電能力を最大とするために、粒子全面を被覆した状態のものが最も好適である。
【0030】
本発明正極活物質を適用して好適なアルカリ蓄電池用非焼結式正極としては、導電性芯体に活物質を含有するペーストを塗布し、乾燥してなるペースト式正極等が挙げられる。このときの導電性芯体の具体例としては、ニッケル発泡体、フェルト状金属繊維多孔体およびパンチングメタル等が挙げられる。
【0031】
本発明正極活物質を用いて好適なアルカリ蓄電池の具体例としては、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、およびニッケル・亜鉛蓄電池等が挙げられる。
【0032】
【実施例】
以下、本発明の実施例について、詳細に説明する。
【0033】
(実施例1)
正極活物質である水酸化ニッケル固溶体粒子は、周知の以下の手法を用いて合成した。すなわち、硫酸ニッケルを主成分とし、硫酸コバルトおよび硫酸亜鉛を所定量だけ含有させた水溶液に、アンモニア水で溶液pHを調整しながら水酸化ナトリウムを徐々に滴下し、球状の水酸化ニッケル固溶体粒子を析出させる方法を用いた。この析出した水酸化ニッケル固溶体粒子を水洗、乾燥して活物質粒子とした。なお、この水酸化ニッケル固溶体粒子の平均粒径は10μmであった。
【0034】
次に、こうして得られた水酸化ニッケル固溶体粒子の100重量部に、平均粒径0.2μmのY23粒子を0.5重量部を加えた後、この混合物に対して圧縮摩砕式粉砕機によるメカノケミカル反応(メカノフュージョン法)を行い、水酸化ニッケル固溶体粒子の表面にY23粒子を分散させ、Y酸化物分散水酸化ニッケル固溶体粒子を作製した。この場合の水酸化ニッケル固溶体粒子の表面積に対するY23粒子の被覆率は4.8%である。また、イットリウム特性X線像にて、水酸化ニッケル固溶体粒子の表面にイットリウムが部分的に存在していることを確認した。
【0035】
こうして得られたイットリウム(以下、Yと表記)酸化物分散水酸化ニッケル固溶体粒子を硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=12を維持するように調整しながら攪拌を続けて固溶体粒子表面に水酸化コバルトを析出させて水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子を作製した。ここで水酸化コバルトの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率が7.0質量%となるように調整した。作製した水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
【0036】
続いて、水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子に45質量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって粒子表面の水酸化コバルト被覆層は3.0価を越える高次な状態まで酸化され、藍色に変化した。これを十分に水洗、真空乾燥させて、コバルト酸化処理Y酸化物分散活物質粒子とした(以下これを本発明活物質Aと表記する)。
【0037】
また、前記水酸化ニッケル固溶体粒子を硝酸イットリウム水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=11を維持するように調整しながら攪拌を続けて固溶体粒子表面に水酸化イットリウムを析出させてY酸化物被覆水酸化ニッケル固溶体粒子を作製した。ここで水酸化イットリウムの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率がY23換算で0.5質量%となるように調整した。作製したY酸化物被覆水酸化ニッケル固溶体粒子は水洗した後、80℃にて乾燥を行った。
【0038】
こうして得られたY酸化物被覆水酸化ニッケル固溶体粒子を硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=12を維持するように調整しながら攪拌を続けてY酸化物被覆層表面に水酸化コバルトを析出させて水酸化コバルト被覆Y酸化物被覆水酸化ニッケル固溶体粒子を作製した。ここで水酸化コバルトの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率が7.0質量%となるように調整した。作製した水酸化コバルト被覆Y酸化物被覆水酸化ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
【0039】
続いて、水酸化コバルト被覆Y酸化物被覆水酸化ニッケル固溶体粒子に45質量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって粒子表面の水酸化コバルト被覆層は3.0価を越える高次な状態まで酸化され、藍色に変化した。これを十分に水洗、真空乾燥させて、Co酸化処理Y酸化物被覆活物質粒子とした(以下これを比較活物質Bと表記する)。
【0040】
また、前記水酸化ニッケル固溶体粒子を硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=12を維持するように調整しながら攪拌を続けて水酸化ニッケル固溶体粒子表面に水酸化コバルトを析出させて水酸化コバルト被覆水酸化ニッケル固溶体粒子を作製した。ここで水酸化コバルトの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率が7.0質量%となるように調整した。作製した水酸化コバルト被覆水酸化ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
【0041】
続いて、水酸化コバルト被覆水酸化ニッケル固溶体粒子に45質量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって粒子表面の水酸化コバルト被覆層は3.0価を越える高次な状態まで酸化され、藍色に変化した。これを十分に水洗、真空乾燥させて、Co酸化処理活物質粒子とした。
【0042】
こうして得られたCo酸化処理活物質粒子を硝酸イットリウム水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=11を維持するように調整しながら攪拌を続けて水酸化コバルト被覆層表面に水酸化イットリウムを析出させてY酸化物被覆Co酸化処理活物質粒子を作製した。ここで水酸化イットリウムの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率がY23換算で0.5質量%となるように調整した。作製したY酸化物被覆Co酸化処理活物質粒子は水洗した後、80℃にて乾燥を行った(以下これを比較活物質Cと表記する)。
【0043】
また、前記水酸化ニッケル固溶体粒子を硝酸コバルトと硝酸イットリウムの混合水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=12を維持するように調整しながら攪拌を続けて水酸化ニッケル固溶体粒子表面に水酸化コバルトと水酸化イットリウムの混晶物を析出させてY混晶水酸化コバルト被覆水酸化ニッケル固溶体粒子を作製した。ここで水酸化コバルトの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率が7.0質量%となるように調整した。また、水酸化イットリウムの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率がY23換算で0.5質量%となるように調整した。作製したY混晶水酸化コバルト被覆水酸化ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
【0044】
続いて、Y混晶水酸化コバルト被覆水酸化ニッケル固溶体粒子に45質量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって粒子表面の水酸化コバルト被覆層は3.0価を越える高次な状態まで酸化され、藍色に変化した。これを十分に水洗、真空乾燥させて、Y混晶Co酸化処理活物質粒子とした(以下これを比較活物質Dと表記する)。
【0045】
さらに、前記水酸化ニッケル固溶体粒子を硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpH=12を維持するように調整しながら攪拌を続けて水酸化ニッケル固溶体粒子表面に水酸化コバルトを析出させて水酸化コバルト被覆水酸化ニッケル固溶体粒子を作製した。ここで水酸化コバルトの被覆量については、水酸化ニッケル固溶体粒子に対する被覆層の重量の比率が7.0質量%となるように調整した。作製した水酸化コバルト被覆水酸化ニッケル固溶体粒子は水洗した後、真空乾燥を行った。
【0046】
続いて、水酸化コバルト被覆水酸化ニッケル固溶体粒子に45質量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって粒子表面の水酸化コバルト被覆層は3.0価を越える高次な状態まで酸化され、藍色に変化した。これを十分に水洗、真空乾燥させて、Co酸化処理活物質粒子とした(以下これを比較活物質Eと表記する)。
【0047】
次に、こうして得られた本発明活物質A、比較活物質B、C、Dの100重量部に、それぞれ増粘剤としてのカルボキシメチルセルロース(CMC)を0.1重量部およびバインダーとしてのポリテトラフルオロエチレン(PTFE)を0.2重量部と適量の純水とを加えて混合分散させ、活物質スラリーとした。この活物質スラリーを厚さ1.4mmの発泡ニッケル多孔体基板に充填し、80℃の乾燥機内で乾燥させた後、ロールプレスにより約0.7mmに圧延し、さらにこれを所定の大きさに切断加工して、Niの1電子反応を基準とした時の理論容量が1200mAhのニッケル正極とした。この正極と水素吸蔵合金を主体とした負極、親水化処理を施したポリプロピレン不織布セパレータ、水酸化カリウム濃度が7.0規定、水酸化リチウム濃度が1.0規定である混合アルカリ電解液を用い、公知の方法により公称容量1200mAhのAAサイズのニッケル・水素蓄電池を作製した(以下、本発明活物質A、比較活物質B、C、Dに対応するこれらの電池を、それぞれ本発明電池A、比較電池B、C、Dと表記する)。
【0048】
また、比較活物質Eの100重量部に、平均粒径0.2μmのY23を0.5重量部添加すること以外はすべて上記と同様にして、ニッケル・水素蓄電池を作製した(以下これを比較電池Eと表記する)。
【0049】
また、比較活物質Eを用い、Y23を添加しないこと以外はすべて上記と同様にして、ニッケル・水素蓄電池を作製した(以下これを比較電池Fと表記する)。
【0050】
これら6種の電池A、B、C、D、E、Fについて、20℃の一定温度で、充電を120mAで15時間、次いで放電を240mAで終止電圧0.8Vで行い、この充放電操作を5回繰り返した。
【0051】
次に、20℃の一定温度で充電を120mAで15時間行い、2時間の休止の後、20℃の一定温度で放電を240mAで終止電圧0.8Vまで行い、この時の放電電気量を測定し、放電容量▲1▼とした。
【0052】
また、50℃の一定温度で充電を120mAで15時間行い、2時間の休止の後、20℃の一定温度で放電を240mAで終止電圧0.8Vまで行い、この時の放電電気量を測定し、放電容量▲2▼とした。
【0053】
さらに、20℃の一定温度で充電を120mAで15時間行い、2時間の休止の後、20℃の一定温度で放電を3600mAで終止電圧0.8Vまで行い、この時の放電電気量を測定し、放電容量▲3▼とした。
【0054】
(表1)に充放電試験の結果を利用率および50℃充電効率として示す。利用率は、Niの1電子反応を基準として計算したものを理論容量とし、理論容量に対してどれだけ放電したかを示す指標として、利用率(%)=放電容量/理論容量×100で定義した。ここで、放電容量▲1▼に対して利用率▲1▼、放電容量▲2▼に対して利用率▲2▼、放電容量▲3▼に対して利用率▲3▼を用いている。また、50℃充電効率は20℃充電時に対してどれだけ充電したかを示す指標として、50℃充電効率(%)=放電容量▲2▼/放電容量▲1▼で定義した。
【0055】
【表1】

Figure 0004956863
【0056】
本発明電池Aの50℃充電効率が83%であるのに対して、比較電池Bは81%、比較電池Cは80%、比較電池Dは81%、比較電池Eは76%、比較電池Fは67%であり、イットリウムが添加されている電池A、B、C、D、Eにおいて高温充電効率の向上が確認できる。特に、イットリウムがコバルト酸化物被覆層の近傍あるいはその層内に存在する電池A、B、C、Dにおいて優れた高温充電効率を示す。この現象は、イットリウムの分散性が高いため、酸素発生過電圧増大に効率良く作用したためであると考えられる。
【0057】
また、3600mA放電時の利用率は、本発明電池Aが74%であるのに対して、比較電池Bは64%、比較電池Cは65%、比較電池Dは64%、比較電池Eは69%、比較電池Fは74%であり、本発明電池Aが高率放電特性にも優れていることが分かる。この結果は、イットリウムの酸化物粒子が水酸化ニッケル固溶体粒子の表面に部分的に被覆されているため、水酸化ニッケル固溶体粒子とその外周のコバルト酸化物被覆層との結合部が存在し、活物質内の電子伝導性が損なわれず、かつ、活物質粒子の最外周がコバルト酸化物のみで被覆されているため、粒子間および粒子と基板骨格とをつなぐ導電ネットワークも損なわれないためであると考えられる。
【0058】
(実施例2)
平均粒径0.2μmのY23粒子を、被覆率がそれぞれ0.5、1、5、10、30、50%となる様に被覆すること以外はすべて実施例1と同様にして、Co酸化処理Y酸化物分散活物質粒子を作製し、これらを用いてニッケル・水素蓄電池を作製した。これらの電池について実施例1と同様の充放電評価を行い、50℃充電効率、高率放電特性を測定した。図1に50℃充電効率、図2に高率放電特性の評価結果を示す。
【0059】
図1より、Y23粒子の被覆率が0.5%の場合、高温充電効率の向上がほとんど確認できないことが分かる。また、Y23粒子を1%以上被覆した場合に高温充電効率の向上が確認できるが、30%より多く被覆しても、その効果は飽和し、それ以上の効果が得られないことが確認できた。さらに、図2より、Y23粒子を30%より多く被覆した場合、高率放電特性に悪影響を与えることが分かる。コバルト酸化物被覆層と水酸化ニッケル粒子表面との間に多量のY23が存在するため、コバルト酸化物の被覆層による水酸化ニッケル粒子表面の電子伝導性付与効果が阻害されたためと考えられる。以上の結果より、Y23粒子を水酸化ニッケル固溶体粒子の表面積の1〜30%被覆した場合、高温充電特性に優れ、かつ高率放電特性にも優れていることが明らかである。
【0060】
(実施例3)
平均粒径0.3μmのY23粒子をそれぞれ0.05、0.1、0.5、1.0、3.0、5.0重量部添加すること以外はすべて実施例1と同様にして、Co酸化処理Y酸化物分散活物質粒子を作製し、これらを用いてニッケル・水素蓄電池を作製した。これらの電池について実施例1と同様の充放電評価を行い、50℃充電効率、高率放電特性を測定した。図3に50℃充電効率、図4に高率放電特性の評価結果を示す。
【0061】
図3より、Y23粒子の添加量が0.05重量部の場合、高温充電効率の向上がほとんど確認できないことが分かる。また、Y23粒子を0.1重量部以上添加した場合に高温充電効率の向上が確認できるが、3.0重量部より多く添加しても、その効果は飽和し、それ以上の効果が得られないことが確認できた。さらに、図4より、Y23粒子を3.0重量部より多く添加した場合、高率放電特性に悪影響を与えることが分かる。コバルト酸化物被覆層と水酸化ニッケル粒子表面との間に多量のY23が存在するため、コバルト酸化物の被覆層による水酸化ニッケル粒子表面の電子伝導性付与効果が阻害されたためと考えられる。以上の結果より、Y23粒子を0.1〜3.0質量%添加した場合、高温充電特性に優れ、かつ高率放電特性にも優れていることが明らかである。
【0062】
なお、本実施例中では水酸化コバルトの被覆に際し、水溶液中での化学反応を利用して被覆層の形成を行ったが、その際の被覆条件等はここで記したものに限定されるものでない。Y酸化物分散水酸化ニッケル固溶体粒子と水酸化コバルト粉末とを混合し、機械混合時におけるせん断力や衝撃力を利用して粒子表面を水酸化コバルトで被覆させる方法(機械混合法)等を用いて水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子としても、本発明の正極を作製することができる。
【0063】
水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子の酸化に際しては、高濃度の水酸化ナトリウム水溶液を共存させたが、高濃度の水酸化カリウム水溶液を使用しても同様の効果が得られる。アルカリ湿潤させた水酸化コバルト被覆Y酸化物分散水酸化ニッケル固溶体粒子を酸化させる加熱方法として、マイクロ波加熱の機能を備えた乾燥機内で酸素を送り込みながら加熱する方法としたが、これに限定されるものではない。また、そのコバルト酸化物被覆層の結晶内部に水酸化リチウムあるいはリチウムイオンを固定化させた水酸化コバルト被覆水酸化ニッケル固溶体粒子を用いた場合でも同様の効果が得られる。
【0064】
ここで、前記コバルト酸化物の被覆層の比率は、5〜10質量%であることが好ましい。被覆層の比率が5質量%より少ない場合、導電ネットワークが不十分となり、活物質粒子からの集電を十分に保てない。また、被覆層の比率が10質量%より多い場合、正極容量を決定する水酸化ニッケル粒子の量が相対的に減少することになり、高エネルギー密度の正極が得られなくなる。被覆層の比率が上記範囲内にあって、かつ水酸化ニッケル粒子からの集電能力を最大とするために、粒子全面を被覆した状態のものが最も好適である。
【0066】
さらに、本実施例中の効果は、Y23粒子を添加させた場合に限られるものではなく、スカンジウムまたはランタノイドの酸化物粒子を添加させた場合でも、同様の効果が得られることを確認した。
【0067】
【発明の効果】
以上に示したように、本発明の正極活物質を用いれば、優れた高温充電特性を維持しつつ、高率放電特性にも優れたアルカリ蓄電池用正極活物質およびアルカリ蓄電池を提供することが可能となる。
【図面の簡単な説明】
【図1】実施例2で用いた各電池の50℃充電時の充電効率を示す図
【図2】実施例2で用いた各電池の3600mA放電時の利用率を示す図
【図3】実施例3で用いた各電池の50℃充電時の充電効率を示す図
【図4】実施例3で用いた各電池の3600mA放電時の利用率を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for an alkaline storage battery and an alkaline storage battery using the same.
[0002]
[Prior art]
In recent years, there has been a strong demand for alkaline storage batteries to have higher capacities with the spread of portable devices. In particular, the nickel-hydrogen storage battery is a secondary battery including a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy, and is widely used as a secondary battery having a high capacity and high reliability.
[0003]
Hereinafter, the positive electrode for the alkaline storage battery will be described.
[0004]
There are roughly two types of positive electrodes for alkaline storage batteries: a sintered type and a non-sintered type. In the former, a nickel sintered substrate having a porosity of about 80% obtained by sintering a core material such as punching metal and nickel powder is impregnated with a nickel salt solution such as an aqueous nickel nitrate solution, followed by an alkaline aqueous solution. For example, nickel hydroxide is produced in a porous nickel sintered substrate. Since it is difficult for the positive electrode to further increase the porosity of the substrate, the amount of nickel hydroxide cannot be increased, and there is a limit to increasing the capacity.
[0005]
As the latter non-sintered positive electrode, as disclosed in, for example, Japanese Patent Laid-Open No. 50-36935, nickel hydroxide particles are held on a foamed nickel substrate having a three-dimensionally continuous porosity of about 95%. Have been proposed and are now widely used as positive electrodes for high capacity alkaline storage batteries. In this non-sintered positive electrode, spherical nickel hydroxide particles having a large bulk density are used from the viewpoint of increasing the capacity. Further, in order to improve discharge characteristics, charge acceptability, and life characteristics, it is common to use a part of a metal element such as cobalt, cadmium, and zinc in the above nickel hydroxide particles.
[0006]
Further, as a conductive agent to be held on the foamed nickel substrate together with such nickel hydroxide particles, a divalent cobalt oxide (for example, JP-A-7-77129) has been proposed.
[0007]
The function of the divalent cobalt oxide is as follows. Usually, the size of the hole in the foamed nickel substrate is sufficiently larger than the particle size of the nickel hydroxide to be filled therein. Therefore, the charge / discharge reaction proceeds smoothly in the nickel hydroxide particles in the vicinity of the substrate skeleton in which current collection is maintained, but the reaction of the nickel hydroxide particles separated from the skeleton does not proceed sufficiently. In many cases, therefore, a divalent cobalt oxide such as cobalt hydroxide or cobalt monoxide is added. Although these divalent cobalt oxides are not electrically conductive per se, they are electrochemically oxidized into β-cobalt oxyhydroxide having electrical conductivity in the initial charge in the battery, and these are oxidized into nickel hydroxide particles. It functions as a conductive network that connects the substrate and the substrate skeleton. Due to the presence of this conductive network, the non-sintered positive electrode can greatly increase the utilization factor of the active material filled at a high density, and the capacity can be increased as compared with the sintered positive electrode.
[0008]
However, even in the non-sintered positive electrode configured as described above and the alkaline storage battery using the same, the current collection performance of the conductive network by cobalt is not perfect, so the utilization rate of nickel hydroxide particles has an upper limit. there were. Furthermore, when the battery is left in an overdischarged or short-circuited state or stored for a long period of time or at a high temperature, the positive electrode has a drawback that the positive electrode capacity decreases due to subsequent charge / discharge. This is because the electrochemical cobalt oxidation reaction in the battery as described above cannot completely convert the divalent cobalt oxide into β-cobalt oxyhydroxide, resulting in deterioration of the function of the conductive network. This is because it is easy.
[0009]
As means for improving the incompleteness of the conductive network due to cobalt, in Japanese Patent Application Laid-Open Nos. 8-148145 and 8-148146, cobalt hydroxide in the positive electrode active material is mixed with alkaline aqueous solution and oxygen ( A method is disclosed in which heat treatment (oxidation) is performed in the presence of air) to modify the cobalt oxide having a larger valence than a divalent disordered crystal structure. Similar to this, the improvement of cobalt oxide having a cobalt valence of 2.5 to 2.93 in JP-A-9-147905 was made by the same method in JP-A-9-259888. The characteristics of the battery using β-cobalt oxyhydroxide are shown.
[0010]
Japanese Patent Laid-Open No. 8-148146 also describes that the same heat treatment is applied to nickel hydroxide solid solution particles having a cobalt hydroxide coating layer. In this case, there is an advantage that the amount of cobalt to be used can be reduced for reasons such as improving the dispersibility of cobalt by preparing cobalt hydroxide-coated nickel hydroxide solid solution particles in advance. On the other hand, in JP-A-9-73900, regarding the production method at this time, cobalt hydroxide-coated nickel hydroxide solid solution particles containing an alkaline aqueous solution are heated while being flowed or dispersed in a fluid granulator or the like. A method is disclosed. When such a treatment is performed, there is an advantage that troubles such as generation of particle lumps due to aggregation can be reduced.
[0011]
However, in the positive electrode active material for alkaline storage batteries described in the above publication (nickel hydroxide solid solution particles having an oxidized cobalt-type coating layer), the oxidation state of the cobalt type forming the coating layer is still incomplete. It was hard to say and there was room for improvement. This is because the progress of the oxidation of cobalt hydroxide in the presence of alkali is greatly influenced not only by the ambient temperature and the concentration of the aqueous alkali solution to be coexisted, but also by the surrounding water and oxygen content. This is because it cannot be oxidized to a sufficiently high state. As a proposal for improving this problem, in Japanese Patent Application Laid-Open No. 11-97008, cobalt species forming a coating layer by optimally controlling oxidation conditions are γ-oxy water having a higher valence than 3.0. The point that it is oxidized to cobalt oxide, and the utilization factor and overdischarge resistance performance of the positive electrode using this active material are dramatically improved compared to the case where an active material with insufficient cobalt oxidation is used. Was disclosed. Here, this γ-cobalt oxyhydroxide contains alkali cations (K + Or Na + ) In large quantities. Further, in JP-A-11-147719, lithium hydroxide or lithium ions are immobilized inside the crystal of the γ-cobalt oxyhydroxide layer having a cobalt valence higher than 3.0, thereby increasing the temperature. The point which can suppress the capacity | capacitance degradation at the time of repeating a charging / discharging cycle in atmosphere is disclosed.
[0012]
The above-mentioned technologies that have been filed and published in recent years are basically intended to allow the cobalt oxidation reaction (which does not proceed satisfactorily under normal conditions) that occurs during the initial charge of the battery to sufficiently occur outside the battery. is there. Therefore, it is possible to improve the defects caused by the incompleteness of the conductive network due to the aforementioned cobalt.
[0013]
On the other hand, the non-sintered nickel electrode has a drawback of low charging efficiency in a high temperature atmosphere. Usually, at the end of charging of an alkaline storage battery, in addition to a charging reaction (oxidation reaction) from nickel hydroxide to nickel oxyhydroxide, an oxygen generation reaction as a side reaction occurs competitively. In particular, when charging in a high temperature atmosphere, the oxygen generation overvoltage decreases, so that much of the charged electricity is consumed in the oxygen generation reaction. As a result, nickel hydroxide is not sufficiently oxidized to nickel oxyhydroxide, resulting in a decrease in battery capacity.
[0014]
Many proposals have been made to solve this problem. For example, Japanese Patent Application Laid-Open No. 5-28992 discloses a method of adding at least one of yttrium, indium, antimony, barium, calcium and beryllium compounds to the positive electrode. These compounds added to the positive electrode are adsorbed on the surface of nickel hydroxide as an active material, thereby improving the utilization rate of nickel hydroxide in charging in a high temperature atmosphere.
[0015]
JP-A-10-294109 discloses that an active material powder comprising composite particles in which a coating layer comprising a sodium-containing cobalt compound is formed on the surface of nickel hydroxide particles has an average particle size of 0.5 to 20 μm. It is disclosed that charging characteristics at high temperatures can be improved by using a positive electrode to which metal yttrium powder and / or yttrium compound powder is added. In JP-A-11-273671, the amount of nickel hydroxide solid solution particles having a coating layer of cobalt oxide higher than 3.0 and the amount of nickel hydroxide solid solution particles coated with the cobalt oxide. It is disclosed that a non-sintered positive electrode for an alkaline storage battery comprising 0.1 to 5.0 parts by weight of a metal yttrium powder or a mixture of yttrium oxide powder is excellent in overdischarge resistance and the like with a high utilization rate Has been.
[0016]
Furthermore, in Japanese Patent Laid-Open No. 10-21909, by using, as a positive electrode active material, a powder made of composite particles formed by coating the surface of nickel hydroxide particles with a eutectic of yttrium hydroxide and cobalt hydroxide, It is disclosed that a high active material utilization rate is expressed over a long period of time as well as in the initial stage of the charge / discharge cycle. JP-A-11-260360 discloses that composite particles obtained by coating at least part of the surface of nickel hydroxide particles with a cobalt compound layer containing ytterbium are used as a positive electrode active material, It is disclosed that the charging efficiency under a high temperature atmosphere can be improved.
[0017]
Japanese Patent Laid-Open No. 11-7949 discloses a base particle containing nickel hydroxide, a coating inner layer made of yttrium, scandium or lanthanoid, or a compound thereof covering the base particle, and coating the coating inner layer. By using composite particles composed of a coating outer layer made of cobalt or a cobalt compound as a positive electrode active material, a high active material utilization rate is exhibited not only when charged at room temperature but also when charged in a high temperature atmosphere Is disclosed. Further, JP-A-11-7950 discloses a base particle containing nickel hydroxide, a coated inner layer made of cobalt or a cobalt compound that coats the base particle, yttrium, scandium, or a lanthanoid that coats the coated inner layer, Or, by using composite particles composed of an outer coating layer made of these compounds as a positive electrode active material, a high active material utilization rate is exhibited not only when charged at room temperature but also when charged in a high temperature atmosphere. Is disclosed.
[0018]
[Problems to be solved by the invention]
Although the additive has the effect of increasing the oxygen generation overvoltage and improving the high temperature charging efficiency, it has almost no electrical conductivity. Therefore, the effect of imparting electronic conductivity to the nickel hydroxide particle surface by the coating of cobalt oxide is hindered, and the discharge characteristics, particularly the high rate discharge characteristics, are adversely affected. In particular, when the above additive is co-crystallized in the cobalt oxide coating layer, or when it is uniformly distributed as the inner layer or outer layer of the cobalt oxide coating layer, it is excellent when charged in a high temperature atmosphere. Although the active material utilization rate is exhibited, the high rate discharge characteristics are significantly deteriorated.
[0019]
This invention solves the said subject, and provides the positive electrode active material and alkaline storage battery for alkaline storage batteries which were excellent also in the high rate discharge characteristic, maintaining the outstanding high temperature charge characteristic.
[0020]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the positive electrode active material for alkaline storage batteries according to the present invention comprises at least one oxidation in which 1 to 30% of the surface area of solid solution particles mainly composed of nickel hydroxide is selected from yttrium, scandium or lanthanoids. And the outer periphery is coated with cobalt oxide having an average cobalt valence of more than 3.0. The cobalt oxide coating layer contains potassium or sodium inside the crystal and immobilizes lithium hydroxide or lithium ions. It is characterized by that.
[0021]
Since the oxide particles of yttrium, scandium or lanthanoid, which have the effect of increasing the oxygen generation overvoltage, are partially coated on the surface of the nickel hydroxide solid solution particles, the nickel hydroxide solid solution particles and the cobalt oxide coating on the periphery thereof There is a connection with the layer. Therefore, a method of coating the surface of nickel hydroxide particles with a eutectic of yttrium hydroxide and cobalt hydroxide, or a surface of nickel hydroxide particles with an inner layer made of yttrium, scandium or lanthanoid, or a compound thereof. Compared with the method of coating and further coating with an outer layer made of cobalt or a cobalt compound, the electron conductivity in the active material is improved. Further, since the outermost periphery of the nickel hydroxide solid solution particles is coated only with cobalt oxide, the surface of the nickel hydroxide particles is coated with an inner layer made of cobalt or a cobalt compound, and further, yttrium, scandium or lanthanoid, or Compared with the method of coating with an outer layer composed of these compounds, the conductive network connecting the particles and connecting the particles and the substrate skeleton is not impaired. Therefore, it is possible to provide a positive electrode active material for alkaline storage batteries and an alkaline storage battery that are excellent in high rate discharge characteristics while maintaining excellent high-temperature charging characteristics.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In the positive electrode active material for an alkaline storage battery of the present invention, 1 to 30% of the surface area of solid solution particles mainly composed of nickel hydroxide is coated with at least one oxide particle selected from yttrium, scandium or lanthanoid. And the outer periphery is coated with cobalt oxide having an average cobalt valence of more than 3.0. The cobalt oxide coating layer contains potassium or sodium inside the crystal and immobilizes lithium hydroxide or lithium ions. It is characterized by.
[0023]
Here, the coverage of at least one oxide particle selected from yttrium, scandium, or lanthanoid is: coverage (%) = ((number of oxide particles bonded to one particle of nickel hydroxide solid solution particle × the number of oxide particles) Maximum cross-sectional area) / (surface area of one nickel hydroxide solid solution particle)) × 100. Here, the number of oxide particles bonded per nickel hydroxide solid solution particle is the number of oxide particles bonded per nickel hydroxide solid solution particle = (weight of oxide particles in active material / (oxide) Volume per particle × true oxide density)) / (weight of nickel hydroxide solid solution particles in active material / (volume per nickel hydroxide solid solution particle × true density of nickel hydroxide solid solution particles)) Defined in The oxide particles and the nickel hydroxide solid solution particles are assumed to have a true sphere shape, and all the particles have the average particle diameter, and the cross-sectional area of the particles, the surface area of one particle, and per particle The volume of was calculated.
[0024]
Since the oxide particles of yttrium, scandium or lanthanoid, which have the effect of increasing the oxygen generation overvoltage, are partially coated on the surface of the nickel hydroxide solid solution particles, the nickel hydroxide solid solution particles and the cobalt oxide coating on the periphery thereof There exists a coupling | bond part with a layer, and the electronic conductivity in an active material will improve. Further, since the outermost periphery of the nickel hydroxide solid solution particles is coated only with cobalt oxide, the conductive network connecting the particles and connecting the particles and the substrate skeleton is not impaired. Therefore, it is possible to obtain an alkaline storage battery positive electrode active material and an alkaline storage battery that are excellent in high rate discharge characteristics while maintaining excellent high-temperature charging characteristics.
[0025]
In the positive electrode active material, when the coverage of the oxide particles of yttrium, scandium, or lanthanoid with respect to the surface area of the nickel hydroxide solid solution particles is less than 1%, the oxygen generation overvoltage in charging in a high temperature atmosphere may be sufficiently increased. Can not. Also, when the coverage is higher than 30%, the effect of increasing the oxygen generation overvoltage is saturated, and the effect of imparting electronic conductivity on the surface of the nickel hydroxide particles by the coating layer of cobalt oxide is hindered. Adversely affects.
[0026]
The positive electrode active material for an alkaline storage battery is characterized in that the ratio of the yttrium, scandium or lanthanoid oxide particles to the nickel hydroxide solid solution particles is 0.1 to 3.0% by mass. In the positive electrode active material, when the ratio of yttrium, scandium, or lanthanoid oxide particles is less than 0.1 mass%, the oxygen generation overvoltage in charging under a high temperature atmosphere cannot be sufficiently increased. Further, when the ratio of oxide particles of yttrium, scandium or lanthanoid is more than 3.0% by mass, the effect of increasing the oxygen generation overvoltage is saturated, and electrons on the surface of nickel hydroxide particles by the coating layer of cobalt oxide It impedes the conductivity imparting effect and adversely affects the high rate discharge characteristics.
[0028]
The ratio of the cobalt oxide coating layer to the solid solution particles is 5 to 10% by mass. When the ratio of the coating layer is less than 5% by mass, the conductive network becomes insufficient, and current collection from the active material particles cannot be sufficiently maintained. On the other hand, when the ratio of the coating layer is more than 10% by mass, the amount of nickel hydroxide particles that determines the positive electrode capacity is relatively reduced, and a high energy density positive electrode cannot be obtained. In order to maximize the current collecting ability from the nickel hydroxide particles with the ratio of the coating layer being within the above range, the one in which the entire surface of the particles is coated is most preferable.
[0030]
Suitable non-sintered positive electrodes for alkaline storage batteries to which the positive electrode active material of the present invention is applied include paste-type positive electrodes obtained by applying a paste containing an active material to a conductive core and drying it. Specific examples of the conductive core at this time include nickel foam, felt-like metal fiber porous body, punching metal, and the like.
[0031]
Specific examples of suitable alkaline storage batteries using the positive electrode active material of the present invention include nickel / hydrogen storage batteries, nickel / cadmium storage batteries, and nickel / zinc storage batteries.
[0032]
【Example】
Examples of the present invention will be described in detail below.
[0033]
Example 1
Nickel hydroxide solid solution particles as a positive electrode active material were synthesized using the following well-known technique. That is, sodium hydroxide is gradually added dropwise to an aqueous solution containing nickel sulfate as a main component and containing a predetermined amount of cobalt sulfate and zinc sulfate while adjusting the pH of the solution with aqueous ammonia to form spherical nickel hydroxide solid solution particles. A precipitation method was used. The precipitated nickel hydroxide solid solution particles were washed with water and dried to obtain active material particles. The average particle diameter of the nickel hydroxide solid solution particles was 10 μm.
[0034]
Next, 100 parts by weight of the nickel hydroxide solid solution particles thus obtained was added to Y having an average particle size of 0.2 μm. 2 O Three After adding 0.5 parts by weight of the particles, this mixture is subjected to a mechanochemical reaction (mechanofusion method) using a compression-milling pulverizer, and the surface of the nickel hydroxide solid solution particles Y is added. 2 O Three The particles were dispersed to produce Y oxide-dispersed nickel hydroxide solid solution particles. Y with respect to the surface area of the nickel hydroxide solid solution particles in this case 2 O Three The particle coverage is 4.8%. Further, it was confirmed by yttrium characteristic X-ray images that yttrium partially existed on the surface of the nickel hydroxide solid solution particles.
[0035]
The thus obtained yttrium (hereinafter referred to as Y) oxide-dispersed nickel hydroxide solid solution particles were put into a cobalt sulfate aqueous solution, and a sodium hydroxide aqueous solution was gradually added to adjust the pH to 12 at 35 ° C. While stirring, the cobalt hydroxide was deposited on the surface of the solid solution particles to prepare cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The produced cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
[0036]
Subsequently, a cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particle is impregnated with an appropriate amount of 45% by mass potassium hydroxide aqueous solution, and this is put into a drying apparatus having a microwave heating function and heated. The particles were led to complete drying while sending oxygen. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized to a higher order state exceeding 3.0 and changed to indigo. This was sufficiently washed with water and vacuum-dried to obtain cobalt oxide-treated Y oxide-dispersed active material particles (hereinafter referred to as the present active material A).
[0037]
In addition, the nickel hydroxide solid solution particles are put into an aqueous yttrium nitrate solution, and an aqueous sodium hydroxide solution is gradually added, and stirring is continued while maintaining pH = 11 at 35 ° C., and the solid solution particle surfaces are hydroxylated. Yttrium was precipitated to produce Y oxide-coated nickel hydroxide solid solution particles. Here, regarding the coating amount of yttrium hydroxide, the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles is Y 2 O Three It adjusted so that it might become 0.5 mass% in conversion. The produced Y oxide-coated nickel hydroxide solid solution particles were washed with water and then dried at 80 ° C.
[0038]
The Y oxide-coated nickel hydroxide solid solution particles thus obtained were put into a cobalt sulfate aqueous solution, and a sodium hydroxide aqueous solution was gradually added, and stirring was continued while adjusting the pH to 12 at 35 ° C. Cobalt hydroxide was deposited on the surface of the oxide coating layer to prepare cobalt hydroxide-coated Y oxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The produced cobalt hydroxide-coated Y oxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
[0039]
Subsequently, cobalt hydroxide-coated Y oxide-coated nickel hydroxide solid solution particles were impregnated with an appropriate amount of 45% by weight potassium hydroxide aqueous solution, and this was put into a drying apparatus having a microwave heating function and heated. The particles were led to complete drying while sending oxygen. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized to a higher order state exceeding 3.0 and changed to indigo. This was sufficiently washed with water and vacuum dried to obtain Co oxidation-treated Y oxide-coated active material particles (hereinafter referred to as comparative active material B).
[0040]
Further, the nickel hydroxide solid solution particles are put into a cobalt sulfate aqueous solution, and a sodium hydroxide aqueous solution is gradually added, and stirring is continued while adjusting the pH to 12 at 35 ° C. Cobalt hydroxide was precipitated to produce cobalt hydroxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The produced cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
[0041]
Subsequently, a cobalt hydroxide-coated nickel hydroxide solid solution particle is impregnated with an appropriate amount of 45% by weight potassium hydroxide aqueous solution, and this is put into a drying apparatus equipped with a microwave heating function and heated to send oxygen. However, the particles were led to complete drying. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized to a higher order state exceeding 3.0 and changed to indigo. This was sufficiently washed with water and vacuum dried to obtain Co oxidation-treated active material particles.
[0042]
The Co oxidation-treated active material particles thus obtained were put into an aqueous yttrium nitrate solution, and an aqueous sodium hydroxide solution was gradually added, and stirring was continued while adjusting the pH = 11 at 35 ° C. to coat with cobalt hydroxide. Yttrium hydroxide was deposited on the surface of the layer to prepare Y oxide-coated Co oxidation active material particles. Here, regarding the coating amount of yttrium hydroxide, the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles is Y 2 O Three It adjusted so that it might become 0.5 mass% in conversion. The produced Y oxide-coated Co oxidation active material particles were washed with water and then dried at 80 ° C. (hereinafter referred to as comparative active material C).
[0043]
Further, the nickel hydroxide solid solution particles are put into a mixed aqueous solution of cobalt nitrate and yttrium nitrate, a sodium hydroxide aqueous solution is gradually added, and stirring is continued while adjusting so as to maintain pH = 12 at 35 ° C. A mixed crystal of cobalt hydroxide and yttrium hydroxide was deposited on the surface of the nickel oxide solid solution particles to prepare Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. Further, regarding the coating amount of yttrium hydroxide, the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles is Y 2 O Three It adjusted so that it might become 0.5 mass% in conversion. The produced Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
[0044]
Subsequently, Y mixed crystal cobalt hydroxide-coated nickel hydroxide solid solution particles were impregnated with an appropriate amount of 45% by mass potassium hydroxide aqueous solution, and this was put into a drying apparatus having a function of microwave heating and heated, The particles were led to complete dryness while sending oxygen. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized to a higher order state exceeding 3.0 and changed to indigo. This was sufficiently washed with water and vacuum dried to obtain Y mixed crystal Co oxidation-treated active material particles (hereinafter referred to as comparative active material D).
[0045]
Further, the nickel hydroxide solid solution particles are put into a cobalt sulfate aqueous solution, and a sodium hydroxide aqueous solution is gradually added, and stirring is continued while adjusting the pH to be maintained at 35 ° C. to maintain the surface of the nickel hydroxide solid solution particles. Cobalt hydroxide was precipitated to produce cobalt hydroxide-coated nickel hydroxide solid solution particles. Here, the coating amount of cobalt hydroxide was adjusted so that the ratio of the weight of the coating layer to the nickel hydroxide solid solution particles was 7.0% by mass. The produced cobalt hydroxide-coated nickel hydroxide solid solution particles were washed with water and then vacuum-dried.
[0046]
Subsequently, a cobalt hydroxide-coated nickel hydroxide solid solution particle is impregnated with an appropriate amount of 45% by weight potassium hydroxide aqueous solution, and this is put into a drying apparatus equipped with a microwave heating function and heated to send oxygen. However, the particles were led to complete drying. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized to a higher order state exceeding 3.0 and changed to indigo. This was sufficiently washed with water and vacuum dried to obtain Co oxidation-treated active material particles (hereinafter referred to as comparative active material E).
[0047]
Next, 0.1 parts by weight of carboxymethyl cellulose (CMC) as a thickener and polytetral as a binder were added to 100 parts by weight of the active material A of the present invention and comparative active materials B, C, and D thus obtained. 0.2 parts by weight of fluoroethylene (PTFE) and an appropriate amount of pure water were added and mixed and dispersed to obtain an active material slurry. This active material slurry is filled in a foamed nickel porous substrate having a thickness of 1.4 mm, dried in a dryer at 80 ° C., and then rolled to about 0.7 mm by a roll press. A nickel positive electrode having a theoretical capacity of 1200 mAh based on the one-electron reaction of Ni was cut. Using this positive electrode and a negative electrode mainly composed of a hydrogen storage alloy, a polypropylene nonwoven fabric separator subjected to a hydrophilic treatment, a mixed alkaline electrolyte having a potassium hydroxide concentration of 7.0 normal and a lithium hydroxide concentration of 1.0 normal, AA-sized nickel-hydrogen storage batteries having a nominal capacity of 1200 mAh were prepared by a known method (hereinafter, these batteries corresponding to the present active material A and comparative active materials B, C, and D are referred to as the present invention battery A and the comparison, respectively). Battery B, C, and D).
[0048]
Further, 100 parts by weight of the comparative active material E was added to Y having an average particle diameter of 0.2 μm. 2 O Three A nickel-hydrogen storage battery was produced in the same manner as described above except that 0.5 part by weight was added (hereinafter referred to as comparative battery E).
[0049]
Further, using the comparative active material E, Y 2 O Three A nickel-hydrogen storage battery was produced in the same manner as described above except that was not added (hereinafter referred to as comparative battery F).
[0050]
These six types of batteries A, B, C, D, E, and F were charged at a constant temperature of 20 ° C. for 15 hours at 120 mA, then discharged at 240 mA at a final voltage of 0.8 V, and this charge / discharge operation was performed. Repeated 5 times.
[0051]
Next, charging is performed at a constant temperature of 20 ° C. at 120 mA for 15 hours, and after a 2-hour rest, discharging is performed at a constant temperature of 20 ° C. at 240 mA up to a final voltage of 0.8 V, and the amount of electricity discharged is measured. The discharge capacity was set to (1).
[0052]
Also, charging at a constant temperature of 50 ° C. at 120 mA for 15 hours, after a 2-hour pause, discharging at a constant temperature of 20 ° C. at 240 mA to a final voltage of 0.8 V, and measuring the amount of discharge electricity at this time The discharge capacity was set to (2).
[0053]
Furthermore, charging was performed at a constant temperature of 20 ° C. at 120 mA for 15 hours, and after a 2-hour pause, discharging was performed at a constant temperature of 20 ° C. at 3600 mA to a final voltage of 0.8 V, and the amount of electricity discharged was measured. The discharge capacity was set to (3).
[0054]
The results of the charge / discharge test are shown in Table 1 as the utilization rate and 50 ° C. charge efficiency. Utilization rate is defined as the theoretical capacity, calculated based on the one-electron reaction of Ni, and used as an index indicating how much discharge is performed with respect to the theoretical capacity: utilization rate (%) = discharge capacity / theoretical capacity × 100 did. Here, the utilization rate (1) is used for the discharge capacity (1), the utilization rate (2) is used for the discharge capacity (2), and the utilization rate (3) is used for the discharge capacity (3). The 50 ° C. charge efficiency was defined as 50 ° C. charge efficiency (%) = discharge capacity (2) / discharge capacity (1) as an index indicating how much charge was performed at the time of 20 ° C. charge.
[0055]
[Table 1]
Figure 0004956863
[0056]
The battery A of the present invention has a charging efficiency of 83% at 50 ° C., whereas the comparative battery B is 81%, the comparative battery C is 80%, the comparative battery D is 81%, the comparative battery E is 76%, and the comparative battery F Is 67%, and the high temperature charging efficiency can be confirmed in the batteries A, B, C, D, and E to which yttrium is added. In particular, the batteries A, B, C, and D in which yttrium is present in the vicinity of or in the cobalt oxide coating layer exhibit excellent high-temperature charging efficiency. This phenomenon is considered to be due to the high dispersibility of yttrium, which effectively acted to increase the oxygen generation overvoltage.
[0057]
The utilization rate at the time of 3600 mA discharge is 74% for the battery A of the present invention, 64% for the comparative battery B, 65% for the comparative battery C, 64% for the comparative battery D, and 69 for the comparative battery E. %, Comparative battery F is 74%, and it can be seen that the battery A of the present invention is also excellent in high rate discharge characteristics. As a result, since the yttrium oxide particles are partially coated on the surface of the nickel hydroxide solid solution particles, there is a bonding portion between the nickel hydroxide solid solution particles and the cobalt oxide coating layer on the outer periphery thereof. This is because the electronic conductivity in the material is not impaired, and the outermost periphery of the active material particles is covered only with cobalt oxide, so that the conductive network connecting the particles and the particles and the substrate skeleton is not impaired. Conceivable.
[0058]
(Example 2)
Y with an average particle size of 0.2 μm 2 O Three Co oxidation-treated Y oxide dispersed active material particles were treated in the same manner as in Example 1 except that the particles were coated so that the coverages were 0.5, 1, 5, 10, 30, and 50%, respectively. The nickel-hydrogen storage battery was produced using these. These batteries were subjected to the same charge / discharge evaluation as in Example 1, and the 50 ° C. charge efficiency and high rate discharge characteristics were measured. FIG. 1 shows the evaluation results of the 50 ° C. charging efficiency, and FIG. 2 shows the high rate discharge characteristics.
[0059]
From FIG. 1, Y 2 O Three It can be seen that when the particle coverage is 0.5%, almost no improvement in high-temperature charging efficiency can be confirmed. Y 2 O Three The improvement of the high-temperature charging efficiency can be confirmed when the particles are coated at 1% or more, but even when the particles are coated at more than 30%, the effect is saturated, and it is confirmed that no further effect can be obtained. Furthermore, from FIG. 2 O Three It can be seen that coating more than 30% of the particles adversely affects the high rate discharge characteristics. A large amount of Y is present between the cobalt oxide coating layer and the nickel hydroxide particle surface. 2 O Three This is considered to be because the effect of imparting electronic conductivity to the nickel hydroxide particle surface by the coating layer of cobalt oxide was inhibited. From the above results, Y 2 O Three It is clear that when the particles are coated with 1 to 30% of the surface area of the nickel hydroxide solid solution particles, they are excellent in high-temperature charge characteristics and high-rate discharge characteristics.
[0060]
(Example 3)
Y with an average particle size of 0.3 μm 2 O Three Except for adding 0.05, 0.1, 0.5, 1.0, 3.0, and 5.0 parts by weight of the particles, respectively, the Co oxidation treatment Y oxide dispersion activity was the same as in Example 1. Material particles were produced, and nickel / hydrogen storage batteries were produced using these particles. These batteries were subjected to the same charge / discharge evaluation as in Example 1, and the 50 ° C. charge efficiency and high rate discharge characteristics were measured. FIG. 3 shows the evaluation results of the 50 ° C. charging efficiency, and FIG. 4 shows the high rate discharge characteristics.
[0061]
From FIG. 3, Y 2 O Three It can be seen that when the amount of particles added is 0.05 parts by weight, almost no improvement in high-temperature charging efficiency can be confirmed. Y 2 O Three Improvement of high-temperature charging efficiency can be confirmed when 0.1 part by weight or more of particles is added, but even if added more than 3.0 parts by weight, the effect is saturated and no further effect can be obtained. It could be confirmed. Furthermore, from FIG. 2 O Three It can be seen that the addition of more than 3.0 parts by weight adversely affects the high rate discharge characteristics. A large amount of Y is present between the cobalt oxide coating layer and the nickel hydroxide particle surface. 2 O Three This is considered to be because the effect of imparting electronic conductivity to the nickel hydroxide particle surface by the coating layer of cobalt oxide was inhibited. From the above results, Y 2 O Three When 0.1 to 3.0 mass% of the particles are added, it is clear that the high temperature charge characteristics are excellent and the high rate discharge characteristics are also excellent.
[0062]
In this example, the coating layer was formed using a chemical reaction in an aqueous solution when coating cobalt hydroxide, but the coating conditions and the like at that time are limited to those described here. Not. Using a method (mechanical mixing method) that mixes Y oxide-dispersed nickel hydroxide solid solution particles and cobalt hydroxide powder and coats the particle surface with cobalt hydroxide using shearing force or impact force during mechanical mixing Thus, the positive electrode of the present invention can also be produced as cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles.
[0063]
In oxidizing the cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles, a high concentration sodium hydroxide aqueous solution was allowed to coexist, but the same effect can be obtained even if a high concentration potassium hydroxide aqueous solution is used. The heating method for oxidizing the alkali-wet cobalt hydroxide-coated Y oxide-dispersed nickel hydroxide solid solution particles is a method of heating while feeding oxygen in a dryer equipped with a microwave heating function, but is not limited thereto. It is not something. The same effect can be obtained even when cobalt hydroxide-coated nickel hydroxide solid solution particles in which lithium hydroxide or lithium ions are immobilized inside the crystal of the cobalt oxide coating layer are used.
[0064]
Here, the ratio of the cobalt oxide coating layer is preferably 5 to 10% by mass. When the ratio of the coating layer is less than 5% by mass, the conductive network becomes insufficient, and current collection from the active material particles cannot be sufficiently maintained. On the other hand, when the ratio of the coating layer is more than 10% by mass, the amount of nickel hydroxide particles that determines the positive electrode capacity is relatively reduced, and a high energy density positive electrode cannot be obtained. In order to maximize the current collecting ability from the nickel hydroxide particles with the ratio of the coating layer being within the above range, the one in which the entire surface of the particles is coated is most preferable.
[0066]
Furthermore, the effect in this embodiment is Y 2 O Three It was not limited to the case where particles were added, and it was confirmed that the same effect was obtained even when scandium or lanthanoid oxide particles were added.
[0067]
【Effect of the invention】
As described above, by using the positive electrode active material of the present invention, it is possible to provide a positive electrode active material for an alkaline storage battery and an alkaline storage battery that are excellent in high-rate discharge characteristics while maintaining excellent high-temperature charging characteristics. It becomes.
[Brief description of the drawings]
1 is a graph showing the charging efficiency of each battery used in Example 2 when charged at 50 ° C. FIG.
FIG. 2 is a graph showing the utilization rate of each battery used in Example 2 when discharged at 3600 mA.
FIG. 3 is a graph showing the charging efficiency when charging each battery used in Example 3 at 50 ° C.
4 is a graph showing the utilization rate of each battery used in Example 3 when discharged at 3600 mA. FIG.

Claims (4)

水酸化ニッケルを主成分とする固溶体粒子を備え、前記固溶体粒子の表面積の1〜30%が、イットリウム、スカンジウムまたはランタノイドから選ばれる少なくとも一種の酸化物粒子にて被覆されており、かつ、その外周をコバルト平均価数が3.0価より大であるコバルト酸化物にて被覆され、前記コバルト酸化物の被覆層が、その結晶内部にカリウムあるいはナトリウムを含有しており、かつ水酸化リチウムあるいはリチウムイオンを固定化していることを特徴とするアルカリ蓄電池用正極活物質。1 to 30% of the surface area of the solid solution particle is covered with at least one oxide particle selected from yttrium, scandium or lanthanoid, and the outer periphery thereof. Is coated with a cobalt oxide having an average valence of cobalt greater than 3.0 , and the coating layer of the cobalt oxide contains potassium or sodium inside the crystal, and lithium hydroxide or lithium. A positive electrode active material for alkaline storage batteries, wherein ions are immobilized . 前記固溶体粒子に対する前記イットリウム、スカンジウムまたはランタノイドの酸化物粒子の比率が、0.1〜3.0質量%である請求項1記載のアルカリ蓄電池用正極活物質。  2. The positive electrode active material for an alkaline storage battery according to claim 1, wherein the ratio of the yttrium, scandium or lanthanoid oxide particles to the solid solution particles is 0.1 to 3.0 mass%. 前記固溶体粒子に対する前記コバルト酸化物の被覆層の比率が、5〜10質量%であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池用正極活物質。  3. The positive electrode active material for an alkaline storage battery according to claim 1, wherein a ratio of the coating layer of the cobalt oxide to the solid solution particles is 5 to 10% by mass. 請求項1〜請求項のいずれかに記載の正極活物質を主成分とする正極、水素吸蔵合金あるいはカドミウム酸化物を主成分とする負極、セパレータ、アルカリ電解液、およびこれらを収納する電池ケースからなるアルカリ蓄電池。The positive electrode which has as a main component the positive electrode active material in any one of Claims 1-3 , the negative electrode which has a hydrogen storage alloy or a cadmium oxide as a main component, a separator, alkaline electrolyte, and the battery case which accommodates these Alkaline storage battery consisting of
JP2001095742A 2001-03-29 2001-03-29 Cathode active material for alkaline storage battery and alkaline storage battery using the same Expired - Fee Related JP4956863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095742A JP4956863B2 (en) 2001-03-29 2001-03-29 Cathode active material for alkaline storage battery and alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095742A JP4956863B2 (en) 2001-03-29 2001-03-29 Cathode active material for alkaline storage battery and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JP2002298840A JP2002298840A (en) 2002-10-11
JP4956863B2 true JP4956863B2 (en) 2012-06-20

Family

ID=18949753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095742A Expired - Fee Related JP4956863B2 (en) 2001-03-29 2001-03-29 Cathode active material for alkaline storage battery and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP4956863B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134213B2 (en) * 2006-06-13 2013-01-30 株式会社田中化学研究所 Cathode active material for alkaline batteries
JP2008059892A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Alkaline storage battery, and positive electrode therefor
JP5188089B2 (en) * 2007-03-30 2013-04-24 株式会社田中化学研究所 Nickel positive electrode active material and method for producing the same
JP5131246B2 (en) * 2009-05-26 2013-01-30 Tdk株式会社 Composite particles for electrodes and electrochemical devices
JP2022087504A (en) 2020-12-01 2022-06-13 トヨタ自動車株式会社 Coated cathode active material, manufacturing method of coated cathode active material and all-solid-state battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042043B2 (en) * 1991-07-18 2000-05-15 松下電器産業株式会社 Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3433049B2 (en) * 1997-06-16 2003-08-04 三洋電機株式会社 Non-sintered nickel electrode for alkaline storage batteries
JP2953463B2 (en) * 1997-09-10 1999-09-27 松下電器産業株式会社 Positive active material for alkaline storage battery and method for producing the same
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery

Also Published As

Publication number Publication date
JP2002298840A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP3558590B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP2953463B2 (en) Positive active material for alkaline storage battery and method for producing the same
US6251538B1 (en) Positive active material for alkaline battery and electrode using the same
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2004179064A (en) Nickel-hydrogen secondary battery
JPWO2003021698A1 (en) Nickel electrode material and manufacturing method thereof, and nickel electrode and alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP2947284B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP4956863B2 (en) Cathode active material for alkaline storage battery and alkaline storage battery using the same
JP2006059807A (en) Nickel electrode and alkali storage battery using the same
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3794176B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3897527B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPH10326616A (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP5309479B2 (en) Alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH09147908A (en) Paste type nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees