JP4956733B2 - Porous material, method for producing the same, and use thereof - Google Patents

Porous material, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4956733B2
JP4956733B2 JP2006253930A JP2006253930A JP4956733B2 JP 4956733 B2 JP4956733 B2 JP 4956733B2 JP 2006253930 A JP2006253930 A JP 2006253930A JP 2006253930 A JP2006253930 A JP 2006253930A JP 4956733 B2 JP4956733 B2 JP 4956733B2
Authority
JP
Japan
Prior art keywords
porous material
long
porous body
period
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006253930A
Other languages
Japanese (ja)
Other versions
JP2008016792A (en
Inventor
隆 京谷
洋知 西原
優 福良
正隆 武内
勝行 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Showa Denko KK
Original Assignee
Tohoku University NUC
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Showa Denko KK filed Critical Tohoku University NUC
Priority to JP2006253930A priority Critical patent/JP4956733B2/en
Publication of JP2008016792A publication Critical patent/JP2008016792A/en
Application granted granted Critical
Publication of JP4956733B2 publication Critical patent/JP4956733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous body having conductivity which is preferably used for electrochemical elements, etc., such as electric double layer capacitors and secondary batteries, and to provide a method for efficiently manufacturing it. <P>SOLUTION: An inorganic porous material of long period that normally has BET specific surface area of 100 m<SP>2</SP>/g or higher, which has a functional group, is impregnated with a liquid solution containing an organic substance and a solvent which can dissolve the organic substance. By heat-treating at 200&deg;C or higher and below 600&deg;C or lower in a non-oxidating atmosphere, the organic substance is subjected to dehydrating-condensation reaction with the functionality group of the surface of the porous material of long-period regularity, to bond to the surface of the porous material of long-period regularity. Then, by heat-treating at 600&deg;C or above in the non-oxidating atmosphere to carbonize the organic substance, the porous body which contains the porous material of long-period regularity and a carbon layer coating the surface thereof, and has pore volume of 0.1-2 cm<SP>3</SP>/g and specific surface are of 100-1000 m<SP>2</SP>/g is provided. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、多孔体及びその製造方法並びにその用途に関する。本発明は、詳細には、二次電池や電気二重層キャパシタに代表される電気化学素子の電極材料のごとく導電性が求められる用途に適した、表面を炭素で被覆され且つ規則性構造を持った多孔体およびそれを効率的に製造する方法並びに、該多孔体を電極材料として用いた電気化学素子などの用途に関する。   The present invention relates to a porous body, a production method thereof, and an application thereof. In particular, the present invention has a regular structure in which the surface is coated with carbon and is suitable for applications that require electrical conductivity, such as electrode materials for electrochemical devices typified by secondary batteries and electric double layer capacitors. The present invention relates to a porous body, a method for efficiently producing the same, and applications such as an electrochemical element using the porous body as an electrode material.

携帯電子機器等の需要増加によって、電池や電気二重層キャパシタ等の各種電気化学素子の使用量は増加している。その中でも電気二重層キャパシタは、急速充放電が可能、過充放電に強い、化学反応を伴わないために長寿命、広い温度範囲で使用可能、重金属を含まないため環境に優しいなどの電池にはない好ましい特性を有しており、従来から適用されていたメモリーバックアップ電源等以外の用途、例えば太陽電池の補助電源、ハイブリッド自動車用のエンジンアシスト等への使用が顕著に増加している。さらに、燃料電池と組み合わせたハイブリッド電力源、ハイブリッド自動車の駆動電源への活用も期待され、盛んに開発が行なわれている。このような電気化学素子には、省エネルギー化の観点等から、高エネルギー密度化、高電力化等のさらなる性能向上が求められている。   With the increase in demand for portable electronic devices and the like, the usage amount of various electrochemical elements such as batteries and electric double layer capacitors is increasing. Among them, the electric double layer capacitor is capable of rapid charging / discharging, strong against overcharging / discharging, long life because it does not involve chemical reaction, usable in a wide temperature range, and environmentally friendly because it does not contain heavy metals. Therefore, the use for applications other than the memory backup power supply, which has been conventionally applied, for example, an auxiliary power supply for a solar cell, an engine assist for a hybrid vehicle, etc., has been remarkably increased. Furthermore, it is expected to be used for a hybrid power source combined with a fuel cell and a drive power source of a hybrid vehicle, and is being actively developed. Such electrochemical elements are required to have further improved performance such as higher energy density and higher power from the viewpoint of energy saving.

電気化学素子の電極材料、例えば、電気二重層キャパシタの分極性電極材料、リチウムイオン電池の負極材料等には、活性炭などの炭素系多孔質材料が用いられている。
例えば、現在の電気二重層キャパシタは、活性炭等から作られた1対の分極性電極を、電解質イオンを含む溶液中でセパレータを介して対向させた構造を成している。直流電圧を印加すると正(+)側に分極した電極には溶液中の陰イオンが、負(−)側に分極した電極には溶液中の陽イオンが引き寄せられ、これにより電極と溶液との界面に電気二重層が形成され、この電気二重層に電気エネルギーを蓄える仕組みとなっている。
Carbon-based porous materials such as activated carbon are used as electrode materials for electrochemical elements, for example, polarizable electrode materials for electric double layer capacitors, and negative electrode materials for lithium ion batteries.
For example, current electric double layer capacitors have a structure in which a pair of polarizable electrodes made of activated carbon or the like are opposed to each other via a separator in a solution containing electrolyte ions. When a DC voltage is applied, the anion in the solution is attracted to the electrode polarized to the positive (+) side, and the cation in the solution is attracted to the electrode polarized to the negative (−) side. An electric double layer is formed at the interface, and electric energy is stored in the electric double layer.

現在の電気二重層キャパシタはパワー密度に優れている反面、エネルギー密度が劣っているという欠点があり、更なる大容量化に向けた開発が必要である。電気二重層キャパシタの容量を大きくするには溶液の間で多くの電気二重層を形成することができ、高電圧にも耐えられる電極材料の開発が不可欠である。   The current electric double layer capacitor is excellent in power density, but has a disadvantage that energy density is inferior, and development for further increase in capacity is necessary. In order to increase the capacity of an electric double layer capacitor, it is essential to develop an electrode material that can form many electric double layers between solutions and can withstand high voltages.

特許文献1では、黒鉛類似の微結晶を有する活性炭を分極性電極の原料とすることが提案されている。該活性炭を分極性電極の原料とした電気二重層キャパシタは、静電容量が大きいという点で優れた材料であるといえる。しかしながら、この活性炭は電圧印加時に膨張するため、特許文献1に記載されているように膨張を抑えるために、寸法制限構造体が必要となり、キャパシタの組立操作の障害になることがある。
特開平11−317333号公報
Patent Document 1 proposes that activated carbon having micrographs similar to graphite be used as a raw material for a polarizable electrode. The electric double layer capacitor using the activated carbon as a raw material for the polarizable electrode can be said to be an excellent material in that the capacitance is large. However, since this activated carbon expands when a voltage is applied, in order to suppress expansion as described in Patent Document 1, a dimension limiting structure is required, which may obstruct the assembly operation of the capacitor.
JP 11-317333 A

このようなことから、電気化学素子の性能向上やコストダウンのために、新たな特性を有する炭素系材料が求められている。   For this reason, a carbon-based material having new characteristics is required for improving the performance and reducing the cost of the electrochemical device.

電気化学素子の電極材料としては、材料自身が導電性を有することや均質な細孔構造を有することが重要である。本発明者らは、均質なメソ領域の細孔を有する材料としてMCM−41をはじめとする規則性メソポーラス材料が、キャパシタ等の電解質イオンであるTEMA(テトラエチルメチルアンモニウム)などの拡散を容易にする場を提供する可能性があることに注目した。しかし、これらの無機メソポーラス材料は通常導電性がなく、蓄電材料としてそのまま用いることはできない。例えば、非特許文献1には、トリブロックコポリマー(例えば、EO20PO70EO20)をテンプレートとしてテトラエチルオルソシリケート(TEOS)等を原料としてSBA−15等のメソポーラスシリカを合成することが開示されている。さらにメソポーラスシリカを合成する時に使用したテンプレート化合物を除去することなく不活性ガス雰囲気で熱処理し、テンプレート化合物を炭化することにより、メソポーラス材料のメソ孔内面に、炭素層を形成することが記載されている。しかし、このメソ多孔体は、蓄電材料として用いられるような高い導電性を有していない。
Materials Chemistry and Physics、88(2004)202-206
As an electrode material for an electrochemical element, it is important that the material itself has conductivity and has a homogeneous pore structure. The inventors of the present invention have made regular mesoporous materials such as MCM-41 as materials having homogeneous mesopore pores that facilitate diffusion of TEMA (tetraethylmethylammonium), which is an electrolyte ion of a capacitor or the like. It was noted that there is a possibility to provide a place. However, these inorganic mesoporous materials usually have no electrical conductivity and cannot be used as they are as power storage materials. For example, Non-Patent Document 1 discloses synthesizing mesoporous silica such as SBA-15 using a triblock copolymer (for example, EO 20 PO 70 EO 20 ) as a template and tetraethylorthosilicate (TEOS) as a raw material. Yes. Furthermore, it is described that a carbon layer is formed on the inner surface of the mesoporous material of the mesoporous material by heat treatment in an inert gas atmosphere without removing the template compound used when synthesizing the mesoporous silica and carbonizing the template compound. Yes. However, this mesoporous material does not have high conductivity that is used as a power storage material.
Materials Chemistry and Physics, 88 (2004) 202-206

本発明の目的は、電気二重層キャパシタや二次電池等の電気化学素子等に好適に用いられる高い導電性を有する多孔体およびそれの効率的な製造方法を提供することにある。   An object of the present invention is to provide a porous body having high conductivity which is suitably used for an electrochemical element such as an electric double layer capacitor and a secondary battery, and an efficient production method thereof.

本発明者らは、メソポーラス材料の電気伝導性を向上させるために鋭意検討を行った。その結果、長周期規則性メソポーラス材料のメソ孔内壁を被覆する炭素膜と、該炭素膜に連続して該メソポーラス材料外表面を被覆する炭素膜とを形成することによって、規則性のあるメソ領域の細孔構造を確保しつつ、高い導電性を有する多孔体が得られることを見出した。そして、この導電性を有する多孔体を、二次電池や電気二重層キャパシタ等の電気化学素子の電極材料として用いると、高容量で且つ安定性に優れ、低コストな電気化学素子を提供できることを見出した。本発明はこれらの知見に基づいてさらに検討し完成するに至ったものである。   The present inventors have intensively studied to improve the electrical conductivity of the mesoporous material. As a result, by forming a carbon film covering the inner wall of the mesopores of the long-period ordered mesoporous material and a carbon film covering the outer surface of the mesoporous material continuously with the carbon film, a regular mesoregion is formed. It has been found that a porous body having high conductivity can be obtained while ensuring the pore structure. And, when this conductive porous material is used as an electrode material for an electrochemical element such as a secondary battery or an electric double layer capacitor, it is possible to provide a high-capacity, excellent stability and low-cost electrochemical element. I found it. The present invention has been further studied and completed based on these findings.

すなわち、本発明は、以下の態様を含むものである。
(1) 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm3/gで、比表面積が100〜1000m2/gである多孔体。
(2) 圧密比抵抗が1010Ωcm以下である(1)に記載の多孔体。
(3) 平均細孔径が0.5nm以上20nm以下である(1)又は(2)に記載の多孔体。
(4) 炭素層が、長周期規則性無機ポーラス材料の細孔空間を確保した状態で細孔内壁を被覆する炭素膜と、該細孔内の炭素膜間を電気的に繋ぎ且つ長周期規則性無機ポーラス材料外表面を被覆する炭素膜とを含む(1)〜(3)のいずれか1に記載の多孔体。
(5) 長周期規則性無機ポーラス材料が周期律表の第2〜14族元素を含む酸化物である(1)〜(4)のいずれか1に記載の多孔体。
That is, the present invention includes the following aspects.
(1) A porous material comprising a long-period ordered inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g body.
(2) The porous body according to (1), wherein the consolidation specific resistance is 10 10 Ωcm or less.
(3) The porous body according to (1) or (2), wherein the average pore diameter is 0.5 nm or more and 20 nm or less.
(4) A carbon layer covering the pore inner wall in a state in which the pore space of the long-period regular inorganic porous material is secured, and the carbon membrane in the pore is electrically connected and has a long-period rule. The porous body according to any one of (1) to (3), including a carbon film that covers the outer surface of the porous inorganic porous material.
(5) The porous body according to any one of (1) to (4), wherein the long-period ordered inorganic porous material is an oxide containing a Group 2-14 element of the Periodic Table.

(6) 25℃で相対圧0.9における水蒸気吸着量が20cm3−STP/g以下である(1)〜(5)のいずれか1に記載の多孔体。
(7) 前記(1)〜(6)のいずれか1に記載の多孔体を含む電気化学素子用電極材料。
(8) 前記(1)〜(6)のいずれか1に記載の多孔体を含む電気化学素子。
(9) 前記(1)〜(6)のいずれか1に記載の多孔体を含む電気二重層キャパシタ用分極性電極材料。
(10) 前記(1)〜(6)のいずれか1に記載の多孔体を含む電気二重層キャパシタ。
(11) 前記(1)〜(6)のいずれか1に記載の多孔体を含む燃料電池用触媒担持体。
(12) 前記(1)〜(6)のいずれか1に記載の多孔体を含む燃料電池。
(13) 前記(1)〜(6)のいずれか1に記載の多孔体を含むリチウムイオンを吸蔵放出可能な電極材料。
(14) 前記(1)〜(6)のいずれか1に記載の多孔体を含むリチウムイオン電池。
(15) 前記(1)〜(6)のいずれか1に記載の多孔体を含むリチウムイオンキャパシタ。
(6) The porous body according to any one of (1) to (5), wherein a water vapor adsorption amount at 25 ° C. and a relative pressure of 0.9 is 20 cm 3 −STP / g or less.
(7) An electrode material for an electrochemical element comprising the porous material according to any one of (1) to (6).
(8) An electrochemical element comprising the porous body according to any one of (1) to (6).
(9) A polarizable electrode material for an electric double layer capacitor comprising the porous material according to any one of (1) to (6).
(10) An electric double layer capacitor comprising the porous body according to any one of (1) to (6).
(11) A fuel cell catalyst carrier comprising the porous material according to any one of (1) to (6).
(12) A fuel cell comprising the porous body according to any one of (1) to (6).
(13) An electrode material capable of occluding and releasing lithium ions including the porous material according to any one of (1) to (6).
(14) A lithium ion battery including the porous body according to any one of (1) to (6).
(15) A lithium ion capacitor comprising the porous body according to any one of (1) to (6).

(16) 官能基を有するBET比表面積100m2/g以上の長周期規則性無機ポーラス材料の表面に、該官能基と反応し結合可能な有機物を付着させ、次いで非酸化性雰囲気において前記有機物を600℃以上で熱処理して炭化させる工程を含む多孔体の製造方法。
(17) 有機物と該有機物を溶解可能な溶媒とを含む溶液を、官能基を有するBET比表面積100m2/g以上の長周期規則性無機ポーラス材料に含浸させ、
非酸化性雰囲気において250℃超600℃未満で熱処理して、有機物を長周期規則性無機ポーラス材料表面に付着させ、
次いで非酸化性雰囲気において600℃以上で熱処理して前記有機物を炭化させる工程を含む多孔体の製造方法。
(16) An organic substance capable of reacting with and binding to the functional group is attached to the surface of a long-period regular inorganic porous material having a BET specific surface area of 100 m 2 / g or more having a functional group, and then the organic substance is attached in a non-oxidizing atmosphere. A method for producing a porous body comprising a step of carbonizing by heat treatment at 600 ° C. or higher.
(17) A solution containing an organic substance and a solvent capable of dissolving the organic substance is impregnated in a long-period regular inorganic porous material having a BET specific surface area of 100 m 2 / g or more having a functional group,
Heat treatment in a non-oxidizing atmosphere at a temperature of more than 250 ° C. and less than 600 ° C.
Next, a method for producing a porous body comprising a step of carbonizing the organic substance by heat treatment at 600 ° C. or higher in a non-oxidizing atmosphere.

(18) 有機物が、水酸基及び/又はカルボキシル基を有するベンゼン系芳香族炭化水素化合物である(16)又は(17)に記載の多孔体の製造方法。
(19) 長周期規則性無機ポーラス材料が、周期律表の第2〜14族元素を含む酸化物である(16)〜(18)のいずれか1に記載の導電性メソ多孔体の製造方法。
(20) 長周期規則性無機ポーラス材料表面の官能基が水酸基であり、有機物を該水酸基と脱水縮合反応させて、長周期規則性無機ポーラス材料に化学結合させる(16)〜(19)のいずれか1に記載の多孔体の製造方法。
(18) The method for producing a porous body according to (16) or (17), wherein the organic substance is a benzene-based aromatic hydrocarbon compound having a hydroxyl group and / or a carboxyl group.
(19) The method for producing a conductive mesoporous material according to any one of (16) to (18), wherein the long-period regular inorganic porous material is an oxide containing a group 2-14 element in the periodic table. .
(20) The functional group on the surface of the long-period ordered inorganic porous material is a hydroxyl group, and an organic substance is subjected to a dehydration condensation reaction with the hydroxyl group to chemically bond to the long-period ordered inorganic porous material (16) to (19) The method for producing a porous body according to claim 1.

本発明の好ましい実施態様における多孔体は、コア材である長周期規則性無機ポーラス材料の細孔がほぼそのまま保持されており、その細孔に電気二重層を形成するための電解質イオンが拡散可能な空間を確保している。そして、細孔の内壁面を被覆する炭素膜表面に電気二重層が形成可能になっている。細孔内の炭素膜どうしはコア材外表面を被覆する炭素膜によって電気的に接続されている。多孔体の外表面に炭素膜が露出しているので、外表面の炭素膜同士の接触により多孔体間が電気的に接続可能になっている。そのために本発明の好ましい実施態様における多孔体は電気抵抗値、例えば圧密比抵抗がコア材である無機ポーラス材料よりも大幅に低くなっている。   In the porous body according to a preferred embodiment of the present invention, the pores of the long-period ordered inorganic porous material that is the core material are held almost as they are, and electrolyte ions for forming an electric double layer can be diffused in the pores. Secure space. An electric double layer can be formed on the surface of the carbon film covering the inner wall surface of the pore. The carbon films in the pores are electrically connected by a carbon film that covers the outer surface of the core material. Since the carbon film is exposed on the outer surface of the porous body, the porous bodies can be electrically connected by contact between the carbon films on the outer surface. Therefore, the porous body in a preferred embodiment of the present invention has a significantly lower electrical resistance value, for example, a consolidation specific resistance, than that of the inorganic porous material that is the core material.

本発明の多孔体は、上記のような電気伝導可能な構造を形成できるので、キャパシタの分極性電極や二次電池の負極等の電極材料として利用可能である。さらに燃料電池触媒としての利用も可能である。また、本発明の多孔体は、規則的な細孔構造と欠陥の無いグラフェンシート構造を成しているので、高電圧での充放電を安定的に行え、電気容量の向上にも貢献できる。   Since the porous body of the present invention can form an electrically conductive structure as described above, it can be used as an electrode material for a polarizable electrode of a capacitor or a negative electrode of a secondary battery. Further, it can be used as a fuel cell catalyst. Moreover, since the porous body of the present invention has a regular pore structure and a graphene sheet structure having no defects, it can stably charge and discharge at a high voltage and contribute to an improvement in electric capacity.

以下では、本発明の構成要素について更に具体的に説明する。
本発明の好ましい実施態様における多孔体は、長周期規則性無機ポーラス材料(以下、コア材ということがある。)と、その表面を被覆する炭素層とを含んでなるものである。
Below, the component of this invention is demonstrated more concretely.
The porous body in a preferred embodiment of the present invention comprises a long-period ordered inorganic porous material (hereinafter sometimes referred to as a core material) and a carbon layer covering the surface thereof.

〔長周期規則性無機ポーラス材料〕
コア材は、細孔を有する材料である。細孔は、孔径によって、ミクロ孔(2nm未満)と、メソ孔(2〜50nm)と、マクロ孔(50nm超)とに、一般的に分類される。本発明に用いるポーラス材料は、平均細孔径50nm以下の細孔を有するものであることが好ましく、0.5〜20nmの細孔を有するものが特に好ましい。さらに、電気化学素子用電極材料等に適用する場合には、コア材は、平均細孔径が好ましくは3nm以上、より好ましくは4nm以上であることが望ましい。3nm以上の平均細孔径を有することによって、細孔内壁に炭素膜を被覆した後でも電解質イオン等が拡散可能な有意な大きさの細孔を維持することが容易になる。
[Long Periodic Regular Inorganic Porous Material]
The core material is a material having pores. The pores are generally classified into micropores (less than 2 nm), mesopores (2 to 50 nm), and macropores (greater than 50 nm) depending on the pore diameter. The porous material used in the present invention preferably has pores having an average pore diameter of 50 nm or less, and particularly preferably has pores of 0.5 to 20 nm. Furthermore, when applied to an electrode material for an electrochemical element or the like, the core material preferably has an average pore diameter of preferably 3 nm or more, more preferably 4 nm or more. By having an average pore diameter of 3 nm or more, it becomes easy to maintain a significant size of pores in which electrolyte ions and the like can diffuse even after the inner wall of the pores is coated with a carbon film.

コア材は、耐熱性と機械強度を具備していることが必要で、無機成分を主成分とするものが適当である。中でも標準状態での融点が500℃以上の無機酸化物や金属からなるものが好ましい。さらには合成の簡便さや修飾の容易さの点から、酸化物からなるものが好ましく、周期律表の第2〜14族元素を含む無機酸化物を主成分とするポーラス材料が特に好ましい。   The core material needs to have heat resistance and mechanical strength, and those having an inorganic component as a main component are suitable. Among these, those composed of inorganic oxides or metals having a melting point in the standard state of 500 ° C. or higher are preferable. Further, from the viewpoint of ease of synthesis and modification, an oxide is preferable, and a porous material mainly composed of an inorganic oxide containing Group 2 to 14 elements of the periodic table is particularly preferable.

コア材としては、SiO2(シリカ)を原料とするもの(メソポーラスシリカ)が代表的なものとして挙げられ、その他に、MgO(マグネシア)、Al23(アルミナ)、Nb25、Ta25、TiO2(チタニア)、ZrO2(ジルコニア)、SnO2などの遷移金属酸化物のメソポーラス材料が挙げられる。メソポーラスシリカには、MCM−41や48、FSM−16、SBA−15や16、HMSなどがある。 As a core material, a material using SiO 2 (silica) as a raw material (mesoporous silica) can be cited as a representative material. Besides, MgO (magnesia), Al 2 O 3 (alumina), Nb 2 O 5 , Ta Examples thereof include mesoporous materials of transition metal oxides such as 2 O 5 , TiO 2 (titania), ZrO 2 (zirconia), and SnO 2 . Mesoporous silica includes MCM-41 and 48, FSM-16, SBA-15 and 16, and HMS.

また、上記の主成分に周期律表の第1〜16族元素を含んだ、例えば、Nb−Ta複合酸化物、Mg−Ta複合酸化物などの複合酸化物を骨格成分としたメソポーラス材料などが挙げられる。
炭素層のグラファイト化を促進させる効果を期待できる成分や炭素層に取り込まれてその導電性を修飾する成分などを添加することで電気特性を向上させることが期待できる。例えば、B、Alなどの金属元素を含有する複合酸化物からなるものや、B、Alなどの金属元素を担持(ドーピング)したものなどが好適なものとして挙げられる。
In addition, mesoporous materials containing a complex oxide such as an Nb-Ta composite oxide or an Mg-Ta composite oxide containing the above-mentioned main components in the group 1 to 16 of the periodic table, for example, Can be mentioned.
It can be expected that the electrical characteristics can be improved by adding a component that can be expected to promote graphitization of the carbon layer or a component that is incorporated into the carbon layer to modify its conductivity. For example, a composite oxide containing a metal element such as B or Al, or a metal oxide supporting (doping) a metal element such as B or Al is preferable.

本発明に用いるコア材は長周期規則性を持つものである。規則性を持った構造は1次元であっても、3次元であっても構わない。長周期規則性とはナノオーダーの周期性のことを言い、TEM等で観察した際に細孔構造にナノオーダーの周期性があることをもって規定することができるものをいう。   The core material used in the present invention has long-period regularity. The structure having regularity may be one-dimensional or three-dimensional. The long-period regularity means nano-order periodicity, and can be defined by the fact that the pore structure has nano-order periodicity when observed with a TEM or the like.

長周期規則性の有無は細孔構造から推定することが可能である。規則性の高い材料は均一な大きさの細孔を持つことから、細孔の大きさの均一性が長周期規則性の指標になる。例えば、細孔径の均一性が高く、分布が小さい孔には一定の圧力で毛管凝縮が起こるため、吸着等温線において、ある圧力で吸着量が階段状に増加する挙動が見られる。この階段状になる部分の圧力から細孔径を推算することができ、さらにBJH法により細孔径分布を求めることが可能である。   The presence or absence of long-period regularity can be estimated from the pore structure. Since a highly regular material has pores of uniform size, the uniformity of pore size is an indicator of long-period regularity. For example, capillary condensation occurs at a constant pressure in pores with a high uniformity in pore diameter and a small distribution, and therefore, the adsorption isotherm shows a behavior in which the amount of adsorption increases stepwise at a certain pressure. The pore diameter can be estimated from the pressure of the stepped portion, and the pore diameter distribution can be obtained by the BJH method.

本発明に用いるコア材は、粉末X線回折測定においてd値が2nm以上の領域(CuKα線を線源とする場合は2θが4.41°より低い角度の領域)にピークを有するものが好ましく、3nm以上の領域(CuKα線を線源とする場合は2θが2.94°より低い角度の領域)にピークを有するものがより好ましい。d値のピークが上記領域にあるコア材は長周期規則性を示すことが知られており、それによって、本発明の効果がより顕著に現れるようになる。なお、炭素層で被覆した後の物では、一般的に粉末X線回折のピーク強度が減衰し、ピークを観察できないことがある。そこで、炭素被覆した後の物は、透過型電子顕微鏡(TEM)で長周期規則性を確認する。   The core material used in the present invention preferably has a peak in a region where the d value is 2 nm or more in powder X-ray diffraction measurement (a region where 2θ is lower than 4.41 ° when CuKα rays are used as a radiation source). Those having a peak in a region of 3 nm or more (a region where 2θ is lower than 2.94 ° when CuKα rays are used as a radiation source) are more preferable. It is known that the core material in which the peak of the d value is in the above region exhibits long-period regularity, whereby the effect of the present invention appears more remarkably. In addition, in the thing after coat | covering with a carbon layer, the peak intensity | strength of powder X-ray diffraction generally attenuate | damps and a peak may not be observed. Therefore, the long-period regularity of the object after carbon coating is confirmed by a transmission electron microscope (TEM).

本発明に用いられるコア材は、BET比表面積が100m2/g以上、特に100〜1000m2/gのものが好ましい。また、コア材は、細孔容積が0.1cm3/g以上のものが好ましい。さらに、コア材の表面には官能基があることが好ましい。官能基としては水酸基、カルボキシル基などが挙げられる。例えば、メソポーラスシリカでは、通常、シラノール基が表面に存在する。コア材表面の官能基の数は140〜1100℃の熱重量分析による値で1〜5個/nm2であることが好ましい。 Core material used in the present invention, BET specific surface area of 100 m 2 / g or more, particularly preferably those of 100~1000m 2 / g. The core material preferably has a pore volume of 0.1 cm 3 / g or more. Furthermore, it is preferable that the surface of the core material has a functional group. Examples of the functional group include a hydroxyl group and a carboxyl group. For example, in mesoporous silica, silanol groups are usually present on the surface. The number of functional groups on the surface of the core material is preferably 1 to 5 / nm 2 as measured by thermogravimetric analysis at 140 to 1100 ° C.

〔炭素層〕
本発明の好ましい実施態様の多孔体は、炭素層が前記コア材の表面を被覆している。炭素層は主にグラフェンシート構造をとるものである。その層数は好ましくは10層以下、より理想的には1〜3層程度に制御することが良いと思われ、そうした薄層においては下地であるコア材の物性が電気特性に大きく影響するものと期待される。
[Carbon layer]
In the porous body according to a preferred embodiment of the present invention, the carbon layer covers the surface of the core material. The carbon layer mainly has a graphene sheet structure. The number of layers is preferably controlled to 10 or less, more ideally about 1 to 3 layers. In such thin layers, the physical properties of the core material that is the base greatly affect the electrical characteristics. It is expected.

炭素層は、コア材に炭素源となる有機物を接触させ、炭化熱処理することにより形成することができる。炭素源との接触と炭化熱処理は同時に行うことも、別個に行うことも可能である。   The carbon layer can be formed by bringing an organic substance serving as a carbon source into contact with the core material and performing a carbonization heat treatment. The contact with the carbon source and the carbonization heat treatment can be performed simultaneously or separately.

炭素源をコア材に接触させる方法は気相接触法と液相接触法とに大別される。気相接触法は、例えば高温下で有機物の気体を導入しコア材に接触させる方法であり、いわゆるCVD法である。液相接触法は、例えば、有機物の液にコア材を浸漬するなどの方法である。   Methods for bringing the carbon source into contact with the core material are roughly classified into a gas phase contact method and a liquid phase contact method. The vapor phase contact method is a method in which, for example, an organic gas is introduced at high temperature and brought into contact with the core material, and is a so-called CVD method. The liquid phase contact method is, for example, a method of immersing the core material in an organic liquid.

炭素源として用いられる有機物としては、例えば、アセチレン、エチレン、プロピレン、ブテン、ブタジエンなどの不飽和結合を有する炭化水素;水酸基を有する有機化合物;カルボン酸基、アミノ基、チオール基などを有する有機化合物等を挙げることができる。
CVD法では、不飽和結合を有する炭化水素が好ましく用いられる。
Examples of the organic substance used as the carbon source include hydrocarbons having an unsaturated bond such as acetylene, ethylene, propylene, butene, and butadiene; organic compounds having a hydroxyl group; organic compounds having a carboxylic acid group, an amino group, a thiol group, and the like. Etc.
In the CVD method, a hydrocarbon having an unsaturated bond is preferably used.

液相接触法では、コア材表面にある官能基、具体的には水酸基と反応可能な官能基を有する有機化合物、特に水酸基と反応可能な官能基を有するベンゼン系炭化水素化合物が好ましく用いられる。中でも水酸基又は/及びカルボキシル基を持つベンゼン系芳香族炭化水素化合物が好ましく、フェノール、ヒドロナフタレン、ジヒドロナフタレンがより好ましい。コア材表面にある官能基と反応可能な官能基を有する有機化合物を用いると、コア材と有機化合物との間にエステル結合などの強い結合が生じ、炭化熱処理の際に該有機化合物が揮発せずにその場で炭化しやすいからである。   In the liquid phase contact method, an organic compound having a functional group on the surface of the core material, specifically, a functional group capable of reacting with a hydroxyl group, particularly a benzene hydrocarbon compound having a functional group capable of reacting with a hydroxyl group is preferably used. Of these, benzene-based aromatic hydrocarbon compounds having a hydroxyl group and / or a carboxyl group are preferred, and phenol, hydronaphthalene, and dihydronaphthalene are more preferred. When an organic compound having a functional group capable of reacting with a functional group on the surface of the core material is used, a strong bond such as an ester bond is generated between the core material and the organic compound, and the organic compound volatilizes during the carbonization heat treatment. It is because it is easy to carbonize on the spot.

炭素源との接触は室温〜1000℃の温度域で行うことができる。炭素源をコア材に接触させ、炭素源とコア材とを強く結合させるために、CVD法では脱水素反応が進行し得る温度域、具体的には400〜800℃で行うことが好ましい。   The contact with the carbon source can be performed in a temperature range of room temperature to 1000 ° C. In order to bring the carbon source into contact with the core material and to strongly bond the carbon source and the core material, the CVD method is preferably performed in a temperature range where the dehydrogenation reaction can proceed, specifically 400 to 800 ° C.

液相接触法では、炭素源としての有機物を溶媒に溶かして、室温でコア材に含浸することにより接触させることができる。そして、有機物とコア材とを強く結合させるために、250℃超600℃未満、好ましくは250℃超350℃以下の温度範囲にして、一定時間保持する。これによりコア材表面の水酸基と有機物とが、エステル化反応などの脱水縮合反応を起こして、エステル結合などの結合によって固定され、グラフェンシート構造の炭素層が得やすくなる。その後、温度を下げて、コア材と反応しなかった余剰の有機物を溶媒等で洗浄、除去することができる。   In the liquid phase contact method, an organic substance as a carbon source can be dissolved in a solvent and contacted by impregnating the core material at room temperature. Then, in order to strongly bond the organic substance and the core material, the temperature is kept in a temperature range of more than 250 ° C. and less than 600 ° C., preferably more than 250 ° C. and not more than 350 ° C., and held for a certain time. As a result, the hydroxyl group on the surface of the core material and the organic substance undergo a dehydration condensation reaction such as an esterification reaction and are fixed by a bond such as an ester bond, and a carbon layer having a graphene sheet structure is easily obtained. Thereafter, the temperature is lowered, and excess organic substances that have not reacted with the core material can be washed and removed with a solvent or the like.

なお、余剰有機物が、後述する炭化熱処理温度において揮発してしまうものである場合は、余剰有機物が炭化する前にコア材表面から蒸発除去されるので、この洗浄工程は必須ではない。炭素源としての有機物の含浸量は、特に制限されないが、140〜1100℃での熱重量分析で求められる値で、好ましくは20〜100質量%、より好ましくは30〜100質量%である。   If the surplus organic matter is volatilized at the carbonization heat treatment temperature described later, this cleaning step is not essential because the surplus organic matter is evaporated and removed from the surface of the core material before carbonizing. The impregnation amount of the organic substance as the carbon source is not particularly limited, but is a value determined by thermogravimetric analysis at 140 to 1100 ° C., preferably 20 to 100% by mass, and more preferably 30 to 100% by mass.

コア材に接触させた炭素源としての有機物を炭化するために熱処理を行う。この熱処理によって炭化水素などの有機物に脱水素反応等が起き、グラフェンシート構造等の炭素に変化する。
熱処理温度は通常600℃以上、好ましくは600〜1500℃、より好ましくは750〜1500℃であり、特に好ましくは800〜1000℃である。なお、コア材が崩壊又は溶融しない限りにおいて、1500℃以上で熱処理してもよい。
A heat treatment is performed to carbonize the organic substance as a carbon source brought into contact with the core material. By this heat treatment, a dehydrogenation reaction or the like occurs in an organic substance such as a hydrocarbon, and changes to carbon such as a graphene sheet structure.
The heat treatment temperature is usually 600 ° C or higher, preferably 600-1500 ° C, more preferably 750-1500 ° C, and particularly preferably 800-1000 ° C. In addition, as long as a core material does not disintegrate or fuse | melt, you may heat-process at 1500 degreeC or more.

熱処理温度が高温であるほど炭素被膜の結晶性は向上し導電性も高くなるものと期待されるが、コア材の炭化が顕著に進行する温度にまで上げると、逆に導電性が損なわれる場合もある。また、温度が高すぎると細孔構造が崩壊することもあるため、コア材の炭化防止や細孔構造の維持を考慮して温度設定を行うことが好ましい。熱処理時の雰囲気は実質的に酸素を遮断した雰囲気(非酸化性雰囲気)で行うことが必要で、例えば、窒素やアルゴンといった不活性ガスの雰囲気で行うことができる。   The higher the heat treatment temperature, the higher the crystallinity of the carbon film and the higher the electrical conductivity. However, if the temperature is raised to a temperature at which the carbonization of the core material proceeds significantly, the electrical conductivity is impaired. There is also. Moreover, since the pore structure may collapse when the temperature is too high, it is preferable to set the temperature in consideration of prevention of carbonization of the core material and maintenance of the pore structure. The atmosphere during the heat treatment needs to be performed in an atmosphere in which oxygen is substantially blocked (non-oxidizing atmosphere). For example, it can be performed in an atmosphere of an inert gas such as nitrogen or argon.

多孔体の別の製法としては、コア材の合成と炭素層の形成とを同時に行う方法がある。メソポーラスシリカの合成法として、ミセル状に配列した界面活性剤をテンプレートとして、その周囲をシリカで覆って複合体を得、この複合体を焼成等の方法でテンプレートを除去することによりナノレベルの細孔を形成する方法が知られている。この複合体中のテンプレートを除去せずに炭素源として利用し、このテンプレートを炭化することによって、細孔内に炭素膜を形成することができる。しかし、テンプレートを炭素源とした場合、細孔内に炭素膜が形成されるだけで、コア材の外表面には炭素膜がほとんど形成されず、本発明の多孔体は得られない。   As another method for producing the porous body, there is a method of simultaneously synthesizing the core material and forming the carbon layer. As a method for synthesizing mesoporous silica, micelle-arranged surfactants are used as templates, and the surroundings are covered with silica to obtain a composite. The composite is then removed by a method such as firing to obtain nano-level fine particles. Methods for forming holes are known. A carbon film can be formed in the pores by using the template in the complex as a carbon source without removing the template and carbonizing the template. However, when the template is a carbon source, only a carbon film is formed in the pores, and a carbon film is hardly formed on the outer surface of the core material, so that the porous body of the present invention cannot be obtained.

そこで、本発明の好ましい実施態様の多孔体を得るために、先ず、テンプレートを炭化又は除去する前の複合体に、追加の炭素源となる有機物を接触させ、好ましくは30℃以上600℃未満の温度で熱処理して、複合体の外表面及び細孔内壁に炭素源を接触・結合させて前駆体を調製する。そして、この前駆体を非酸化性雰囲気中600℃以上で熱処理し、細孔の形成と有機物の炭化とを同時に行って本発明の多孔体を得ることができる(実施例2参照)。   Therefore, in order to obtain a porous body according to a preferred embodiment of the present invention, first, an organic substance as an additional carbon source is brought into contact with the composite before carbonization or removal of the template, and preferably 30 ° C. or more and less than 600 ° C. Heat treatment is performed at a temperature, and a precursor is prepared by bringing a carbon source into contact with and bonding to the outer surface of the composite and the inner wall of the pores. And this precursor can be heat-processed at 600 degreeC or more in non-oxidizing atmosphere, and formation of a pore and carbonization of organic substance can be performed simultaneously, and the porous body of this invention can be obtained (refer Example 2).

本発明の好ましい実施態様の多孔体は、細孔容積が0.1〜2cm3/gであることが好ましい。細孔容積が0.1cm3/gより小さいと保持できる電解質の量が少なくなる。一方、2cm3/gを超えると、細孔を支える強度が不足し、電極材料の強度が低くなる。なお、本発明において細孔容積は、50nm以下の細孔径について測定した容積である。細孔容積はN2吸着法により求める。具体的には、講談社サイエンティフィク「吸着の科学と応用」小野嘉夫・鈴木勲著(2003年11月1日発行)に記載されているように、液体窒素温度で測定した吸着等温線の飽和蒸気圧近傍の圧力における曲線から、飽和蒸気圧における吸着量を外挿して求める。また、液体窒素温度で測定したN2の吸着等温線の相対圧(P/P0=)0.967におけるN2吸着量から便宜的に求めることもできる。 The porous body according to a preferred embodiment of the present invention preferably has a pore volume of 0.1 to 2 cm 3 / g. When the pore volume is smaller than 0.1 cm 3 / g, the amount of electrolyte that can be retained is reduced. On the other hand, when it exceeds 2 cm 3 / g, the strength for supporting the pores is insufficient, and the strength of the electrode material is lowered. In the present invention, the pore volume is a volume measured for a pore diameter of 50 nm or less. The pore volume is determined by the N 2 adsorption method. Specifically, as described in Kodansha Scientific “Adsorption Science and Application” by Yoshio Ono and Isao Suzuki (issued November 1, 2003), saturation of adsorption isotherm measured at liquid nitrogen temperature The amount of adsorption at the saturated vapor pressure is extrapolated from a curve at a pressure near the vapor pressure. The relative pressure of the adsorption isotherm of N 2 were measured at liquid nitrogen temperature (P / P 0 =) may be obtained conveniently from N 2 adsorption amount at 0.967.

本発明の多孔体ではコア材の表面が欠陥の無いグラフェンシート構造の炭素層で被覆されていることが好ましく、その観点から比表面積が100〜1000m2/gであることが好ましい。比表面積は一般的なN2吸着測定からBET法で求めた値である。炭素の構造はラマン分光測定(波長488nmのアルゴンイオンレーザー使用)によって分析することができる。尚、用途によっては、1000m2/g以上のものでも使用することができる。 In the porous body of the present invention, the surface of the core material is preferably covered with a carbon layer having a graphene sheet structure having no defects, and from this viewpoint, the specific surface area is preferably 100 to 1000 m 2 / g. The specific surface area is a value obtained by a BET method from general N 2 adsorption measurement. The structure of carbon can be analyzed by Raman spectroscopy (using an argon ion laser with a wavelength of 488 nm). Depending on the application, a material of 1000 m 2 / g or more can be used.

本発明の好ましい実施態様の多孔体は、N2の吸着等温線からBJH法で求めた細孔分布曲線におけるピーク位置が、0.5〜20nmである。
また、本発明の好ましい実施態様の多孔体は、平均細孔径が、好ましくは0.5〜20nm、より好ましくは0.5〜10nm、特に好ましくは0.5〜5nmである。平均細孔径は、細孔容積と比表面積とから下式により計算して求めることができる。
式:(平均細孔径)=4×(細孔容積)/(比表面積)
なお、N2の吸着等温線からBJH法やCI法等により細孔径分布を計算することができ、この分布におけるピーク位置から平均的細孔径を求めることもできるが、本発明では上記式で計算したものを平均細孔径と定義する。
In the porous body of a preferred embodiment of the present invention, the peak position in the pore distribution curve determined by the BJH method from the adsorption isotherm of N 2 is 0.5 to 20 nm.
Further, the porous body of a preferred embodiment of the present invention has an average pore diameter of preferably 0.5 to 20 nm, more preferably 0.5 to 10 nm, and particularly preferably 0.5 to 5 nm. The average pore diameter can be calculated from the pore volume and specific surface area according to the following formula.
Formula: (average pore diameter) = 4 × (pore volume) / (specific surface area)
The pore diameter distribution can be calculated from the adsorption isotherm of N 2 by the BJH method, the CI method, etc., and the average pore diameter can be obtained from the peak position in this distribution. This is defined as the average pore diameter.

本発明の好ましい実施態様の多孔体は、圧密比抵抗が通常1010Ωcm以下、好ましくは108Ωcm以下、さらには好ましくは106Ωcm以下である。圧密比抵抗は、下記実施例に詳述するように、多孔体を約20MPaで加圧しペレットに成形し、次いで該ペレットについて直流2端子法により電位−電流プロットを作成し、その傾きから求めた値である。 The porous body of a preferred embodiment of the present invention has a consolidation specific resistance of usually 10 10 Ωcm or less, preferably 10 8 Ωcm or less, more preferably 10 6 Ωcm or less. As described in detail in the following examples, the consolidation specific resistance was obtained by pressing a porous body at about 20 MPa to form a pellet, and then preparing a potential-current plot for the pellet by a direct current two-terminal method, and obtaining the slope thereof. Value.

本発明の好ましい実施態様の多孔体は、炭素層が、長周期規則性無機ポーラス材料の細孔空間を確保した状態で細孔内壁を被覆する炭素膜と、該細孔内の炭素膜間を電気的に繋ぎ且つ長周期規則性無機ポーラス材料外表面を被覆する炭素膜とで構成されることが好ましい。
細孔内の炭素膜は、長周期規則性無機ポーラス材料の細孔空間を確保した状態で、細孔内壁を被覆しているので、細孔内の炭素膜全体の形はチューブ状を成している。
A porous body according to a preferred embodiment of the present invention includes a carbon film covering a pore inner wall in a state in which a pore space of a long-period regular inorganic porous material is secured, and a gap between the carbon membranes in the pore. It is preferably composed of a carbon film that is electrically connected and covers the outer surface of the long-period regular inorganic porous material.
Since the carbon film in the pore covers the inner wall of the pore while ensuring the pore space of the long-period regular inorganic porous material, the shape of the entire carbon film in the pore forms a tube shape. ing.

このような細孔内の炭素膜と、外表面の炭素膜とが、連結して形成されているかどうかを確認する方法としては、炭素層を溶解せず、コア材だけを溶解できる、フッ酸などの強酸で本発明の多孔体を処理し、炭素層だけを取り出し、この炭素層をTEM、X線回折、N2吸着法によって分析することによって確認することができる。また簡便な方法としては、前述の圧密比抵抗のような導電性を評価する指標によって、コア材の導電性に比べ大幅に導電性が高くなっていることで確認することができる。なお、外表面の炭素膜は、コア材の外表面全てを被覆している必要はなく、ひも状に細長く繋がって被覆されているものであってもよい。 As a method for confirming whether the carbon film in the pores and the carbon film on the outer surface are connected to each other, a hydrofluoric acid that can dissolve only the core material without dissolving the carbon layer is used. It can be confirmed by treating the porous body of the present invention with a strong acid such as, taking out only the carbon layer, and analyzing the carbon layer by TEM, X-ray diffraction, or N 2 adsorption method. Further, as a simple method, it can be confirmed that the conductivity is significantly higher than the conductivity of the core material by an index for evaluating the conductivity such as the above-described consolidation specific resistance. Note that the carbon film on the outer surface does not need to cover the entire outer surface of the core material, and may be covered by being elongated in a string shape.

さらに、本発明の好ましい実施態様の多孔体は、炭素層が無機ポーラス材料の内外壁面を少なくとも部分的に被覆しているものであるので、基本的には疎水的な性質を示す。
すなわち、本発明の好ましい実施態様の多孔体は、25℃で測定された水蒸気の吸着等温線から読み取ることができる、相対圧0.9における水蒸気吸着量(多孔体の重量あたりの標準状態での水蒸気体積として表した指標)が、好ましくは20cm3−STP/g以下、より好ましくは0.0001〜10cm3−STP/g、最も好ましくは0.001〜5cm3−STP/gである。また、相対圧0.8における水蒸気吸着量が、好ましくは20cm3−STP/g以下、より好ましくは0.0001〜10cm3−STP/g、最も好ましくは0.001〜5cm3−STP/gである。
Furthermore, the porous body of a preferred embodiment of the present invention basically exhibits a hydrophobic property because the carbon layer at least partially covers the inner and outer wall surfaces of the inorganic porous material.
That is, the porous body of a preferred embodiment of the present invention can be read from the water vapor adsorption isotherm measured at 25 ° C., and the water vapor adsorption amount at a relative pressure of 0.9 (in the standard state per weight of the porous body). The index expressed as the water vapor volume) is preferably 20 cm 3 -STP / g or less, more preferably 0.0001 to 10 cm 3 -STP / g, and most preferably 0.001 to 5 cm 3 -STP / g. The water vapor adsorption amount at a relative pressure of 0.8 is preferably 20 cm 3 -STP / g or less, more preferably 0.0001 to 10 cm 3 -STP / g, and most preferably 0.001 to 5 cm 3 -STP / g. It is.

また、本発明の多孔体は、炭素層がコア材で補強されている構造をとるため、活性炭のような炭素のみからなる材料と比較して高い機械強度を有することが期待できる。   In addition, since the porous body of the present invention has a structure in which the carbon layer is reinforced with the core material, it can be expected to have higher mechanical strength than a material made of only carbon such as activated carbon.

本発明の電極材料又は触媒担持体は、本発明多孔体を含むものである。そして、この電極材料又は触媒担持体を用いて、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウムイオン電池、燃料電池などの電気化学素子を得ることができる。
電極材料を製造する方法は特に制限されず、公知の方法を採用することができる。例えば、本発明多孔体に導電剤および結合剤を加えて混練圧延する方法、本発明多孔体に導電付与剤、結合剤、必要に応じて溶媒を加えてスラリー状にして集電体に塗布する方法、本発明多孔体に未炭化樹脂類を混合して焼結する方法、等が挙げられる。
The electrode material or catalyst carrier of the present invention includes the porous body of the present invention. An electrochemical element such as an electric double layer capacitor, a lithium ion capacitor, a lithium ion battery, or a fuel cell can be obtained using this electrode material or catalyst carrier.
The method for producing the electrode material is not particularly limited, and a known method can be adopted. For example, a method of kneading and rolling by adding a conductive agent and a binder to the porous body of the present invention, adding a conductive agent, a binder, and a solvent as necessary to the porous body of the present invention to form a slurry and applying to a current collector And a method of mixing and sintering uncarbonized resins in the porous body of the present invention.

電極材料を製造する方法をより具体的に説明すると、例えば、平均粒径1〜100μm程度の本発明多孔体の粉末に、必要により導電付与剤としてカーボンブラック等を加え、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン等の結合剤を加え、厚さ0.1〜0.5mm程度のシートに成形し、100〜200℃程度の温度で真空乾燥する。
このシートを所定の形状に打ち抜き電極とする。この電極に集電体である金属板を積層し、セパレータを介し、金属板を外側にして2枚重ね、電解液に浸して電気二重層キャパシタとすることができる。
The method for producing the electrode material will be described more specifically. For example, if necessary, carbon black or the like is added as a conductivity-imparting agent to the powder of the porous body of the present invention having an average particle size of about 1 to 100 μm, and polytetrafluoroethylene (PTFE ), A binder such as polyvinylidene fluoride is added, formed into a sheet having a thickness of about 0.1 to 0.5 mm, and vacuum dried at a temperature of about 100 to 200 ° C.
This sheet is punched into a predetermined shape and used as an electrode. A metal plate as a current collector is laminated on this electrode, and two metal plates are stacked with a separator interposed therebetween, and immersed in an electrolytic solution to form an electric double layer capacitor.

電気二重層キャパシタの電解液としては公知の非水溶媒電解質溶液、水溶性電解質溶液のいずれも使用可能である。さらに他の電解液の他に、非水系電解質である高分子固体電解質及び高分子ゲル電解質、イオン性液体も使用することができる。
水系(水溶性電解質溶液)のものとしては、硫酸水溶液、硫酸ナトリウム水溶液、水酸化ナトリウム水溶液等が挙げられる。
また非水系(非水溶媒電解質溶液)のものとしては、R1234+またはR1234+で表されるカチオン(R1,R2,R3,R4はそれぞれ独立に炭素数1〜10のアルキル基またはアリル基である)と、BF4 -、PF6 -、ClO4 -等のアニオンとからなる4級アンモニウム塩または4級ホスホニウム塩を電解質として用い、エチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を溶媒として用いたものが挙げられる。また、電解質または溶媒は、それぞれ二種類以上を組み合わせて用いることもできる。
As the electrolytic solution for the electric double layer capacitor, any known non-aqueous solvent electrolyte solution or water-soluble electrolyte solution can be used. In addition to other electrolyte solutions, non-aqueous electrolyte polymer solid electrolytes, polymer gel electrolytes, and ionic liquids can also be used.
Examples of the aqueous (water-soluble electrolyte solution) include sulfuric acid aqueous solution, sodium sulfate aqueous solution, sodium hydroxide aqueous solution and the like.
As non-aqueous (non-aqueous solvent electrolyte solution), cations represented by R 1 R 2 R 3 R 4 N + or R 1 R 2 R 3 R 4 P + (R 1 , R 2 , R 3 , R 4 are each independently an alkyl group or an allyl group having 1 to 10 carbon atoms) and an anion such as BF 4 , PF 6 , ClO 4 −, or the like, Examples of the electrolyte include those using a carbonate non-aqueous solvent such as ethylene carbonate and propylene carbonate as a solvent. In addition, two or more electrolytes or solvents can be used in combination.

本発明の多孔体は、上記電気二重層キャパシタ以外の電気化学素子に適用することができる。例えば、高分子電解質型燃料電池やダイレクトメタノール型燃料電池の触媒担持体として、リチウムイオン電池やリチウムイオンキャパシタ等のリチウムイオンを吸蔵放出可能な負極材料として適用することができる。   The porous body of the present invention can be applied to an electrochemical element other than the electric double layer capacitor. For example, it can be applied as a negative electrode material capable of occluding and releasing lithium ions, such as a lithium ion battery or a lithium ion capacitor, as a catalyst carrier of a polymer electrolyte fuel cell or a direct methanol fuel cell.

燃料電池用触媒担持体は、ナノメートルサイズの白金等の触媒粒子を高分散で担持させ、さらに長時間の使用でも触媒粒子の凝集や劣化が起こらないことが重要である。また触媒作用で発生した電子を効率的に移動させなければならないので導電性が必要であり、さらに、高電圧・酸性雰囲気・高温下で、担持体自身の安定性も重要である。本発明の多孔体は、長周期規則性のある微細孔を有し且つ導電性があり、表面の不純物も低減できるので、触媒微粒子を安定的に高分散担持することが可能であり、上記のような要求に応えることができるものである。   It is important that the catalyst support for fuel cells supports catalyst particles such as nanometer-sized platinum in a highly dispersed state, and that the catalyst particles do not aggregate or deteriorate even when used for a long time. In addition, since the electrons generated by the catalytic action must be moved efficiently, conductivity is required, and the stability of the support itself is also important under high voltage, acidic atmosphere, and high temperature. The porous body of the present invention has fine pores with long-period regularity, is electrically conductive, and can reduce impurities on the surface, so that the catalyst fine particles can be stably and highly dispersedly supported. It is possible to meet such demands.

リチウムイオン電池やリチウムイオンキャパシタの負極材料は、導電性があり、できるだけ多くのリチウムイオンを吸蔵放出できること、またリチウム酸化還元電位という、かなり卑な還元されやすい電位でも安定であることが重要である。本発明の多孔体は、長周期規則性のある微細孔を有し、且つ導電性があり、表面の不純物も低減できるので、多くのリチウムイオンを吸蔵放出することが期待できる。   It is important that the negative electrode materials of lithium ion batteries and lithium ion capacitors are conductive, can absorb and release as many lithium ions as possible, and are stable even at a very low potential, such as lithium redox potential. . Since the porous body of the present invention has fine pores with long-period regularity, is electrically conductive, and can reduce impurities on the surface, it can be expected to occlude and release many lithium ions.

次に実施例を示して、本発明を更に具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

以下の実施例及び比較例で使用した試薬等は、次の通りである。
[試薬類]
テトラエチルオルソシリケート(TEOS)、ヘキサデシルアミン:シグマ−アルドリッチ社
エタノール、アセトン、フェノール:和光純薬工業
2,3−ジヒドロキシナフタレン(DN):東京化成工業
トリブロックコポリマーEO20PO70EO20(P123):BASF社
The reagents and the like used in the following examples and comparative examples are as follows.
[Reagents]
Tetraethylorthosilicate (TEOS), hexadecylamine: Sigma-Aldrich ethanol, acetone, phenol: Wako Pure Chemical Industries, Ltd. 2,3-dihydroxynaphthalene (DN): Tokyo Chemical Industry Triblock Copolymer EO 20 PO 70 EO 20 (P123) : BASF

[吸着等温線、細孔容積および比表面積の測定]
150℃で、6時間真空乾燥した測定対象試料について、BELSORPminiII (日本ベル)を用いて、液体窒素温度における窒素吸脱着量を測定した。
細孔容積は相対圧0.967における窒素吸着量から算出した。比表面積はBETプロットから算出した。平均細孔径はBJH法により算出した。
[Measurement of adsorption isotherm, pore volume and specific surface area]
About the measuring object sample vacuum-dried at 150 degreeC for 6 hours, nitrogen adsorption / desorption amount in liquid nitrogen temperature was measured using BELSORPminiII (Nippon Bell).
The pore volume was calculated from the amount of nitrogen adsorbed at a relative pressure of 0.967. The specific surface area was calculated from the BET plot. The average pore diameter was calculated by the BJH method.

[粉末X線回折の測定]
島津XD−D1wを用いて以下の条件で測定した。
出力:30kV−20mA
発散スリット:0.1°
拡散防止スリット:0.5°
検出スリット:0.3mm
スキャンモード:continuous scan
スキャン速度:0.5°/分
測定範囲:1°〜40°
積算時間:10 秒
試料板:Si無反射板
[Measurement of powder X-ray diffraction]
Measurement was performed under the following conditions using Shimadzu XD-D1w.
Output: 30kV-20mA
Divergent slit: 0.1 °
Diffusion prevention slit: 0.5 °
Detection slit: 0.3 mm
Scan mode: continuous scan
Scanning speed: 0.5 ° / min Measuring range: 1 ° -40 °
Integration time: 10 seconds Sample plate: Si non-reflective plate

[示差熱分析(TG)]
TG/DTA32 (セイコー電子工業)を用いて以下の条件で測定した。
雰囲気ガス:酸素42cc/分、窒素158cc/分
熱履歴:30℃/分で140℃まで昇温し、140℃で15分間保持し、試料を乾燥させた。30℃/分で1100℃まで昇温し、1100℃で40分間保持した。次いで140℃まで放冷し、140℃で50分間保持した。
上記熱履歴後の質量を熱分解後の質量として求めた。
[Differential thermal analysis (TG)]
It measured on condition of the following using TG / DTA32 (Seiko Electronics Co., Ltd.).
Atmospheric gas: oxygen 42 cc / min, nitrogen 158 cc / min Thermal history: The temperature was raised to 140 ° C. at 30 ° C./min, held at 140 ° C. for 15 min, and the sample was dried. The temperature was raised to 1100 ° C. at 30 ° C./min and held at 1100 ° C. for 40 minutes. Then it was allowed to cool to 140 ° C. and kept at 140 ° C. for 50 minutes.
The mass after the thermal history was determined as the mass after pyrolysis.

[圧密比抵抗の測定]
約100mgの粉末試料を二枚の金属板の間に挟み、約20MPaの圧力で加圧し、1時間保持してペレットに成形した。加圧の前後で試料の高さを測定し、その高さの差をペレットの厚さとした。ペレット成形に用いた金属でペレットを挟み、パラフィルムにより固定した。この金属の両端に導線を導電性接着剤(ドータイト:藤倉化成;D−550)を用いて接着した。最初、電位1mVで20秒間保持し、次に電位20mVで10秒間保持し、さらに20mV電位を上げ10秒間保持することを繰返し、800mVまで電位を上げた。その間の電位及び電流を、電気化学測定システム(HD北斗電工:HZ−5000)を用いて、直流2端子法で測定した。測定された電位−電流の関係図の傾きから比抵抗を求めた。
[Measurement of consolidation resistivity]
About 100 mg of a powder sample was sandwiched between two metal plates, pressurized at a pressure of about 20 MPa, held for 1 hour, and formed into a pellet. The height of the sample was measured before and after pressing, and the difference in height was taken as the thickness of the pellet. The pellets were sandwiched between the metals used for pellet forming and fixed with parafilm. Conductive wires were bonded to both ends of the metal using a conductive adhesive (Dotite: Fujikura Kasei; D-550). First, the potential was held at 1 mV for 20 seconds, then held at a potential of 20 mV for 10 seconds, and then the 20 mV potential was raised and held for 10 seconds repeatedly to raise the potential to 800 mV. The electric potential and electric current in the meantime were measured by a direct current two-terminal method using an electrochemical measurement system (HD Hokuto Denko: HZ-5000). The specific resistance was determined from the slope of the measured potential-current relationship diagram.

[フィールドエミッション型走査電子顕微鏡(FE−SEM)による観察]
S−4800(日立ハイテクノロジー)を用いて以下の条件で観察した。
コーティングなし、リターディング機能使用
最終加速電圧:1kV
[Observation with Field Emission Scanning Electron Microscope (FE-SEM)]
Observation was carried out under the following conditions using S-4800 (Hitachi High Technology).
No coating, using retarding function Final acceleration voltage: 1 kV

[水蒸気吸着量の測定]
BELSORP MAX(日本ベル)を用いて以下の条件で測定した。
測定温度:25℃(ウォーターバス制御)
前処理条件:150℃で6時間真空乾燥
測定プローブ:市販の精製水(イオン交換水)を凍結、脱気する操作を繰り返し、溶解しているガス成分を十分に脱気したものを使用
[Measurement of water vapor adsorption]
It measured on condition of the following using BELSORP MAX (Nippon Bell).
Measurement temperature: 25 ° C (water bath control)
Pretreatment conditions: Vacuum drying at 150 ° C for 6 hours Measurement probe: Repeated operation of freezing and degassing commercial purified water (ion-exchanged water), using degassed dissolved gas components sufficiently

<実施例1>
〔コア材の合成〕
Tuelらの報告例(Microporous and Mesoporous Materials 27(1999)151-169)にならって、HMS(Hexagonal Meso-porous silica)からなるコア材を合成した。
<Example 1>
[Synthesis of core material]
A core material made of HMS (Hexagonal Meso-porous silica) was synthesized in accordance with an example reported by Tuel et al. (Microporous and Mesoporous Materials 27 (1999) 151-169).

500mlのテフロン(登録商標)製ビーカーに21.3gのTEOS、8.1gのヘキサデシルアミン、32.3gのエタノールおよび64gの水を入れて室温で12時間激しく攪拌し、次いで漏斗で吸引濾過した。該漏斗に水3/メタノール1の割合の洗浄液を注いで固形物を洗浄した。固形物を回収して1日間風乾して14.7gの白色粉末を得た。この粉末を縦型焼成管に充填し、空気流通下、550℃で6時間焼成し、テンプレートを除去した。
得られたコア材のX線回折(XRD)スペクトル及び液体窒素温度での吸着等温線を各々図1及び2に示した。XRDでは2θ=1.625°にピークがあり、吸着等温線は階段状の形状であることから、長周期規則性を有するメソポーラス材料であることがわかる。比表面積は750m2/g、細孔容積は1.10cm3/g、平均細孔径は5.9nm、BJH法による細孔径分布のピーク位置は4.7nmであった。またシラノール基の密度は1.6個/nm2であった。
A 500 ml Teflon beaker was charged with 21.3 g TEOS, 8.1 g hexadecylamine, 32.3 g ethanol and 64 g water and stirred vigorously at room temperature for 12 hours and then filtered with suction through a funnel. . The solid was washed by pouring a washing solution of water 3 / methanol 1 into the funnel. The solid was collected and air dried for 1 day to obtain 14.7 g of white powder. This powder was filled into a vertical firing tube and fired at 550 ° C. for 6 hours under air flow to remove the template.
The X-ray diffraction (XRD) spectrum and the adsorption isotherm at the liquid nitrogen temperature of the obtained core material are shown in FIGS. 1 and 2, respectively. In XRD, there is a peak at 2θ = 1.625 °, and the adsorption isotherm has a stepped shape, indicating that it is a mesoporous material having long-period regularity. The specific surface area was 750 m 2 / g, the pore volume was 1.10 cm 3 / g, the average pore diameter was 5.9 nm, and the peak position of the pore diameter distribution by the BJH method was 4.7 nm. The density of silanol groups was 1.6 / nm 2 .

〔炭素層の形成〕
上記で得られたコア材を減圧下、90℃で20分間、その後150℃で6時間保持して乾燥した。反応管にコア材0.61gを充てんし、3.0gの2,3−ジヒドロキシナフタレン(DN)を3.4mlのアセトンに溶解した溶液を該反応管内に滴下した。反応管を密閉し、常温で1時間撹拌し、コア材の細孔内にDN−アセトン溶液を含浸させた。その後、100cc/分の窒素流通下、95℃で12時間保持して蒸発乾固した。
DNを含浸させたコア材を、300cc/分の窒素流通下、10℃/分で室温から300℃まで昇温し、300℃で1時間保持した。このときにコア材表面の水酸基とDNとがエステル化反応し、エステル結合が形成されたと思われる。冷却した後、アセトン中での超音波処理、1500rpm、10分間の遠心沈降処理、及び上澄み液の除去を5回繰返し行って、未反応の余剰DNを除去した。次いで、減圧濾過し、150℃で4時間真空乾燥させて、前駆体を得た。DNの含有量は約35質量%であった。
(Formation of carbon layer)
The core material obtained above was dried under reduced pressure at 90 ° C. for 20 minutes and then at 150 ° C. for 6 hours. A reaction tube was filled with 0.61 g of the core material, and a solution of 3.0 g of 2,3-dihydroxynaphthalene (DN) dissolved in 3.4 ml of acetone was dropped into the reaction tube. The reaction tube was sealed, stirred at room temperature for 1 hour, and the pores of the core material were impregnated with a DN-acetone solution. Thereafter, it was evaporated to dryness by maintaining at 95 ° C. for 12 hours under a nitrogen flow of 100 cc / min.
The core material impregnated with DN was heated from room temperature to 300 ° C. at 10 ° C./min under a nitrogen flow of 300 cc / min and held at 300 ° C. for 1 hour. At this time, it is considered that the hydroxyl group on the surface of the core material and DN were esterified to form an ester bond. After cooling, ultrasonic treatment in acetone, 1500 rpm, 10 minutes of centrifugal sedimentation, and removal of the supernatant were repeated 5 times to remove unreacted excess DN. Subsequently, it filtered under reduced pressure and vacuum-dried at 150 degreeC for 4 hours, and the precursor was obtained. The DN content was about 35% by mass.

得られた前駆体を150cc/分の窒素流通下、5℃/分で室温から800℃まで昇温し、800℃で4時間保持し、DNを炭素化し、目的物である炭素被覆されたメソポーラスシリカ複合体(多孔体)を得た。   The obtained precursor was heated from room temperature to 800 ° C. at a rate of 5 ° C./min under a nitrogen flow of 150 cc / min, held at 800 ° C. for 4 hours, carbonized DN, and the target carbon-coated mesoporous material. A silica composite (porous body) was obtained.

得られた多孔体のXRDスペクトル及び液体窒素温度でのN2吸着等温線を図1及び図2に各々示す。XRDでは1°以上の領域には明確なピークが認められなかったが、吸着等温線は階段状の形状を示しており、長周期規則性を有するメソ多孔体であることを確認した。また大きなヒステリシスが観測された。比表面積は490m2/g、細孔容積は0.42cm3/g、平均細孔径は3.4nm、BJH法による細孔径分布のピーク位置は3.2nmであった。また、この多孔体の圧密比抵抗を測定したところ、電位−電流プロットが良好な直線となり、傾きから求めた比抵抗は2.0×105Ωcmであった。 The XRD spectrum and the N 2 adsorption isotherm at the liquid nitrogen temperature are shown in FIGS. 1 and 2, respectively. In XRD, no clear peak was observed in the region of 1 ° or more, but the adsorption isotherm showed a stepped shape, and it was confirmed to be a mesoporous material having long-period regularity. Large hysteresis was also observed. The specific surface area was 490 m 2 / g, the pore volume was 0.42 cm 3 / g, the average pore diameter was 3.4 nm, and the peak position of the pore diameter distribution by the BJH method was 3.2 nm. Moreover, when the consolidation specific resistance of this porous body was measured, the potential-current plot was a good straight line, and the specific resistance determined from the slope was 2.0 × 10 5 Ωcm.

本多孔体をフッ酸で溶解し、炭素層を取り出した。炭素層をTEMで観察したところ縞模様部分が観察された。この縞模様部分の間隔はコア材の細孔径よりも小さいので、この縞模様は細孔内壁に被覆されていたチューブ状の炭素膜であることが推測される。またチューブ状炭素膜はばらばらにならず毛玉状に纏まっていることから、コア材外表面を被覆していた炭素膜によってチューブ状炭素膜が連結されていることが推測される。またラマン分光スペクトルから炭素層は曲率半径の小さい湾曲したグランフェンシート構造を有することがわかった。   The porous body was dissolved with hydrofluoric acid, and the carbon layer was taken out. When the carbon layer was observed by TEM, a striped pattern portion was observed. Since the interval between the striped pattern portions is smaller than the pore diameter of the core material, it is presumed that the striped pattern is a tube-like carbon film coated on the pore inner wall. In addition, since the tubular carbon film is not scattered but is gathered in a pill shape, it is presumed that the tubular carbon film is connected by the carbon film covering the outer surface of the core material. The Raman spectroscopic spectrum showed that the carbon layer had a curved granfen sheet structure with a small curvature radius.

<実施例2>
実施例1で合成した焼成前の白色粉末5.0gに、130mgのフェノールをアセトン14gに溶かした液を含浸し風乾し、次いで40℃で2時間真空乾燥して前駆体を得た。
得られた前駆体を150cc/分の窒素流通下、5℃/分で室温から800℃まで昇温し、800℃で1時間保持し、フェノールを炭素化し、目的物である炭素被覆されたメソポーラスシリカ複合体(多孔体)を得た。得られた多孔体の比表面積は690m2/g、細孔容積は0.57cm3/gであった。
<Example 2>
A precursor powder was obtained by impregnating 5.0 g of the white powder before firing synthesized in Example 1 with a solution obtained by dissolving 130 mg of phenol in 14 g of acetone and air drying, followed by vacuum drying at 40 ° C. for 2 hours.
The obtained precursor was heated from room temperature to 800 ° C. at a rate of 5 ° C./min under a nitrogen flow of 150 cc / min, held at 800 ° C. for 1 hour to carbonize the phenol, and the target carbon-coated mesoporous A silica composite (porous body) was obtained. The specific surface area of the obtained porous body was 690 m 2 / g, and the pore volume was 0.57 cm 3 / g.

<実施例3>
〔コア材の合成〕
Krukらの報告例(Chemistry of Materials (2000)12、1961-1968)にならってコア材を合成した。
<Example 3>
[Synthesis of core material]
A core material was synthesized according to a report example of Kruk et al. (Chemistry of Materials (2000) 12, 1961-1968).

4.9gのP123に水37gを加え、さらに2モルの塩酸を147g追加して攪拌した。これに10.6gのTEOSを加えて5分間攪拌し、その後35℃で20時間静置し、さらに80℃で24時間静置した。次いで、吸引ろ過して、約500mlの水で洗浄し、漏斗上の固形物を回収し風乾して粉末を得た。この粉末を縦型焼成管に充填し、空気流通下、550℃で6時間焼成し、テンプレートを除去した。得られたコア材のXRDスペクトル及び液体窒素温度での吸着等温線を各々図3及び4に示す。比表面積は860m2/g、細孔容積は0.91cm3/g、平均細孔径は4.2nm、BJH法による細孔径分布のピーク位置は6.8nmであった。またシラノール基の密度は1.4個/nm2であった。 37 g of water was added to 4.9 g of P123, and an additional 147 g of 2 molar hydrochloric acid was added and stirred. To this, 10.6 g of TEOS was added and stirred for 5 minutes, then allowed to stand at 35 ° C. for 20 hours, and further allowed to stand at 80 ° C. for 24 hours. Then, it was suction filtered and washed with about 500 ml of water, and the solid on the funnel was collected and air dried to obtain a powder. This powder was filled into a vertical firing tube and fired at 550 ° C. for 6 hours under air flow to remove the template. The XRD spectrum and the adsorption isotherm at the liquid nitrogen temperature of the obtained core material are shown in FIGS. 3 and 4, respectively. The specific surface area was 860 m 2 / g, the pore volume was 0.91 cm 3 / g, the average pore diameter was 4.2 nm, and the peak position of the pore diameter distribution by the BJH method was 6.8 nm. The density of silanol groups was 1.4 / nm 2 .

〔炭素層の形成〕
実施例1と同様な方法で前記コア材にDNを接触させて前駆体を得、さらにDNを炭素化して、目的物である炭素被覆メソポーラスシリカ複合体(多孔体)を得た。前駆体中のDNの含浸量は約35質量%であった。得られた多孔体のXRDスペクトル及び液体窒素温度でのN2吸着等温線を図3及び図4に各々示す。XRDでは1°以上の領域には明確なピークが認められなかったが、吸着等温線は階段状の形状を示しており、長周期規則性を有するメソ多孔体であることを確認した。またヒステリシスが観測された。比表面積は350m2/g、細孔容積は0.39cm3/g、平均細孔径は4.5nm、BJH法による細孔径分布のピーク位置は4.8nmであった。
(Formation of carbon layer)
In the same manner as in Example 1, the core material was contacted with DN to obtain a precursor, and DN was carbonized to obtain a target carbon-coated mesoporous silica composite (porous body). The amount of DN impregnated in the precursor was about 35% by mass. The XRD spectrum and the N 2 adsorption isotherm at the liquid nitrogen temperature of the obtained porous body are shown in FIGS. 3 and 4, respectively. In XRD, no clear peak was observed in the region of 1 ° or more, but the adsorption isotherm showed a stepped shape, and it was confirmed to be a mesoporous material having long-period regularity. Hysteresis was also observed. The specific surface area was 350 m 2 / g, the pore volume was 0.39 cm 3 / g, the average pore diameter was 4.5 nm, and the peak position of the pore diameter distribution by the BJH method was 4.8 nm.

さらに、実施例3で得られた炭素被覆多孔体のFE−SEM像と水蒸気の吸着等温線を、その合成に用いたコア材のそれらと比較して図5、図6、及び図7にそれぞれ示す。すなわち、図5はコア材のSEM像、図6は炭素被覆多孔体のSEM像である。また、図5及び図6中の右上の挿入図(白色の四角形の二重線枠で囲まれた部分)は図5及び図6中の一部分を倍率を上げて観測した像である。該挿入図中の数値はBJH法によって求めた細孔径分布のピーク位置の細孔径を、破線間の距離は該細孔径に相当する長さを示すものである。
図5から、FE−SEMによって観察されるコア材の細孔(黒色部分)の大きさは、BJH法によって求めた細孔径分布のピーク位置の細孔径(6.8nm)と同程度であることが確認された。図6からFE−SEMによって観察される炭素被覆多孔体の細孔(黒色部分)の大きさは、BJH法によって求めた細孔径分布のピーク位置の細孔径(4.8nm)と同程度であることが確認された。
Furthermore, the FE-SEM image of the carbon-coated porous body obtained in Example 3 and the adsorption isotherm of water vapor are compared with those of the core material used for the synthesis in FIGS. 5, 6, and 7, respectively. Show. That is, FIG. 5 is an SEM image of the core material, and FIG. 6 is an SEM image of the carbon-coated porous body. 5 and 6 is an image obtained by observing a part of FIG. 5 and FIG. 6 at a higher magnification (the portion surrounded by a white square double line frame). The numerical value in the inset shows the pore diameter at the peak position of the pore diameter distribution obtained by the BJH method, and the distance between the broken lines shows the length corresponding to the pore diameter.
From FIG. 5, the size of the pores (black part) of the core material observed by FE-SEM is approximately the same as the pore size (6.8 nm) at the peak position of the pore size distribution determined by the BJH method. Was confirmed. From FIG. 6, the size of the pores (black part) of the carbon-coated porous material observed by FE-SEM is approximately the same as the pore size (4.8 nm) at the peak position of the pore size distribution determined by the BJH method. It was confirmed.

図7はコア材と炭素被覆多孔体の水蒸気吸着等温線である。図7に示されるように、実線で示されるコア材の水蒸気吸着量に比べ、破線で示される炭素被膜多孔体の水蒸気吸着量は少なくなっており、炭素被覆多孔体は疎水性を示すことがわかった。   FIG. 7 is a water vapor adsorption isotherm of the core material and the carbon-coated porous body. As shown in FIG. 7, the water vapor adsorption amount of the carbon-coated porous body indicated by the broken line is smaller than the water vapor adsorption amount of the core material indicated by the solid line, and the carbon-coated porous body exhibits hydrophobicity. all right.

この多孔体をフッ酸で溶解し、炭素層を取り出した。炭素層をTEMで観察したところ縞模様部分が観察された。この縞模様部分の間隔はコア材の細孔径よりも小さいので、この縞模様は細孔内壁に被覆されていたチューブ状の炭素膜であることが推測される。またチューブ状炭素膜はばらばらにならず毛玉状に纏まっていることから、コア材外表面を被覆していた炭素膜によってチューブ状炭素膜が連結されていることが推測される。またラマン分光スペクトルから炭素層は曲率半径の小さい湾曲したグランフェンシート構造を有することがわかった。   This porous body was dissolved with hydrofluoric acid, and the carbon layer was taken out. When the carbon layer was observed by TEM, a striped pattern portion was observed. Since the interval between the striped pattern portions is smaller than the pore diameter of the core material, it is presumed that the striped pattern is a tube-like carbon film coated on the pore inner wall. In addition, since the tubular carbon film is not scattered but is gathered in a pill shape, it is presumed that the tubular carbon film is connected by the carbon film covering the outer surface of the core material. The Raman spectroscopic spectrum showed that the carbon layer had a curved granfen sheet structure with a small curvature radius.

<実施例4>
(電極の作製)
実施例1で得られた多孔体80質量部にPTFE(ポリテトラフルオロエチレン)10質量部、カーボンブラック10質量部を添加し、混練して厚さ0.5mmのシート状に圧延した。このシートを直径20mmの円板に打抜き、200℃で一昼夜真空乾燥して分極性電極として使用した。
<Example 4>
(Production of electrodes)
10 parts by mass of PTFE (polytetrafluoroethylene) and 10 parts by mass of carbon black were added to 80 parts by mass of the porous body obtained in Example 1, kneaded and rolled into a sheet having a thickness of 0.5 mm. This sheet was punched into a disk with a diameter of 20 mm and vacuum-dried at 200 ° C. for a whole day and used as a polarizable electrode.

(電気二重層キャパシタの組立)
高純度アルゴンを循環させているグローブボックス内において、前記の分極性電極をアルミニウム製集電体に通電可能に積層した。該積層体2枚を集電体が外向きになるように且つガラス繊維からなる厚さ1mmのセパレーターを間に挟んで重ねた。内周壁がフッ素樹脂からなる絶縁体で覆われたアルミニウム製容器に入れた。電解液(溶媒:プロピレンカーボネート;電解質:(C254NBF4;富山薬品工業(株)製の商品名LIPASTE−P/EAFIN(1モル/リットル))を注入した。容器の縁にOリングを取りつけ、前記の積層体の上にアルミニウム製板ばねを載せ、その板ばねの上にアルミニウム製上蓋を被せ、アルミニウム製容器の底に押し付けるようにして、密閉して、電気二重層キャパシタを得た。
(Assembly of electric double layer capacitor)
In the glove box in which high-purity argon was circulated, the polarizable electrode was laminated on an aluminum current collector so that current could be passed. Two of the laminates were stacked with a current collector facing outward and a 1 mm thick separator made of glass fiber sandwiched therebetween. The inner peripheral wall was placed in an aluminum container covered with an insulator made of a fluororesin. An electrolytic solution (solvent: propylene carbonate; electrolyte: (C 2 H 5 ) 4 NBF 4 ; trade name LIPASTE-P / EAFIN (1 mol / liter) manufactured by Toyama Pharmaceutical Co., Ltd.) was injected. Attach an O-ring to the edge of the container, place an aluminum leaf spring on the laminated body, cover the leaf spring with an aluminum top cover, press against the bottom of the aluminum container, and seal, An electric double layer capacitor was obtained.

実施例1で得られたコア材及び炭素被覆メソポーラスシリカ複合体(多孔体)のXRDスペクトルを示す図である。It is a figure which shows the XRD spectrum of the core material obtained in Example 1, and the carbon covering mesoporous silica composite (porous body). 実施例1で得られたコア材及び炭素被覆メソポーラスシリカ複合体(多孔体)のN2吸着等温線を示す図である。 2 is a diagram showing N 2 adsorption isotherms of a core material and a carbon-coated mesoporous silica composite (porous body) obtained in Example 1. FIG. 実施例3で得られたコア材及び炭素被覆メソポーラスシリカ複合体(多孔体)のXRDスペクトルを示す図である。It is a figure which shows the XRD spectrum of the core material obtained in Example 3, and the carbon covering mesoporous silica composite (porous body). 実施例3で得られたコア材及び炭素被覆メソポーラスシリカ複合体(多孔体)のN2吸着等温線を示す図である。FIG. 4 is a diagram showing N 2 adsorption isotherms of a core material and a carbon-coated mesoporous silica composite (porous body) obtained in Example 3. 実施例3で得られたコア材のFE−SEM像である。右上部の挿入図はコア材の細孔の拡大図である。3 is an FE-SEM image of a core material obtained in Example 3. FIG. The inset in the upper right part is an enlarged view of the pores of the core material. 実施例3で得られた炭素被覆メソポーラスシリカ複合体(多孔体)のFE−SEM像である。右上部の挿入図は多孔体の細孔の拡大図である。4 is an FE-SEM image of the carbon-coated mesoporous silica composite (porous body) obtained in Example 3. The inset in the upper right part is an enlarged view of the pores of the porous body. 実施例3で得られたコア材及び炭素被覆メソポーラスシリカ複合体(多孔体)の水蒸気吸着等温線を示す図である。It is a figure which shows the water vapor | steam adsorption isotherm of the core material obtained in Example 3, and a carbon covering mesoporous silica composite (porous body).

符号の説明Explanation of symbols

θ:XRDの角度
P/P0:相対圧(吸着平衡圧と飽和蒸気圧との比)
θ: XRD angle P / P 0 : relative pressure (ratio between adsorption equilibrium pressure and saturated vapor pressure)

Claims (20)

長周期規則性無機ポーラス材料と、その表面を被覆する窒素不含のグラフェンシート構造の炭素層とを含み、且つ細孔容積が0.1〜2cm3/gで、比表面積が100〜1000m2/gである多孔体。 It includes a long-period regular inorganic porous material and a carbon layer having a graphene sheet structure containing no nitrogen that covers the surface, has a pore volume of 0.1 to 2 cm 3 / g, and a specific surface area of 100 to 1000 m 2. / G porous body. 圧密比抵抗が1010Ωcm以下である請求項1に記載の多孔体。 The porous body according to claim 1, wherein the consolidation specific resistance is 10 10 Ωcm or less. 平均細孔径が0.5nm以上20nm以下である請求項1又は2に記載の多孔体。   The porous body according to claim 1 or 2, wherein the average pore diameter is 0.5 nm or more and 20 nm or less. 炭素層が、長周期規則性無機ポーラス材料の細孔空間を確保した状態で細孔内壁を被覆する炭素膜と、該細孔内の炭素膜間を電気的に繋ぎ且つ長周期規則性無機ポーラス材料外表面を被覆する炭素膜とを含む請求項1〜3のいずれか1項に記載の多孔体。   A carbon layer that coats the inner wall of the pore in a state in which the pore space of the long-period regular inorganic porous material is secured, and the long-period regular inorganic porous that electrically connects the carbon film in the pore The porous body according to any one of claims 1 to 3, comprising a carbon film covering an outer surface of the material. 長周期規則性無機ポーラス材料が周期律表の第2〜14族元素を含む酸化物である請求項1〜4のいずれか1項に記載の多孔体。   The porous body according to any one of claims 1 to 4, wherein the long-period regular inorganic porous material is an oxide containing a Group 2-14 element of the Periodic Table. 25℃で相対圧0.9における水蒸気吸着量が20cm3−STP/g以下である請求項1〜5のいずれか1項に記載の多孔体。 The porous body according to any one of claims 1 to 5, wherein a water vapor adsorption amount at 25 ° C and a relative pressure of 0.9 is 20 cm 3 -STP / g or less. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む電気化学素子用電極材料。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Electrode material for electrochemical devices. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む電気化学素子。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Electrochemical element. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む電気二重層キャパシタ用分極性電極材料。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Polarizable electrode material for electric double layer capacitors. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む電気二重層キャパシタ。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Electric double layer capacitor. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む燃料電池用触媒担持体。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Catalyst support for fuel cell. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含む燃料電池。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Fuel cell. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含むリチウムイオンを吸蔵放出可能な電極材料。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Electrode material that can occlude and release lithium ions. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含むリチウムイオン電池。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Lithium ion battery. 長周期規則性無機ポーラス材料と、その表面を被覆する炭素層とを含み、且つ細孔容積が0.1〜2cm 3 /gで、比表面積が100〜1000m 2 /gである多孔体 を含むリチウムイオンキャパシタ。 A porous material comprising a long-period regular inorganic porous material and a carbon layer covering the surface thereof, having a pore volume of 0.1 to 2 cm 3 / g and a specific surface area of 100 to 1000 m 2 / g Lithium ion capacitor. 官能基を有するBET比表面積100m2/g以上の長周期規則性無機ポーラス材料の表面に、水酸基と反応可能な官能基を有するベンゼン系炭化水素化合物液相接触法で付着させ、次いで非酸化性雰囲気において前記ベンゼン系炭化水素化合物を600℃以上で熱処理して炭化させる工程を含む請求項1〜6のいずれかひとつに記載の多孔体の製造方法。 On the surface of the BET specific surface area of 100 m 2 / g or more long-period ordered inorganic porous material having a functional group, to adhere the benzene-containing hydrocarbon compound having a functional group capable of reacting with a hydroxyl group in the liquid phase contact process, then a non-oxidizing The manufacturing method of the porous body as described in any one of Claims 1-6 including the process which heat-processes the said benzene-type hydrocarbon compound at 600 degreeC or more, and carbonizes in an atmosphere. 水酸基と反応可能な官能基を有するベンゼン系炭化水素化合物該ベンゼン系炭化水素化合物を溶解可能な溶媒とを含む溶液を、官能基を有するBET比表面積100m2/g以上の長周期規則性無機ポーラス材料に含浸させ、
非酸化性雰囲気において250℃超600℃未満で熱処理して、前記ベンゼン系炭化水素化合物を長周期規則性無機ポーラス材料表面に付着させ、
次いで非酸化性雰囲気において600℃以上で熱処理して前記ベンゼン系炭化水素化合物を炭化させる工程
を含む請求項1〜6のいずれかひとつに記載の多孔体の製造方法。
A solution containing a benzene-based hydrocarbon compound having a functional group capable of reacting with a hydroxyl group and a solvent capable of dissolving the benzene-based hydrocarbon compound is a long-period regular inorganic having a BET specific surface area of at least 100 m 2 / g having a functional group. Impregnating the porous material,
250 ° C. and heat-treated below super 600 ° C. in a non-oxidizing atmosphere, by attaching the benzene-containing hydrocarbon compound to the long period ordered inorganic porous material surface,
Then, the manufacturing method of the porous body as described in any one of Claims 1-6 including the process of heat-processing at 600 degreeC or more in a non-oxidizing atmosphere, and carbonizing the said benzene-type hydrocarbon compound .
前記ベンゼン系炭化水素化合物が、水酸基及び/又はカルボキシル基を有するベンゼン系芳香族炭化水素化合物である請求項16又は17に記載の多孔体の製造方法。 The method for producing a porous body according to claim 16 or 17, wherein the benzene hydrocarbon compound is a benzene aromatic hydrocarbon compound having a hydroxyl group and / or a carboxyl group. 長周期規則性無機ポーラス材料が周期律表の第2〜14族元素を含む酸化物である請求項16〜18のいずれか1項に記載の多孔体の製造方法。   The method for producing a porous body according to any one of claims 16 to 18, wherein the long-period regular inorganic porous material is an oxide containing a group 2 to 14 element of the periodic table. 長周期規則性無機ポーラス材料表面の官能基が水酸基であり、前記ベンゼン系炭化水素化合物を該水酸基と脱水縮合反応させて、長周期規則性無機ポーラス材料に化学結合させる請求項16〜19のいずれか1項に記載の多孔体の製造方法。 The functional group on the surface of the long-period regular inorganic porous material is a hydroxyl group, and the benzene-based hydrocarbon compound is subjected to a dehydration condensation reaction with the hydroxyl group to be chemically bonded to the long-period regular inorganic porous material. The method for producing a porous body according to claim 1.
JP2006253930A 2006-06-08 2006-09-20 Porous material, method for producing the same, and use thereof Active JP4956733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253930A JP4956733B2 (en) 2006-06-08 2006-09-20 Porous material, method for producing the same, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006159898 2006-06-08
JP2006159898 2006-06-08
JP2006253930A JP4956733B2 (en) 2006-06-08 2006-09-20 Porous material, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2008016792A JP2008016792A (en) 2008-01-24
JP4956733B2 true JP4956733B2 (en) 2012-06-20

Family

ID=39073498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253930A Active JP4956733B2 (en) 2006-06-08 2006-09-20 Porous material, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4956733B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660414B1 (en) * 2008-11-10 2016-09-29 삼성전자주식회사 Anode active material, anode comprising anode active material, lithium battery comprising anode, and preparation method thereof
EP2184798B1 (en) 2008-11-10 2021-02-17 Samsung Electronics Co., Ltd. Anode active material, anode comprising the anode active material, lithium battery comprising the anode, and method of preparing the anode active material.
JP5297786B2 (en) * 2008-12-16 2013-09-25 株式会社キャタラー Anode catalyst layer of polymer electrolyte fuel cell
US9147879B2 (en) 2009-06-25 2015-09-29 Nagasaki University Composite nano porous electrode material, process for production thereof, and lithium ion secondary battery
JP5652070B2 (en) * 2010-04-28 2015-01-14 日立化成株式会社 Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101107079B1 (en) 2010-05-06 2012-01-20 삼성에스디아이 주식회사 Negative electrode for energy storage device and energy storage device including same
JP5668381B2 (en) * 2010-09-10 2015-02-12 日立化成株式会社 Composite particle, method for producing composite particle, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5665127B2 (en) * 2011-04-28 2015-02-04 国立大学法人東北大学 Method for producing silica material whose surface is carbon-coated, carbon-coated silica material produced by the production method and use thereof
TWI582041B (en) * 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
KR20130007429A (en) * 2011-06-24 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Graphene, power storage device, and electric appliance
US20130181676A1 (en) * 2012-01-18 2013-07-18 E I Du Pont De Nemours And Company Compositions, electrodes and methods of making
JP6379694B2 (en) * 2014-06-04 2018-08-29 日立化成株式会社 Magnesium aluminum oxide composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2506600B2 (en) * 1992-09-30 1996-06-12 工業技術院長 Porous silica-carbon composite and method for producing the same
JP3951567B2 (en) * 2000-07-10 2007-08-01 東ソー株式会社 Porous carbon material and method for producing the same
JP2003206112A (en) * 2002-01-10 2003-07-22 Nippon Steel Chem Co Ltd Porous carbon material and method for manufacturing the same
AU2003266700A1 (en) * 2002-09-30 2004-04-19 Matsushita Electric Industrial Co., Ltd. Porous article and method for production thereof and electrochemical element using the porous article
JP4856838B2 (en) * 2002-11-19 2012-01-18 株式会社豊田中央研究所 Nitrogen-containing carbon-based porous body and method for producing the same
JP2005060185A (en) * 2003-08-18 2005-03-10 Kenzo Fukuda Hydrogen storage material
JP4048243B2 (en) * 2003-12-01 2008-02-20 独立行政法人産業技術総合研究所 Secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008016792A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4956733B2 (en) Porous material, method for producing the same, and use thereof
Li et al. Conductive metal–organic framework nanowire array electrodes for high‐performance solid‐state supercapacitors
Li et al. A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels
Huang et al. Biobased nano porous active carbon fibers for high-performance supercapacitors
An et al. Synthesis of hierarchically porous nitrogen‐doped carbon nanosheets from agaric for high‐performance symmetric supercapacitors
Kim et al. Extremely durable, flexible supercapacitors with greatly improved performance at high temperatures
Fulvio et al. “Brick‐and‐Mortar” Self‐Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites
Salunkhe et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons
Shang et al. Coaxial Ni x Co2 x (OH) 6 x/TiN nanotube arrays as supercapacitor electrodes
Yang et al. 3D architecture materials made of NiCoAl‐LDH Nanoplates coupled with NiCo‐carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors
JP5481748B2 (en) Carbon nanostructure, method for producing metal-encapsulated dendritic carbon nanostructure, and method for producing carbon nanostructure
Zhang et al. Pyrolyzed graphene oxide/resorcinol-formaldehyde resin composites as high-performance supercapacitor electrodes
Shrestha et al. Properties of nitrogen-functionalized ordered mesoporous carbon prepared using polypyrrole precursor
JP6047799B2 (en) Activated carbon for electrode of electricity storage device and method for producing activated carbon for electrode of electricity storage device
He et al. Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors
Lei et al. CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation
Xie et al. Flexible Asymmetric Supercapacitors Based on Nitrogen‐Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
US10276312B2 (en) High surface area carbon materials and methods for making same
Du et al. A Three‐Layer All‐In‐One Flexible Graphene Film Used as an Integrated Supercapacitor
Li et al. Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor
Li et al. MnO2 nanosheets grown on internal surface of macroporous carbon with enhanced electrochemical performance for supercapacitors
Liu et al. Large scale production of polyacrylonitrile-based porous carbon nanospheres for asymmetric supercapacitors
Wang et al. Superwetting monolithic carbon with hierarchical structure as supercapacitor materials
Isshiki et al. Electric Double‐Layer Capacitance of Inverse Opal Carbon Prepared Through Carbonization of Poly (Furfuryl Alcohol) in Contact with Polymer Gel Electrolyte Containing Ionic Liquid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060920

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4956733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350