JP4954443B2 - Starting method of fuel cell system - Google Patents

Starting method of fuel cell system Download PDF

Info

Publication number
JP4954443B2
JP4954443B2 JP2003431589A JP2003431589A JP4954443B2 JP 4954443 B2 JP4954443 B2 JP 4954443B2 JP 2003431589 A JP2003431589 A JP 2003431589A JP 2003431589 A JP2003431589 A JP 2003431589A JP 4954443 B2 JP4954443 B2 JP 4954443B2
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel cell
hydrogen
passage time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003431589A
Other languages
Japanese (ja)
Other versions
JP2005190854A (en
Inventor
昭雄 狩野
将一 干鯛
全 前川
宗一郎 霜鳥
勇 菊池
泰司 小上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2003431589A priority Critical patent/JP4954443B2/en
Publication of JP2005190854A publication Critical patent/JP2005190854A/en
Application granted granted Critical
Publication of JP4954443B2 publication Critical patent/JP4954443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、酸化剤ガスと燃料ガスを導入して化学反応により発電を行う燃料電池システムの起動方法に関する。   The present invention relates to a method for starting a fuel cell system in which an oxidant gas and a fuel gas are introduced to generate power by a chemical reaction.

燃料電池は、水素等の燃料と空気等の酸化剤を燃料電池本体に供給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを直接電気エネルギーに変換して外部へ取り出す発電装置である。   A fuel cell is a power generator that supplies fuel such as hydrogen and an oxidant such as air to the fuel cell body and reacts them electrochemically, thereby converting the chemical energy of the fuel directly into electrical energy and taking it out. It is.

この燃料電池の用途としては、比較的小型であるにもかかわらず高効率で、環境性に優れていることから、工場や病院などの業務用、一般家庭用、自動車用などに採用されている。   This fuel cell is used for business purposes such as factories and hospitals, general households, and automobiles because of its high efficiency and environmental friendliness despite its relatively small size. .

燃料電池反応に用いられる燃料ガスとして、水素ボンベあるいは水素吸蔵合金などから水素ガスを供給する場合と、炭化水素系の原燃料を触媒反応によって改質したガスを供給する場合がある。また、酸化剤ガスとして、酸素ボンベから酸素ガスを供給する場合と、空気をブロワあるいはコンプレッサーなどの手段を用いて供給する場合がある。   As a fuel gas used in the fuel cell reaction, there are a case where hydrogen gas is supplied from a hydrogen cylinder or a hydrogen storage alloy, and a case where gas obtained by reforming a hydrocarbon-based raw fuel by catalytic reaction is supplied. Further, there are cases where oxygen gas is supplied from an oxygen cylinder as the oxidant gas and air is supplied using means such as a blower or a compressor.

一方、燃料電池の運転が停止している時は、窒素などの不活性ガスを封入して保管している。しかし、このように不活性ガスを封入しても外気である空気が燃料電池のガス流路に浸入し、ある程度の酸素が燃料極及び酸化剤極の両極に含まれた状態になっている。   On the other hand, when the operation of the fuel cell is stopped, an inert gas such as nitrogen is enclosed and stored. However, even when the inert gas is sealed in this way, the air that is outside air enters the gas flow path of the fuel cell, and a certain amount of oxygen is contained in both the fuel electrode and the oxidant electrode.

このため、従来では、燃料電池の起動時にまず窒素などの不活性ガスを導入して両極の酸素を取り除く、所謂不活性ガスパージを行った後、起動を行っている(例えば。特許文献1、特許文献2)。   For this reason, conventionally, startup is performed after a so-called inert gas purge is performed, in which an inert gas such as nitrogen is first introduced to remove oxygen from both electrodes when the fuel cell is started (for example, Patent Document 1, Patent). Reference 2).

図8はかかかる不活性パージを含む一般的な燃料電池の起動手順を説明するためのタイムチャートを示すものである。 FIG. 8 shows a time chart for explaining a starting procedure of a general fuel cell including such an inert purge.

図8において、窒素などの不活性ガスで両極をパージした後に、まず燃料極に燃料ガスを導入し、次に酸化剤極に酸化剤ガスを導入する。この場合、反応ガスが電池内に行き渡るまでには、導入開始からある時間遅れがある。 In FIG. 8 , after purging both electrodes with an inert gas such as nitrogen, the fuel gas is first introduced into the fuel electrode, and then the oxidant gas is introduced into the oxidant electrode. In this case, there is a certain time delay from the start of introduction until the reaction gas reaches the inside of the battery.

そして、反応ガスが電池内に十分に行き渡ると電池電圧が開回路電圧を示すので、その後に負荷を投入する。   Then, when the reaction gas has sufficiently spread within the battery, the battery voltage indicates an open circuit voltage, and then a load is applied.

また、燃料電池の起動時に触媒の初期操作を兼ねるために、パージ後に水素と同時に空気を流す方法もある(例えば特許文献3)。   There is also a method of flowing air simultaneously with hydrogen after purging in order to serve as an initial operation of the catalyst when the fuel cell is started (for example, Patent Document 3).

このように燃料ガス導入前に両極を不活性ガスでパージする理由としては、酸素を含む雰囲気中に水素を含むガスを導入して発火しないように酸素濃度を下げること、部分電池による腐食反応を防止することが挙げられる(例えば、特許文献4)。   The reason for purging both electrodes with an inert gas before introducing the fuel gas is to introduce a gas containing hydrogen into an atmosphere containing oxygen to lower the oxygen concentration so as not to ignite, and to cause a corrosion reaction by a partial cell. (For example, Patent Document 4).

ここで、図9を参照して部分電池による腐食反応について説明する。 Here, the corrosion reaction by the partial battery will be described with reference to FIG .

図9は起動時における電池面内での電流の流れを示す図であり、2は燃料極、3は酸化剤極、15はこれら燃料極2及び酸化剤極3間に存する電解質、16は燃料ガス流路、17は酸化剤ガス流路である。 FIG. 9 is a diagram showing the flow of current in the cell surface at the time of startup, wherein 2 is a fuel electrode, 3 is an oxidant electrode, 15 is an electrolyte existing between the fuel electrode 2 and the oxidant electrode 3, and 16 is a fuel. A gas flow path 17 is an oxidant gas flow path.

両極が酸素を含む雰囲気である状態において、燃料ガス流路16に水素を含んだ燃料ガスが燃料電池に導入されると、燃料入口付近には水素が存在するため水素電位(0V)であり、燃料出口付近では水素が到達しないため空気電位のままであり、燃料極2面内に出口から入口に向かって電位勾配が生じる。   When the fuel gas containing hydrogen is introduced into the fuel gas channel 16 in a state where both electrodes are in an atmosphere containing oxygen, hydrogen exists in the vicinity of the fuel inlet, so that the hydrogen potential (0 V) exists. Since hydrogen does not reach in the vicinity of the fuel outlet, the air potential remains unchanged, and a potential gradient is generated in the surface of the fuel electrode 2 from the outlet toward the inlet.

この電位勾配に従って電流が燃料極2面内に流れると、それを打ち消すように空気極3面内には逆方向の電流が流れる。燃料入口部では水素が(1)式のようにプロトンに分解されて、燃料極2から酸化剤極3への電流を担う。   When current flows in the surface of the fuel electrode 2 according to this potential gradient, a current in the reverse direction flows in the surface of the air electrode 3 so as to cancel it. At the fuel inlet, hydrogen is decomposed into protons as shown in equation (1), and carries a current from the fuel electrode 2 to the oxidant electrode 3.

2→2H++2e- …… (1)
燃料出口部では、電流の担い手であるプロトンは(2)式の反応に従って炭素から生成される。この反応により触媒の担持カーボンが消失し、電池性能を低下させる。
H 2 → 2H + + 2e - ...... (1)
At the fuel outlet, protons, which are current carriers, are generated from carbon according to the reaction of equation (2). By this reaction, the carbon supported on the catalyst disappears, and the battery performance is lowered.

C+2H2O→CO2+4H++4e- …… (2)
特開平9−120830号公報 特開平10−144334号公報 特開2003−142134号公報 US−6514635号公報
C + 2H 2 O → CO 2 + 4H + + 4e (2)
JP-A-9-120830 Japanese Patent Laid-Open No. 10-144334 JP 2003-142134 A US-6514635 gazette

上述した燃料電池の起動方法においては、パージ用不活性ガスとして一般に窒素ガスをボンベから供給しているため、ボンベ交換の手間とランニングコストがかかるという課題があった。特に、一般家庭において使用する場合には、窒素ボンベの交換は避けたいという要求がある。また、自動車用においては、起動時にパージするために、起動時間が長くなるという課題もある。   In the above-described fuel cell starting method, nitrogen gas is generally supplied from the cylinder as an inert gas for purge, and thus there is a problem that it takes labor and cost for replacing the cylinder. In particular, when used in a general household, there is a demand to avoid replacing the nitrogen cylinder. Moreover, in the case of automobiles, there is a problem that the startup time becomes long because of purging at startup.

しかし、不活性ガスによるパージを省いて燃料極が酸素を含む雰囲気のままで水素を導入すると、部分電池反応が生じて燃料電池の性能低下を引き起こすという問題がある。   However, if hydrogen is introduced in an atmosphere in which the fuel electrode contains oxygen without purging with an inert gas, there is a problem that a partial cell reaction occurs and the performance of the fuel cell is reduced.

また、このような部分電池反応を抑制する手段として、前述したように窒素ガスなどで燃料極をパージすることによって燃料極の酸素を除去する方法があるが、たとえ窒素ガスでパージしたとしても燃料極の触媒層に吸着した酸素を完全に除去することはできないため、部分電池反応が生じて燃料電池の性能が低下する問題がある。   Moreover, as a means for suppressing such partial cell reaction, there is a method of removing oxygen from the fuel electrode by purging the fuel electrode with nitrogen gas or the like, as described above. Since oxygen adsorbed on the electrode catalyst layer cannot be completely removed, there is a problem in that the performance of the fuel cell is lowered due to partial cell reaction.

本発明は上述した課題を解決するためになされたものであり、起動に伴う燃料電池性能の低下を抑えながら、窒素パージをなくすか、あるいは使用量を最小限に抑えることができる燃料電池システムの起動方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a fuel cell system capable of eliminating nitrogen purge or minimizing the amount of use while suppressing deterioration in fuel cell performance associated with startup. The purpose is to provide an activation method.

本発明は上記の目的を達成するため、少なくとも水素を成分に持つ燃料ガスが流通する燃料ガス流路と酸化剤ガスが流通する酸化剤ガス流路を有する燃料電池本体と、前記燃料電池本体に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体に酸化剤ガスを供給する酸化剤ガス供給手段とを備えた燃料電池システムにおいて、前記燃料電池システムの起動過程であって、前記燃料ガスが前記燃料ガス供給手段から供給され始めてから前記燃料電池本体から排出され始めるまでの期間においては、前記燃料ガス以外のガスである水素通過時間短縮用ガスを前記燃料ガス供給手段と前記燃料電池本体とを結ぶ燃料ガス系統に供給し、前記期間以外のすべての期間においては、前記水素通過時間短縮用ガスの前記燃料ガス系統への供給を停止する。   In order to achieve the above object, the present invention provides a fuel cell main body having a fuel gas channel through which a fuel gas containing at least hydrogen as a component and an oxidant gas channel through which an oxidant gas flows, and the fuel cell main body. A fuel cell system comprising a fuel gas supply means for supplying a fuel gas and an oxidant gas supply means for supplying an oxidant gas to the fuel cell main body, wherein the fuel gas is a startup process of the fuel cell system. In the period from when the fuel gas supply means starts to be supplied until the fuel cell main body starts to discharge, the hydrogen gas passage time reducing gas, which is a gas other than the fuel gas, is supplied to the fuel gas supply means and the fuel cell main body. In all periods other than the above period, supply of the hydrogen transit time reducing gas to the fuel gas system is stopped. That.

本発明は、起動に伴う燃料電池性能の低下を抑えながら、窒素パージを無くすか、あるいは使用量を最小限に抑えることができる。   The present invention can eliminate the nitrogen purge or minimize the amount of use while suppressing a decrease in fuel cell performance due to startup.

本発明の実施形態を説明するにあたり、燃料電池の性能劣化に影響を与える因子である水素通過時間について説明する。燃料極のガス溝に燃料ガスが導入され始めてから電極の反応部全面に水素が行き渡り、燃料極のガス溝から排出されるまでの間(水素通過時間と呼ぶ)は、部分電池反応が生じていることになる。水素通過時間は(3)式で与えられる。   In describing the embodiment of the present invention, the hydrogen passage time, which is a factor affecting the performance deterioration of the fuel cell, will be described. During the period from when the fuel gas starts to be introduced into the gas groove of the fuel electrode until hydrogen spreads over the entire reaction part of the electrode and is discharged from the gas groove of the fuel electrode (referred to as hydrogen passage time), a partial cell reaction occurs. Will be. The hydrogen passage time is given by equation (3).

(水素通過時間)=(燃料極の流路体積)/(体積流量) …… (3)
図9に示すように起動時の燃料ガス導入過程において、燃料極2面内に水素と酸素が同時に存在すると部分電池反応が生じ、燃料極2側の水素が存在しない範囲に対面する酸化剤極3側の触媒の担持カーボンが消失する。電池の性能劣化を低減するためには部分電池反応の時間を短縮する、すなわち水素通過時間を短縮することが有効である。
(Hydrogen passage time) = (Fuel electrode channel volume) / (Volume flow rate) (3)
As shown in FIG. 9 , in the fuel gas introduction process at the time of start-up, if hydrogen and oxygen are simultaneously present in the surface of the fuel electrode 2, a partial cell reaction occurs, and the oxidant electrode faces the range where no hydrogen exists on the fuel electrode 2 side. The supported carbon of the catalyst on the third side disappears. In order to reduce battery performance deterioration, it is effective to shorten the time for partial cell reaction, that is, to shorten the hydrogen passage time.

そこで、上記の(3)式により、水素通過時間を短縮するためには燃料極の流路体積を低減するか、燃料導入時の体積流量を増加させるかの2つの手法があるが、燃料極の流路体積は燃料ガス溝流路の圧損、燃料ガスのセル面内の配流、燃料ガスの積層セル間の配流、面内の電流密度分布など他の様々なファクターを考慮して設計・最適化されているため、容易に変更はできない。もう一つの手法である体積流量の増加は、燃料ガス自体の流量を増加させるか、もしくは燃料ガス以外のガスを供給することにより可能だが、起動時の燃料ガス流量を増加させることは排出された燃料ガスの処理や燃料ガスの改質能力の制約などでやはり容易に変更はできない。   Therefore, there are two methods for reducing the hydrogen passage time by the above equation (3): reducing the flow volume of the fuel electrode or increasing the volume flow rate when the fuel is introduced. The flow path volume is designed and optimized in consideration of various other factors such as pressure loss in the fuel gas groove flow path, fuel gas flow in the cell plane, fuel gas flow between the stacked cells, and current density distribution in the plane. Therefore, it cannot be changed easily. Another way to increase the volumetric flow rate is to increase the flow rate of the fuel gas itself, or supply a gas other than the fuel gas, but increasing the flow rate of the fuel gas at startup was discharged. Again, it cannot be easily changed due to restrictions on fuel gas processing and fuel gas reforming capacity.

したがって、水素通過時間を短縮するには起動時に燃料ガス以外のガスを燃料ガスと併せて燃料電池に供給する方法が有効な手段となり得る。この燃料ガス以外のガスを水素通過時間短縮用ガスと呼ぶ。   Therefore, in order to shorten the hydrogen passage time, a method of supplying a gas other than the fuel gas together with the fuel gas to the fuel cell at the time of start-up can be an effective means. Gases other than this fuel gas are referred to as hydrogen passage time shortening gases.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による燃料電池システムの第1の実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing a first embodiment of a fuel cell system according to the present invention.

本燃料電池システムは、燃料極2と酸化剤極3を備えた燃料電池本体1と、燃料ガス供給手段4と、水素通過時間短縮用ガス供給手段5と、燃料ガス導入検知手段として設けられる水素検知器6と、水素通過時間短縮用ガス供給弁7とを備えている。   This fuel cell system includes a fuel cell body 1 having a fuel electrode 2 and an oxidant electrode 3, a fuel gas supply means 4, a hydrogen supply time shortening gas supply means 5, and hydrogen provided as a fuel gas introduction detection means. A detector 6 and a gas supply valve 7 for shortening the hydrogen passage time are provided.

なお、燃料電池本体1の酸化剤極に酸化剤ガスを供給する図示しない酸化剤ガス供給手段が設けられている。   An oxidant gas supply means (not shown) for supplying an oxidant gas to the oxidant electrode of the fuel cell main body 1 is provided.

上記燃料電池本体1の燃料極2と燃料ガス供給手段4は配管で接続され、水素通過時間短縮用ガス供給手段5は水素通過時間短縮用ガス供給弁7を介して燃料電池本体1の燃料極2と燃料ガス供給手段4との間に配管で接続されている。   The fuel electrode 2 of the fuel cell main body 1 and the fuel gas supply means 4 are connected by piping, and the gas supply means 5 for shortening the hydrogen passage time is connected to the fuel electrode of the fuel cell main body 1 via the gas supply valve 7 for shortening the hydrogen passage time. 2 and the fuel gas supply means 4 are connected by piping.

また、上記水素検知器6は、水素通過時間短縮用ガス供給手段5の接続位置より燃料ガス供給手段4側寄りの配管に接続され、燃料ガス供給手段4より燃料電池本体1の燃料極2に供給される燃料ガスを検知すると、水素通過時間短縮用ガス供給弁7を開制御し、その後予め設定された時間経過すると閉制御するものである。   The hydrogen detector 6 is connected to a pipe closer to the fuel gas supply means 4 than the connection position of the gas supply means 5 for reducing hydrogen passage time, and is connected to the fuel electrode 2 of the fuel cell main body 1 from the fuel gas supply means 4. When the supplied fuel gas is detected, the hydrogen passage time shortening gas supply valve 7 is controlled to open, and then closed when a preset time has elapsed.

ここで、上記燃料ガス供給手段4より燃料電池本体1の燃料極2に供給される燃料ガスは、副生水素などの水素を主成分とするガスや都市ガスなどの原燃料ガスを改質することで水素成分を有するガスのことを指し、水素を含まない原燃料ガス(例えば都市ガスなど)は部分電池による腐食反応の原因とならないので、燃料ガスとは区別して扱う。   Here, the fuel gas supplied from the fuel gas supply means 4 to the fuel electrode 2 of the fuel cell main body 1 reforms a gas mainly composed of hydrogen such as by-product hydrogen or a raw fuel gas such as city gas. This means a gas having a hydrogen component, and a raw fuel gas that does not contain hydrogen (for example, city gas) does not cause a corrosion reaction by a partial cell, so it is handled separately from a fuel gas.

次にこのように構成された燃料電池システムの起動時の作用を述べる。   Next, the operation at the time of starting the fuel cell system configured as described above will be described.

図2は燃料電池システムの起動手順を示すタイムチャートである。   FIG. 2 is a time chart showing the startup procedure of the fuel cell system.

いま、燃料ガス供給手段4から燃料ガスが供給され始めると、水素検知手段6により水素が検知され、その検知信号によって水素通過時間短縮用ガス供給弁7が開放される。   Now, when fuel gas starts to be supplied from the fuel gas supply means 4, hydrogen is detected by the hydrogen detection means 6, and the hydrogen supply time shortening gas supply valve 7 is opened by the detection signal.

すると、水素通過時間短縮用ガス供給手段5より水素通過時間短縮用ガス(窒素ガスなどの不活性ガス)が燃料ガス供給手段4と燃料電池本体1の燃料極2との間の配管に流入し、燃料ガスと併されて燃料電池本体1の燃料極2に供給される。 Then, the hydrogen passage time shortening gas (inert gas such as nitrogen gas) flows from the hydrogen passage time shortening gas supply means 5 into the pipe between the fuel gas supply means 4 and the fuel electrode 2 of the fuel cell body 1. The fuel gas is supplied to the fuel electrode 2 of the fuel cell body 1 together with the fuel gas.

そして、水素通過時間短縮用ガス供給弁7が開放後、予め設定された時間、つまり燃料ガス及び水素通過時間短縮用ガスが燃料電池本体1の燃料極2から排出されるまでに要する時間経過すると水素通過時間短縮用ガス供給弁7を閉じ、水素通過時間短縮用ガスの供給を停止する。   Then, after the hydrogen passage time shortening gas supply valve 7 is opened, a preset time, that is, the time required for the fuel gas and the hydrogen passage time shortening gas to be discharged from the fuel electrode 2 of the fuel cell main body 1 elapses. The gas supply valve 7 for shortening the hydrogen passage time is closed, and the supply of the gas for shortening the hydrogen passage time is stopped.

その後、図示しない酸化剤ガス供給手段より酸化剤ガスを燃料電池本体1の酸化剤極3に供給し、図示しない電圧計により測定される燃料電池本体1の開路電圧の測定値から燃料ガスと酸化剤ガスが供給されていることが確認されると、負荷を接続して発電を開始する。この場合、酸化剤極への酸化剤ガスの供給タイミングは負荷投入前であればよく、特にその制約はない。   Thereafter, an oxidant gas is supplied from an oxidant gas supply means (not shown) to the oxidant electrode 3 of the fuel cell main body 1, and the fuel gas and the oxidation are determined from the measured open circuit voltage of the fuel cell main body 1 measured by a voltmeter (not shown). When it is confirmed that the agent gas is supplied, the load is connected and power generation is started. In this case, the supply timing of the oxidant gas to the oxidant electrode is not particularly limited as long as it is before loading.

これにより、燃料電池本体1の燃料極2には燃料ガスと水素通過時間短縮用ガスとが併せられて流入するので、その体積流量が増加し、水素通過時間を短縮することが可能となる。   As a result, since the fuel gas and the hydrogen passage time shortening gas are combined and flow into the fuel electrode 2 of the fuel cell main body 1, the volume flow rate is increased and the hydrogen passage time can be shortened.

ここで、燃料ガスが燃料極を通過する時間と起動停止後の電圧低下量の関係を図3により説明する。   Here, the relationship between the time during which the fuel gas passes through the fuel electrode and the amount of voltage drop after the start and stop will be described with reference to FIG.

図3はある条件での測定結果に基づいて燃料ガス通過時間と電圧低下量の関係を示すものである。この関係から水素通過時間短縮用ガスを供給しない場合と比較して、燃料ガス通過時間を半分とすると電圧低下量は60%程度に低減できることが分かる。   FIG. 3 shows the relationship between the fuel gas passage time and the voltage drop amount based on the measurement result under a certain condition. From this relationship, it can be seen that the voltage drop can be reduced to about 60% when the fuel gas passage time is halved compared to the case where the gas for reducing the hydrogen passage time is not supplied.

また、カソード電極の電気化学的白金表面積(ECA)を測定したが、電圧低下量と相関がある結果が得られた。すなわち、起動停止を実施しない場合を1とすると、水素通過時間を短縮することによって起動停止によるECAの低下を低減することができた。   Further, the electrochemical platinum surface area (ECA) of the cathode electrode was measured, and a result correlated with the voltage drop amount was obtained. In other words, assuming that the case where the start / stop is not performed is 1, the decrease in ECA due to the start / stop can be reduced by shortening the hydrogen passage time.

これは図9の部分電池反応のメカニズムにおいて、カソードカーボンの消失を裏付けるものである。この電圧低下量の低減の効果は、運転条件や燃料ガスの種類などによって異なると思われるが、部分電池による性能劣化というメカニズムは共通のものであるので、燃料ガス通過時間の短縮により一定の効果があると考えられる。 Which in the mechanism of partial cell reaction 9, it is intended to support the loss of cathode carbon. The effect of reducing the amount of voltage drop seems to vary depending on the operating conditions and the type of fuel gas, but the mechanism of performance degradation due to partial cells is the same, so a certain effect can be achieved by reducing the fuel gas passage time. It is thought that there is.

ただし、燃料ガスが燃料極2を通過する時間の上限値は、電極の仕様、燃料電池面積の大きさ、ガスマニホールドの大きさなどによって異なるため、一律には決めることができない。   However, the upper limit value of the time required for the fuel gas to pass through the fuel electrode 2 differs depending on the electrode specifications, the size of the fuel cell area, the size of the gas manifold, etc., and cannot be determined uniformly.

また、燃料電池本体1の燃料極2に燃料ガスが導入される情報を燃料ガス導入検知手段、本例では水素検知器6で検出するようにしているので、燃料ガス通過時間を短縮するための水素通過時間短縮用ガスを供給するタイミングを制御することが可能となる。さらに、燃料電池の用途や耐用年数によるが、燃料ガス通過時間を短縮することで、燃料電池本体の電圧低下量を低減でき、且つ必要なときに必要な流量を供給することによって水素通過時間短縮用ガスの供給量を最小限にすることが可能となる。   Further, since the information on the introduction of the fuel gas into the fuel electrode 2 of the fuel cell main body 1 is detected by the fuel gas introduction detecting means, in this example, the hydrogen detector 6, it is possible to shorten the fuel gas passage time. It becomes possible to control the timing of supplying the gas for reducing the hydrogen passage time. Furthermore, depending on the application and service life of the fuel cell, shortening the fuel gas passage time can reduce the amount of voltage drop in the fuel cell body, and shorten the hydrogen passage time by supplying the necessary flow rate when necessary. It becomes possible to minimize the supply amount of the working gas.

一方、水素通過時間短縮用ガスを都市ガスなどの原燃料ガスや発電時の未反応水素を含んだガスなどを水素通過時間短縮用ガス供給手段5に貯蔵することで、窒素などの不活性ガスを使用しなくても起動停止による電池の劣化を抑制することが可能となる。   On the other hand, an inert gas such as nitrogen can be obtained by storing the gas for reducing the hydrogen passage time in the gas supply means 5 for reducing the hydrogen passage time by storing the raw fuel gas such as city gas or the gas containing unreacted hydrogen during power generation. Even without using the battery, it is possible to suppress the deterioration of the battery due to the start and stop.

なお、上記実施形態において、燃料ガス供給手段4の代わりに改質装置8とした場合は、原燃料ガスを改質時に水素と同時に一酸化炭素が生成されるので、燃料ガス導入検知手段として上記の水素検知器6に代えて、一酸化炭素検知器を用いても水素の燃料極2への導入を検知することが可能である。   In the above embodiment, when the reformer 8 is used instead of the fuel gas supply means 4, carbon monoxide is generated simultaneously with hydrogen when the raw fuel gas is reformed. The introduction of hydrogen into the fuel electrode 2 can be detected by using a carbon monoxide detector instead of the hydrogen detector 6.

また、図2では窒素などの不活性ガスによるパージがない場合であるが、課題に挙げたように窒素ガスでパージしても、なお部分電池反応によるカーボンの消失の現象はなくならないので、電池の起動停止回数の機能要求によっては図2の起動手順に加え、燃料ガス導入前に窒素パージをすることもある。   Further, FIG. 2 shows a case where there is no purging with an inert gas such as nitrogen, but even if purging with nitrogen gas as mentioned in the problem, the phenomenon of disappearance of carbon due to partial cell reaction is not lost. Depending on the function request for the number of times of starting and stopping, in addition to the starting procedure of FIG. 2, nitrogen purge may be performed before the introduction of the fuel gas.

さらに、燃料極のガス溝に水素が導入され始めてから燃料極全面に水素が行き渡るまでの間は部分電池の反応が生じるため、水素通過時間短縮用ガスを供給し始める時間は、部分電池反応の起きている時間を最小にする観点から、燃料ガスが燃料電池本体に供給されるのと同時、あるいは供給前が望ましい。水素が燃料極全体に行き渡れば部分電池による性能低下は生じないので、水素通過時間短縮用ガスの供給を停止しても問題ない。   Furthermore, since the reaction of the partial cell occurs during the period from when hydrogen starts to be introduced into the gas groove of the fuel electrode until the hydrogen reaches the entire surface of the fuel electrode, the time to start supplying the gas for reducing the hydrogen passage time is the time for the partial cell reaction. From the viewpoint of minimizing the waking time, it is desirable that the fuel gas is supplied to the fuel cell main body at the same time or before the supply. If hydrogen reaches the entire fuel electrode, the performance of the partial cell does not deteriorate, so there is no problem even if the supply of the gas for shortening the hydrogen passage time is stopped.

図4は本発明による燃料電池システムの第2の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 4 is a block diagram showing a second embodiment of the fuel cell system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第2の実施形態では、図1の燃料ガス供給手段4に代えて改質装置8とし、燃料ガス導入検知手段として改質装置8を構成している改質器およびCO変成器の少なくとも一方に設置された熱電対などの温度検出手段9を設ける構成したものである。   In the second embodiment, a reformer 8 is used instead of the fuel gas supply unit 4 in FIG. 1, and at least one of a reformer and a CO converter constituting the reformer 8 as a fuel gas introduction detection unit. A temperature detecting means 9 such as an installed thermocouple is provided.

このような構成としても、原燃料の改質が開始されると改質器およびCO変成器は温度上昇を伴うため、その温度を温度検出手段9で検出することで水素の燃料極2への導入を検知し、水素通過時間短縮用ガス供給弁7を前述同様に開閉制御することが可能となるので、第1の実施形態と同様の作用効果を得ることができる。   Even in such a configuration, when reforming of the raw fuel is started, the reformer and the CO converter accompany the temperature rise, so that the temperature is detected by the temperature detecting means 9 so that the hydrogen is supplied to the fuel electrode 2. Since the introduction can be detected and the gas supply valve 7 for shortening the hydrogen passage time can be controlled to be opened and closed in the same manner as described above, the same effect as the first embodiment can be obtained.

図5は本発明による燃料電池システムの第3の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 5 is a block diagram showing a third embodiment of the fuel cell system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted, and different parts will be described here.

第3の実施形態では、燃料ガス供給手段4に原燃料が供給される原燃料供給系に原燃料ガス供給弁10を燃料ガス導入検知手段として設け、この原燃料ガス供給弁10を開動作させたことを条件に、水素通過時間短縮用ガス供給弁7を開動作させるガス供給弁制御装置18を設け、燃料電池本体1の燃料極に燃料ガスの導入に併せて水素通過時間短縮用ガスを供給可能な構成としたものである。   In the third embodiment, a raw fuel gas supply valve 10 is provided as a fuel gas introduction detection means in a raw fuel supply system in which raw fuel is supplied to the fuel gas supply means 4, and the raw fuel gas supply valve 10 is opened. The gas supply valve control device 18 for opening the gas supply valve 7 for reducing the hydrogen passage time is provided on the condition that the gas for reducing the hydrogen passage time is supplied to the fuel electrode of the fuel cell body 1 along with the introduction of the fuel gas. It can be supplied.

このような構成としても、ガス供給弁制御装置18により原燃料が燃料ガス供給手段4に供給されるとほぼ同時に水素通過時間短縮用ガス供給弁7を開制御することが可能となるので、第1の実施形態と同様の作用効果を得ることができる。   Even with such a configuration, the gas supply valve 7 for shortening the hydrogen passage time can be opened and controlled almost at the same time when the raw fuel is supplied to the fuel gas supply means 4 by the gas supply valve controller 18. The same effects as those of the first embodiment can be obtained.

前述した第1乃至第3の実施形態では、燃料ガス導入検知手段としていくつかの例を挙げたが、本質的には燃料ガスの導入を検知又は予測できるものであれば、上記以外の手段のものであってもよい。例えばプログラム上のシーケンスから燃料ガスの導入を検知するようにした燃料ガス導入検知手段であってもよい。   In the first to third embodiments described above, some examples have been given as the fuel gas introduction detection means. However, any means other than the above can be used as long as it can detect or predict the introduction of fuel gas. It may be a thing. For example, it may be a fuel gas introduction detecting means that detects introduction of fuel gas from a sequence on a program.

図6は本発明による燃料電池システムの第4の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。   FIG. 6 is a block diagram showing a fourth embodiment of the fuel cell system according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, the description thereof is omitted, and different parts will be described here.

第4の実施形態では、起動時又は発電時に燃料電池本体1の燃料極2から排出された燃料ガスを水素通過時間短縮用ガス供給手段5に導入して貯蔵するようにしたものである。   In the fourth embodiment, the fuel gas discharged from the fuel electrode 2 of the fuel cell main body 1 at the time of start-up or power generation is introduced into the gas supply means 5 for shortening the hydrogen passage time and stored.

このような構成としても、第1の実施形態と同様の作用効果が得られることに加え、窒素ガスなどの不活性ガスが不要となる。   Even with such a configuration, in addition to the same effects as those of the first embodiment, an inert gas such as nitrogen gas is not required.

図7は本発明による燃料電池システムの第5の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。 FIG. 7 is a block diagram showing a fifth embodiment of the fuel cell system according to the present invention. The same parts as those in FIG.

第5の実施形態では、図7に示すように燃料電池本体1の燃料排出系統に燃料極ガス排出用ブロア14を設け、燃料ガス導入検知手段として設けられた例えば水素検知器6により燃料電池本体1への燃料ガス導入が検知されると、その信号によって水素通過時間短縮用ガス供給弁7を開放すると同時に、燃料極ガス排出用ブロア14を動作させて燃料電池本体1の燃料極より燃料ガスを吸引して水素通過時間を短縮するようにしたものである。 In the fifth embodiment, as shown in FIG. 7 , the fuel cell main body 1 is provided with a fuel electrode gas discharge blower 14 in the fuel discharge system of the fuel cell main body 1, and the fuel cell main body is provided by, for example, the hydrogen detector 6 provided as fuel gas introduction detection means. When the introduction of the fuel gas to the fuel cell 1 is detected, the gas supply valve 7 for reducing the hydrogen passage time is opened by the signal, and at the same time, the fuel electrode gas discharge blower 14 is operated to operate the fuel gas from the fuel electrode of the fuel cell body 1. In order to shorten the hydrogen passage time.

このような構成としても、第1の実施形態と同様の作用効果を得ることができる。特に本構成では、水素通過時間短縮用ガス供給手段5の圧力が低い場合に有効である。   Even with such a configuration, the same effects as those of the first embodiment can be obtained. In particular, this configuration is effective when the pressure of the gas supply means 5 for reducing the hydrogen passage time is low.

なお、前述した各実施形態において、水素通過時間短縮用ガスは、窒素などの不活性ガスや都市ガスなどの改質前の原燃料ガスであることが望ましいが、二酸化炭素ガス、アルゴンガスなどを用いることができる。また、ボンベやタンクなどに貯蔵された水素を含むガスであってもよい。   In each of the above-described embodiments, the hydrogen passage time shortening gas is preferably a raw fuel gas before reforming such as an inert gas such as nitrogen or a city gas, but carbon dioxide gas, argon gas, etc. Can be used. Further, it may be a gas containing hydrogen stored in a cylinder or a tank.

本発明による燃料電池システムの第1の実施形態を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows 1st Embodiment of the fuel cell system by this invention. 同実施形態において、燃料電池システムの起動手順を示すタイムチャート。In the embodiment, the time chart which shows the starting procedure of a fuel cell system. 同実施形態において、燃料ガスが燃料極を通過する時間と起動停止後の電圧低下量の関係を水素通過時間短縮用ガスを供給しない場合と比較して示すグラフ。In the same embodiment, the graph which shows the relationship between the time when fuel gas passes a fuel electrode, and the voltage fall amount after a start stop compared with the case where the gas for shortening hydrogen passage time is not supplied. 本発明による燃料電池システムの第2の実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the fuel cell system by this invention. 本発明による燃料電池システムの第3の実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the fuel cell system by this invention. 本発明による燃料電池システムの第4の実施形態を示す構成図。The block diagram which shows 4th Embodiment of the fuel cell system by this invention. 本発明による燃料電池システムの第5の実施形態を示す構成図。The block diagram which shows 5th Embodiment of the fuel cell system by this invention. 従来の燃料電池システムにおける起動手順を示すタイムチャート。The time chart which shows the starting procedure in the conventional fuel cell system. 起動時における電池面内での電流の流れを示す図。The figure which shows the flow of the electric current in the battery surface at the time of starting.

1…燃料電池本体、2…燃料極、3…酸化剤極、4…燃料ガス供給手段、5…水素通過時間短縮用ガス供給手段、6…燃料ガス導入検知手段、7…水素通過時間短縮用ガス供給弁、8…改質装置、9…改質装置内温度測定装置、10…原燃料ガス供給弁、12…燃料ガスバイパスライン、13…燃料ガスリサイクル用ブロワ、14…燃料極ガスの排出ブロワ、15…電解質、16…燃料ガス流路、17…酸化剤ガス流路、18…水素通過時間短縮用ガス供給弁制御装置   DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 2 ... Fuel electrode, 3 ... Oxidant electrode, 4 ... Fuel gas supply means, 5 ... Gas supply means for shortening hydrogen passage time, 6 ... Fuel gas introduction detection means, 7 ... For shortening hydrogen passage time Gas supply valve, 8 ... reformer, 9 ... reformer internal temperature measuring device, 10 ... raw fuel gas supply valve, 12 ... fuel gas bypass line, 13 ... fuel gas recycling blower, 14 ... discharge of fuel electrode gas Blower, 15 ... electrolyte, 16 ... fuel gas flow path, 17 ... oxidant gas flow path, 18 ... gas supply valve control device for reducing hydrogen passage time

Claims (5)

少なくとも水素を成分に持つ燃料ガスが流通する燃料ガス流路と酸化剤ガスが流通する酸化剤ガス流路を有する燃料電池本体と、前記燃料電池本体に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体に酸化剤ガスを供給する酸化剤ガス供給手段とを備えた燃料電池システムにおいて、
前記燃料電池システムの起動過程であって、前記燃料ガスが前記燃料ガス供給手段から供給され始めてから前記燃料電池本体から排出され始めるまでの期間においては、前記燃料ガス以外のガスである水素通過時間短縮用ガスを前記燃料ガス供給手段と前記燃料電池本体とを結ぶ燃料ガス系統に供給し、
前記期間以外のすべての期間においては、前記水素通過時間短縮用ガスの前記燃料ガス系統への供給を停止することを特徴とする燃料電池システムの起動方法。
A fuel cell main body having a fuel gas flow path through which a fuel gas having at least hydrogen as a component and an oxidant gas flow path through which an oxidant gas flows, and a fuel gas supply means for supplying the fuel gas to the fuel cell main body, In a fuel cell system comprising an oxidant gas supply means for supplying an oxidant gas to the fuel cell main body,
In the startup process of the fuel cell system, in a period from when the fuel gas starts to be supplied from the fuel gas supply means to when it starts to be discharged from the fuel cell main body , a hydrogen passage time which is a gas other than the fuel gas Supplying a shortening gas to a fuel gas system connecting the fuel gas supply means and the fuel cell body ;
In all the periods other than the said period, the supply method of the said hydrogen passage time shortening gas to the said fuel gas system is stopped , The starting method of the fuel cell system characterized by the above-mentioned .
前記水素通過時間短縮用ガスは、不活性ガスであることを特徴とする請求項1記載の燃料電池システムの起動方法。   2. The fuel cell system activation method according to claim 1, wherein the hydrogen passage time reducing gas is an inert gas. 前記水素通過時間短縮用ガスは、原燃料ガスであることを特徴とする請求項1記載の燃料電池システムの起動方法。   2. The fuel cell system start-up method according to claim 1, wherein the hydrogen passage time reducing gas is a raw fuel gas. 前記水素通過時間短縮用ガスが水素通過時間短縮用ガス貯蔵手段に貯蔵された水素を含むガスであることを特徴とする請求項1記載の燃料電池システムの起動方法。   2. The method of starting a fuel cell system according to claim 1, wherein the hydrogen passage time shortening gas is a gas containing hydrogen stored in the hydrogen passage time shortening gas storage means. 水素通過時間短縮用ガス供給手段は、前記燃料電池本体の燃料排出系統と燃料供給系統の間に設置された燃料リサイクル手段であり、前記水素通過時間短縮用ガスは前記燃料電池本体から排出されたガスであることを特徴とする請求項1記載の燃料電池システムの起動方法。   The gas supply means for reducing the hydrogen passage time is a fuel recycling means installed between the fuel discharge system and the fuel supply system of the fuel cell body, and the gas for reducing the hydrogen passage time is discharged from the fuel cell body. The method of starting a fuel cell system according to claim 1, wherein the method is a gas.
JP2003431589A 2003-12-25 2003-12-25 Starting method of fuel cell system Expired - Fee Related JP4954443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431589A JP4954443B2 (en) 2003-12-25 2003-12-25 Starting method of fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431589A JP4954443B2 (en) 2003-12-25 2003-12-25 Starting method of fuel cell system

Publications (2)

Publication Number Publication Date
JP2005190854A JP2005190854A (en) 2005-07-14
JP4954443B2 true JP4954443B2 (en) 2012-06-13

Family

ID=34789543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431589A Expired - Fee Related JP4954443B2 (en) 2003-12-25 2003-12-25 Starting method of fuel cell system

Country Status (1)

Country Link
JP (1) JP4954443B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050342B2 (en) * 2005-12-02 2012-10-17 日産自動車株式会社 Fuel cell system and starting method thereof
EP2132819B1 (en) 2006-12-27 2012-05-02 Nissan Motor Co., Ltd. Fuel cell system
WO2008129793A1 (en) 2007-03-22 2008-10-30 Panasonic Corporation Method for operating fuel cell system, and fuel cell system
JP2008243512A (en) * 2007-03-27 2008-10-09 Equos Research Co Ltd Membrane-electrode assembly and fuel cell system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154077A (en) * 1979-05-21 1980-12-01 Hitachi Ltd Start control for fuel battery
JPS63298974A (en) * 1987-05-28 1988-12-06 Fuji Electric Co Ltd Operating method for molten carbonate fuel cell
JPH10144334A (en) * 1996-11-13 1998-05-29 Toshiba Corp Fuel cell system power plant, and starting and stopping method therefor
JP2001295996A (en) * 2000-04-14 2001-10-26 Toyota Motor Corp Hydrogen storage and supply device
JP4644334B2 (en) * 2000-04-28 2011-03-02 日本重化学工業株式会社 Hydrogen supply device for fuel cell
US20020076582A1 (en) * 2000-12-20 2002-06-20 Reiser Carl A. Procedure for starting up a fuel cell system using a fuel purge
JP4028787B2 (en) * 2001-11-30 2007-12-26 松下電器産業株式会社 Fuel cell power generation system and operation method thereof
JP3632676B2 (en) * 2002-04-24 2005-03-23 日産自動車株式会社 Fuel cell system and control method thereof
JP4106960B2 (en) * 2002-05-14 2008-06-25 日産自動車株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP2005190854A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP4907861B2 (en) Fuel cell power generation system, its stop storage method, stop storage program
KR100456300B1 (en) Fuel cell vehicle
JP2006147550A (en) Fuel cell system, and its stopping, retaining and starting method, and stopping, retaining and starting program
US7709119B2 (en) Method for operating fuel cell
US8765314B2 (en) Fuel cell system and method for stopping operation of fuel cell system
JP2007123013A (en) Fuel cell system
JP4907343B2 (en) Fuel cell system
JP2005093115A (en) Fuel cell power generating device and its operating method
JP5364492B2 (en) Fuel cell power generation system
WO2006077461A2 (en) Fuel cell systems and control methods
EP1659653B1 (en) Fuel cell system and method for starting operation of fuel cell system
JP4954443B2 (en) Starting method of fuel cell system
JP2002050372A (en) Fuel cell purge device
JP2007323959A (en) Fuel cell system
US20040067395A1 (en) Fuel processing device, fuel cell power generation system and operation method thereof
JP2007323863A (en) Fuel cell system and shutdown method of fuel cell
JP2008210697A (en) Shutdown and storing method of fuel cell power generation system, program, and fuel cell power generation system
JP2005071949A (en) Fuel battery electric power generator and its operation method
JP2007265910A (en) Fuel cell system and its operation method
JP2007193980A (en) Power generation system
JP2004178842A (en) Fuel cell generator and its operation method
JP5832717B2 (en) Fuel cell system and method for stopping the fuel cell system
JP2008066186A (en) Fuel cell system, its power generation shutdown method, and power generation shutdown storing method
JP2005235490A (en) Inert gas generation device and fuel cell system using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees