JP4949729B2 - Stereoscopic microscope objective lens and stereomicroscope including the same - Google Patents

Stereoscopic microscope objective lens and stereomicroscope including the same Download PDF

Info

Publication number
JP4949729B2
JP4949729B2 JP2006122757A JP2006122757A JP4949729B2 JP 4949729 B2 JP4949729 B2 JP 4949729B2 JP 2006122757 A JP2006122757 A JP 2006122757A JP 2006122757 A JP2006122757 A JP 2006122757A JP 4949729 B2 JP4949729 B2 JP 4949729B2
Authority
JP
Japan
Prior art keywords
lens
lens group
objective lens
objective
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006122757A
Other languages
Japanese (ja)
Other versions
JP2007293141A (en
Inventor
一博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006122757A priority Critical patent/JP4949729B2/en
Publication of JP2007293141A publication Critical patent/JP2007293141A/en
Application granted granted Critical
Publication of JP4949729B2 publication Critical patent/JP4949729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Lenses (AREA)

Description

本発明は、単対物レンズ式双眼実体顕微鏡のための対物レンズで、特に像平坦性に優れた対物レンズに関するものである。特に、本発明は、焦点距離fが80mm〜100mm程度であって、5乃至6枚のレンズにて構成された0.75f〜0.85f程度の長い作動距離を有する対物レンズに関する。     The present invention relates to an objective lens for a single objective lens type binocular stereomicroscope, and particularly to an objective lens excellent in image flatness. In particular, the present invention relates to an objective lens having a focal length f of about 80 mm to 100 mm and a long working distance of about 0.75 f to 0.85 f constituted by 5 to 6 lenses.

実体顕微鏡は、物体面上で交わる二つの光軸および光路を有し、凹凸のある物体を観察した場合、両眼にて見た場合と同じように物体を立体的に観察し得る。     The stereomicroscope has two optical axes and optical paths that intersect on the object plane, and when an object with unevenness is observed, the object can be observed stereoscopically in the same manner as when viewed with both eyes.

したがって、顕微鏡下で作業を行なう場合、ピンセット等の工具と物体との距離関係が把握でき、一般に精密機械工業や生物の解剖等様々な分野で用いられている。     Therefore, when working under a microscope, the distance relationship between a tool such as tweezers and an object can be grasped, and it is generally used in various fields such as precision machine industry and biological anatomy.

実体顕微鏡の構成の代表例として、単対物レンズ式双眼実体顕微鏡(平行系実体顕微鏡またはガリレオ式実体顕微鏡ともいう)が挙げられる。この単対物レンズ式双眼実体顕微鏡は、一つの対物レンズと、対物レンズの光軸に平行に配置された右眼用と左眼用の二つの観察光学系とを有する。     As a typical example of the configuration of the stereomicroscope, there is a single-objective binocular stereomicroscope (also referred to as a parallel stereo microscope or a Galileo stereo microscope). This single-objective binocular stereomicroscope has one objective lens and two observation optical systems for the right eye and the left eye arranged in parallel to the optical axis of the objective lens.

このような構成の実体顕微鏡は、二つの観察光学系が平行に配置されているため、光路中にアフォーカル(平行光束)部分を設けることにより、光路長を変えることができ、そこにビームスプリッター等を挿入することが可能である。そのために、様々な用途に適したシステムアップが可能な実体顕微鏡として使用されている。     In the stereomicroscope having such a configuration, since the two observation optical systems are arranged in parallel, the optical path length can be changed by providing an afocal (parallel beam) portion in the optical path, and the beam splitter is provided there. Etc. can be inserted. Therefore, it is used as a stereomicroscope that can be improved in system suitable for various applications.

これらに用いられている実体顕微鏡の対物レンズの従来例として下記文献に記載されている対物レンズが知られている。
特開昭62−178918号公報 特開2001−147378号公報 特開2005−107523号公報 単対物レンズ式双眼実体顕微鏡は、例えば図15に示すような構成で、観察視野の中心Oからの光束も対物レンズの周辺部を通過して結像する。そのため、共軸系の光学系では、視野周辺部においてのみ生ずる非点収差が、双眼実体顕微鏡では、視野中心部にても生ずることがあり、これが特に単対物レンズ式双眼実体顕微鏡の像質の良し悪しを左右することになる。つまり、非点収差が生じた状態とは、Y方向(縦方向)とX方向(横方向)のパターンのピント位置が異なる状態であり、様々な形態の試料(物体)を観察する際に、その輪郭や微細なパターンを明瞭に観察することができない。
The objective lens described in the following document is known as a conventional example of the objective lens of the stereomicroscope used in these.
JP-A-62-178918 JP 2001-147378 A The single-objective binocular stereomicroscope has a configuration as shown in FIG. 15, for example, and a light beam from the center O of the observation field also passes through the periphery of the objective lens and forms an image. For this reason, astigmatism that occurs only in the periphery of the visual field in a coaxial optical system may also occur in the center of the visual field in a binocular stereomicroscope, and this is particularly the image quality of a single-objective binocular stereomicroscope. Good or bad. That is, the state in which astigmatism occurs is a state in which the focus position of the pattern in the Y direction (vertical direction) and the X direction (lateral direction) is different, and when observing samples (objects) of various forms, The outline and fine pattern cannot be clearly observed.

このような試料を明瞭に観察し得る単対物レンズ式双眼実体顕微鏡を実現するためには、対物レンズの非点収差を十分に小さく抑える必要がある。     In order to realize a single objective lens type binocular stereomicroscope capable of clearly observing such a sample, it is necessary to sufficiently suppress the astigmatism of the objective lens.

特許文献1の実施例4には、6枚のレンズにて構成された焦点距離がおよそ100mmの対物レンズが記載されている。更に、観察光学系の光軸間の距離が22mmである。     In Example 4 of Patent Document 1, an objective lens having a focal length of about 100 mm, which is composed of six lenses, is described. Furthermore, the distance between the optical axes of the observation optical system is 22 mm.

近年、様々な形態の試料を観察し得るように、実体顕微鏡の変倍比は、1:10を超える高変倍比のものまで存在し、特に対物レンズからの像を大きく拡大する傾向がある。このような使用方法に対して、特許文献1に記載されている対物レンズは、像を強く拡大する際に、像の性能を良好に維持することはできない。その主たる原因は、対物レンズの偏心した開口におけるy方向とx方向の焦点位置の差、つまり非点収差が大きすぎるためである。     In recent years, in order to be able to observe various forms of samples, the magnification ratio of a stereomicroscope has a high magnification ratio exceeding 1:10, and in particular, there is a tendency to greatly enlarge an image from an objective lens. . For such a method of use, the objective lens described in Patent Document 1 cannot maintain good image performance when the image is strongly enlarged. The main reason is that the difference in focal position between the y direction and the x direction in the decentered aperture of the objective lens, that is, astigmatism, is too large.

また、特許文献2に記載されている従来例は、実施例1および実施例2として、8枚のレンズにて構成されていて、焦点距離がおよそ100mmの対物レンズが記載されている。この文献には、観察光学系の光軸間の距離に関する記載はないが、それを22mmとした場合、色収差が極限まで補正されており、かつ開口におけるy方向とx方向の焦点位置の差は小さく、また非点収差も良好に補正されている。このように、この従来例の対物レンズは、収差は良好に補正されているが、8枚の多くのレンズを必要とし、しかも3枚接合レンズを含んでおり、極めて高いコストであり、また高い製造技能を必要とする対物レンズである。     Moreover, the prior art example described in Patent Document 2 is configured as eight lenses as Example 1 and Example 2, and describes an objective lens having a focal length of approximately 100 mm. In this document, there is no description regarding the distance between the optical axes of the observation optical system. However, when the distance is 22 mm, the chromatic aberration is corrected to the limit, and the difference between the focal position of the aperture in the y direction and the x direction is as follows. Small, and astigmatism is well corrected. As described above, the objective lens of this conventional example has a good correction of aberration, but requires many 8 lenses and includes three cemented lenses, which is extremely expensive and expensive. It is an objective lens that requires manufacturing skills.

更に、特許文献3には、図18に示す5枚のレンズよりなる実施例が記載されている。この従来例の実施例の対物レンズは、最も物体側に配置されたレンズと最も変倍光学系側に配置されたレンズが、共に像面側に強い凹面を向けた負レンズにて構成されている。そのため、低倍率観察時に視野を確保するために必要な光線は、対物レンズの中程で強く跳ね上げられる構成であり、比較的長い作動距離を確保できるが、その反面より口径の大きなレンズが必要になる。     Further, Patent Document 3 describes an embodiment comprising five lenses shown in FIG. The objective lens of this conventional example is composed of a negative lens with a strong concave surface facing the image plane, both of the lens arranged closest to the object side and the lens arranged closest to the variable magnification optical system. Yes. Therefore, the light beam necessary to secure the field of view during low-magnification observation is a structure that can be strongly bounced up in the middle of the objective lens, which can ensure a relatively long working distance, but requires a lens with a larger aperture than that become.

また、各レンズの有効径が不揃いであるために、簡単な鏡筒にレンズを落とし込んで組み立てることができず、レンズ枚数は5枚で少ないにも拘らず安価で製造が容易な対物レンズとはいえない。     In addition, since the effective diameters of the lenses are not uniform, it is impossible to assemble the lens by dropping it into a simple lens barrel. What is an objective lens that is inexpensive and easy to manufacture despite the small number of lenses? I can't say that.

本発明は、焦点距離が80mm〜100mm程度の単対物レンズ式双眼実体顕微鏡に使用される対物レンズで、収差が良好に補正されていて、かつレンズ枚数が少なく簡単な構成である単対物レンズ式双眼実体顕微鏡を提供するものである。     The present invention is an objective lens used in a single objective lens type binocular stereomicroscope having a focal length of about 80 mm to 100 mm, in which aberrations are well corrected, and the number of lenses is simple and the configuration is simple. A binocular stereomicroscope is provided.

本発明の単対物レンズ式双眼実体顕微鏡の対物レンズは、物体側より順に、全体として正のパワーを有する第1レンズ群と、像側に凹面を向けた負の単レンズの第2レンズ群と、像側に凸面を向けた正の単レンズの第3レンズ群とから構成され、下記条件(1)、(2)、(3)、(4)を満足するものである。     The objective lens of the single objective binocular stereomicroscope according to the present invention includes, in order from the object side, a first lens group having a positive power as a whole and a second lens group of a negative single lens having a concave surface facing the image side. The third lens group is a positive single lens with a convex surface facing the image side, and satisfies the following conditions (1), (2), (3), and (4).

(1) 0.65f<F(G1)<1.05f
(2) −0.0125<P(G2)<0
(3) 0.004<P(G3)<0.01
(4) −0.006<P(G2+G3)<0.002
ただし、fは対物レンズ全系の焦点距離、F(G1)は第1レンズ群の焦点距離、P(G2)は第2レンズ群のパワー、P(G3)は第3レンズ群のパワー、P(G2+G3)は第2レンズ群と第3レンズ群の合成のパワーである。尚、P(G2)、P(G3)、P(G2+G3)の単位は1/mmである。つまり、P(G2)、P(G3)、P(G2+G3)は夫々第2、第3レンズ群の焦点距離および第2レンズ群と第3レンズ群の合成焦点距離の逆数であり、単位は1/mmである。
(1) 0.65f <F (G1) <1.05f
(2) -0.0125 <P (G2) <0
(3) 0.004 <P (G3) <0.01
(4) -0.006 <P (G2 + G3) <0.002
Where f is the focal length of the entire objective lens system, F (G1) is the focal length of the first lens group, P (G2) is the power of the second lens group, P (G3) is the power of the third lens group, P (G2 + G3) is the combined power of the second lens group and the third lens group. The unit of P (G2), P (G3), and P (G2 + G3) is 1 / mm. That is, P (G2), P (G3), and P (G2 + G3) are the reciprocals of the focal lengths of the second and third lens groups and the combined focal length of the second and third lens groups, respectively. / Mm.

図15は本発明の対物レンズの一例で、変倍光学系における倍率が最も低い時の対物レンズ内を通る光束を示す。この図において、OBは対物レンズ、VLは変倍光学系で、対物レンズは第1レンズ群G1、第2レンズ群G2、第3レンズ群G3よりなる。この図15に示すように、各レンズ群の大きさ、特に対物レンズOBを構成する第1レンズ群G1、第2レンズ群G2のレンズ径は、最低倍率時の光束を確保できる光束径によりほぼ決定される。変倍光学系VLの側から必要とする光束径を考察すると、最も変倍光学系VLよりの第3レンズ群G3は、発散性の角度をもった光束が入射するために、この第3レンズ群G3には正のパワーを持たせて、光束の発散を抑えることが望ましい。     FIG. 15 is an example of the objective lens of the present invention, and shows a light beam passing through the objective lens when the magnification in the variable magnification optical system is the lowest. In this figure, OB is an objective lens, VL is a variable magnification optical system, and the objective lens includes a first lens group G1, a second lens group G2, and a third lens group G3. As shown in FIG. 15, the size of each lens group, in particular, the lens diameters of the first lens group G1 and the second lens group G2 constituting the objective lens OB are almost equal to the diameter of the light flux that can secure the light flux at the lowest magnification. It is determined. Considering the required beam diameter from the side of the variable magnification optical system VL, the third lens group G3 from the variable magnification optical system VL is incident on a third lens group G3 because a light beam having a divergent angle is incident thereon. It is desirable that the group G3 has a positive power to suppress the divergence of the luminous flux.

この第3レンズ群G3が負のパワーを有すると、第2レンズ群G2以降の物体寄りに配置されたレンズ群の光束径がかなり大になる。このことは図18に示す前記特許文献3からも明らかである。     When the third lens group G3 has negative power, the light beam diameter of the lens group disposed closer to the object after the second lens group G2 becomes considerably large. This is also apparent from Patent Document 3 shown in FIG.

また、第3レンズ群G3が正のパワーを有し、第2レンズ群G2が像側に強い凹面を向けた構成は、歪曲収差の補正にとって有利である。このことは特許文献1、2の記載からも明らかである。     The configuration in which the third lens group G3 has positive power and the second lens group G2 has a strong concave surface facing the image side is advantageous for correcting distortion. This is clear from the descriptions in Patent Documents 1 and 2.

本発明の対物レンズは、第2レンズ群G2と第3レンズ群G3のパワーを下記条件(2)、(3)を満足するように小さなパワーとして、特に球面収差、色収差への影響を少なくし、製造が困難でコスト高になりがちな接合レンズを用いることなしに、単レンズのみにて構成した。     In the objective lens according to the present invention, the power of the second lens group G2 and the third lens group G3 is set to a small power so as to satisfy the following conditions (2) and (3), and particularly the influence on spherical aberration and chromatic aberration is reduced. Without using a cemented lens, which is difficult to manufacture and tends to be expensive, it is composed of only a single lens.

また、本発明は、対物レンズの焦点距離に対して比較的長い焦点距離を確保するために、第1レンズ群G1の焦点距離F(G)が条件(1)を満足するようにしている。     In the present invention, in order to secure a relatively long focal length with respect to the focal length of the objective lens, the focal length F (G) of the first lens group G1 satisfies the condition (1).

つまり、本発明の対物レンズは、前記条件(1)、(2)、(3)、(4)を満足するようにしている。     That is, the objective lens of the present invention satisfies the conditions (1), (2), (3), and (4).

上記条件(1)においてF(G1)の値が下限値の0.65fよりも小さいと長い作動距離を確保することが困難になり、実体顕微鏡の作業性が悪くなる。 また、F(G1)の値が上限値の1.15fより大になると長い作動距離を得ることができるが、第2レンズ群G2と第3レンズ群G3の負の合成のパワーP(G2+G3)が負で強くなり、レンズの有効径が大になり、コスト高になる。     In the condition (1), if the value of F (G1) is smaller than the lower limit value of 0.65f, it is difficult to secure a long working distance, and the workability of the stereomicroscope is deteriorated. Further, when the value of F (G1) is larger than the upper limit value of 1.15f, a long working distance can be obtained, but the negative combined power P (G2 + G3) of the second lens group G2 and the third lens group G3. Becomes negative and strong, the effective diameter of the lens is increased, and the cost is increased.

また、前述のように本発明の対物レンズは、第2レンズ群G2が負のパワー、第3レンズ群G3が正のパワーで、いずれも条件(2)、(3)を満足する小さいパワーを持つようにしている。     As described above, the objective lens of the present invention has a small power that satisfies the conditions (2) and (3), with the second lens group G2 having a negative power and the third lens group G3 having a positive power. I have it.

第2レンズ群G2のパワーP(G2)が下限値の−0.0125を超えて負のパワーが強くなると、強い凹面により歪曲収差補正する時、球面収差や色収差等の収差が悪化する。また、上限値の0を超えると第2レンズ群G2のパワーが正になるため好ましくない。     When the power P (G2) of the second lens group G2 exceeds the lower limit of −0.0125 and the negative power becomes strong, when correcting distortion by a strong concave surface, aberrations such as spherical aberration and chromatic aberration are deteriorated. Further, if the upper limit of 0 is exceeded, the power of the second lens group G2 becomes positive, which is not preferable.

また、条件(3)において、第3レンズ群G3のパワーP(G3)が、上限値の0.01を超えると同様に球面収差等の補正が困難になる。     Further, in the condition (3), when the power P (G3) of the third lens group G3 exceeds the upper limit of 0.01, it is difficult to correct spherical aberration and the like.

P(G3)が条件(3)の下限値の0.004より小になると第3レンズ群G3のパワーが弱すぎて第3レンズ群G3よりの発散性の光束の発散作用を抑えることが困難になる。     If P (G3) is smaller than the lower limit of 0.004 of the condition (3), the power of the third lens group G3 is too weak to suppress the diverging action of the divergent light beam from the third lens group G3. become.

第2レンズ群G2と第3レンズ群G3の合成のパワーP(G2+G3)が条件(4)の下限値の−0.006を超える場合、第1レンズ群G1の焦点距離は短くなり、条件(1)における0.65f<F(G1)の条件を満足することが困難となる。その結果、長い作動距離を確保することが困難となる。また、条件(4)の上限値の0.002を超える場合、第1レンズ群G1の焦点距離は長くなり、条件(1)におけるF(G1)<1.05fの条件を満足することが困難となる。その結果、レンズの有効径が大になりコスト高になる。     When the combined power P (G2 + G3) of the second lens group G2 and the third lens group G3 exceeds the lower limit value −0.006 of the condition (4), the focal length of the first lens group G1 becomes short, and the condition ( It becomes difficult to satisfy the condition of 0.65f <F (G1) in 1). As a result, it is difficult to ensure a long working distance. When the upper limit of 0.002 of the condition (4) is exceeded, the focal length of the first lens group G1 becomes long, and it is difficult to satisfy the condition of F (G1) <1.05f in the condition (1). It becomes. As a result, the effective diameter of the lens is increased and the cost is increased.

本発明の対物レンズにおいて、歪曲収差の高度な補正と長い作動距離とを確保するためには、第1レンズ群G1中の最も物体側に配置されたレンズが正のパワーを有し、その次のレンズ(物体側より2番目のレンズ)が物体側に強い凹面を向けた負のパワーを有することが望ましい。     In the objective lens of the present invention, in order to ensure a high degree of correction of distortion and a long working distance, the lens disposed closest to the object side in the first lens group G1 has positive power, and then It is desirable that the lens (second lens from the object side) has a negative power with a strong concave surface facing the object side.

図15より明らかなように、2番目のレンズ(第2レンズ)を物体側に強い凹面を向けたレンズとすることにより、この凹面の外側(図における上側)の視野周辺部を通る光束は、大きく曲げられ、一方、内側(図面の下側)の視野周辺を通る光束は、視野中心付近を通過するために、その傾きは大きく変わらない。 上記の第2レンズによる歪曲収差の補正作用は、第2レンズ群G2と第3レンズ群G3との関係によって得られる歪曲収差の補正作用と同様に作用し、したがって、第1レンズ群G1の第1レンズと第2レンズを上記のように構成することにより、より高度な歪曲収差の補正が可能になる。     As is clear from FIG. 15, by using the second lens (second lens) as a lens having a strong concave surface facing the object side, the light flux passing through the field peripheral portion outside this concave surface (upper side in the figure) On the other hand, since the light beam passing through the periphery of the visual field on the inner side (the lower side of the drawing) passes near the center of the visual field, its inclination does not change greatly. The distortion correcting action by the second lens is the same as the distortion correcting action obtained by the relationship between the second lens group G2 and the third lens group G3. Therefore, the first lens group G1 has the first correcting function. By configuring the first lens and the second lens as described above, more advanced correction of distortion can be achieved.

また、前記のように、最も物体側の第1レンズを正のパワーとし、その像側の第2レンズを負のパワーとし、第1レンズの焦点距離F(L1)を下記条件(5)を満足する対物レンズの全系の焦点距離fに近い値にすることにより、対物レンズの作動距離WDを下記条件(6)の範囲内の作動距離にすることが可能である。     Further, as described above, the first lens closest to the object side has a positive power, the second lens on the image side thereof has a negative power, and the focal length F (L1) of the first lens satisfies the following condition (5). The working distance WD of the objective lens can be set to a working distance within the range of the following condition (6) by setting a value close to the focal length f of the entire objective lens system that is satisfactory.

(5) 0.75f≦F(L1)≦1.3f
(6) 0.85>WD/f>0.7
本発明の対物レンズにおいて、WD/fの値が条件(6)の上限値の0.85を超えて大になると、レンズの外径が大になり、また、下限値の0.7より小になると作業性が低下する。したがって、WD/fは条件(6)の範囲の範囲内であることが望ましい。
(5) 0.75f ≦ F (L1) ≦ 1.3f
(6) 0.85> WD / f> 0.7
In the objective lens of the present invention, when the value of WD / f exceeds the upper limit of 0.85 in the condition (6), the outer diameter of the lens increases, and is smaller than the lower limit of 0.7. If it becomes, workability | operativity will fall. Therefore, WD / f is desirably within the range of condition (6).

WD/fが条件(6)の範囲内になるためには、条件(5)を満足することが望ましい。つまり条件(5)において、F(G1)が上限値の1.3fより大になると、より長い作動距離を確保し易くなる反面レンズ径が大になりやすくなる。     In order for WD / f to fall within the range of condition (6), it is desirable to satisfy condition (5). That is, in condition (5), if F (G1) is larger than the upper limit value of 1.3f, a longer working distance is easily secured, but the lens diameter tends to be larger.

また、下限値の0.75fより小になると長い作動距離を確保することが困難となる。     On the other hand, when the lower limit value is less than 0.75f, it is difficult to ensure a long working distance.

又、本発明の対物レンズにおいて、色収差の補正と製造コストとのバランスを保つためには、最も物体側に配置されている強いパワーを有する正レンズL1と、最も像側に配置されている正のパワーのレンズである第3レンズ群G3の硝材の選択が重要である。     Further, in the objective lens of the present invention, in order to maintain a balance between correction of chromatic aberration and manufacturing cost, a positive lens L1 having a strong power disposed closest to the object side and a positive lens disposed closest to the image side. It is important to select a glass material for the third lens group G3, which is a lens with a high power.

そのため、本発明の対物レンズは、次の条件(7)を満足することが好ましい。     Therefore, it is preferable that the objective lens of the present invention satisfies the following condition (7).

(7) 0.035<N/ν<0.05
ここで、N/ν={nd(Lf)/νd(Lf)}
+{nd(Lb)/νd(Lb)}
ただし、nd(Lf)は最も物体側のレンズの屈折率、νd(Lf)は最も物体側のレンズのアッベ数、nd(Lb)は物体側から最も遠いレンズの屈折率、νd(Lb)は物体側から最も遠いのレンズのアッベ数である。
(7) 0.035 <N / ν <0.05
Here, N / ν = {nd (Lf) / νd (Lf)}
+ {Nd (Lb) / νd (Lb)}
Where nd (Lf) is the refractive index of the lens closest to the object side, νd (Lf) is the Abbe number of the lens closest to the object side, nd (Lb) is the refractive index of the lens farthest from the object side, and νd (Lb) is This is the Abbe number of the lens farthest from the object side.

この条件(7)において、N/νの値が下限値の0.035を下回ると、収差補正上は有利であるが、高価な硝材を使用することになり、コスト高になる。また、上限値の0.05を超えると屈折率ndに対して色の分散が大になり、特に色収差の補正が困難になり、十分な性能が得られない。     In this condition (7), if the value of N / ν falls below the lower limit of 0.035, it is advantageous in terms of aberration correction, but an expensive glass material is used, resulting in an increase in cost. If the upper limit of 0.05 is exceeded, color dispersion becomes large with respect to the refractive index nd, and correction of chromatic aberrations in particular becomes difficult, and sufficient performance cannot be obtained.

更に、急激な温度差や衝突等によるレンズの破損を防ぐため、最も物体側に配置されていて、外部に露出するレンズは、線膨張係数が100×10-7以下であって、かつヌープ硬さ450以上であることが望ましい。 Furthermore, in order to prevent the lens from being damaged due to a sudden temperature difference or a collision, the lens that is arranged closest to the object side and exposed to the outside has a linear expansion coefficient of 100 × 10 −7 or less and a Knoop hardness. It is desirable that it is 450 or more.

本発明の対物レンズは、前述のようなレンズ構成であり、またパワー配分を前記のようにすることにより、諸収差を良好に保った上で十分な作動距離を確保し、また各レンズの径を揃えること(ほぼ等しい径にすること)が可能である。 図15に示すように、最も物体側に配置された第1レンズL1(第1レンズ群G1の最も物体側のレンズ)と最も像側に配置された第3レンズ群G3が正のパワーを持つようにし、視野最周辺から発して対物レンズ中を通過する光束の発散を抑える作用を持たせた。これらレンズが負のパワーであると、対物レンズを構成する各レンズのレンズの径が不揃いになる。このことは、図18に示す前記文献3からも明らかである。     The objective lens of the present invention has the lens configuration as described above, and by making the power distribution as described above, a sufficient working distance is secured while maintaining various aberrations, and the diameter of each lens. It is possible to make the diameters (approximately equal diameters). As shown in FIG. 15, the first lens L1 arranged closest to the object side (the lens closest to the object side of the first lens group G1) and the third lens group G3 arranged closest to the image side have positive power. In this way, the effect of suppressing the divergence of the light beam emitted from the periphery of the visual field and passing through the objective lens is provided. When these lenses have negative power, the diameters of the lenses constituting the objective lens are not uniform. This is clear from the document 3 shown in FIG.

本発明の対物レンズは、最も物体側のレンズL1を正のパワーとしたことにより、レンズ系の第1レンズ群G1、第2レンズ群G2の各レンズの径を次の条件(8)に示す範囲になるように設計することが可能である。     In the objective lens according to the present invention, the lens L1 on the most object side has a positive power, and the diameters of the first lens group G1 and the second lens group G2 of the lens system are expressed by the following condition (8). It can be designed to be in range.

(8) 1≦Dmax/Dmin≦1.15
ただし、Dmax、Dminは、変倍光学系の倍率が最も低い(瞳位置を最も像側のレンズ面より+43mm、瞳径を3.6mmとする)時、第1レンズ群と第2レンズ群各々のレンズにおける必要な光束径(光束径が大となる面の値)のうち、最大値(Dmax)および最小値(Dmin)を示す(図15参照)。 以上のように、本発明の対物レンズにおいて、条件(8)を満足するようにすれば、対物レンズを構成するすべてのレンズのレンズ径を揃えることが可能になる。それにより図16に示すように枠構造を簡単にできる。
(8) 1 ≦ Dmax / Dmin ≦ 1.15
However, Dmax and Dmin are respectively the first lens group and the second lens group when the magnification of the variable power optical system is the lowest (the pupil position is +43 mm from the lens surface closest to the image side and the pupil diameter is 3.6 mm). The maximum value (Dmax) and the minimum value (Dmin) are shown (see FIG. 15) among the required light beam diameters of the lens (the value of the surface where the light beam diameter is large). As described above, in the objective lens of the present invention, if the condition (8) is satisfied, the lens diameters of all the lenses constituting the objective lens can be made uniform. Thereby, the frame structure can be simplified as shown in FIG.

図16は、本発明の対物レンズを支持するため枠機構を示す図で、上半分は対物レンズの断面図を、下半分は外観を示す。     FIG. 16 is a view showing a frame mechanism for supporting the objective lens of the present invention. The upper half shows a cross-sectional view of the objective lens, and the lower half shows an external appearance.

この図に示すように、各レンズは、外枠M1内に環状部材M2、M3、M4を用いて間隔を正確に保つようにし、固定レンズM5をねじ込み一定以上の力にてレンズを押圧することにより固定される。そして各レンズの径がほぼ等しく、間隔環M2、M3、M4の外径は等しく、したがって、これらレンズ間隔環は内径の等しい外枠M1に内包され、固定リングM5をねじ込んで一定以上の力にて押すことにより固定されている。     As shown in this figure, each lens uses an annular member M2, M3, M4 in the outer frame M1 so as to keep the distance accurately, and the fixed lens M5 is screwed to press the lens with a force of a certain level or more. It is fixed by. The diameters of the lenses are substantially equal, and the outer diameters of the spacing rings M2, M3, and M4 are the same. Therefore, these lens spacing rings are contained in the outer frame M1 having the same inner diameter, and the fixing ring M5 is screwed to a certain level or more It is fixed by pushing.

図17は、本発明の枠機構で、レンズ中の一部のレンズ(図示するものは第1レンズ群G1中の第2レンズL2)の外径を他のレンズより僅かに径を小にし、このレンズを環状部材M6に接着固定している。またこの環状部材M6は、他の環状部材M2、M3、M4よりも外径を僅かに小にしてある。     FIG. 17 shows a frame mechanism of the present invention, in which the outer diameter of some of the lenses (the illustrated one is the second lens L2 in the first lens group G1) is slightly smaller than the other lenses. This lens is bonded and fixed to the annular member M6. The annular member M6 has a slightly smaller outer diameter than the other annular members M2, M3, and M4.

更に、この枠機構は、外枠の前記環状部材M6が位置する箇所に数箇所(3〜4箇所が好ましい)貫通穴Hが形成されている。これにより、この穴Hを通して外力を加え環状部材M6を光軸に垂直方向の任意方向に偏心させ得るようにしてある。     Further, in this frame mechanism, several (preferably 3 to 4) through holes H are formed at locations where the annular member M6 of the outer frame is located. Thereby, an external force is applied through the hole H so that the annular member M6 can be decentered in an arbitrary direction perpendicular to the optical axis.

このように、特定のレンズを光軸に対して、任意に偏心させることにより、各レンズの外周と外枠の内径との僅かな隙間が原因となって生ずるレンズの傾きや横ずれにより生ずる収差を打ち消すことが可能である。したがって、レンズの外径や鏡枠を特別に高精度に加工する必要がなく、コストの低減につながる。     In this way, by arbitrarily decentering a specific lens with respect to the optical axis, aberrations caused by the tilt and lateral deviation of the lens caused by a slight gap between the outer periphery of each lens and the inner diameter of the outer frame are eliminated. It is possible to cancel. Therefore, it is not necessary to process the outer diameter of the lens and the lens frame with a particularly high precision, leading to cost reduction.

外力を加える手段としては、貫通穴Hに棒状のものを差し込んで環状部材M6を叩く方法や貫通穴Hの内面にねじを設けビスをねじ込んで環状部材M6に押し当てる方法等が考えられる。そして、これにより環状部材M6にて保持されているレンズ(図17では第2レンズ)を偏心させることができる。     As a means for applying the external force, a method of inserting a rod-like object into the through hole H and hitting the annular member M6, a method of providing a screw on the inner surface of the through hole H, screwing a screw, and pressing the annular member M6 are conceivable. As a result, the lens (second lens in FIG. 17) held by the annular member M6 can be decentered.

レンズを環状部材M6に固定するのは、加えられた外力によりレンズが破損するのを防止するためと、曲率を有するレンズは、物理的に光軸に対し直角方向に動かすことができないためである。     The reason why the lens is fixed to the annular member M6 is to prevent the lens from being damaged by the applied external force, and because the lens having the curvature cannot be physically moved in the direction perpendicular to the optical axis. .

また、各レンズが不揃いである場合、最も外径が大であるレンズに揃えるように、他のレンズ夫々に環状部材を被せることによって、外枠の同一な内径に内包する構成にすることが可能である。しかし夫々のレンズに被せる環状部材の形状が複雑になり、そのために外枠の外径も大になり、コスト高になる。更に、外枠の外径が大であると、顕微鏡を通さずに目視で試料の状態を確認する場合、太い外径が障害となり、目視しにくいという欠点も生ずる。     In addition, when each lens is uneven, it is possible to have a configuration in which the outer frame is enclosed in the same inner diameter by covering each other lens with an annular member so as to align with the lens having the largest outer diameter. It is. However, the shape of the annular member to be put on each lens becomes complicated, which increases the outer diameter of the outer frame and increases the cost. Furthermore, when the outer diameter of the outer frame is large, when the state of the sample is confirmed visually without passing through a microscope, a large outer diameter becomes an obstacle, and there is a disadvantage that it is difficult to visually check.

本発明の単対物レンズ式双眼実体顕微鏡用対物レンズは、レンズ枚数が5枚〜6枚で、極めて少ない枚数である、像の平坦性、歪曲収差、および非点収差等の諸収差が良好に補正され、更に鏡枠構成を簡単になし得、製造にあたって特別高度な技能を必要とせず、したがってコスト面でも優れている等の効果を有する。     The objective lens for the binocular stereomicroscope of the present invention having a single objective lens has five to six lenses, and is an extremely small number, and has excellent aberrations such as image flatness, distortion, and astigmatism. The lens frame is corrected, and the lens frame structure can be easily formed. Special high-level skills are not required for manufacturing, and therefore the cost is excellent.

本発明の対物レンズの実施例の形態を図示する各実施例をもとに述べる。     Embodiments of the objective lens according to the present invention will be described on the basis of each embodiment.

本発明の実施例1は、図1に示すような構成のレンズ系で下記データを有する。

0 =∞ d0 =82.0000
1 =153.0461 d1 =12.2661 n1 =1.48749 ν1 =70.23
2 =-74.5651 d2 =11.3457
3 =-50.6895 d3 =6.0000 n2 =1.72047 ν2 =34.71
4 =-99.8843 d4 =1.2000
5 =81.3032 d5 =12.5000 n3 =1.43875 ν3 =94.93
6 =-133.7531 d6 =0.6000
7 =108.4900 d7 =9.2536 n4 =1.74100 ν4 =52.64
8 =55.1340 d8 =6.9655
9 =∞ d9 =7.5000 n5 =1.48749 ν5 =70.23
10=-95.4402

F(G1)=0.92f
P(G2)=−0.0061
P(G3)=0.0051
P(G2+G3)=−0.0008
F(L1)=1.05f
WD/f=0.82
N/ν=0.042
Dmax/Dmin=1.07

上記データ中、r0 ,r1 ,r2 ,・・・はレンズ各面の曲率半径、d0 ,d1 ,d2 ,・・・は各レンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズのd線に対する屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。
Example 1 of the present invention has the following data in a lens system configured as shown in FIG.

r 0 = ∞ d 0 = 82.0000
r 1 = 153.0461 d 1 = 12.2661 n 1 = 1.48749 ν 1 = 70.23
r 2 = -74.5651 d 2 = 11.3457
r 3 = -50.6895 d 3 = 6.0000 n 2 = 1.72047 ν 2 = 34.71
r 4 = -99.8843 d 4 = 1.2000
r 5 = 81.3032 d 5 = 12.5000 n 3 = 1.43875 ν 3 = 94.93
r 6 = -133.7531 d 6 = 0.6000
r 7 = 108.4900 d 7 = 9.2536 n 4 = 1.74100 ν 4 = 52.64
r 8 = 55.1340 d 8 = 6.9655
r 9 = ∞ d 9 = 7.5000 n 5 = 1.48749 ν 5 = 70.23
r 10 = -95.4402

F (G1) = 0.92f
P (G2) = − 0.0061
P (G3) = 0.0051
P (G2 + G3) = − 0.0008
F (L1) = 1.05f
WD / f = 0.82
N / ν = 0.042
Dmax / Dmin = 1.07

In the above data, r 0 , r 1 , r 2 ,... Are the radius of curvature of each lens surface, d 0 , d 1 , d 2 ,... Are the thickness of each lens and the lens spacing, n 1 , n 2 ,... Is the refractive index of each lens with respect to the d-line, and ν 1 , ν 2 ,.

尚、r0 は物***置、d0は物体面から対物レンズ第1面r1までの距離である。またデータ中r,d,f等の長さの単位はmmである。 R 0 is the object position, and d 0 is the distance from the object plane to the objective lens first surface r 1 . The unit of length of r, d, f, etc. in the data is mm.

この実施例1は、両凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と両凸レンズ(r5〜r6)とよりなる第1レンズ群G1(r1〜r6)と、像側に凹面を向けた負のメニスカスレンズ(r7〜r8)よりなる第2レンズ群G2と像側に凸面を向けた正の単レンズ[r9〜r10 (平凸レンズ)]よりなる第3レンズ群G3とよりなる。この実施例は前記のように5枚のレンズよりなる。また、第3レンズ群G2を像側に凸面を向けた平凸レンズとした例である。 In the first embodiment, a first lens group G1 (r 1 to r 2 ) including a biconvex lens (r 1 to r 2 ), a negative meniscus lens (r 3 to r 4 ), and a biconvex lens (r 5 to r 6 ). 6 ) and a second lens group G2 composed of a negative meniscus lens (r 7 to r 8 ) having a concave surface facing the image side and a positive single lens [r 9 to r 10 (plano-convex lens) having a convex surface facing the image side )] And the third lens group G3. This embodiment consists of five lenses as described above. In this example, the third lens group G2 is a plano-convex lens having a convex surface facing the image side.

この実施例1は、焦点距離fが100mm、作動距離WDが約81〜83mmであって、この対物レンズと共に用いられている変倍光学系は、二つの光学系間の距離(光軸間の距離)が25mmである。     In Example 1, the focal length f is 100 mm, the working distance WD is about 81 to 83 mm, and the variable magnification optical system used with this objective lens is a distance between two optical systems (between optical axes). The distance) is 25 mm.

本発明の対物レンズの実施例2は、図2に示すような構成のレンズ系で、下記データを有する。

0 =∞ d0 =82.8995
1 =211.6482 d1 =12.0000 n1 =1.48749 ν1 =70.23
2 =-59.0333 d2 =6.9714
3 =-44.3604 d3 =6.0000 n2 =1.74951 ν2 =35.33
4 =-84.5509 d4 =1.2000
5 =94.6661 d5 =11.8859 n3 =1.43875 ν3 =94.93
6 =-95.1124 d6 =0.6000
7 =91.8220 d7 =9.2863 n4 =1.74100 ν4 =52.64
8 =53.1575 d8 =9.2668
9 =-167.9804 d9 =7.5000 n5 =1.48749 ν5 =70.23
10=-77.1445

F(G1)=0.87f
P(G2)=−0.0053
P(G3)=0.0035
P(G2+G3)=−0.0016
F(L1)=0.96f
WD/f=0.83
N/ν=0.042
Dmax/Dmin=1.09
この実施例2は、図2に示すように実施例1と同様の構成で、両凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と両凸レンズ(r5〜r6)とよりなる第1レンズ群G1(r1〜r6)と、負のメニスカスレンズ(r7〜r8)の第2レンズ群G2と正のメニスカスレンズ(r9〜r10 )の第3レンズ群G3とよりなる。
Example 2 of the objective lens of the present invention is a lens system configured as shown in FIG. 2 and has the following data.

r 0 = ∞ d 0 = 82.8995
r 1 = 211.6482 d 1 = 12.0000 n 1 = 1.48749 ν 1 = 70.23
r 2 = -59.0333 d 2 = 6.9714
r 3 = -44.3604 d 3 = 6.0000 n 2 = 1.74951 ν 2 = 35.33
r 4 = -84.5509 d 4 = 1.2000
r 5 = 94.6661 d 5 = 11.8859 n 3 = 1.43875 ν 3 = 94.93
r 6 = -95.1124 d 6 = 0.6000
r 7 = 91.8220 d 7 = 9.2863 n 4 = 1.74100 ν 4 = 52.64
r 8 = 53.1575 d 8 = 9.2668
r 9 = -167.9804 d 9 = 7.5000 n 5 = 1.48749 ν 5 = 70.23
r 10 = -77.1445

F (G1) = 0.87f
P (G2) = − 0.0053
P (G3) = 0.0035
P (G2 + G3) = − 0.0016
F (L1) = 0.96f
WD / f = 0.83
N / ν = 0.042
Dmax / Dmin = 1.09
As shown in FIG. 2, the second embodiment has the same configuration as that of the first embodiment, and includes a biconvex lens (r 1 to r 2 ), a negative meniscus lens (r 3 to r 4 ), and a biconvex lens (r 5 to r 6 ) and the second lens group G2 of the negative meniscus lens (r 7 to r 8 ) and the positive meniscus lens (r 9 to r 10 ) of the first lens group G1 (r 1 to r 6 ). It consists of three lens groups G3.

この実施例2は、焦点距離fが100mm、作動距離WDが約81〜83mmであって、この対物レンズと共に用いられている変倍光学系は、二つの光学系間の距離(光軸間の距離)が25mmである。     In Example 2, the focal length f is 100 mm and the working distance WD is about 81 to 83 mm. The variable magnification optical system used with this objective lens is a distance between two optical systems (between optical axes). The distance) is 25 mm.

この実施例2の第3レンズ群G3は、実施例1が平凸レンズであるのと異なり、像側に凸面を向けた正のメニスカスレンズである。     The third lens group G3 of the second embodiment is a positive meniscus lens having a convex surface directed toward the image side, unlike the first embodiment which is a plano-convex lens.

本発明の対物レンズの実施例3は、図3に示すような構成のレンズ系で、下記データを有する。

0 =∞ d0 =82.0006
1 =111.1534 d1 =11.0000 n1 =1.48749 ν1 =70.23
2 =-111.1534 d2 =10.9619
3 =-50.5506 d3 =6.0000 n2 =1.72047 ν2 =34.71
4 =-94.6091 d4 =1.0000
5 =140.7867 d5 =12.1321 n3 =1.49700 ν3 =81.54
6 =-86.1783 d6 =1.0000
7 =160.9811 d7 =8.8658 n4 =1.74100 ν4 =52.64
8 =60.9973 d8 =4.1553
9 =160.9811 d9 =7.5000 n5 =1.49700 ν5 =81.54
10=-160.9811

F(G1)=0.92f
P(G2)=−0.0073
P(G3)=0.0061
P(G2+G3)=−0.0010
F(L1)=1.16f
WD/f=0.82
N/ν=0.042
Dmax/Dmin=1.08

この実施例3も実施例1、2と同様の構成であるが、第3レンズ群G3が両凸レンズである。
Example 3 of the objective lens according to the present invention is a lens system configured as shown in FIG. 3 and has the following data.

r 0 = ∞ d 0 = 82.0006
r 1 = 111.1534 d 1 = 11.0000 n 1 = 1.48749 ν 1 = 70.23
r 2 = -111.1534 d 2 = 10.9619
r 3 = -50.5506 d 3 = 6.0000 n 2 = 1.72047 ν 2 = 34.71
r 4 = -94.6091 d 4 = 1.0000
r 5 = 140.7867 d 5 = 12.1321 n 3 = 1.49700 ν 3 = 81.54
r 6 = -86.1783 d 6 = 1.0000
r 7 = 160.9811 d 7 = 8.8658 n 4 = 1.74100 ν 4 = 52.64
r 8 = 60.9973 d 8 = 4.1553
r 9 = 160.9811 d 9 = 7.5000 n 5 = 1.49700 ν 5 = 81.54
r 10 = -160.9811

F (G1) = 0.92f
P (G2) = − 0.0073
P (G3) = 0.0061
P (G2 + G3) = − 0.0010
F (L1) = 1.16f
WD / f = 0.82
N / ν = 0.042
Dmax / Dmin = 1.08

The third embodiment has the same configuration as the first and second embodiments, but the third lens group G3 is a biconvex lens.

即ち、実施例3は、両凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と両凸レンズ(r5〜r6)とよりなる第1レンズ群G1(r1〜r6)と、負のメニスカスレンズ(r7〜r8)よりなる第2レンズ群G2と、両凸レンズ(r9〜r10 )よりなる第3レンズ群G3にて構成されている。 That is, in Example 3, the first lens group G1 (r 1 to r 2 ) including the biconvex lens (r 1 to r 2 ), the negative meniscus lens (r 3 to r 4 ), and the biconvex lens (r 5 to r 6 ). r 6 ), a second lens group G 2 composed of negative meniscus lenses (r 7 to r 8 ), and a third lens group G 3 composed of biconvex lenses (r 9 to r 10 ).

この実施例3は、焦点距離fが100mm、作動距離WDが約81〜83mmであって、この対物レンズと共に用いる二つの変倍光学系の間隔(光軸間の距離)が25mmである。     In Example 3, the focal length f is 100 mm, the working distance WD is about 81 to 83 mm, and the distance between the two variable magnification optical systems used with the objective lens (the distance between the optical axes) is 25 mm.

また、この実施例は、第1レンズ群G1の両凸レンズの両面が絶対値の等しい曲率半径を有し、また第3レンズ群G3の両凸レンズも両面が絶対値の等しいレンズであり、しかも第2レンズ群G2の物体側の面r7と第3レンズ群G3の物体側の面r9とが等しい曲率半径である。 Further, in this embodiment, both surfaces of the biconvex lens of the first lens group G1 have the same radius of curvature, and the biconvex lens of the third lens group G3 is also a lens whose both surfaces have the same absolute value. the surface r 7 of the second lens group G2 object side and the surface r 9 of the object side of the third lens group G3 is equal radius of curvature.

本発明の対物レンズの実施例4は、図4に示すような構成のレンズ系で、下記データを有する。

0 =∞ d0 =81.0336
1 =281.9556 d1 =9.5000 n1 =1.49700 ν1 =81.54
2 =-78.3981 d2 =5.3000
3 =-49.5595 d3 =6.0000 n2 =1.59270 ν2 =35.31
4 =-102.1114 d4 =0.5000
5 =152.3153 d5 =14.0000 n3 =1.49700 ν3 =81.54
6 =-152.3153 d6 =0.5000
7 =114.0876 d7 =10.0000 n4 =1.49700 ν4 =81.54
8 =-172.3830 d8 =0.6000
9 =∞ d9 =6.0000 n5 =1.74100 ν5 =52.64
10=67.3113 d10=5.8738
11 =∞ d11=6.0000 n6 =1.62299 ν6 =58.16
12 =-117.4507

F(G1)=0.68f
P(G2)=−0.0110
P(G3)=0.0053
P(G2+G3)=−0.0051
F(L1)=1.25f
WD/f=0.81
N/ν=0.046
Dmax/Dmin=1.10
この実施例4は、第1レンズ群G1が4枚のレンズで全体で6枚のレンズよりなる。
Example 4 of the objective lens according to the present invention is a lens system configured as shown in FIG. 4 and has the following data.

r 0 = ∞ d 0 = 81.0336
r 1 = 281.9556 d 1 = 9.5000 n 1 = 1.49700 ν 1 = 81.54
r 2 = -78.3981 d 2 = 5.3000
r 3 = -49.5595 d 3 = 6.0000 n 2 = 1.59270 ν 2 = 35.31
r 4 = -102.1114 d 4 = 0.5000
r 5 = 152.3153 d 5 = 14.0000 n 3 = 1.49700 ν 3 = 81.54
r 6 = -152.3153 d 6 = 0.5000
r 7 = 114.0876 d 7 = 10.0000 n 4 = 1.49700 ν 4 = 81.54
r 8 = -172.3830 d 8 = 0.6000
r 9 = ∞ d 9 = 6.0000 n 5 = 1.74100 ν 5 = 52.64
r 10 = 67.3113 d 10 = 5.8738
r 11 = ∞ d 11 = 6.0000 n 6 = 1.62299 ν 6 = 58.16
r 12 = -117.4507

F (G1) = 0.68f
P (G2) = − 0.0110
P (G3) = 0.0053
P (G2 + G3) = − 0.0051
F (L1) = 1.25f
WD / f = 0.81
N / ν = 0.046
Dmax / Dmin = 1.10
In the fourth embodiment, the first lens group G1 is composed of four lenses and six lenses in total.

即ち、この実施例4は、物体側より順に、両凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と2枚の両凸レンズ(r5〜r6)、(r7〜r8)とよりなる第1レンズ群G1(r1〜r8)と、平凹レンズ(r9〜r10)の第2レンズ群G2と、平凸レンズ(r11〜r12)の第3レンズ群G3よりなる。 That is, in Example 4, in order from the object side, a biconvex lens (r 1 to r 2 ), a negative meniscus lens (r 3 to r 4 ), and two biconvex lenses (r 5 to r 6 ), (r 7 to r 8 ), the first lens group G 1 (r 1 to r 8 ), the second lens group G 2 of the plano-concave lens (r 9 to r 10 ), and the plano-convex lenses (r 11 to r 12 ). It consists of three lens groups G3.

この実施例4は、全系の焦点距離fが100mm、作動距離WDが約81〜82mmで、対物レンズと共に用いる二つの変倍光学系間の間隔(光軸間の距離)が25mmである。     In Example 4, the focal length f of the entire system is 100 mm, the working distance WD is about 81 to 82 mm, and the distance between the two variable magnification optical systems used with the objective lens (the distance between the optical axes) is 25 mm.

この実施例の第2レンズ群G2は平凹レンズよりなる、また第3レンズ群G3は平凸レンズよりなる。     In this embodiment, the second lens group G2 is composed of a plano-concave lens, and the third lens group G3 is composed of a plano-convex lens.

本発明の対物レンズの実施例5は、図5に示すような構成のレンズ系で、下記データを有する。

0 =∞ d0 =80.9915
1 =138.5876 d1 =11.0000 n1 =1.48749 ν1 =70.23
2 =-88.4662 d2 =3.3790
3 =-54.9945 d3 =6.0000 n2 =1.80100 ν2 =34.97
4 =-111.7956 d4 =0.5000
5 =149.1982 d5 =9.0000 n3 =1.49700 ν3 =81.54
6 =-149.1982 d6 =5.6000
7 =500.0000 d7 =9.0000 n4 =1.49700 ν4 =81.54
8 =-143.9354 d8 =0.5000
9 =245.3116 d9 =6.0000 n5 =1.74320 ν5 =49.34
10=65.7019 d10=4.5900
11 =234.8679 d11=7.0000 n6 =1.58913 ν6 =61.14
12 =-179.2766

F(G1)=0.83f
P(G2)=−0.0082
P(G3)=0.0058
P(G2+G3)=−0.0021
F(L1)=1.13f
WD/f=0.81
N/ν=0.047
Dmax/Dmin=1.11
つまり、実施例5は、物体側より順に、両凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と2枚の両凸レンズ(r5〜r6)、(r7〜r8)とよりなる第1レンズ群G1(r1〜r8)と、負のメニスカスレンズ(r9〜r10)よりなる第2レンズ群G2と、両凸レンズ(r11〜r12)よりなる第3レンズ群G3とにて構成されている。
Example 5 of the objective lens of the present invention is a lens system configured as shown in FIG. 5 and has the following data.

r 0 = ∞ d 0 = 80.9915
r 1 = 138.5876 d 1 = 11.0000 n 1 = 1.48749 ν 1 = 70.23
r 2 = -88.4662 d 2 = 3.3790
r 3 = -54.9945 d 3 = 6.0000 n 2 = 1.80100 ν 2 = 34.97
r 4 = -111.7956 d 4 = 0.5000
r 5 = 149.1982 d 5 = 9.0000 n 3 = 1.49700 ν 3 = 81.54
r 6 = -149.1982 d 6 = 5.6000
r 7 = 500.0000 d 7 = 9.0000 n 4 = 1.49700 ν 4 = 81.54
r 8 = -143.9354 d 8 = 0.5000
r 9 = 245.3116 d 9 = 6.0000 n 5 = 1.74320 ν 5 = 49.34
r 10 = 65.7019 d 10 = 4.5900
r 11 = 234.8679 d 11 = 7.0000 n 6 = 1.58913 ν 6 = 61.14
r 12 = -179.2766

F (G1) = 0.83f
P (G2) = − 0.0082
P (G3) = 0.0058
P (G2 + G3) = − 0.0021
F (L1) = 1.13f
WD / f = 0.81
N / ν = 0.047
Dmax / Dmin = 1.11
That is, in Example 5, in order from the object side, a biconvex lens (r 1 to r 2 ), a negative meniscus lens (r 3 to r 4 ), and two biconvex lenses (r 5 to r 6 ), (r 7 ~r 8) and become more first lens group G1 (a r 1 ~r 8), a second lens group G2 consists of a negative meniscus lens (r 9 ~r 10), a biconvex lens (r 11 ~r 12) And a third lens group G3.

この実施例5は、全系の焦点距離fが100mm、作動距離WDが約81〜82mmである。また対物レンズと共に用いる二つの変倍光学系の間隔(光軸間の距離)が25mmである。     In Example 5, the focal length f of the entire system is 100 mm, and the working distance WD is about 81 to 82 mm. The distance between the two variable magnification optical systems used with the objective lens (the distance between the optical axes) is 25 mm.

本発明の対物レンズの実施例6は、図6に示すような構成のレンズ系で、下記データを有する。

0 =∞ d0 =61.3114
1 =∞ d1 =14.5938 n1 =1.48749 ν1 =70.23
2 =-35.6411 d2 =2.0000
3 =-33.6761 d3 =6.0000 n2 =1.72047 ν2 =34.71
4 =-68.5177 d4 =1.2000
5 =59.5632 d5 =12.5000 n3 =1.43875 ν3 =94.93
6 =-761.9193 d6 =0.6000
7 =72.6513 d7 =15.582 n4 =1.74100 ν4 =52.64
8 =43.9446 d8 =7.6553
9 =∞ d9 =7.5000 n5 =1.49700 ν5 =81.54
10=-71.9000

F(G1)=1.12f
P(G2)=−0.0051
P(G3)=0.0069
P(G2+G3)=−0.0016
F(L1)=0.91f
WD/f=0.76
N/ν=0.040
Dmax/Dmin=1.11
この実施例6は、物体側より順に、平凸レンズ(r1〜r2)と負のメニスカスレンズ(r3〜r4)と両凸レンズ(r5〜r6)の3枚のレンズよりなる第1レンズ群G1(r1〜r6)と、負のメニスカスレンズ(r7〜r8)よりなる第2レンズ群G2と、平凸レンズ(r9〜r10)の第3レンズ群G3とよりなる。
Example 6 of the objective lens according to the present invention is a lens system configured as shown in FIG. 6 and has the following data.

r 0 = ∞ d 0 = 61.3114
r 1 = ∞ d 1 = 14.5938 n 1 = 1.48749 ν 1 = 70.23
r 2 = -35.6411 d 2 = 2.0000
r 3 = −33.6761 d 3 = 6.0000 n 2 = 1.72047 ν 2 = 34.71
r 4 = -68.5177 d 4 = 1.2000
r 5 = 59.5632 d 5 = 12.5000 n 3 = 1.43875 ν 3 = 94.93
r 6 = -761.9193 d 6 = 0.6000
r 7 = 72.6513 d 7 = 15.582 n 4 = 1.74100 ν 4 = 52.64
r 8 = 43.9446 d 8 = 7.6553
r 9 = ∞ d 9 = 7.5000 n 5 = 1.49700 ν 5 = 81.54
r 10 = -71.9000

F (G1) = 1.12f
P (G2) = − 0.0051
P (G3) = 0.0069
P (G2 + G3) = − 0.0016
F (L1) = 0.91f
WD / f = 0.76
N / ν = 0.040
Dmax / Dmin = 1.11
In Example 6, in order from the object side, a third lens including three lenses, a plano-convex lens (r 1 to r 2 ), a negative meniscus lens (r 3 to r 4 ), and a biconvex lens (r 5 to r 6 ). From a first lens group G1 (r 1 to r 6 ), a second lens group G2 composed of negative meniscus lenses (r 7 to r 8 ), and a third lens group G3 of plano-convex lenses (r 9 to r 10 ) Become.

この実施例6の対物レンズは、全系の焦点距離fが80mmであり、作動距離WDが約61mmである。またこの対物レンズと共に用いる二つの変倍光学系の間隔(光軸間の距離)が22mmである。     In the objective lens of Example 6, the focal length f of the entire system is 80 mm, and the working distance WD is about 61 mm. The distance between the two variable magnification optical systems used with this objective lens (the distance between the optical axes) is 22 mm.

この実施例6の最も物体側のレンズおよび第3レンズ群G3は、いずれも平凹レンズである。     The most object side lens and the third lens group G3 in Example 6 are both plano-concave lenses.

本発明の対物レンズの実施例7は、図7に示すような構成のレンズ系で、下記データを有する。
0 =∞ d0 =61.0500
1 =408.8876 d1 =13.9000 n1 =1.48749 ν1 =70.23
2 =-33.6170 d2 =6.0000 n2 =1.74950 ν2 =35.28
3 =-69.2710 d3 =4.2870
4 =73.1449 d4 =11.5000 n3 =1.49700 ν3 =81.54
5 =-212.2616 d5 =2.0000
6 =168.9143 d6 =14.0000 n4 =1.74100 ν4 =52.64
7 =56.6471 d7 =4.0412
8 =315.9887 d8 =8.5000 n5 =1.48749 ν5 =70.23
9=-83.1396

F(G1)=0.94f
P(G2)=−0.0082
P(G3)=0.0074
P(G2+G3)=−0.0006
F(L1)=0.81f
WD/f=0.76
N/ν=0.042
Dmax/Dmin=1.11
この実施例7は、図7に示すように、物体側から順に、両凸レンズ(r1〜r2)と像側に凸面を向けた負のメニスカスレンズ(r2〜r3)と接合した両凸形状の接合レンズ(r1〜r3)と両凸レンズ(r4〜r5)とよりなる第1レンズ群G1(r1〜r5)と、負のメニスカスレンズ(r6〜r7)よりなる第2レンズ群G2と、両凸レンズ(r8〜r9)よりなる第3レンズ群G3とにて構成されている。
Example 7 of the objective lens according to the present invention is a lens system configured as shown in FIG. 7 and has the following data.
r 0 = ∞ d 0 = 61.0500
r 1 = 408.8876 d 1 = 13.9000 n 1 = 1.48749 ν 1 = 70.23
r 2 = -33.6170 d 2 = 6.0000 n 2 = 1.74950 ν 2 = 35.28
r 3 = -69.2710 d 3 = 4.2870
r 4 = 73.1449 d 4 = 11.5000 n 3 = 1.49700 ν 3 = 81.54
r 5 = -212.2616 d 5 = 2.0000
r 6 = 168.9143 d 6 = 14.0000 n 4 = 1.74100 ν 4 = 52.64
r 7 = 56.6471 d 7 = 4.0412
r 8 = 315.9887 d 8 = 8.5000 n 5 = 1.48749 ν 5 = 70.23
r 9 = -83.1396

F (G1) = 0.94f
P (G2) = − 0.0082
P (G3) = 0.0074
P (G2 + G3) = − 0.0006
F (L1) = 0.81f
WD / f = 0.76
N / ν = 0.042
Dmax / Dmin = 1.11
In Example 7, as shown in FIG. 7, in order from the object side, both a biconvex lens (r 1 to r 2 ) and a negative meniscus lens (r 2 to r 3 ) having a convex surface facing the image side are cemented. convex cemented lens (r 1 ~r 3) and a biconvex lens (r 4 ~r 5) more becomes the first lens group G1 and the (r 1 ~r 5), a negative meniscus lens (r 6 ~r 7) a second lens group G2 becomes more, it is composed of a biconvex lens (r 8 ~r 9) from the composed third lens group G3.

この実施例7は、全系の焦点距離fが80mmで、作動距離WDが約61mmであり、この対物レンズと共に用いる二つの変倍光学系の間隔(光軸間の距離)が22mmである。     In Example 7, the focal length f of the entire system is 80 mm, the working distance WD is about 61 mm, and the distance (distance between the optical axes) between the two variable magnification optical systems used with this objective lens is 22 mm.

この実施例7は、第1レンズ群G1中に接合レンズが用いられている。つまり最も物体側に接合レンズが用いられている。     In Example 7, a cemented lens is used in the first lens group G1. That is, the cemented lens is used on the most object side.

以上の実施例1〜実施例7は、データ中に記載するように、条件(1)〜(8)のすべての条件を満足する対物レンズである。     Examples 1 to 7 described above are objective lenses that satisfy all the conditions (1) to (8) as described in the data.

これら実施例の収差状況は、図8〜図14に示す通りで、いずれも良好に補正されている。     The aberration states of these examples are as shown in FIGS. 8 to 14, and all are well corrected.

また、すべての実施例が条件(8)を満足するレンズ系で、したがって、すべてのレンズの径がほぼ等しい径である。したがって、前述の本発明の顕微鏡における鏡枠機構の使用が可能であり、偏心による収差の悪化等を容易に補正し得る。     Further, all the examples are lens systems satisfying the condition (8), and therefore, the diameters of all the lenses are substantially equal. Therefore, it is possible to use the lens frame mechanism in the above-described microscope of the present invention, and it is possible to easily correct aberration deterioration due to decentering.

本発明は、精密機械工業や生物の解剖等に適した双眼実体顕微鏡および対物レンズである。     The present invention is a binocular stereomicroscope and an objective lens suitable for the precision machine industry, biological dissection, and the like.

本発明の対物レンズの実施例1の断面図Sectional drawing of Example 1 of the objective lens of this invention 本発明の対物レンズの実施例2の断面図Sectional drawing of Example 2 of the objective lens of this invention 本発明の対物レンズの実施例3の断面図Sectional drawing of Example 3 of the objective lens of this invention 本発明の対物レンズの実施例4の断面図Sectional drawing of Example 4 of the objective lens of this invention 本発明の対物レンズの実施例5の断面図Sectional drawing of Example 5 of the objective lens of this invention 本発明の対物レンズの実施例6の断面図Sectional drawing of Example 6 of the objective lens of this invention 本発明の対物レンズの実施例7の断面図Sectional drawing of Example 7 of the objective lens of this invention 本発明の対物レンズの実施例1の収差曲線図Aberration curve diagram of Example 1 of the objective lens of the present invention 本発明の対物レンズの実施例2の収差曲線図Aberration curve diagram of Example 2 of the objective lens according to the present invention 本発明の対物レンズの実施例3の収差曲線図Aberration curve diagram of Example 3 of the objective lens according to the present invention 本発明の対物レンズの実施例4の収差曲線図Aberration curve diagram of Example 4 of the objective lens according to the present invention 本発明の対物レンズの実施例5の収差曲線図Aberration curve diagram of Example 5 of the objective lens according to the present invention 本発明の対物レンズの実施例6の収差曲線図Aberration curve diagram of Example 6 of the objective lens according to the present invention 本発明の対物レンズの実施例7の収差曲線図Aberration curve diagram of Example 7 of the objective lens according to the present invention 本発明の対物レンズと変倍光学系の低倍率時の光線図Ray diagram at low magnification of the objective lens and variable magnification optical system of the present invention 本発明の対物レンズで全てのレンズの径が等しい場合の枠構成を示す図The figure which shows a frame structure in case the diameter of all the lenses is equal with the objective lens of this invention. 本発明の対物レンズの枠構成で第2レンズの芯出しを可能にした例を示す図The figure which shows the example which enabled centering of the 2nd lens with the frame structure of the objective lens of this invention 従来の対物レンズの断面図Cross section of conventional objective lens

Claims (4)

物体側より順に、全体として正のパワーを有する第1レンズ群と、像側に凹面を向けた負の単レンズの第2レンズ群と、像側に凸面を向けた正の単レンズの第3レンズ群とよりなり、前記第1レンズ群の最も物体側のレンズが像側に凸面を向けたレンズであり、下記条件(1)、(2)、(3)、(4)、(5)、(6)を満足する実体顕微鏡用対物レンズおよび前記対物レンズを備えた実体顕微鏡。
(1) 0.65f<F(G1)<1.05f
(2) −0.0125<P(G2)<0
(3) 0.004<P(G3)<0.01
(4) −0.006<P(G2+G3)<0.002
(5)0.75f≦F(L1)≦1.3f
(6)0.85>WD/f>0.7
ただし、fは対物レンズ全系の焦点距離、F(G1)は第1レンズ群の焦点距離、P(G2)は第2レンズ群のパワー、P(G3)は第3レンズ群のパワー、P(G2+G3)は第2レンズ群と第3レンズ群の合成のパワー、F(L1)は第1レンズ群の最も物体側のレンズの焦点距離、WDは対物レンズの作動距離である。
In order from the object side, a first lens group having a positive power as a whole, a second lens group of a negative single lens having a concave surface facing the image side, and a third of a positive single lens having a convex surface facing the image side A lens group, and the lens closest to the object side of the first lens group is a lens having a convex surface directed to the image side. The following conditions (1), (2), (3), (4) , (5) , (6) a stereoscopic microscope objective lens and a stereoscopic microscope including the objective lens.
(1) 0.65f <F (G1) <1.05f
(2) -0.0125 <P (G2) <0
(3) 0.004 <P (G3) <0.01
(4) -0.006 <P (G2 + G3) <0.002
(5) 0.75f ≦ F (L1) ≦ 1.3f
(6) 0.85> WD / f> 0.7
Where f is the focal length of the entire objective lens system, F (G1) is the focal length of the first lens group, P (G2) is the power of the second lens group, P (G3) is the power of the third lens group, P (G2 + G3) is the combined power of the second lens group and the third lens group, F (L1) is the focal length of the lens closest to the object side of the first lens group, and WD is the working distance of the objective lens .
下記条件(7)を満足する請求項1実体顕微鏡用対物レンズおよび前記対物レンズを備えた実体顕微鏡。
(7) 0.035<N/ν<0.05
ただし、N/νは、第1レンズ群の最も物体側のレンズの屈折率およびアッベ数を夫々nd(L1)、νd(L1)、第3レンズ群の屈折率およびアッベ数を夫々nd(G3)、νd(G3)とした時に下記の式にて与えられる値である。
N/ν={nd(L1)/νd(L1)}
+{nd(G3)/νd(G3)}
The objective lens for a stereomicroscope according to claim 1 , which satisfies the following condition (7), and a stereomicroscope comprising the objective lens.
(7) 0.035 <N / ν <0.05
Where N / ν is the refractive index and Abbe number of the lens closest to the object side of the first lens group, and nd (L1) and νd (L1), respectively, and the refractive index and Abbe number of the third lens group are nd (G3 ), Νd (G3), the value given by the following equation.
N / ν = {nd (L1) / νd (L1)}
+ {Nd (G3) / νd (G3)}
前記第1レンズ群が複数のレンズよりなり、前記第1レンズ群と第2レンズ群が下記条件(8)を満足する請求項1または2の実体顕微鏡用対物レンズおよび前記対物レンズを備えた実体顕微鏡。
(8) 1≦Dmax/Dmin≦1.15
ただし、Dmax、Dminは、変倍光学系の倍率が最も低い(瞳位置を最も像側のレンズ面より+43mm、瞳径を3.6mmとする)時、第1レンズ群と第2レンズ群各々のレンズにおける必要な光束径(光束径が大となる面の値)のうち、最大値(Dmax)および最小値(Dmin)を示す。
3. The objective microscope objective lens according to claim 1 or 2 , wherein the first lens group includes a plurality of lenses, and the first lens group and the second lens group satisfy the following condition (8): microscope.
(8) 1 ≦ Dmax / Dmin ≦ 1.15
However, Dmax and Dmin are respectively the first lens group and the second lens group when the magnification of the variable power optical system is the lowest (the pupil position is +43 mm from the lens surface closest to the image side and the pupil diameter is 3.6 mm). The maximum value (Dmax) and the minimum value (Dmin) of the necessary light beam diameter (the value of the surface where the light beam diameter is large) in the lens No. 1 are shown.
前記請求項の対物レンズを保持する鏡筒機構を有する実体顕微鏡で、前記レンズ保持機構が外枠と前記外枠の内壁面にて支持されるレンズの間隔を保つための複数の環状部材を有し、前記環状部材の少なくとも一つの環状部材によりレンズを保持し、前記環状部材を利用してレンズを偏心させるようにした実体顕微鏡。 A stereomicroscope having a lens barrel mechanism for holding the objective lens according to claim 3 , wherein the lens holding mechanism includes a plurality of annular members for maintaining a distance between an outer frame and a lens supported by an inner wall surface of the outer frame. A stereomicroscope having a lens held by at least one annular member of the annular member and decentering the lens using the annular member.
JP2006122757A 2006-04-27 2006-04-27 Stereoscopic microscope objective lens and stereomicroscope including the same Active JP4949729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122757A JP4949729B2 (en) 2006-04-27 2006-04-27 Stereoscopic microscope objective lens and stereomicroscope including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122757A JP4949729B2 (en) 2006-04-27 2006-04-27 Stereoscopic microscope objective lens and stereomicroscope including the same

Publications (2)

Publication Number Publication Date
JP2007293141A JP2007293141A (en) 2007-11-08
JP4949729B2 true JP4949729B2 (en) 2012-06-13

Family

ID=38763815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122757A Active JP4949729B2 (en) 2006-04-27 2006-04-27 Stereoscopic microscope objective lens and stereomicroscope including the same

Country Status (1)

Country Link
JP (1) JP4949729B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102126419B1 (en) * 2014-10-20 2020-06-24 삼성전기주식회사 Optical system
CN105137567B (en) * 2015-08-12 2017-09-12 北京天诚盛业科技有限公司 Imaging lens, iris imaging module and iris identification device
JP2019148615A (en) * 2018-02-26 2019-09-05 O−FILM.Japan株式会社 Imaging lens and imaging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170105A (en) * 1981-04-10 1982-10-20 Sato Zoki Co Ltd Working machine elevating apparatus in moving agricultural machine
JPH10221597A (en) * 1997-02-05 1998-08-21 Nikon Eng:Kk Objective lens
JP2001147378A (en) * 1999-11-19 2001-05-29 Nikon Corp Objective lens system for parallel system stereomicroscope
JP4374918B2 (en) * 2003-06-13 2009-12-02 株式会社ニコン Phase contrast microscope

Also Published As

Publication number Publication date
JP2007293141A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8199408B2 (en) Immersion microscope objective lens
JPWO2009041546A1 (en) Objective lens
GB2568358A (en) Optical system and image pickup apparatus
US5852515A (en) Microscope objective and single objective type binocular stereomicroscope system
US6327096B1 (en) Set of lens system
JP4949729B2 (en) Stereoscopic microscope objective lens and stereomicroscope including the same
JP4915990B2 (en) Eyepiece
JP4720319B2 (en) Objective lens
JP3403235B2 (en) Inner focus type wide field eyepiece
JP2001147378A (en) Objective lens system for parallel system stereomicroscope
JP2000105339A (en) Objective optical system for stereomicroscope
US5532879A (en) Microscope objective lens
JP4660873B2 (en) Parallel system stereo microscope objective lens
JPH07234357A (en) Loupe
JPH05188286A (en) Large-aperture intermediate telephoto lens
US5815317A (en) Eyepiece with broad visibility
JP3642444B2 (en) Eyepiece
JP5422214B2 (en) Eyepieces and optical equipment
JPH05107471A (en) Objective lens for endoscope
JPH1195130A (en) Eyepiece
JPS62178918A (en) Objective lens of galilean type stereomicroscope
US6057968A (en) Eyepiece system
JP2012083486A (en) Object lens
JP3414853B2 (en) Microscope objective lens
JPH0567005B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4949729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250