JP4944455B2 - Natural circulation boiling water reactor - Google Patents

Natural circulation boiling water reactor Download PDF

Info

Publication number
JP4944455B2
JP4944455B2 JP2006051784A JP2006051784A JP4944455B2 JP 4944455 B2 JP4944455 B2 JP 4944455B2 JP 2006051784 A JP2006051784 A JP 2006051784A JP 2006051784 A JP2006051784 A JP 2006051784A JP 4944455 B2 JP4944455 B2 JP 4944455B2
Authority
JP
Japan
Prior art keywords
core
lattice
cross
arrangement
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006051784A
Other languages
Japanese (ja)
Other versions
JP2007232431A (en
Inventor
一弥 石井
肇男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2006051784A priority Critical patent/JP4944455B2/en
Publication of JP2007232431A publication Critical patent/JP2007232431A/en
Application granted granted Critical
Publication of JP4944455B2 publication Critical patent/JP4944455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、沸騰水型原子炉に関するものである。   The present invention relates to a boiling water reactor.

これまでに商業運転されている強制循環式の沸騰水型原子炉(以下、BWRと称する)では、円筒形の炉心シュラウド内に、横断面が正方形の燃料集合体をX軸方向、Y軸方向に並べて林立させて炉心を構成している。そして、横断面がほぼ十字形の制御棒が、その周囲を囲む4体の燃料集合体の間に挿入可能に配置され、この制御棒を囲む4体の燃料集合体の単位を制御棒セルと称している。   In a forced circulation boiling water reactor (hereinafter referred to as “BWR”) that has been commercially operated so far, a fuel assembly having a square cross section is placed in the X-axis direction and the Y-axis direction in a cylindrical core shroud. The core is made up of forests. A control rod having a substantially cross-shaped cross section is disposed so as to be inserted between four fuel assemblies surrounding the control rod, and the unit of the four fuel assemblies surrounding the control rod is defined as a control rod cell. It is called.

炉心内には、LPRM(Local Power Range Monitor:局部出力領域モニタ)検出器集合体が、前記制御棒セルの2×2配列を、2×2配列のコーナ位置で囲むように離散的に配置され、炉内中性子束分布を計測するように構成されている。LPRM検出器集合体で計測された炉内中性子束分布は、炉心内の出力分布を計算して燃料集合体の熱的制限値[MCPR(Minimum Critical Power Ratio:最小限界出力比)およびMLHGR(Maximum Linear Heat Generation Rate:最大線出力密度)の運転制限値]に対する余裕などを計算する3次元核熱水力計算コードによる炉心性能計算に用いられる。   In the core, LPRM (Local Power Range Monitor) detector assemblies are discretely arranged so as to surround the 2 × 2 array of control rod cells at the corner positions of the 2 × 2 array. The neutron flux distribution in the reactor is measured. The in-core neutron flux distribution measured by the LPRM detector assembly is calculated from the power distribution in the reactor core to calculate the fuel assembly thermal limit [MCPR (Minimum Critical Power Ratio) and MLHGR (Maximum It is used for core performance calculation by a three-dimensional nuclear thermal hydraulic calculation code that calculates margins for the operation limit value of Linear Heat Generation Rate (maximum linear power density).

このLPRM検出器集合体の配置は、炉心への燃料集合体が、炉心の横断面における中心を通るX軸とY軸、およびX軸またはY軸に対して45°の角度をなして中心を通る1/8対称の対称軸も考慮し、1/4炉心鏡対称、1/4炉心90°回転対称、1/2炉心鏡対称、1/2炉心180°回転対称、1/8炉心鏡対称などの装荷パターンで配置されることを利用したものとなっている。つまり、このLPRM検出器集合体の配置においては、制御棒セルのコーナにLPRM検出器集合体が配置されていない箇所の中性子束は、炉心の横断面上で対称位置にあるLPRM検出器集合体の計測した中性子束で代替することとしている。   The arrangement of this LPRM detector assembly is such that the fuel assembly in the core is centered at an angle of 45 ° with respect to the X and Y axes passing through the center in the cross section of the core and the X or Y axis. Considering 1/8 symmetry axis of symmetry, 1/4 core mirror symmetry, 1/4 core 90 ° rotational symmetry, 1/2 core mirror symmetry, 1/2 core 180 ° rotational symmetry, 1/8 core mirror symmetry It is something that uses the arrangement with the loading pattern such as. In other words, in the arrangement of the LPRM detector assembly, the neutron flux at the location where the LPRM detector assembly is not disposed at the corner of the control rod cell is the LPRM detector assembly in a symmetrical position on the cross section of the core. It is supposed to replace with the measured neutron flux.

近年、自然循環式BWRが提唱され、その自然循環式BWRでは自然循環の駆動力確保のため、炉心の上に強制循環式BWRには無いチムニが設けられる(特許文献1参照)。
特公平7−27051号公報(第1図、第2図)
In recent years, a natural circulation type BWR has been proposed, and in the natural circulation type BWR, a chimney that does not exist in the forced circulation type BWR is provided on the core in order to secure a driving force for natural circulation (see Patent Document 1).
Japanese Patent Publication No. 7-27051 (FIGS. 1 and 2)

ところで、前記特許文献1に記載された自然循環式BWRは、チムニ内を鉛直方向の仕切り板により分割して複数の格子流路を有している構成となっている。
その場合の冷却材の流れは以下のようになる。まず、冷却材は、下部プレナムから炉心へ流入時に各燃料集合体に分配され、燃料集合体を冷却して冷却材の気液二相流となる。さらに、個々の燃料集合体を出た冷却材は、チムニの格子流路の入口で一つの格子流路に対応している複数の燃料集合体分が合流する。その後、上部プレナムで各格子流路の気液二相流全体が合流する。したがって、個々の燃料集合体に配分される冷却材流量は、この間の、燃料集合体圧損に格子流路の圧損を加えた圧損と、格子流路内のボイド率により主にきまる冷却材比重差による駆動力で決まる。つまり、各格子流路を流れる冷却材流量は、当該格子流路に対応する燃料集合体において発生する蒸気量に依存する。
By the way, the natural circulation type BWR described in Patent Document 1 has a structure in which the inside of the chimney is divided by a partition plate in the vertical direction and has a plurality of lattice channels.
In this case, the coolant flow is as follows. First, the coolant is distributed to each fuel assembly when it flows into the core from the lower plenum, and the fuel assembly is cooled to become a gas-liquid two-phase flow of the coolant. Further, the coolant exiting the individual fuel assemblies is joined by a plurality of fuel assemblies corresponding to one lattice channel at the inlet of the chimney lattice channel. Thereafter, the entire gas-liquid two-phase flow of each grid channel merges in the upper plenum. Therefore, the coolant flow rate distributed to the individual fuel assemblies is the difference between the specific gravity of the coolant, which is mainly determined by the pressure loss of the fuel assembly pressure loss plus the lattice flow pressure loss, and the void fraction in the lattice flow channel. Determined by the driving force. In other words, the flow rate of the coolant flowing through each lattice channel depends on the amount of vapor generated in the fuel assembly corresponding to the lattice channel.

この格子流路は、炉心を出た気液二相流が横断面内で均一なボイド率になるように分割する必要があるが、チムニを通過する時の摩擦圧損を低減する観点からは、前記制御棒セル単位で設けるよりも、より流路断面の面積の大きい格子流路とすることが、好ましい。また、原子炉の定期検査の際に、チムニを原子炉圧力容器の内部に設置したまま、格子流路を通じて燃料集合体などの交換作業を行う観点から、前記格子流路の流路隔壁は、炉心の上部格子板の前記制御棒セル単位で開けられた正方形の格子孔を横切るような形で塞がないように構成することが好ましい。   This grid channel needs to be divided so that the gas-liquid two-phase flow exiting the core has a uniform void rate in the cross section, but from the viewpoint of reducing the frictional pressure loss when passing through the chimney, It is preferable to use a grid channel having a larger channel cross-sectional area than the control rod cell unit. In addition, from the viewpoint of exchanging fuel assemblies and the like through the lattice channel while chimney is installed inside the reactor pressure vessel during the periodic inspection of the reactor, the flow channel partition wall of the lattice channel is: It is preferable that the upper lattice plate of the core is constructed so as not to be blocked in such a manner as to cross the square lattice holes opened in units of the control rod cells.

しかしながら、炉心の横断面の中心には制御棒が位置するように、中央制御棒セルは配置されており、チムニの格子流路を形成する流路隔壁の構成の仕方によっては、チムニ横断面の格子流路の配置が炉心の横断面のX軸、Y軸に対して非対称となる。
その場合、炉心の横断面において、燃料集合体の装荷パターンを前記各種の対称のうちの一つとなるように構成しても、燃料集合体装荷パターンの対称性とチムニ横断面の格子流路配置の対称性がずれた場合、前記LPRM検出器集合体の炉心配置における対称性の利用の前提が崩れ、燃料集合体の炉心内出力分布計算の上で誤差を生じる。
However, the central control rod cell is arranged so that the control rod is located at the center of the cross section of the core, and depending on the configuration of the channel partition walls forming the chimney lattice channel, The arrangement of the lattice channels is asymmetric with respect to the X axis and Y axis of the cross section of the core.
In that case, even if the fuel assembly loading pattern is configured to be one of the above-mentioned various symmetry in the cross section of the core, the symmetry of the fuel assembly loading pattern and the lattice flow arrangement of the chimney cross section If the symmetry of is deviated, the assumption of the use of symmetry in the core arrangement of the LPRM detector assembly is broken, and an error occurs in the calculation of the power distribution in the core of the fuel assembly.

本発明は、かかる問題を解決することを課題とし、炉心性能計算において、炉心内の燃料集合体の出力をより正確に算出可能な自然循環式沸騰水型原子炉を提供することを目的とする。   An object of the present invention is to provide a natural circulation boiling water reactor capable of more accurately calculating the output of the fuel assembly in the core in the core performance calculation. .

前記課題を解決するため請求項1に係わる発明は、複数の燃料集合体を装荷した炉心と、炉心内に設置された中性子検出器と、炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉において、炉心燃料集合体の水平方向位置を決める上部格子板は、2×2配列の燃料集合体の中央位置に制御棒を配して1つの制御棒セルを構成し、制御棒セルに対応する正方形の格子孔を炉心の横断面の中央に配置した上で、さらに直角X−Y座標のX軸方向、Y軸方向に格子孔を多数配置したものであり、炉心は、燃料集合体の濃縮度・可燃性毒物の設計タイプ、炉内滞在期間にもとづく配置を、少なくともX軸とY軸の両方に対して45°の角度をなす2つの1/8対称軸に対して、鏡対称に装荷可能な構成であり、チムニは、流路隔壁により区画された格子流路を、上部格子板の格子孔の2×2配列を含むように構成するとともに、格子流路の横断面配置が、前記2つの1/8対称軸の内の一方を対称軸として有するように構成し、炉心の横断面において、格子流路の横断面配置の前記一方の1/8対称軸の前記鏡対称に対応した対称位置のうち、少なくとも1箇所に中性子検出器を配置したことを特徴とする。
請求項2に係わる発明は、複数の燃料集合体を装荷した炉心と、炉心内に設置された中性子検出器と、炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉において、炉心の燃料集合体の水平方向位置を決める上部格子板は、2×2配列の燃料集合体の中央位置に制御棒を配して1つの制御棒セルを構成し、制御棒セルに対応する正方形の格子孔を炉心の横断面の中央に配置した上で、さらに直角X−Y座標のX軸方向、Y軸方向に格子孔を多数配置したものであり、炉心は、燃料集合体の濃縮度・可燃性毒物の設計タイプ、炉内滞在期間にもとづく配置を、少なくとも直角X−Y座標における炉心の横断面の中心を通るX軸、Y軸で炉心の横断面を4分割した1/4炉心に対して、炉心の横断面の中心に90°回転対称に装荷可能な構成であり、チムニは、流路隔壁により区画された格子流路を、炉心の横断面の中央に対応する格子流路は、炉心の横断面中央の格子孔を1つだけを含み、他の格子流路は、上部格子板の格子孔の2×2配列を含むように構成するとともに、1/4炉心に対して90°回転対称の配置となるように構成し、炉心の横断面において、格子流路の横断面配置の1/4炉心に対して90°回転対称の対称性に対応した対称位置のうち、少なくとも1箇所に中性子検出器を配置したことを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1 is a natural circulation type comprising a core loaded with a plurality of fuel assemblies, a neutron detector installed in the core, and a chimney installed on the core. In a boiling water reactor, the upper grid plate that determines the horizontal position of the fuel assembly in the core constitutes one control rod cell by arranging a control rod at the center position of the 2 × 2 array of fuel assemblies, A square lattice hole corresponding to the control rod cell is arranged in the center of the cross section of the core, and further, a number of lattice holes are arranged in the X-axis direction and the Y-axis direction of the orthogonal XY coordinates. The arrangement based on the fuel assembly enrichment / flammable poison design type and the residence time in the furnace, at least with respect to two 1/8 symmetry axes that form an angle of 45 ° to both the X and Y axes Te is capable of loading configuration in a mirror symmetrical, chimney, the flow path partition wall The partitioned grid channel is configured to include a 2 × 2 array of grid holes in the upper grid plate and the cross-sectional arrangement of the grid channel is symmetrical with one of the two 1/8 symmetry axes The neutron detector is arranged in at least one of the symmetrical positions corresponding to the mirror symmetry of the one-eighth symmetry axis of the cross-sectional arrangement of the lattice flow path in the cross section of the core. It is arranged.
The invention according to claim 2 is a natural circulation boiling water reactor comprising a core loaded with a plurality of fuel assemblies, a neutron detector installed in the core, and a chimney installed on the core. The upper grid plate that determines the horizontal position of the fuel assembly in the core constitutes one control rod cell by arranging a control rod at the center position of the 2 × 2 array of fuel assemblies, and corresponds to the control rod cell. A square lattice hole is arranged in the center of the cross section of the core, and a number of lattice holes are arranged in the X-axis direction and the Y-axis direction of the right-angle XY coordinates. The layout based on the design type of the flammable poison and the duration of stay in the reactor is divided into four by dividing the cross section of the core into four by the X axis and Y axis passing through the center of the cross section of the core at least in the right-angle XY coordinates. Can be loaded 90 ° rotationally symmetrically at the center of the core cross section with respect to the core The chimney includes a lattice flow defined by the flow partition, and the lattice flow corresponding to the center of the cross section of the core includes only one lattice hole at the center of the cross section of the core. The grid flow path is configured to include a 2 × 2 array of grid holes in the upper grid plate, and is configured to be 90 ° rotationally symmetric with respect to the quarter core. The neutron detector is arranged at least at one of the symmetrical positions corresponding to the symmetry of 90 ° rotational symmetry with respect to the quarter core of the cross-sectional arrangement of the lattice channel.

かかる構成により、炉心の横断面における燃料集合体の装荷パターンが利用できる対称性と、中性子検出器の配置で利用している対称性と、チムニの横断面の格子流路の配置の対称性と、が一致する。   With this configuration, the symmetry in which the fuel assembly loading pattern in the cross section of the core can be used, the symmetry used in the arrangement of the neutron detectors, and the symmetry of the arrangement of the lattice channels in the chimney cross section , Matches.

本発明によれば、炉心内の燃料集合体の出力分布を少ない中性子検出器でより正確に測定することができる。その結果、中性子検出器の炉心の横断面の配置における対称性が利用でき、少ない中性子検出器を用いて、精度の高い炉心内の出力分布計算ができる。   According to the present invention, the power distribution of the fuel assembly in the core can be measured more accurately with a small number of neutron detectors. As a result, the symmetry in the arrangement of the cross section of the core of the neutron detector can be used, and the power distribution in the core can be calculated with high accuracy by using a small number of neutron detectors.

《第1の実施の形態》
次に、本発明の第1の実施の形態に係る自然循環式沸騰水型原子炉について、図1から図4を参照しながら詳細に説明する。
<< First Embodiment >>
Next, the natural circulation boiling water reactor according to the first embodiment of the present invention will be described in detail with reference to FIGS.

(原子炉の概要)
一般に、沸騰水型原子炉内の冷却材(軽水)の駆動方法は2通りあり、一つは再循環ポンプを用いて強制循環させる方法であり、もう一つは再循環ポンプを用いないで自然循環による方法である。本実施の形態は、後者の自然循環による方法である。
自然循環による方法は、図1に示すように、原子炉圧力容器(以下、圧力容器と称する)6内に収納する炉心7で発生するボイド、すなわち蒸気(気相)と飽和温度の液相の冷却材の混合した密度の低い冷却材と、給水配管16bから供給される給水と混合された液相の冷却材との比重差によって自然循環に必要な駆動力を得るものである。
(Outline of the reactor)
In general, there are two ways to drive coolant (light water) in boiling water reactors, one is forced circulation using a recirculation pump, and the other is natural without using a recirculation pump. It is a method by circulation. This embodiment is the latter method based on natural circulation.
As shown in FIG. 1, the natural circulation method uses voids generated in a reactor core 7 accommodated in a reactor pressure vessel (hereinafter referred to as a pressure vessel) 6, that is, vapor (gas phase) and a liquid phase of a saturation temperature. The driving force required for natural circulation is obtained by the specific gravity difference between the coolant having a low density mixed with the coolant and the coolant in the liquid phase mixed with the feed water supplied from the feed water pipe 16b.

図1に示すように本実施の形態の自然循環式沸騰水型原子炉(以下、原子炉と称する)1は、円筒状の圧力容器6内に、炉心シュラウド8が、同心の円筒状に設けられている。この炉心シュラウド8は、その外周面と圧力容器6の内周面との間隙に環状空間を形成し、これをダウンカマ9という。また、炉心シュラウド8の内部には、多数の燃料集合体21が配置された炉心7を収容している。   As shown in FIG. 1, a natural circulation boiling water reactor (hereinafter referred to as “reactor”) 1 of the present embodiment is provided in a cylindrical pressure vessel 6 and a core shroud 8 is provided in a concentric cylindrical shape. It has been. The core shroud 8 forms an annular space in the gap between the outer peripheral surface thereof and the inner peripheral surface of the pressure vessel 6, and this is referred to as a downcomer 9. Further, the core 7 in which a large number of fuel assemblies 21 are arranged is housed inside the core shroud 8.

ダウンカマ9の上方には、復水器3から給水ポンプ4を介して、給水加熱器5で加熱の後、給水入口ノズル17から圧力容器6内に供給される冷却材を圧力容器6内に均等に配分する図示しない給水スパージャが円環状に設けられている。
炉心シュラウド8は、シュラウドレグ8aによって支持される。ダウンカマ9を下降した冷却材は、シュラウドレグ8a間の流路から、炉心7の下方の炉心下部プレナム(以下、下部プレナムと称する)10に導き入れられる。
Above the downcomer 9, the coolant supplied from the feed water inlet nozzle 17 into the pressure vessel 6 after being heated by the feed water heater 5 from the condenser 3 via the feed water pump 4 is evenly placed in the pressure vessel 6. A water supply sparger (not shown) is provided in an annular shape.
The core shroud 8 is supported by a shroud leg 8a. The coolant descending the downcomer 9 is introduced into the core lower plenum (hereinafter referred to as the lower plenum) 10 below the core 7 from the flow path between the shroud legs 8a.

炉心7の下部には、炉心支持板22を、上部には、上部格子板23を設け、燃料集合体21と制御棒24の横方向の配置を決めている。
炉心支持板22には、所定の間隔で円形の図示しない貫通孔が設けられ、その貫通孔に制御棒案内管25が挿入され、制御棒案内管25の下部は、圧力容器6の底部を貫通して制御棒24を上下方向に動かす制御棒駆動機構(以下、CRDと称する)26を収容する制御棒駆動機構ハウジング(以下、CRDハウジングと称する)26aの上部に組合わされている。
燃料集合体21は、制御棒案内管25の上端に取り付けられた図示しない燃料支持金具の上に据えられ、その荷重は制御棒案内管25およびCRDハウジング26aを介して、圧力容器6の底部に伝えられる。
A core support plate 22 is provided in the lower part of the core 7 and an upper lattice plate 23 is provided in the upper part, and the lateral arrangement of the fuel assemblies 21 and the control rods 24 is determined.
The core support plate 22 is provided with circular through holes (not shown) at predetermined intervals. A control rod guide tube 25 is inserted into the through holes, and the lower portion of the control rod guide tube 25 penetrates the bottom of the pressure vessel 6. Thus, it is combined with an upper portion of a control rod drive mechanism housing (hereinafter referred to as CRD housing) 26a that houses a control rod drive mechanism (hereinafter referred to as CRD) 26 that moves the control rod 24 in the vertical direction.
The fuel assembly 21 is placed on a fuel support bracket (not shown) attached to the upper end of the control rod guide tube 25, and the load is applied to the bottom of the pressure vessel 6 via the control rod guide tube 25 and the CRD housing 26a. Reportedly.

前記の図示しない燃料支持金具は、側面に冷却材入口を有し、そこに図示しないオリフィスが設けられて、冷却材流量を規制している。燃料支持金具の冷却材入口に対応する制御棒案内管25の側面には開口が設けられ、下部プレナム10に導かれた冷却材が燃料支持金具を経て、燃料集合体21内に導かれる。
個々の燃料集合体21は、図示しない四角筒のチャンネルボックスで囲われ、軸方向の個別の流路を形成している。チャンネルボックスは、上部格子板23の上面まで到る。前記四角筒のチャンネルボックスの外側には、隣接している燃料集合体21のチャンネルボックスとの間に間隙を有し、所定割合の冷却材が上方に流れる流路を形成している。
前記制御棒24は、図示しない中性子吸収物質を含む有効部を有し、その有効部が前記チャンネルボックスの外面をガイドとして、4体の燃料集合体21間に挿入される。
The fuel support fitting (not shown) has a coolant inlet on a side surface, and an orifice (not shown) is provided there to regulate the coolant flow rate. An opening is provided in the side surface of the control rod guide tube 25 corresponding to the coolant inlet of the fuel support bracket, and the coolant guided to the lower plenum 10 is guided into the fuel assembly 21 through the fuel support bracket.
Each fuel assembly 21 is surrounded by a rectangular tube channel box (not shown) to form individual flow paths in the axial direction. The channel box reaches the upper surface of the upper lattice plate 23. On the outside of the channel box of the rectangular tube, there is formed a flow path having a gap between the adjacent fuel assembly 21 and the flow rate of a predetermined ratio of coolant.
The control rod 24 has an effective portion containing a neutron absorbing material (not shown), and the effective portion is inserted between the four fuel assemblies 21 with the outer surface of the channel box as a guide.

さらに、炉心7内には、中性子検出器を複数含み出力領域の中性子束を計測するLPRM(Local Power Range Monitor:局部出力領域モニタ)検出器集合体(以下、単にLPRMと称する)33が、配置されている。LPRM33は、その下部が圧力容器6底部に設けられた貫通孔を通る炉内核計装ハウジング33aに収容され、信号ケーブルが炉内核計装ハウジング33aの下端から出ている。   Further, an LPRM (Local Power Range Monitor) detector assembly (hereinafter simply referred to as LPRM) 33 that includes a plurality of neutron detectors and measures the neutron flux in the output region is disposed in the core 7. Has been. The LPRM 33 is housed in an in-core nuclear instrument housing 33a whose lower part passes through a through hole provided in the bottom of the pressure vessel 6, and a signal cable extends from the lower end of the in-core nuclear instrument housing 33a.

炉心7の上には、炉心から出た気液二相流の冷却材を上方に導き自然循環駆動力を増加させるチムニ11A(図1中、チムニ11で代表)が設けられている。チムニ11Aは、例えば圧力容器6と同心の円筒状のチムニ胴11dを有し、その内部を仕切り板で格子状に仕切った格子流路11aを有している。以下では、格子流路11aを構成する前記仕切り板を流路隔壁11bと称する。
なお、個々の格子流路11aを上方に流れる冷却材が、チムニ11A内の上部で合流するようにチムニ11Aの上部に上部プレナム11cが設けられている。
なお、上部格子板23とチムニ11Aの下端とは、ダウンカマ9を下降する冷却材と、炉心7を出た冷却材とが混じらないような組み合わせ構造となっている。
Provided on the core 7 is a chimney 11A (represented by the chimney 11 in FIG. 1) that guides the gas-liquid two-phase flow coolant flowing out of the core upward and increases the natural circulation driving force. The chimney 11A has, for example, a cylindrical chimney cylinder 11d concentric with the pressure vessel 6, and has a lattice flow path 11a in which the inside is partitioned by a partition plate. Hereinafter, the partition plate constituting the lattice channel 11a is referred to as a channel partition 11b.
In addition, the upper plenum 11c is provided in the upper part of the chimney 11A so that the coolant flowing upward through the individual lattice channels 11a merges in the upper part of the chimney 11A.
Note that the upper lattice plate 23 and the lower end of the chimney 11A have a combined structure in which the coolant that descends the downcomer 9 and the coolant that exits the core 7 are not mixed.

チムニ11Aの上端は、シュラウドヘッド12aで閉じられる。シュラウドヘッド12aには、所定の数の冷却材通過用の孔が設けられ、その孔はスタンドパイプ12bを介して気液二相流から飽和蒸気と飽和水とを分離する気水分離器12につながっている。気水分離器12の上方には、蒸気乾燥器13が設けられ、気水分離器12を出た飽和蒸気に含まれる湿分を除去する。を通過した蒸気は、蒸気ドーム14、蒸気出口ノズル15、主蒸気配管16aを経て、タービン2に送られる。
なお、シュラウドヘッド12aとスタンドパイプ12bと気水分離器12は一体に組み立てられており、燃料交換時には、一体でチムニ11Aの上端から取り外し可能な構成となっている。
The upper end of the chimney 11A is closed by the shroud head 12a. The shroud head 12a is provided with a predetermined number of coolant passage holes, and the holes are provided in the steam / water separator 12 for separating the saturated steam and the saturated water from the gas / liquid two-phase flow through the stand pipe 12b. linked. A steam dryer 13 is provided above the steam / water separator 12 to remove moisture contained in the saturated steam exiting the steam / water separator 12. The steam that passes through the steam dome 14, the steam outlet nozzle 15, and the main steam pipe 16 a is sent to the turbine 2.
The shroud head 12a, the stand pipe 12b, and the steam / water separator 12 are integrally assembled, and are configured to be integrally removable from the upper end of the chimney 11A when changing fuel.

このように、概略説明した原子炉1においては、給水入口ノズル17から供給される冷却材は、気水分離器12で分離された飽和水と混合し、図1中矢印Aで示される冷却材は、ダウンカマ9を下降し、シュラウドレグ8aの図示しない間隙によって構成される流路から、炉心シュラウド8内に流入し、炉心7によって加熱される。炉心7からの加熱によって冷却材Aは、矢印Bで示す飽和状態の気液二相流となり、この気液二相流は格子流路11a、上部プレナム11c、スタンドパイプ12bを経て、気水分離器12によって、矢印Cで示す気相の飽和蒸気と、矢印Dで示す液相の飽和水に分離される。飽和蒸気Cは、蒸気乾燥器13を経て、蒸気出口ノズル15から主蒸気配管16aによってタービン2に導かれ発電に供される。
一方、飽和水Dは、圧力容器6内の冷却材に混合され、給水入口ノズル17から供給される冷却材と更に混合されて、再びダウンカマ9を下降して圧力容器6内を循環する。
Thus, in the nuclear reactor 1 schematically described, the coolant supplied from the feed water inlet nozzle 17 is mixed with the saturated water separated by the steam separator 12, and the coolant indicated by the arrow A in FIG. Moves down the downcomer 9, flows into the core shroud 8 from a flow path formed by a gap (not shown) of the shroud leg 8 a, and is heated by the core 7. By the heating from the core 7, the coolant A becomes a saturated gas-liquid two-phase flow indicated by an arrow B, and this gas-liquid two-phase flow passes through the lattice channel 11a, the upper plenum 11c, and the stand pipe 12b to separate the gas and water. The vessel 12 separates the gas phase saturated steam indicated by the arrow C and the liquid phase saturated water indicated by the arrow D. The saturated steam C passes through the steam dryer 13, is led from the steam outlet nozzle 15 to the turbine 2 through the main steam pipe 16 a, and is used for power generation.
On the other hand, the saturated water D is mixed with the coolant in the pressure vessel 6, further mixed with the coolant supplied from the feed water inlet nozzle 17, and descends the downcomer 9 again to circulate in the pressure vessel 6.

(炉心の構成−概要)
次に、図2、図3を参照(適宜、図1を参照)し、炉心7の横断面(以下、炉心平面と称する)の詳細な構成を説明する。
燃料集合体21は、図1のG−G矢視平面図である図2の(a)に示すように、上部格子板23にX軸51方向、およびY軸52方向に所定の間隔で設けられた中太の実線で示した正方形の格子孔32に対応して、細線の実線の正方形で示した燃料集合体21の4体ずつが組をなして配置され、ほぼ円柱状の炉心7を構成する。4体1組の燃料集合体21間には、横断面十字形状の制御棒24が下方の制御棒案内管25から前記図示しない燃料支持金具を貫通して出し入れ可能に設けられている(図1参照)。前記燃料集合体21の4体1組の単位を、以下、制御棒セル31という。図2では、代表的に炉心平面の中心に配される中央制御棒セル31(C)と、それ以外の位置の制御棒セル31のみを示し、制御棒セル31にのみ代表的に制御棒24を示してある。(a)中のL部の制御棒セル31を拡大して(b)に示す。
炉心7は、燃料集合体21を1132体、制御棒24を269本含む構成である。
(Core structure-overview)
Next, referring to FIGS. 2 and 3 (refer to FIG. 1 as appropriate), a detailed configuration of the cross section of the core 7 (hereinafter referred to as the core plane) will be described.
The fuel assembly 21 is provided on the upper lattice plate 23 at predetermined intervals in the X-axis 51 direction and the Y-axis 52 direction, as shown in FIG. Corresponding to the square lattice holes 32 indicated by the solid solid lines, four fuel assemblies 21 indicated by the thin solid squares are arranged in groups, and the substantially cylindrical core 7 is formed. Constitute. A control rod 24 having a cross-shaped cross section is provided between the four fuel assemblies 21 so as to pass through the fuel support fitting (not shown) from the lower control rod guide tube 25 (FIG. 1). reference). A unit of four bodies of the fuel assembly 21 is hereinafter referred to as a control rod cell 31. In FIG. 2, only the central control rod cell 31 (C) that is typically arranged at the center of the core plane and the control rod cells 31 at other positions are shown, and only the control rod cell 31 is representatively shown in the control rod 24. Is shown. The control rod cell 31 of the L part in (a) is expanded and shown in (b).
The core 7 is configured to include 1132 fuel assemblies 21 and 269 control rods 24.

(炉心の構成−炉心平面の対称性)
炉心7は、炉心平面における中心を通るX軸51とY軸52のそれぞれの対称軸、および中心を通ってX軸51、またはY軸52に対して45°の角度をなす1/8対称の対称軸(以下、1/8対称軸と称する)53、54を有している。
通常、X軸51、Y軸52で分割した炉心平面の領域それぞれを「1/4炉心」と言い、「1/4炉心」をさらに1/8対称軸53、54で2分割した領域を「1/8炉心」と言う。
炉心7は、X軸51およびY軸52に対して、1/4炉心鏡対称、1/4炉心90°回転対称、1/2炉心鏡対称、1/2炉心180°回転対称の燃料集合体の装荷パターンが構成できる。また、炉心7は、1/8対称軸53、54に対して1/8炉心鏡対称、1/2炉心鏡対称、1/2炉心180°回転対称の燃料集合体の装荷パターンが構成できる。
(Core structure-Symmetry of the core plane)
The core 7 has an axis of symmetry of the X axis 51 and the Y axis 52 passing through the center in the core plane, and 1/8 symmetrical at an angle of 45 ° with respect to the X axis 51 or the Y axis 52 through the center. It has symmetry axes (hereinafter referred to as 1 / symmetry axes) 53 and 54.
Usually, each area of the core plane divided by the X axis 51 and the Y axis 52 is referred to as “1/4 core”, and “1/4 core” is further divided by 2 by 1/8 symmetry axes 53, 54. “1/8 core”.
The core 7 is a fuel assembly having a 1/4 core mirror symmetry, a 1/4 core 90 ° rotational symmetry, a 1/2 core mirror symmetry, and a 1/2 core 180 ° rotational symmetry with respect to the X axis 51 and the Y axis 52. The loading pattern can be configured. In addition, the core 7 can have a loading pattern of a fuel assembly having a 1/8 core mirror symmetry, a 1/2 core mirror symmetry, and a 1/2 core 180 ° rotational symmetry with respect to the 1/8 symmetry axes 53 and 54.

(炉心の構成−LPRM配置)
次に、図3を参照しながら炉心平面におけるLPRM33の配置(以下、LPRM配置と称する)について説明する。
図3の(a)に示すように炉心7内には、炉心平面の外周部の制御棒セル31を除いて、原則的に各制御棒セル31の隣り合う2つのコーナにLPRM33が、配置されている。これは、1/8対称軸53上の制御棒セル31の対角コーナ位置に、炉心平面の最外周を除いて●印で示すようにLPRM33を12体配置し、1/8対称軸53上のLPRM33を起点に、さらにX軸51方向とY軸52方向に沿うように交互に制御棒セル31のコーナにLPRM33を、炉心平面の外周部を除いて配置するものである。(a)中のL1部の制御棒セル31を拡大して(b)に示す。本実施の形態におけるLPRM33は、合計134体である。
(Core structure-LPRM arrangement)
Next, the arrangement of the LPRM 33 on the core plane (hereinafter referred to as LPRM arrangement) will be described with reference to FIG.
As shown in FIG. 3A, in the core 7, LPRMs 33 are basically arranged at two corners adjacent to each control rod cell 31 except for the control rod cells 31 on the outer periphery of the core plane. ing. This is because 12 LPRMs 33 are arranged at the diagonal corner positions of the control rod cell 31 on the 1/8 symmetry axis 53 except for the outermost periphery of the core plane, as indicated by the mark ●, on the 1/8 symmetry axis 53. The LPRM 33 is arranged at the corners of the control rod cell 31 alternately along the X-axis 51 direction and the Y-axis 52 direction except for the outer peripheral portion of the core plane. The control rod cell 31 of L1 part in (a) is expanded and shown in (b). LPRM33 in this Embodiment is a total of 134 bodies.

このようなLPRM配置とすることによって、1/8対称軸53を中心に折り返すと、炉心7の制御棒セル31の炉心平面の外周部を除く全コーナにLPRM33を配置したことになる。1/8対称軸53の対称性を利用することによって、炉心平面の最外周位置を除く制御棒セル31の各コーナの位置(計256箇所)に対して52.3%に減じて配置していることになる。   With such an LPRM arrangement, when the fold is centered on the 1/8 symmetry axis 53, the LPRM 33 is arranged at all corners except for the outer peripheral portion of the core plane of the control rod cell 31 of the core 7. By utilizing the symmetry of the 1/8 symmetry axis 53, it is reduced to 52.3% with respect to the position of each corner (256 places in total) of the control rod cell 31 excluding the outermost peripheral position of the core plane. Will be.

(チムニの格子流路の構成)
次に、図4、図5を参照しながら炉心7の上に設置するチムニ11Aの横断面の格子流路11aの詳細な配置構成について説明する。
本実施の形態の原子炉1では、図1のH−H矢視平面図である図4の(a)に示すように、格子流路11aには、図中極太の実線で示す流路隔壁11bで囲まれた右斜線部で示す格子流路11aと、流路隔壁11bとチムニ胴11dとで囲まれた左斜線部で示す格子流路11aとがある。このような格子流路11aの横断面の配置は、炉心平面の中央に位置する中央制御棒セル31(C)を含む中央格子流路11a(C)が、中央制御棒セル31(C)を左下隅に位置するように含み、かつ各格子流路11aが炉心平面の中央領域では原則的に2×2配列の制御棒セル31を含む配置となっている。したがって、(a)に示すように、格子流路11aの配置は、炉心平面の1/8対称軸53に対して鏡対称の配置である。
なお、格子流路11aの流路隔壁11bは、上部格子板23の中太実線の正方形で示す格子孔32を横切らないような形となっている。(a)中のL2部の制御棒セル31を拡大して(b)に示す。
(Configuration of chimney lattice flow path)
Next, a detailed arrangement configuration of the lattice flow path 11a in the cross section of the chimney 11A installed on the core 7 will be described with reference to FIGS.
In the nuclear reactor 1 of the present embodiment, as shown in FIG. 4A which is a plan view taken along the line HH in FIG. 1, the lattice flow path 11a has a flow path partition shown by a solid line in the figure. There is a lattice flow path 11a indicated by a right oblique line portion surrounded by 11b, and a lattice flow path 11a indicated by a left oblique line portion surrounded by a flow path partition wall 11b and a chimney cylinder 11d. Such a cross-sectional arrangement of the lattice channel 11a is such that the central lattice channel 11a (C) including the central control rod cell 31 (C) located at the center of the core plane is connected to the central control rod cell 31 (C). The grid channels 11a are arranged so as to be located in the lower left corner, and in principle, each grid channel 11a includes a 2 × 2 array of control rod cells 31 in the central region of the core plane. Therefore, as shown to (a), arrangement | positioning of the lattice flow path 11a is mirror-symmetrical arrangement | positioning with respect to the 1/8 symmetry axis 53 of a core plane.
In addition, the flow path partition wall 11b of the lattice flow path 11a has a shape that does not cross the lattice hole 32 indicated by the middle thick solid square in the upper lattice plate 23. The control rod cell 31 of the L2 part in (a) is enlarged and shown in (b).

(チムニの格子流路の配置とLPRM配置の関係の作用効果)
図5の(a)はLPRM配置[図3の(a)参照]と、チムニ11Aの格子流路11aの配置[図4の(a)参照]を重ねて示したものである。(a)中のL3部の制御棒セル31を拡大して(b)に示す。図中、図3および図4に記載の構成と同じ構成については、同じ符号を付し、説明を省略する。
(a)に示すように、1/8対称軸53に対して、格子流路11aの配置は鏡対称であり、LPRM33は1/8対称軸53を軸に折り返すと、各制御棒セル31の炉心平面の外周部を除く各コーナにLPRM33が配置された形になる。
炉心7における燃料集合体21の装荷パターン、つまり燃料集合体21の濃縮度・可燃性毒物の設計タイプの配置、燃料集合体平均燃焼度の分布などが1/8対称軸53に対して鏡対称になるように配置された場合、チムニ11Aにおける格子流路11aの配置構成からそのチムニ11Aの横断面のボイド分布も1/8対称軸53に対して鏡対称になる特性を備える。したがって、炉心7の燃料集合体21の装荷パターンを1/8対称軸53に鏡対称とすることと相俟って、チムニ11Aの横断面の格子流路11aへの気液二相流のボイド分布も1/8対称軸53に鏡対称となり、チムニ11Aの横断面のボイド分布が燃料集合体21への流量配分に影響しても、炉心径方向出力分布(個々の燃料集合体21全体の出力を炉心平面分布で見たもの)、炉心平面の燃料集合体21への流量配分も1/8対称軸53に対して鏡対称となる。
(Effects of the relationship between Chimney's grid channel arrangement and LPRM arrangement)
FIG. 5A shows the LPRM arrangement [see FIG. 3A] and the arrangement of the chimney 11A lattice channels 11a [see FIG. 4A] in an overlapping manner. The control rod cell 31 of the L3 part in (a) is enlarged and shown in (b). In the figure, the same components as those described in FIGS. 3 and 4 are denoted by the same reference numerals, and description thereof is omitted.
As shown to (a), the arrangement | positioning of the grating | lattice flow path 11a is mirror-symmetrical with respect to the 1/8 symmetry axis 53, and when LPRM33 folds around the 1/8 symmetry axis 53 as an axis | shaft, The LPRM 33 is arranged at each corner except for the outer peripheral portion of the core plane.
The loading pattern of the fuel assembly 21 in the core 7, that is, the concentration of the fuel assembly 21, the arrangement of the design type of the flammable poison, the distribution of the fuel assembly average burnup, etc. are mirror-symmetric with respect to the 1/8 symmetry axis 53. When arranged so that the void distribution in the cross section of the chimney 11A is mirror-symmetric with respect to the 1/8 symmetry axis 53 due to the arrangement configuration of the lattice channels 11a in the chimney 11A. Therefore, coupled with the loading pattern of the fuel assembly 21 of the core 7 being mirror-symmetrical with respect to the 1/8 symmetry axis 53, the void of the gas-liquid two-phase flow into the lattice channel 11a of the cross-section of the chimney 11A. The distribution is also mirror-symmetric with respect to the 1/8 symmetry axis 53, and even if the void distribution in the cross section of the chimney 11A affects the flow distribution to the fuel assemblies 21, the power distribution in the core radial direction (the individual fuel assemblies 21 as a whole) The power distribution to the fuel assemblies 21 in the core plane is also mirror symmetric with respect to the 1/8 symmetry axis 53.

以上のように本実施の形態によれば、LPRM33を制御棒セル31の全コーナ位置の内、炉心平面の1/8対称軸53に対して鏡対称の位置の一方にだけ配置し、他方にはLPRM33を配置しない構成としても、制御棒セル31のコーナにLPRM33が配置されていない箇所の中性子束は、炉心平面上で対称位置にあるLPRM33の計測した中性子束で代替することとが可能となり、少ないLPRM33でも、従来の強制循環式BWRと同等の正確な炉心内出力分布計算が可能となる。   As described above, according to the present embodiment, the LPRM 33 is disposed only at one of the mirror symmetry positions with respect to the 1/8 symmetry axis 53 of the core plane among all the corner positions of the control rod cell 31, and on the other side. Even if the LPRM 33 is not arranged, the neutron flux at the location where the LPRM 33 is not arranged at the corner of the control rod cell 31 can be replaced with the neutron flux measured by the LPRM 33 at a symmetrical position on the core plane. Even with a small number of LPRMs 33, an accurate in-core power distribution calculation equivalent to the conventional forced circulation type BWR can be performed.

(第1の実施の形態におけるLPRM配置の第1の変形例)
次に、図6および図7を参照しながら第1の実施の形態におけるLPRM配置の第1の変形例を説明する。
通常、原子炉1は、炉心7の径方向出力分布が平坦になるように、燃料集合体21の炉心への装荷パターンを設計する。また、運転中に余剰反応度を制御し、出力分布を調整する制御棒24の挿入位置のパターンも炉心7の径方向出力分布が平坦になるように設計するので、実際の運転においても各燃料集合体21の炉心出口、つまり、チャンネルボックス上端出口でのボイド率は、炉心平面の外周部に配置された燃料集合体を除き、燃料集合体21間で大きくは変わらない。
したがって、炉心平面の外周部の燃料集合体21を含む格子流路11a(図7参照)を除いた残りの炉心平面の中央領域の格子流路11a間でのボイド率はほぼ均一であり、チムニ11A横断面での格子流路11a配置の非対称性が、炉心平面における装荷パターンの対称位置にある燃料集合体21同士の間の流量配分、出力に与える影響は小さいといえる。
(First Modification of LPRM Arrangement in First Embodiment)
Next, a first modification of the LPRM arrangement in the first embodiment will be described with reference to FIGS. 6 and 7.
Normally, the nuclear reactor 1 designs a loading pattern to the core of the fuel assemblies 21 so that the radial power distribution of the core 7 becomes flat. In addition, the pattern of the insertion position of the control rod 24 for controlling the surplus reactivity during operation and adjusting the power distribution is also designed so that the radial power distribution of the core 7 becomes flat. The void ratio at the core outlet of the assemblies 21, that is, at the upper end outlet of the channel box, does not vary greatly between the fuel assemblies 21 except for the fuel assemblies arranged on the outer peripheral portion of the core plane.
Therefore, the void ratio is substantially uniform between the lattice flow paths 11a in the central region of the remaining core plane excluding the lattice flow paths 11a (see FIG. 7) including the fuel assemblies 21 on the outer periphery of the core plane. It can be said that the asymmetry of the arrangement of the lattice flow paths 11a in the 11A cross section has little influence on the flow distribution and output between the fuel assemblies 21 at the symmetrical positions of the loading pattern on the core plane.

そこで、図6の(a)に示すLPRM配置は、図3に示したLPRM配置から、1/8対称軸53上のLPRM33をすべて削除し、図3において1/8対称軸53上のLPRM33の位置を起点に、X軸51方向とY軸52方向に沿うように交互に制御棒セル31のコーナに配置されたLPRM33を、一つ置きに削除した配置である。この場合、LPRM33は、64体が炉心平面に配置されていることになり、炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して25%に減じて配置していることになる。
図7の(a)に、本変形例のLPRM配置と、チムニ11Aの格子流路11aの配置を重ねて示す。1/8対称軸53に対して、格子流路11aの配置が鏡対称であり、LPRM33は1/8対称軸53で折り返すと炉心平面の制御棒セル31の対角位置の炉心平面外周部を除くすべてのコーナに配置されていることになる。図6の(a)、図7の(a)中のL4、L5部の制御棒セル31を図6の(b)、図7の(b)に示す。
Therefore, in the LPRM arrangement shown in FIG. 6A, all LPRMs 33 on the 1/8 symmetry axis 53 are deleted from the LPRM arrangement shown in FIG. 3, and the LPRM 33 on the 1/8 symmetry axis 53 in FIG. Starting from the position, every other LPRM 33 arranged in the corners of the control rod cell 31 along the X-axis 51 direction and the Y-axis 52 direction is deleted. In this case, 64 LPRMs 33 are arranged on the core plane, and the LPRM 33 is reduced to 25% with respect to the positions of the respective corners of the control rod cell 31 excluding the outermost peripheral portion of the core plane (256 places in total). Will be placed.
FIG. 7A shows the LPRM arrangement of this modification and the arrangement of the lattice channels 11a of the chimney 11A in an overlapping manner. The arrangement of the lattice channels 11a is mirror symmetric with respect to the 1/8 symmetry axis 53, and when the LPRM 33 is folded back on the 1/8 symmetry axis 53, the core plane outer peripheral portion at the diagonal position of the control rod cell 31 on the core plane is obtained. It will be placed in all corners except. The control rod cells 31 of L4 and L5 in FIGS. 6A and 7A are shown in FIGS. 6B and 7B.

このように、炉心径方向出力分布が平坦な場合、図4に示したチムニ11Aの横断面における格子流路11aの配置の炉心平面に対する非対称性が、炉心径方向出力分布に与える影響は小さいので、本LPRM配置の変形例でも、炉心内出力分布計算において、第1の実施の形態のLPRM配置よりも少ないLPRM33で、従来の強制循環式BWRと同等の精度が確保できる。   In this way, when the core radial power distribution is flat, the asymmetry of the arrangement of the lattice channels 11a in the cross section of the chimney 11A shown in FIG. 4 with respect to the core plane has little influence on the core radial power distribution. Even in this modified example of the LPRM arrangement, in the power distribution calculation in the core, the accuracy equivalent to that of the conventional forced circulation type BWR can be ensured with the LPRM 33 which is smaller than the LPRM arrangement of the first embodiment.

(第1の実施の形態におけるLPRM配置の第2の変形例)
次に、図8を参照しながら第1の実施の形態におけるLPRM配置の第2の変形例を説明する。本変形例は、図3に示す第1の実施の形態におけるLPRM配置において、炉心平面周辺領域(制御棒セル31単位で考えて、ほぼ炉心平面の最外周から4層目の制御棒セル31までの領域)は、1/8対称軸53で折り返しても制御棒セル31に対し対角位置のコーナにだけLPRM33を配したLPRM配置とし、炉心平面周辺領域でLPRM33を減じたものである。この場合、図8の(a)に示すようにLPRM33は、106体炉心平面に配置されている。(a)のL6部の制御棒セル31を(b)に示す。
(Second Modification of LPRM Arrangement in First Embodiment)
Next, a second modification of the LPRM arrangement in the first embodiment will be described with reference to FIG. In the LPRM arrangement according to the first embodiment shown in FIG. 3, the present modification is the core plane peripheral region (from the outermost periphery of the core plane to the fourth control rod cell 31 in the control rod cell 31 unit). Area) is an LPRM arrangement in which LPRMs 33 are arranged only at corners that are diagonal to the control rod cell 31 even when folded around the 1/8 symmetry axis 53, and LPRMs 33 are subtracted in the peripheral area around the core plane. In this case, as shown in FIG. 8A, the LPRM 33 is disposed on the 106 core plane. The control rod cell 31 of L6 part of (a) is shown in (b).

このLPRM配置は、炉心中央領域では燃料集合体21の出力が高くなりやすく、熱的制限値(MCPR、MLHGR)の運転制限値に対する余裕が小さくなりやすい傾向から、LPRM33からの中性子束計測信号をできるだけ多く取り、炉心中央領域の出力分布計算の精度を変形例1よりも向上する観点からのLPRM配置の変形である。
本変形例では、炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して41.4%に減じて配置していることになる。
In this LPRM arrangement, the output of the fuel assembly 21 tends to be high in the central region of the core, and the margin for the operation limit values of the thermal limit values (MCPR, MLHGR) tends to be small. This is a modification of the LPRM arrangement from the viewpoint of taking as much as possible and improving the accuracy of the power distribution calculation in the core central region as compared with the first modification.
In this modification, the number of corners of the control rod cell 31 excluding the outermost peripheral portion of the core plane is reduced to 41.4% with respect to the positions of the corners (256 places in total).

(第1の実施の形態におけるLPRM配置の第3の変形例)
次に、図9を参照しながら第1の実施の形態におけるLPRM配置の第3の変形例を説明する。本変形例は、図3に示す第1の実施の形態におけるLPRM配置において、炉心平面中央領域(制御棒セル31単位で考えて、ほぼ炉心平面の最外周から4層目より中心側の制御棒セル31の領域)は、1/8対称軸53を軸に折り返しても、制御棒セル31に対し対角位置のコーナにだけLPRM33を配するように、炉心平面中央領域でLPRM33を減じたものである。この図9の(a)に示すLPRM配置の場合、LPRM33は92体炉心平面に配置されている。(a)のL7部の制御棒セル31を(b)に示す。
(Third Modification of LPRM Arrangement in First Embodiment)
Next, a third modification of the LPRM arrangement in the first embodiment will be described with reference to FIG. This modification is different from the LPRM arrangement in the first embodiment shown in FIG. 3 in the core plane central region (in terms of the control rod cell 31 unit, the control rod on the center side from the fourth layer from the outermost periphery of the core plane. The region of the cell 31) is obtained by subtracting the LPRM 33 in the central region of the core plane so that the LPRM 33 is arranged only at the corner at a diagonal position with respect to the control rod cell 31 even if the 1/8 symmetry axis 53 is folded back. It is. In the case of the LPRM arrangement shown in FIG. 9A, the LPRM 33 is arranged in the 92 core plane. The control rod cell 31 of L7 part of (a) is shown in (b).

これは、LPRM配置の第2の変形例とは逆で、炉心中央領域では燃料集合体21の出力が高くなりやすく、熱的制限値(MCPR、MLHGR)の運転制限値に対する余裕が小さくなりやすい傾向から、炉心径方向出力分布を平坦に設計することが普通であり、逆にそれより外側の周辺領域では、炉心からの中性子の漏洩の効果で中央領域より径方向出力は低くなる傾向から、それを利用して燃料集合体21間の出力の差が大きいものを配置して組み合わせることが多く、燃料集合体21の出口ボイド率の差も大きいので、LPRM33からの中性子束計測信号をできるだけ多く取り、炉心周辺領域の燃料集合体出力計算の精度を変形例1よりも向上する観点からのLPRM配置の変形である。
本変形例では、炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して35.9%に減じて配置していることになる。
This is contrary to the second modified example of the LPRM arrangement. In the central region of the core, the output of the fuel assembly 21 tends to be high, and the margin for the operation limit value of the thermal limit values (MCPR, MLHGR) tends to be small. From the trend, it is normal to design the core radial power distribution flat, and conversely, in the peripheral region outside it, the radial power tends to be lower than the central region due to the effect of neutron leakage from the core, In many cases, a large difference in output between the fuel assemblies 21 is used and combined, and the difference in the exit void ratio of the fuel assemblies 21 is also large. Therefore, as many neutron flux measurement signals as possible from the LPRM 33 are obtained. This is a modification of the LPRM arrangement from the viewpoint of improving the accuracy of the fuel assembly output calculation in the core peripheral region as compared with the first modification.
In this modified example, the number of corners of the control rod cell 31 excluding the outermost peripheral portion of the core plane is reduced to 35.9% with respect to the positions of the corners (256 places in total).

《第2の実施の形態》
次に、図10を参照しながら第1の実施の形態における格子流路11aの配置を変形した第2の実施の形態を説明する。第1の実施の形態と同じ構成については同じ符号を付し、説明を省略する。
本実施の形態では図10の(a)に示すように、チムニ11Bの格子流路11aの横断面の配置は、炉心平面の中心に位置する中央制御棒セル31(C)を含む中央格子流路11a(C)が、中央制御棒セル31(C)を右下隅に位置するように含み、かつ各格子流路11aが炉心平面の中央領域では原則的に2×2配列の制御棒セル31を含む配置である。したがって、(a)に示すように、格子流路11aの配置は、炉心平面の1/8対称軸54に対して鏡対称の配置である。図10の(a)に示した例は、1/8対称軸54に対する、チムニ11Bの横断面の鏡対称性および炉心平面の装荷パターンの鏡対称性を利用して、最外周部を除いて制御棒セル31の対角位置のコーナすべてにLPRM配置をしたのに相当するLPRM配置である。炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して25%に減じて配置していることになる。(a)のL8部の制御棒セル31を(b)に示す。
なお、このチムニ11Bの横断面の格子流路11aの配置は、単に第1の実施の形態における図4のチムニ11Aの横断面の格子流路11aの配置を逆時計回り方向に90°炉心平面中心に対して回しただけのものであり、この格子流路11aの配置に対しては、同様に第1の実施の形態の図3に示すLPRM配置、第1の実施の形態の第3、第4のLPRM配置の変形例を、炉心平面中心の周りに逆時計回り方向に90°回したLPRM配置と組み合わせてもよい。その作用、効果はそれぞれの第1の実施の形態および第1の実施の形態における変形例と同じである。
<< Second Embodiment >>
Next, a second embodiment in which the arrangement of the lattice channels 11a in the first embodiment is modified will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, as shown in FIG. 10A, the arrangement of the cross section of the lattice flow path 11a of the chimney 11B is a central lattice flow including the central control rod cell 31 (C) located at the center of the core plane. The path 11a (C) includes a central control rod cell 31 (C) so as to be located in the lower right corner, and each lattice channel 11a is basically a 2 × 2 array of control rod cells 31 in the central region of the core plane. Is an arrangement including Therefore, as shown to (a), arrangement | positioning of the lattice flow path 11a is mirror-symmetric arrangement | positioning with respect to the 1/8 symmetry axis 54 of a core plane. The example shown in (a) of FIG. 10 uses the mirror symmetry of the chimney 11B cross-section relative to the 1/8 symmetry axis 54 and the mirror symmetry of the loading pattern on the core plane, except for the outermost peripheral portion. This is an LPRM arrangement corresponding to the LPRM arrangement at all the corners of the diagonal position of the control rod cell 31. In other words, the control rod cells 31 except for the outermost peripheral portion of the core plane are arranged by being reduced to 25% with respect to the positions of the respective corners (256 places in total). The control rod cell 31 of L8 part of (a) is shown in (b).
The arrangement of the lattice channels 11a in the cross section of the chimney 11B is simply 90 ° in the counterclockwise direction of the arrangement of the lattice channels 11a in the cross section of the chimney 11A in FIG. 4 in the first embodiment. For the arrangement of the lattice channels 11a, the LPRM arrangement shown in FIG. 3 of the first embodiment, the third of the first embodiment, A modification of the fourth LPRM arrangement may be combined with an LPRM arrangement rotated 90 ° counterclockwise around the core plane center. The operation and effect are the same as those of the first embodiment and the modification of the first embodiment.

《第3の実施の形態》
次に、図11を参照しながら本発明の第3の実施の形態の原子炉1を説明する。本実施の形態の原子炉1の縦断面の構成、炉心平面の燃料集合体21、制御棒24の配置の構成は第1の実施の形態と同じである(図1、図2参照)。第1の実施の形態と同じ構成については同じ符号を付し、説明を省略する。
本実施の形態では第1の実施の形態と図11の(a)に示すように、チムニ11Cの格子流路11aの横断面の配置が異なる。炉心平面の中心に位置する中央制御棒セル31(C)を含む中央格子流路11a(C)が、中央制御棒セル31(C)を3×3配列の制御棒セル31の中央に位置するように含み、かつ各格子流路11aが炉心平面の中央領域では原則的に3×3配列の制御棒セル31を含む配置である。したがって、(a)に示すように、格子流路11aの配置は、炉心7と同様に、X軸51およびY軸52に対して、1/4炉心鏡対称、1/4炉心90°回転対称、1/2炉心鏡対称、1/2炉心180°回転対称配置構成である。また、1/8対称軸53、54に対して1/8炉心鏡対称、1/2炉心鏡対称、1/2炉心180°回転対称の配置である。
これに組み合わせるLPRM配置は、炉心平面の前記X軸51、Y軸52、1/8対称軸53、54に対する前記対称性を利用して、最外周部を除いて制御棒セル31のすべてのコーナにLPRM配置をしたのに相当するLPRM配置である。炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して25%に減じて配置していることになる。(a)中のL9部の制御棒セル31を(b)に示す。
<< Third Embodiment >>
Next, a nuclear reactor 1 according to a third embodiment of the present invention will be described with reference to FIG. The configuration of the longitudinal section of the nuclear reactor 1 of the present embodiment, the arrangement of the fuel assemblies 21 and the control rods 24 on the core plane are the same as those of the first embodiment (see FIGS. 1 and 2). The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, as shown in FIG. 11A, the arrangement of the cross section of the lattice channel 11a of the chimney 11C is different from that of the first embodiment. A central lattice channel 11a (C) including a central control rod cell 31 (C) positioned at the center of the core plane is positioned at the center of the 3 × 3 array of control rod cells 31. In addition, each lattice channel 11a is basically arranged in the central region of the core plane so as to include the 3 × 3 array of control rod cells 31. Therefore, as shown in (a), the arrangement of the lattice flow paths 11a is symmetric with respect to the X axis 51 and the Y axis 52 with respect to the X axis 51 and the Y axis 52, and 1/4 axis 90 ° rotational symmetry. , 1/2 core mirror symmetry, 1/2 core 180 ° rotationally symmetrical arrangement configuration. Further, the 1/8 symmetry axis 53 and 54 are arranged in a 1/8 core mirror symmetry, a 1/2 core mirror symmetry, and a 1/2 core 180 ° rotational symmetry.
The LPRM arrangement combined with this is based on the symmetry with respect to the X axis 51, the Y axis 52, and the 1/8 symmetry axes 53 and 54 in the core plane, and all the corners of the control rod cell 31 except for the outermost peripheral portion. This is an LPRM arrangement equivalent to the LPRM arrangement. In other words, the control rod cells 31 except for the outermost peripheral portion of the core plane are arranged by being reduced to 25% with respect to the positions of the respective corners (256 places in total). The control rod cell 31 of L9 part in (a) is shown in (b).

本実施の形態では、炉心平面の対称性と同じ対称性を有する格子流路11aの配置なので、第1の実施の形態におけるチムニ11Aのような炉心の燃料集合体21の装荷パターンに対する制約が無く、格子流路11a内のボイド率が当該の格子流路11aに対応する燃料集合体21の流量配分および出力に影響があっても、対称性を崩すものではないのでより少ないLPRM33の本数で、強制循環式BWRの場合と同じ精度で炉心性能評価が行える。   In the present embodiment, since the grid flow passage 11a has the same symmetry as the symmetry of the core plane, there is no restriction on the loading pattern of the core fuel assembly 21 like the chimney 11A in the first embodiment. Even if the void fraction in the lattice flow path 11a affects the flow distribution and output of the fuel assembly 21 corresponding to the lattice flow path 11a, the symmetry is not broken, so the number of LPRMs 33 is smaller. The core performance can be evaluated with the same accuracy as the forced circulation type BWR.

《第4の実施の形態》
次に、図12を参照しながら本発明の第4の実施の形態の原子炉1を説明する。本実施の形態の原子炉1の縦断面の構成、炉心平面の燃料集合体21、制御棒24の配置の構成は第1の実施の形態と同じである(図1、図2参照)。第1の実施の形態と同じ構成については同じ符号を付し、説明を省略する。
本実施の形態では第1の実施の形態と図12の(a)に示すように、チムニ11Dの格子流路11aの横断面の配置が異なる。炉心平面の中心に位置する中央制御棒セル31(C)を含む中央格子流路11a(C)は、中央制御棒セル31(C)1個だけを含む。他の格子流路11aは、炉心平面の中央領域では原則的に2×2配列の制御棒セル31を含む配置である。このとき、第1象限の1/4炉心にほぼ対応する格子流路11aのうち左斜線部で示した格子流路11aはX軸51上の制御棒セル31を含むように、第2象限の1/4炉心にほぼ対応する格子流路11aのうち左斜線部で示した格子流路11aはY軸52上の制御棒セル31を含むように、第3象限の1/4炉心にほぼ対応する格子流路11aのうち左斜線部で示した格子流路11aはX軸51上の制御棒セル31を含むように、第4象限の1/4炉心にほぼ対応する格子流路11aのうち左斜線部で示した格子流路11aはY軸52上の制御棒セル31を含むように構成する。(a)中のL10部の制御棒セル31を(b)に示す。
<< Fourth Embodiment >>
Next, a nuclear reactor 1 according to a fourth embodiment of the present invention will be described with reference to FIG. The configuration of the longitudinal section of the nuclear reactor 1 of the present embodiment, the arrangement of the fuel assemblies 21 and the control rods 24 on the core plane are the same as those of the first embodiment (see FIGS. 1 and 2). The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, as shown in FIG. 12A, the arrangement of the cross section of the lattice flow path 11a of the chimney 11D is different from that of the first embodiment. The central lattice channel 11a (C) including the central control rod cell 31 (C) located at the center of the core plane includes only one central control rod cell 31 (C). The other lattice channels 11a are arranged to include the control rod cells 31 in a 2 × 2 arrangement in principle in the central region of the core plane. At this time, the lattice flow path 11a indicated by the left hatched portion of the lattice flow path 11a substantially corresponding to the quarter core of the first quadrant includes the control rod cell 31 on the X axis 51 so as to include the control rod cell 31 in the second quadrant. The lattice flow path 11a indicated by the left oblique line in the lattice flow path 11a substantially corresponding to the 1/4 core substantially corresponds to the 1/4 core in the third quadrant so as to include the control rod cell 31 on the Y axis 52. Among the lattice flow paths 11a corresponding to the quarter core of the fourth quadrant so that the lattice flow paths 11a indicated by the left oblique lines in the lattice flow paths 11a include the control rod cells 31 on the X axis 51. The lattice channel 11a indicated by the left hatched portion is configured to include the control rod cell 31 on the Y axis 52. The control rod cell 31 of L10 part in (a) is shown in (b).

したがって、(a)に示すように、格子流路11aの配置は、X軸51およびY軸52に対して、1/4炉心90°回転対称、1/2炉心180°回転対称配置構成である。また、1/8対称軸53、54に対して1/2炉心180°回転対称の配置である。
これに組み合わせるLPRM配置は、炉心平面の前記X軸51、Y軸52、1/8対称軸53、54に対する前記対称性を利用して、最外周部を除いて制御棒セル31のすべてのコーナにLPRM配置をしたのに相当するLPRM配置である。炉心平面の最外周部を除く制御棒セル31の各コーナの位置(計256箇所)に対して25%に減じて配置していることになる。
Therefore, as shown in (a), the arrangement of the lattice channels 11a is a 1/4 core 90 ° rotationally symmetric and 1/2 core 180 ° rotationally symmetric arrangement with respect to the X axis 51 and the Y axis 52. . Further, the ½ core is 180 ° rotationally symmetric with respect to the 1 / symmetry axes 53 and 54.
The LPRM arrangement combined with this is based on the symmetry with respect to the X axis 51, the Y axis 52, and the 1/8 symmetry axes 53 and 54 in the core plane, and all the corners of the control rod cell 31 except for the outermost peripheral portion. This is an LPRM arrangement equivalent to the LPRM arrangement. In other words, the control rod cells 31 except for the outermost peripheral portion of the core plane are arranged by being reduced to 25% with respect to the positions of the respective corners (256 places in total).

本発明の第1の実施の形態に係る自然循環式沸騰水型原子炉の縦断面図である。1 is a longitudinal sectional view of a natural circulation boiling water reactor according to a first embodiment of the present invention. 図1のG−G矢視の炉心平面図である。It is a core top view of the GG arrow of FIG. 第1の実施の形態におけるLPRM配置を示す炉心平面図である。It is a core top view which shows LPRM arrangement | positioning in 1st Embodiment. 第1の実施の形態におけるチムニの格子流路の横断面配置図である。It is a cross-sectional arrangement drawing of the chimney lattice channel in the first embodiment. 第1の実施の形態のチムニ格子流路の横断面配置とLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 1st Embodiment, and LPRM arrangement | positioning. 第1の実施の形態におけるLPRM配置の第1の変形例を示す炉心平面図である。It is a core top view which shows the 1st modification of LPRM arrangement | positioning in 1st Embodiment. 第1の実施の形態のチムニ格子流路の横断面配置と第1の変形例のLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 1st Embodiment, and the LPRM arrangement | positioning of a 1st modification. 第1の実施の形態のチムニ格子流路の横断面配置と第2の変形例のLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 1st Embodiment, and the LPRM arrangement | positioning of a 2nd modification. 第1の実施の形態のチムニ格子流路の横断面配置と第3の変形例のLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 1st Embodiment, and the LPRM arrangement | positioning of a 3rd modification. 第2の実施の形態のチムニ格子流路の横断面配置とLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 2nd Embodiment, and LPRM arrangement | positioning. 第3の実施の形態のチムニ格子流路の横断面配置とLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 3rd Embodiment, and LPRM arrangement | positioning. 第4の実施の形態のチムニ格子流路の横断面配置とLPRM配置の関係を説明する図である。It is a figure explaining the relationship between the cross-sectional arrangement | positioning of the chimney lattice flow path of 4th Embodiment, and LPRM arrangement | positioning.

符号の説明Explanation of symbols

1 自然循環式沸騰水型原子炉
7 炉心
11、11A、11B、11C、11D チムニ
11a 格子流路
11a(C) 中央格子流路
11b 流路隔壁
21 燃料集合体
23 上部格子板
24 制御棒
31 制御棒セル
31(C) 中央制御棒セル
32 格子孔
33 LPRM検出器集合体(中性子検出器)
51 X軸(対称軸)
52 Y軸(対称軸)
53、54 1/8対称軸
DESCRIPTION OF SYMBOLS 1 Natural circulation boiling water reactor 7 Core 11, 11A, 11B, 11C, 11D Chimney 11a Lattice flow path 11a (C) Central lattice flow path 11b Flow path partition wall 21 Fuel assembly 23 Upper lattice plate 24 Control rod 31 Control Rod cell 31 (C) Central control rod cell 32 Lattice hole 33 LPRM detector assembly (neutron detector)
51 X axis (Axis of symmetry)
52 Y axis (Axis of symmetry)
53, 54 1/8 symmetry axis

Claims (2)

複数の燃料集合体を装荷した炉心と、前記炉心内に設置された中性子検出器と、前記炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉において、
前記炉心の前記燃料集合体の水平方向位置を決める上部格子板は、2×2配列の前記燃料集合体の中央位置に制御棒を配して1つの制御棒セルを構成し、該制御棒セルに対応する正方形の格子孔を前記炉心の横断面の中央に配置した上で、さらに直角X−Y座標のX軸方向、Y軸方向に前記格子孔を多数配置したものであり、
前記炉心は、前記燃料集合体の濃縮度・可燃性毒物の設計タイプ、炉内滞在期間にもとづく配置を、少なくとも前記直角X−Y座標における前記炉心の横断面の中心を通るX軸とY軸の両方に対して45°の角度をなす2つの1/8対称軸に対して、鏡対称に装荷可能な構成であり、
前記チムニは、流路隔壁により区画された格子流路を、前記上部格子板の格子孔の2×2配列を含むように構成するとともに、前記格子流路の横断面配置が、前記2つの1/8対称軸の内の一方を対称軸として有するように構成し、
前記炉心の横断面において、前記格子流路の横断面配置の前記一方の1/8対称軸の前記鏡対称に対応した対称位置のうち、少なくとも1箇所に中性子検出器を配置したことを特徴とする自然循環式沸騰水型原子炉。
In a natural circulation boiling water reactor comprising a core loaded with a plurality of fuel assemblies, a neutron detector installed in the core, and a chimney installed on the core,
The upper lattice plate for determining the horizontal position of the fuel assembly in the core constitutes one control rod cell by arranging a control rod at the center position of the fuel assembly in a 2 × 2 array. Is arranged in the center of the cross section of the core, and further, a number of the lattice holes are arranged in the X-axis direction and the Y-axis direction of a right-angle XY coordinate,
The core has an arrangement based on the concentration of the fuel assembly, the design type of the flammable poison, and the staying period in the reactor , at least the X axis and the Y axis passing through the center of the cross section of the core in the right-angle XY coordinates. It can be loaded mirror-symmetrically with respect to two 1/8 symmetry axes that form an angle of 45 ° with respect to both
The chimney is configured so that a lattice channel partitioned by a channel partition includes a 2 × 2 array of lattice holes of the upper lattice plate, and the cross-sectional arrangement of the lattice channels is the two ones. / 8 is configured to have one of the symmetry axes as a symmetry axis,
In cross-section of said core, of the symmetrical position corresponding to the mirror symmetry of the one-eighth the axis of symmetry of the cross-section arrangement of the lattice channel, and characterized in that a neutron detector in at least one location Natural circulation boiling water reactor.
複数の燃料集合体を装荷した炉心と、前記炉心内に設置された中性子検出器と、前記炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉において、
前記炉心の前記燃料集合体の水平方向位置を決める上部格子板は、2×2配列の前記燃料集合体の中央位置に制御棒を配して1つの制御棒セルを構成し、該制御棒セルに対応する正方形の格子孔を前記炉心の横断面の中央に配置した上で、さらに直角X−Y座標のX軸方向、Y軸方向に前記格子孔を多数配置したものであり、
前記炉心は、前記燃料集合体の濃縮度・可燃性毒物の設計タイプ、炉内滞在期間にもとづく配置を、少なくとも前記直角X−Y座標における前記炉心の横断面の中心を通るX軸、Y軸で前記炉心の横断面を4分割した1/4炉心に対して、前記炉心の横断面の中心に90°回転対称に装荷可能な構成であり、
前記チムニは、流路隔壁により区画された格子流路を、前記炉心の横断面の中央に対応する前記格子流路は、炉心の横断面中央の前記格子孔を1つだけを含み、他の前記格子流路は、前記上部格子板の格子孔の2×2配列を含むように構成するとともに、記1/4炉心に対して前記90°回転対称の配置となるように構成し、
前記炉心の横断面において、前記格子流路の横断面配置の前記1/4炉心に対して前記90°回転対称の対称性に対応した対称位置のうち、少なくとも1箇所に中性子検出器を配置したことを特徴とする自然循環式沸騰水型原子炉。
In a natural circulation boiling water reactor comprising a core loaded with a plurality of fuel assemblies, a neutron detector installed in the core, and a chimney installed on the core,
The upper lattice plate for determining the horizontal position of the fuel assembly in the core constitutes one control rod cell by arranging a control rod at the center position of the fuel assembly in a 2 × 2 array. Is arranged in the center of the cross section of the core, and further, a number of the lattice holes are arranged in the X-axis direction and the Y-axis direction of a right-angle XY coordinate,
The core has an arrangement based on the concentration of the fuel assembly, the design type of the flammable poison, and the period of stay in the reactor, at least the X axis and the Y axis passing through the center of the cross section of the core in the orthogonal XY coordinate. With respect to a quarter core obtained by dividing the cross section of the core into four parts, the center of the cross section of the core can be loaded with 90 ° rotational symmetry,
The chimney, a lattice flow passages divided by the flow path partition walls, the grid channel corresponding to the center of the cross section of the core, only only contains one said grid hole of the cross-section center of the core, other the grid passages are configured such that the configuration be Rutotomoni, arrangement of the 90 ° rotational symmetry with respect to the front SL 1/4 core to contain 2 × 2 array of grating holes in the top guide ,
In the cross section of the core, a neutron detector is disposed at at least one of the symmetrical positions corresponding to the 90 ° rotational symmetry with respect to the 1/4 core of the cross section of the lattice channel. A natural circulation boiling water reactor characterized by that .
JP2006051784A 2006-02-28 2006-02-28 Natural circulation boiling water reactor Active JP4944455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051784A JP4944455B2 (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051784A JP4944455B2 (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Publications (2)

Publication Number Publication Date
JP2007232431A JP2007232431A (en) 2007-09-13
JP4944455B2 true JP4944455B2 (en) 2012-05-30

Family

ID=38553168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051784A Active JP4944455B2 (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP4944455B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149900A (en) * 1979-05-11 1980-11-21 Hitachi Ltd Power control device for bwr type reactor
JPS63201599A (en) * 1987-02-18 1988-08-19 株式会社日立製作所 Natural circulation type nuclear reactor
JPH0727054B2 (en) * 1989-09-15 1995-03-29 ゼネラル・エレクトリック・カンパニイ Boiling water reactor system with descending steam release channel
JPH04230896A (en) * 1990-04-16 1992-08-19 General Electric Co <Ge> Output adjustable natural-circulation type boiling water reactor
JP3183978B2 (en) * 1992-12-16 2001-07-09 株式会社東芝 Reactor operation method
JPH07128474A (en) * 1993-11-04 1995-05-19 Toshiba Corp Reactor core
JP3186546B2 (en) * 1995-10-11 2001-07-11 株式会社日立製作所 First loading core

Also Published As

Publication number Publication date
JP2007232431A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
ES2579080T3 (en) Core performance verification procedure using intranuclear instrumentation
US8472581B2 (en) Reactor vessel reflector with integrated flow-through
JP4786616B2 (en) Reactor
BRPI0808339B1 (en) REACTOR PRESSURE VASE
JP2007229661A (en) Steam-water separator
US7769124B2 (en) Natural circulation boiling water reactor and handling method thereof
JP4944455B2 (en) Natural circulation boiling water reactor
JP4669412B2 (en) Reactor core performance calculation method and reactor core performance calculation device in natural circulation boiling water reactor
JP2007232546A (en) Channel forming device and natural-circulation-type boiling water reactor
US20070274428A1 (en) Natural circulation type boiling water reactor
JP2000147179A (en) In-core structure of reactor vessel
JP2007047090A (en) Natural circulation type boiling water reactor
TWI672707B (en) Nuclear reactor
JP4392412B2 (en) Channel forming device and natural circulation boiling water reactor
JP4500276B2 (en) Chimney structure of natural circulation boiling water reactor
US3560338A (en) Gas-cooled nuclear reactors
JPH05215877A (en) Core of boiling water type nuclear reac- tor
JPH05215878A (en) Fuel bundle of boiling water type nuclear reactor
JP6965200B2 (en) Fuel assembly
US9136024B2 (en) Tie plate with variable orifice and methods for selective control of fuel assembly coolant flow
JP5361964B2 (en) Initial loading core of nuclear reactor
US6173028B1 (en) Apparatus for promoting intermixing of heated coolant streams in nuclear reactor
KR20140050815A (en) Flow mixing structure, flow mixing header assembly for nuclear reactor having flow mixing structure and method for preventing loss of flow
JP2012211798A (en) Fuel assembly
US20110317799A1 (en) Pressure-loss adjusting member and reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Ref document number: 4944455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3