JP4939360B2 - Group III nitride crystal growth method - Google Patents

Group III nitride crystal growth method Download PDF

Info

Publication number
JP4939360B2
JP4939360B2 JP2007262114A JP2007262114A JP4939360B2 JP 4939360 B2 JP4939360 B2 JP 4939360B2 JP 2007262114 A JP2007262114 A JP 2007262114A JP 2007262114 A JP2007262114 A JP 2007262114A JP 4939360 B2 JP4939360 B2 JP 4939360B2
Authority
JP
Japan
Prior art keywords
group iii
iii nitride
nitride crystal
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007262114A
Other languages
Japanese (ja)
Other versions
JP2009091183A (en
Inventor
康二 上松
龍 弘田
浩章 吉田
伸介 藤原
晴子 田中
勇介 森
孝友 佐々木
史朗 川村
康夫 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007262114A priority Critical patent/JP4939360B2/en
Publication of JP2009091183A publication Critical patent/JP2009091183A/en
Application granted granted Critical
Publication of JP4939360B2 publication Critical patent/JP4939360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

本発明は、液相法によるIII族窒化物結晶の成長方法に関する。   The present invention relates to a method for growing a group III nitride crystal by a liquid phase method.

III族窒化物結晶は、各種半導体デバイスの基板などに広く用いられている。近年、各種半導体デバイスを効率的に製造するために、大型のIII族窒化物結晶が求められている。   Group III nitride crystals are widely used for substrates of various semiconductor devices. In recent years, in order to efficiently manufacture various semiconductor devices, a large group III nitride crystal has been demanded.

III族窒化物結晶を成長させる方法としては、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法、溶液法、フラックス法などの液相法などがある。ここで、液相法は、気相法に比べて、その結晶成長において有毒なガスを使用しないため環境保護の面で優れている。   As a method for growing a group III nitride crystal, there are a gas phase method such as HVPE (hydride vapor phase epitaxy) method and MOCVD (metal organic chemical vapor deposition) method, a liquid phase method such as solution method and flux method. . Here, the liquid phase method is superior to the gas phase method in terms of environmental protection because no toxic gas is used in crystal growth.

かかる液相法においてIII族窒化物結晶を成長させる方法として、たとえばM. Bockowski,“Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure”, Cryst. Res. Technol., vol.36, (2001), 8-10, p.771-787(非特許文献1)は高圧の溶液法によるGaN結晶の成長方法を開示する。また、H. Yamane, 他3名,“Preparation of GaN Single Crystals Using a Na Flux”, Chem. Mater., Vol.9, No.2, (1997), p.413-416(非特許文献2)はNaフラックス法によるGaN結晶の成長方法を開示する。また、特開2003−206198号公報(特許文献1)はNaフラックス法により板状のIII族窒化物種結晶を用いたGaN結晶の成長方法を開示する。   For example, M. Bockowski, “Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure”, Cryst. Res. Technol., Vol. 36, (2001) , 8-10, p. 771-787 (Non-Patent Document 1) discloses a method for growing GaN crystals by a high-pressure solution method. H. Yamane and three others, “Preparation of GaN Single Crystals Using a Na Flux”, Chem. Mater., Vol. 9, No. 2, (1997), p. 413-416 (Non-patent Document 2) Discloses a method for growing GaN crystals by the Na flux method. Japanese Patent Laying-Open No. 2003-206198 (Patent Document 1) discloses a GaN crystal growth method using a plate-like group III nitride seed crystal by the Na flux method.

しかし、非特許文献1に開示された成長方法は、結晶成長条件が1500℃で1GPaと高温高圧であるため結晶の製造コストが高くなり、また種結晶を用いていないため大型の結晶を成長させることが困難である。また、非特許文献2に開示された成長方法では、800℃で10MPaと比較的実施しやすい結晶成長条件であるが、種結晶を用いていないため大型の結晶を成長させることが困難である。また、特許文献1に開示された成長方法は、用いられている板状の種結晶の口径が大きくないため、大型の結晶が得られていない。
特開2003−206198号公報 M. Bockowski,“Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure”, Cryst. Res. Technol., vol.36, (2001), 8-10, p.771-787 H. Yamane, 他3名,“Preparation of GaN Single Crystals Usinga Na Flux”, Chem. Mater., Vol.9, No.2, (1997), p.413-416
However, the growth method disclosed in Non-Patent Document 1 increases the manufacturing cost of crystals because the crystal growth conditions are 1 GPa and 1 GPa at 1500 ° C., and grows large crystals because seed crystals are not used. Is difficult. The growth method disclosed in Non-Patent Document 2 is a crystal growth condition that is relatively easy to carry out at 800 ° C. and 10 MPa, but it is difficult to grow a large crystal because no seed crystal is used. Moreover, since the diameter of the plate-shaped seed crystal used in the growth method disclosed in Patent Document 1 is not large, large crystals are not obtained.
JP 2003-206198 A M. Bockowski, “Growth and Doping of GaN and AlN Single Crystals under High Nitrogen Pressure”, Cryst. Res. Technol., Vol.36, (2001), 8-10, p.771-787 H. Yamane and three others, “Preparation of GaN Single Crystals Using a Na Flux”, Chem. Mater., Vol. 9, No. 2, (1997), p.413-416

しかし、溶液法、フラックス法などの液相法によるIII族窒化物結晶の成長においては、大口径の板状のIII族窒化物結晶基板上に、基板と化学組成が同じIII族窒化物結晶をホモエピタキシャル成長させても、基板および基板上に成長させたIII族窒化物結晶にクラックが発生し、大型のIII族窒化物結晶基板を得ることが困難である。   However, in the growth of a group III nitride crystal by a liquid phase method such as a solution method or a flux method, a group III nitride crystal having the same chemical composition as the substrate is formed on a large-diameter plate-like group III nitride crystal substrate. Even with homoepitaxial growth, cracks occur in the substrate and the group III nitride crystal grown on the substrate, and it is difficult to obtain a large group III nitride crystal substrate.

本発明は、液相法において大型の結晶を成長させることができるIII族窒化物結晶の成長方法を提供することを目的とする。   An object of this invention is to provide the growth method of the group III nitride crystal which can grow a large crystal | crystallization in a liquid phase method.

かかるIII族窒化物結晶基板およびIII族窒化物結晶のクラックの原因について詳細に検討した結果、基板およびIII族窒化物結晶のクラックと基板の厚さとの間に相関があることを見出した。さらに、検討を進めることにより、液相法によるIII族窒化物結晶基板上におけるIII族窒化物結晶のホモエピタキシャル成長において、III族窒化物結晶基板の厚さを0.5mm以上、好ましくは0.67mm以上、より好ましくは0.84mm以上、さらに好ましくは1.0mm以上とすることにより、III族窒化物結晶基板およびその上に成長させたIII族窒化物結晶のクラックが抑制され、大型のIII族窒化物結晶の成長が可能となることを見出した。   As a result of examining the cause of the cracks of the group III nitride crystal substrate and the group III nitride crystal in detail, it was found that there is a correlation between the cracks of the substrate and the group III nitride crystal and the thickness of the substrate. Further, by proceeding with the study, in the homoepitaxial growth of the group III nitride crystal on the group III nitride crystal substrate by the liquid phase method, the thickness of the group III nitride crystal substrate is 0.5 mm or more, preferably 0.67 mm. As described above, more preferably 0.84 mm or more, and even more preferably 1.0 mm or more, the cracks of the group III nitride crystal substrate and the group III nitride crystal grown thereon are suppressed, and a large group III It has been found that nitride crystals can be grown.

本発明は、液相法によるIII族窒化物結晶の成長方法であって、III族窒化物結晶と同じ化学組成を有しかつ1.0mm以上2.0mm以下の厚さを有しかつ主面が20cm 2 以上の面積を有するIII族窒化物結晶基板を準備する工程と、III族窒化物結晶基板の主面に、III族金属とアルカリ金属を含む溶媒に窒素含有ガスを溶解させた溶液を接触させて、主面上にIII族窒化物結晶を成長させる工程と、を備え、溶媒は純度が99モル%以上のIII族金属と純度が99モル%以上のアルカリ金属とを含むIII族窒化物結晶の成長方法である。 The present invention relates to a growing method of a group III nitride crystal by liquid phase method, a group III have the same chemical composition as the nitride crystal and 1.0mm or 2.0mm thickness less than the chromatic vital principal surface solution but with a step of preparing a III nitride crystal substrate to have a 20 cm 2 or more areas, on the main surface of the group III nitride crystal substrate by dissolving the nitrogen-containing gas in a solvent containing a group III metal and an alkali metal And a step of growing a group III nitride crystal on the main surface, wherein the solvent contains a group III metal having a purity of 99 mol% or more and an alkali metal having a purity of 99 mol% or more This is a method for growing a nitride crystal.

本発明にかかるIII族窒化物結晶の成長方法において、窒素含有ガスは純度が99モル%以上の窒素ガスとすることができる。 In the growing method of a group III nitride crystal according to the present invention, nitrogen-containing gas may be pure to 99 mol% or more nitrogen gas.

本発明によれば、液相法においてクラックの発生を抑制して大型の結晶を成長させることができるIII族窒化物結晶の成長方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the growth method of the group III nitride crystal | crystallization which can suppress generation | occurrence | production of a crack in a liquid phase method and can grow a large crystal | crystallization is provided.

本発明にかかるIII族窒化物結晶の成長方法の一実施形態は、図1を参照して、液相法によるIII族窒化物結晶10の成長方法であって、III族窒化物結晶10と同じ化学組成を有しかつ0.5mm以上の厚さを有するIII族窒化物結晶基板1を準備する工程と、III族窒化物結晶基板1の主面1mに、III族金属とアルカリ金属を含む溶媒3に窒素含有ガス5を溶解させた溶液を接触させて、主面1m上にIII族窒化物結晶10を成長させる工程と、を備えるIII族窒化物結晶の成長方法である。   One embodiment of a method for growing a group III nitride crystal according to the present invention is a method for growing a group III nitride crystal 10 by a liquid phase method with reference to FIG. A step of preparing a group III nitride crystal substrate 1 having a chemical composition and a thickness of 0.5 mm or more, and a solvent containing a group III metal and an alkali metal on the main surface 1m of the group III nitride crystal substrate 1 And a step of growing a group III nitride crystal 10 on a main surface 1 m by bringing a solution in which a nitrogen-containing gas 5 is dissolved into contact with 3 to form a group III nitride crystal.

本実施形態のIII族窒化物結晶の成長方法によれば、III族窒化物結晶基板およびその基板の主面上に成長させたIII族窒化物結晶におけるクラックの発生が抑制され、大型のIII族窒化物結晶が得られる。   According to the method for growing a group III nitride crystal of the present embodiment, generation of cracks in the group III nitride crystal substrate and the group III nitride crystal grown on the main surface of the substrate is suppressed, and a large group III A nitride crystal is obtained.

本実施形態のIII族窒化物結晶の成長方法は、液相法によるIII族窒化物結晶10の成長方法である。ここで、液相法とは、液相において結晶を成長させる方法をいう。   The growth method of the group III nitride crystal of this embodiment is a growth method of the group III nitride crystal 10 by a liquid phase method. Here, the liquid phase method refers to a method of growing crystals in the liquid phase.

本実施形態のIII族窒化物結晶の成長方法は、成長させるIII族窒化物結晶10と同じ化学組成を有しかつ0.5mm以上の厚さを有するIII族窒化物結晶基板1を準備する工程を備える。III族窒化物結晶基板1は成長させるIII族窒化物結晶と同じ化学組成を有しているため、III族窒化物結晶基板1の主面1m上にIII族窒化物結晶10をホモエピタキシャル成長させることができる。たとえば、III族窒化物結晶10としてAlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1)をホモエピタキシャル成長させる場合には、III族窒化物結晶基板1としてAlxGayIn1-x-yN結晶(0≦x、0≦y、x+y≦1)を用いる。 The group III nitride crystal growth method of the present embodiment is a step of preparing a group III nitride crystal substrate 1 having the same chemical composition as the group III nitride crystal 10 to be grown and having a thickness of 0.5 mm or more. Is provided. Since group III nitride crystal substrate 1 has the same chemical composition as the group III nitride crystal to be grown, group III nitride crystal 10 is homoepitaxially grown on main surface 1 m of group III nitride crystal substrate 1. Can do. For example, when an Al x Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1) is homoepitaxially grown as the group III nitride crystal 10, the group III nitride crystal substrate 1 is made of Al x. A Ga y In 1-xy N crystal (0 ≦ x, 0 ≦ y, x + y ≦ 1) is used.

また、III族窒化物結晶基板1は0.5mm以上の厚さを有しているため、III族窒化物結晶基板1とその主面1m上に成長したIII族窒化物結晶10との間に生じた応力によるクラック発生をIII族窒化物結晶基板1の剛性により抑制することができる。かかる観点から、III族窒化物結晶基板1は、0.67mm以上の厚さを有していることが好ましく、0.84mm以上の厚さを有していることがより好ましく、1.0mm以上の厚さを有していることがさらに好ましい。一方、III族窒化物結晶基板は、高価であるため、コストの観点から基板の厚さは小さいほど好ましく、たとえば2.0mm以下の厚さを有していることが好ましい。   Further, since group III nitride crystal substrate 1 has a thickness of 0.5 mm or more, it is between group III nitride crystal substrate 1 and group III nitride crystal 10 grown on its main surface 1 m. Generation of cracks due to the generated stress can be suppressed by the rigidity of the group III nitride crystal substrate 1. From such a viewpoint, the group III nitride crystal substrate 1 preferably has a thickness of 0.67 mm or more, more preferably 0.84 mm or more, and 1.0 mm or more. More preferably, the thickness is as follows. On the other hand, since the group III nitride crystal substrate is expensive, the thickness of the substrate is preferably as small as possible from the viewpoint of cost. For example, the group III nitride crystal substrate preferably has a thickness of 2.0 mm or less.

また、III族窒化物結晶基板1の主面1mの面積は、特に制限はないが、0.78cm2以上であることが好ましく、5cm2以上であることがより好ましく、20cm2以上であることがさらに好ましい。本実施形態の成長方法におけるIII族窒化物結晶10の成長においては、III族窒化物結晶基板1の主面1mの面積が大きくなっても、III族窒化物結晶基板1およびIII族窒化物結晶10にクラックが発生するのを抑制することができる。 It principal surface area of 1m of the III-nitride crystal substrate 1 is not particularly limited, it is preferably 0.78 cm 2 or more, more preferably 5 cm 2 or more, 20 cm 2 or more Is more preferable. In the growth of the group III nitride crystal 10 in the growth method of the present embodiment, even if the area of the main surface 1m of the group III nitride crystal substrate 1 increases, the group III nitride crystal substrate 1 and the group III nitride crystal 10 can be prevented from cracking.

ここで、本実施形態において用いられるIII族窒化物結晶基板1は、成長させるIII族窒化物結晶10と同じ化学組成を有しかつ0.5mm以上の厚さを有するものであれば、特に制限なく、溶液法、フラックス法などの液相法によって成長させたものであっても、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法などの気相法によって成長させたものであってもよい。厚い結晶が得られやすい観点から、HVPE法により成長させたものが好ましい。   Here, the group III nitride crystal substrate 1 used in the present embodiment is particularly limited as long as it has the same chemical composition as the group III nitride crystal 10 to be grown and has a thickness of 0.5 mm or more. Even if it is grown by a liquid phase method such as a solution method or a flux method, the HVPE (hydride vapor phase epitaxy) method, the MOCVD (metal organic chemical vapor deposition) method, the MBE (molecular beam growth) method, etc. It may be grown by the vapor phase method. From the viewpoint of easily obtaining thick crystals, those grown by the HVPE method are preferred.

本実施形態のIII族窒化物結晶の成長方法は、III族窒化物結晶基板1の主面1mに、III族金属とアルカリ金属を含む溶媒3に窒素含有ガス5を溶解させた溶液を接触させて、主面1m上にIII族窒化物結晶10を成長させる工程を備える。かかるIII族窒化物結晶10の成長工程を備えることにより、III族窒化物結晶基板1およびその基板上に成長させたIII族窒化物結晶10にクラックが発生するのを抑制することができる。   In the method for growing a group III nitride crystal according to the present embodiment, a solution obtained by dissolving a nitrogen-containing gas 5 in a solvent 3 containing a group III metal and an alkali metal is brought into contact with the main surface 1 m of the group III nitride crystal substrate 1. And a step of growing the group III nitride crystal 10 on the main surface 1 m. By providing the growth process of the group III nitride crystal 10, it is possible to suppress the generation of cracks in the group III nitride crystal substrate 1 and the group III nitride crystal 10 grown on the substrate.

かかるIII族窒化物結晶10の成長工程は、たとえば、以下のようにして行なわれる。まず、結晶成長容器23内に、III族窒化物結晶基板1をその主面1mを上に向けて配置し、III族金属とアルカリ金属を含む溶媒3を入れる。この溶媒3は室温(約25℃)中では固体であるが、後の加熱によって液化する。   The growth process of group III nitride crystal 10 is performed, for example, as follows. First, the group III nitride crystal substrate 1 is placed in the crystal growth vessel 23 with its main surface 1 m facing upward, and the solvent 3 containing a group III metal and an alkali metal is placed. This solvent 3 is solid at room temperature (about 25 ° C.), but is liquefied by subsequent heating.

III族金属とアルカリ金属を含む溶媒3には、特に制限はないが、純度の高いIII族窒化物結晶10を成長させる観点から、III族金属およびアルカリ金属の純度の高いものが好ましい。かかる観点から、溶媒3は、純度が99モル%以上のIII族金属と純度が99モル%以上のアルカリ金属とを含むことが好ましく、99.999モル%以上のIII族金属と99.999モル%以上のアルカリ金属とを含むことがより好ましい。ここで、溶媒3が2種類以上のIII族金属を含む場合は、各種III族金属のそれぞれの純度が、99モル%以上であることが好ましく、99.999モル%以上であることがより好ましい。また、溶媒3が2種類以上のアルカリ金属を含む場合は、各種アルカリ金属のそれぞれの純度が、99モル%以上であることが好ましく、99.999モル%以上であることがより好ましい。   Although there is no restriction | limiting in particular in the solvent 3 containing a III group metal and an alkali metal, From the viewpoint of growing the high purity group III nitride crystal | crystallization 10, the thing with the high purity of a group III metal and an alkali metal is preferable. From this viewpoint, the solvent 3 preferably contains a Group III metal having a purity of 99 mol% or more and an alkali metal having a purity of 99 mol% or more, and has a 99.999 mol% or more Group III metal and 99.999 mol. It is more preferable to contain at least% alkali metal. Here, when the solvent 3 contains two or more group III metals, the purity of each group III metal is preferably 99 mol% or more, more preferably 99.999 mol% or more. . Moreover, when the solvent 3 contains 2 or more types of alkali metals, it is preferable that each purity of each alkali metal is 99 mol% or more, and it is more preferable that it is 99.999 mol% or more.

III族金属およびアルカリ金属を含む溶媒3を用いると、III族金属を含み不純物濃度(たとえば溶媒全体に対して1モル%未満の濃度)以上にはアルカリ金属を含まない溶媒を用いる場合に比べて、III族窒化物結晶の成長温度、成長圧力を低減させ、結晶成長速度を高めることができる。これは、溶媒3に含まれているアルカリ金属が、溶媒3への窒素含有物5の溶解を促進させるためと考えられる。   When the solvent 3 containing a Group III metal and an alkali metal is used, the concentration of impurities including the Group III metal (for example, a concentration of less than 1 mol% with respect to the whole solvent) or higher is used compared to the case of using a solvent containing no alkali metal It is possible to reduce the growth temperature and pressure of the group III nitride crystal and increase the crystal growth rate. This is presumably because the alkali metal contained in the solvent 3 promotes the dissolution of the nitrogen-containing material 5 in the solvent 3.

溶媒3に含まれるIII族金属MIIIとアルカリ金属MAとのモル比は、特に制限はないが、III族窒化物結晶の成長温度、成長圧力を低減させ、結晶成長速度を高める観点から、MIII:MA=90:10〜10:90が好ましく、MIII:MA=50:50〜20:80がより好ましい。MIII:MA=90:10よりIII族金属MIIIのモル比が大きくても、MIII:MA=10:90よりアルカリ金属MAのモル比が大きくても、結晶成長速度が低下する。 The molar ratio of the Group III metal M III an alkali metal M A contained in the solvent 3 is not particularly limited, the growth temperature of the group III nitride crystal, to reduce the growth pressure, in view of enhancing the crystal growth rate, M III : M A = 90: 10 to 10:90 is preferable, and M III : M A = 50: 50 to 20:80 is more preferable. Even if the molar ratio of the group III metal M III is larger than M III : M A = 90: 10 or the molar ratio of the alkali metal M A is larger than M III : M A = 10: 90, the crystal growth rate decreases. To do.

また、結晶成長容器23に入れられるIII族金属およびアルカリ金属を含む溶媒3の量は、特に制限はないが、液化した溶媒3(融液)の深さは、溶媒3の表面からIII族窒化物結晶基板1の主面1mまでが、1mm以上50mm以下であることが好ましい。かかる深さが1mmより小さいと溶媒3の表面張力のためIII族窒化物結晶基板1の主面1mを溶媒3(融液)が覆わない恐れがあり、50mmより大きいと溶媒3の液面からの窒素の供給が不足してしまうためである。   Further, the amount of the solvent 3 containing the group III metal and the alkali metal put in the crystal growth vessel 23 is not particularly limited, but the depth of the liquefied solvent 3 (melt) is determined from the surface of the solvent 3 to group III nitridation. The main surface of the physical crystal substrate 1 is preferably 1 mm or more and 50 mm or less up to 1 m. If the depth is less than 1 mm, the main surface 1 m of the group III nitride crystal substrate 1 may not be covered with the solvent 3 (melt) due to the surface tension of the solvent 3. This is because the supply of nitrogen is insufficient.

次に、III族窒化物結晶基板1と、III族金属およびアルカリ金属を含む溶媒3とが配置された結晶成長容器23を加熱し、結晶成長容器23内の溶媒3内に窒素含有ガス5を供給して、結晶成長容器23内の温度(結晶成長温度)を750℃〜900℃、結晶成長容器23内の窒素含有ガスの圧力(結晶成長圧力)を2MPa〜5MPaとする。このとき、III族金属とアルカリ金属を含む溶媒3が液化して、液化した溶媒3中に窒素含有ガス5が溶解する。このようにして、III族金属を含む溶媒3に窒素含有ガス5が溶解した溶液をIII族窒化物結晶基板1の主面1mに接触させることができ、主面1m上にIII族窒化物結晶10が成長する。   Next, the crystal growth vessel 23 in which the group III nitride crystal substrate 1 and the solvent 3 containing a group III metal and an alkali metal are arranged is heated, and the nitrogen-containing gas 5 is introduced into the solvent 3 in the crystal growth vessel 23. The temperature in the crystal growth vessel 23 (crystal growth temperature) is 750 to 900 ° C., and the pressure of the nitrogen-containing gas in the crystal growth vessel 23 (crystal growth pressure) is 2 MPa to 5 MPa. At this time, the solvent 3 containing a Group III metal and an alkali metal is liquefied, and the nitrogen-containing gas 5 is dissolved in the liquefied solvent 3. In this way, a solution in which the nitrogen-containing gas 5 is dissolved in the solvent 3 containing a group III metal can be brought into contact with the main surface 1m of the group III nitride crystal substrate 1, and the group III nitride crystal is formed on the main surface 1m. 10 grows.

窒素含有ガス5には、特に制限はないが、純度の高いIII族窒化物結晶10を成長させる観点から、純度が99モル%以上の窒素ガスが好ましく、純度が99.999モル%以上の窒素ガスであることがより好ましい。   The nitrogen-containing gas 5 is not particularly limited, but from the viewpoint of growing a high purity group III nitride crystal 10, a nitrogen gas having a purity of 99 mol% or more is preferable, and a nitrogen having a purity of 99.999 mol% or more is preferable. More preferably, it is a gas.

次に、III族窒化物結晶10を成長させた後、結晶成長容器23内の温度および圧力を下げて室温および大気圧とした後に、III族窒化物結晶基板1上に成長させたIII族窒化物結晶10を溶媒3から取り出す。結晶成長の際および後に結晶成長容器23内の温度および圧力を下げる際に、III族窒化物結晶基板1とIII族窒化物結晶10との間に応力がかかっても、0.5mm以上の厚さを有するIII族窒化物結晶基板1の剛性により、III族窒化物結晶基板1およびIII族窒化物結晶10へのクラックの発生が抑制される。   Next, after the group III nitride crystal 10 is grown, the temperature and pressure in the crystal growth vessel 23 are lowered to room temperature and atmospheric pressure, and then the group III nitride grown on the group III nitride crystal substrate 1 is grown. The product crystal 10 is removed from the solvent 3. Even when stress is applied between the group III nitride crystal substrate 1 and the group III nitride crystal 10 during crystal growth and when the temperature and pressure in the crystal growth vessel 23 are lowered later, the thickness is 0.5 mm or more. Due to the rigidity of group III nitride crystal substrate 1 having a thickness, generation of cracks in group III nitride crystal substrate 1 and group III nitride crystal 10 is suppressed.

参考例1)
図1を参照して、III族窒化物結晶1として、HVPE法により成長させたGaNバルク結晶を(0001)面に平行な面でスライスしてその主面1m((0001)表面)を研磨した直径が2インチ(5.08cm)で厚さが0.5mmのGaN基板を準備した。GaN基板の主面1mの面積は、20cm2であった。
( Reference Example 1)
Referring to FIG. 1, as a group III nitride crystal 1, a GaN bulk crystal grown by the HVPE method is sliced in a plane parallel to the (0001) plane, and its main surface 1m ((0001) surface) is polished. A GaN substrate having a diameter of 2 inches (5.08 cm) and a thickness of 0.5 mm was prepared. The area of the main surface 1 m of the GaN substrate was 20 cm 2 .

次に、結晶成長容器23内に、GaN基板(III族窒化物結晶基板1)と、純度が99.9999モル%の金属Gaおよび純度が99.9999モル%の金属Na(溶媒3)とを配置した。ここで、金属Ga(III族金属MIII)と金属Na(アルカリ金属MA)はモル比でMIII:MA=30:70となるようにした。次に、結晶成長容器23内を真空排気(真空度:1×10-3Pa)した。 Next, in the crystal growth vessel 23, a GaN substrate (Group III nitride crystal substrate 1), metal Ga having a purity of 99.9999 mol% and metal Na (solvent 3) having a purity of 99.9999 mol% are placed. Arranged. Here, the metal Ga (group III metal M III ) and the metal Na (alkali metal M A ) were made to have a molar ratio of M III : M A = 30: 70. Next, the inside of the crystal growth vessel 23 was evacuated (vacuum degree: 1 × 10 −3 Pa).

次に、結晶成長容器23内に純度が99.99999モル%の窒素ガス(窒素含有ガス5)を結晶成長容器内の圧力が1MPaになるように供給した。次いで、結晶成長容器23を加熱して、結晶成長容器23内の温度を850℃まで上昇させた。このとき、金属Gaおよび金属Naが液化してGa−Na融液(溶媒3)が形成され、Ga−Na融液(溶媒3)の深さは融液の表面からGaN基板の主面1mまで5mmであった。   Next, nitrogen gas (nitrogen-containing gas 5) having a purity of 99.99999 mol% was supplied into the crystal growth vessel 23 so that the pressure in the crystal growth vessel became 1 MPa. Next, the crystal growth vessel 23 was heated to raise the temperature in the crystal growth vessel 23 to 850 ° C. At this time, metal Ga and metal Na are liquefied to form a Ga—Na melt (solvent 3), and the depth of the Ga—Na melt (solvent 3) is from the surface of the melt to the main surface 1 m of the GaN substrate. It was 5 mm.

次に、結晶成長容器23内の温度を850℃に維持したまま結晶成長容器23内に純度が99.99999モル%の窒素ガス(窒素含有ガス5)をさらに供給して結晶成長容器内の圧力を3MPaまで上昇させた。このとき、Ga−Na融液(溶媒3)に窒素ガス(窒素含有ガス5)が溶解して、GaN基板の主面に接触する溶液が形成されている。   Next, nitrogen gas (nitrogen-containing gas 5) having a purity of 99.99999 mol% is further supplied into the crystal growth vessel 23 while maintaining the temperature in the crystal growth vessel 23 at 850 ° C. Was increased to 3 MPa. At this time, nitrogen gas (nitrogen-containing gas 5) is dissolved in the Ga—Na melt (solvent 3) to form a solution in contact with the main surface of the GaN substrate.

次に、結晶成長温度(結晶成長時の結晶成長容器内の温度)850℃、結晶成長圧力(結晶成長時の結晶成長容器内の圧力)3MPaでGaN基板の主面1m上にGaN結晶(III族窒化物結晶10)を厚さ0.5mmまで成長させた。   Next, a GaN crystal (III) on the main surface 1 m of the GaN substrate at a crystal growth temperature (temperature in the crystal growth container at the time of crystal growth) 850 ° C. and crystal growth pressure (pressure in the crystal growth container at the time of crystal growth) 3 MPa. Group nitride crystals 10) were grown to a thickness of 0.5 mm.

かかるGaN結晶の成長を10回行ない、10個のGaN基板およびGa結晶からなるサンプルにおいて、GaN基板およびGaN結晶の少なくともいずれかにクラックが発生したサンプルの割合をクラック発生率(%)として算出した。参考例1におけるクラック発生率は70%であった。ここで、クラック発生率が70%以下であれば、製造に必要な最低限の再現性を確保でき、本製法でGaN結晶を製造することが可能となる。結果を表1にまとめた。 The growth of the GaN crystal was performed 10 times, and the ratio of the samples in which cracks occurred in at least one of the GaN substrate and the GaN crystal in the sample composed of 10 GaN substrates and Ga crystals was calculated as the crack occurrence rate (%). . The crack occurrence rate in Reference Example 1 was 70%. Here, if the crack occurrence rate is 70% or less, the minimum reproducibility necessary for the production can be ensured, and the GaN crystal can be produced by this production method. The results are summarized in Table 1.

(実施例2)
厚さが1.0mmのGaN基板(III族窒化物結晶基板1)を用いた他は、参考例1と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例2におけるクラック発生率は10%と極めて低くすることができた。結果を表1にまとめた。
(Example 2)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Reference Example 1, except that a GaN substrate (Group III nitride crystal substrate 1) having a thickness of 1.0 mm was used. The crack occurrence rate in Example 2 could be as low as 10%. The results are summarized in Table 1.

(実施例3)
厚さが1.3mmのGaN基板(III族窒化物結晶基板1)を用いた他は、参考例1と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例3におけるクラック発生率は0%となり、クラックの発生を完全に抑制することができた。結果を表1にまとめた。
(Example 3)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Reference Example 1 except that a GaN substrate (Group III nitride crystal substrate 1) having a thickness of 1.3 mm was used. The crack occurrence rate in Example 3 was 0%, and the occurrence of cracks could be completely suppressed. The results are summarized in Table 1.

(比較例1)
厚さが0.35mmのGaN基板(III族窒化物結晶基板1)を用いた他は、実施例1と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。比較例1におけるクラック発生率は90%と高かった。結果を表1にまとめた。また、基板の厚さとクラック発生率との関係を図2に示した。
(Comparative Example 1)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 1 except that a GaN substrate (Group III nitride crystal substrate 1) having a thickness of 0.35 mm was used. The crack occurrence rate in Comparative Example 1 was as high as 90%. The results are summarized in Table 1. The relationship between the substrate thickness and the crack generation rate is shown in FIG.

Figure 0004939360
Figure 0004939360

表1より明らかなように、液相法により、0.5mm以上の厚さを有するGaN基板(III族窒化物結晶基板1)の主面上にGaN結晶(III族窒化物結晶10)をクラック発生率が70%以下で成長させることができる。また、図2より明らかなように、クラック発生率を70%以下にするためには0.5mm以上の厚さのGaN基板が必要であり、クラック発生率を50%以下にするためには0.67mm以上のGaN基板が必要であり、クラック発生率を30%以下にするためには0.84mm以上のGaN基板が必要であり、クラック発生率を10%以下にするためには1.0mm以上のGaN基板が必要であることがわかる。したがって、III族窒化物結晶基板の厚さは、0.5mm以上が必要であり、0.67mm以上が好ましく、0.84mm以上がより好ましく、1.0mm以上がさらに好ましいことがわかる。   As is apparent from Table 1, the GaN crystal (Group III nitride crystal 10) is cracked on the main surface of the GaN substrate (Group III nitride crystal substrate 1) having a thickness of 0.5 mm or more by the liquid phase method. It can be grown at an incidence of 70% or less. Further, as is apparent from FIG. 2, a GaN substrate having a thickness of 0.5 mm or more is necessary to reduce the crack occurrence rate to 70% or less, and 0% to reduce the crack occurrence rate to 50% or less. A GaN substrate of .67 mm or more is required, a GaN substrate of 0.84 mm or more is required to reduce the crack generation rate to 30% or less, and 1.0 mm to reduce the crack generation rate to 10% or less. It can be seen that the above GaN substrate is necessary. Therefore, the thickness of the group III nitride crystal substrate is required to be 0.5 mm or more, preferably 0.67 mm or more, more preferably 0.84 mm or more, and further preferably 1.0 mm or more.

参考例4)
直径が1.0cmのGaN基板(III族窒化物結晶基板1)を用いた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。ここで、参考例4で用いたGaN基板の主面の面積は0.78cm2であった。参考例4におけるクラック発生率は10%と極めて低くすることができた。結果を表2にまとめた。
( Reference Example 4)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that a GaN substrate (Group III nitride crystal substrate 1) having a diameter of 1.0 cm was used. Here, the area of the main surface of the GaN substrate used in Reference Example 4 was 0.78 cm 2 . The crack occurrence rate in Reference Example 4 was as low as 10%. The results are summarized in Table 2.

参考例5)
直径が1.8cmのGaN基板(III族窒化物結晶基板1)を用いた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。ここで、参考例5で用いたGaN基板の主面の面積は2.54cm2であった。参考例5におけるクラック発生率は10%と極めて低くすることができた。結果を表2にまとめた。
( Reference Example 5)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that a GaN substrate (Group III nitride crystal substrate 1) having a diameter of 1.8 cm was used. Here, the area of the main surface of the GaN substrate used in Reference Example 5 was 2.54 cm 2 . The crack occurrence rate in Reference Example 5 could be as low as 10%. The results are summarized in Table 2.

参考例6)
直径が1インチ(2.54cm)のGaN基板(III族窒化物結晶基板1)を用いた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。ここで、参考例6で用いたGaN基板の主面の面積は5cm2であった。参考例6におけるクラック発生率は10%と極めて低くすることができた。結果を表2にまとめた。なお、表2には、対比のため実施例2も合わせてまとめた。
( Reference Example 6)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that a GaN substrate (Group III nitride crystal substrate 1) having a diameter of 1 inch (2.54 cm) was used. Here, the area of the main surface of the GaN substrate used in Reference Example 6 was 5 cm 2 . The crack occurrence rate in Reference Example 6 was as low as 10%. The results are summarized in Table 2. In Table 2, Example 2 is also summarized for comparison.

Figure 0004939360
Figure 0004939360

表2から明らかなように、GaN基板(III族窒化物結晶基板1)の厚さが同じであれば、GaN基板の主面の面積が異なっても、同じクラック発生率が得られることがわかる。すなわち、厚さが0.5mm以上で主面の面積が大きなIII族窒化物結晶基板を用いることにより、低いクラック発生率で大きなIII族窒化物結晶を成長させることができることがわかる。   As can be seen from Table 2, if the thickness of the GaN substrate (group III nitride crystal substrate 1) is the same, the same crack occurrence rate can be obtained even if the area of the main surface of the GaN substrate is different. . That is, it can be seen that by using a group III nitride crystal substrate having a thickness of 0.5 mm or more and a large principal surface area, a large group III nitride crystal can be grown with a low crack generation rate.

(実施例7)
GaN結晶(III族窒化物結晶10)を厚さ0.01mmまで成長させた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例7におけるクラック発生率は10%と極めて低くすることができた。結果を表3にまとめた。
(Example 7)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that the GaN crystal (Group III nitride crystal 10) was grown to a thickness of 0.01 mm. The crack occurrence rate in Example 7 could be as low as 10%. The results are summarized in Table 3.

(実施例8)
GaN結晶(III族窒化物結晶10)を厚さ1.0mmまで成長させた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例8におけるクラック発生率は10%と極めて低くすることができた。結果を表3にまとめた。
(Example 8)
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that the GaN crystal (Group III nitride crystal 10) was grown to a thickness of 1.0 mm. The crack occurrence rate in Example 8 could be as low as 10%. The results are summarized in Table 3.

(実施例9)
GaN結晶(III族窒化物結晶10)を厚さ2.0mmまで成長させた他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例9におけるクラック発生率は10%と極めて低くすることができた。結果を表3にまとめた。なお、表3には、対比のため実施例2も合わせてまとめた。
Example 9
A GaN crystal (Group III nitride crystal 10) was grown in the same manner as in Example 2 except that the GaN crystal (Group III nitride crystal 10) was grown to a thickness of 2.0 mm. The crack occurrence rate in Example 9 could be as low as 10%. The results are summarized in Table 3. In Table 3, Example 2 is also summarized for comparison.

Figure 0004939360
Figure 0004939360

表3から明らかなように、GaN基板(III族窒化物結晶基板1)の厚さが同じであれば、成長させるGaN結晶の厚さが異なっても、同じクラック発生率が得られることがわかる。すなわち、厚さが0.5mm以上の主面の面積が大きなIII族窒化物結晶基板を用いることにより、低いクラック発生率で種々の厚さのIII族窒化物結晶を成長させることができることがわかる。   As is apparent from Table 3, if the thickness of the GaN substrate (group III nitride crystal substrate 1) is the same, the same crack occurrence rate can be obtained even if the thickness of the GaN crystal to be grown is different. . That is, it can be seen that group III nitride crystals of various thicknesses can be grown with a low crack generation rate by using a group III nitride crystal substrate having a major surface area of 0.5 mm or more in thickness. .

(実施例10)
GaN結晶(III族窒化物結晶10)を成長させる際の結晶成長温度を800℃および結晶成長圧力を2MPaとした他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例10におけるクラック発生率は10%と極めて低くすることができた。結果を表4にまとめた。
(Example 10)
The GaN crystal (Group III nitride crystal 10) was formed in the same manner as in Example 2 except that the crystal growth temperature for growing the GaN crystal (Group III nitride crystal 10) was 800 ° C. and the crystal growth pressure was 2 MPa. Grown up. The crack occurrence rate in Example 10 was as low as 10%. The results are summarized in Table 4.

(実施例11)
GaN結晶(III族窒化物結晶10)を成長させる際の結晶成長温度を870℃および結晶成長圧力を4MPaとした他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例11におけるクラック発生率は10%と極めて低くすることができた。結果を表4にまとめた。
(Example 11)
The GaN crystal (Group III nitride crystal 10) was formed in the same manner as in Example 2 except that the crystal growth temperature for growing the GaN crystal (Group III nitride crystal 10) was 870 ° C. and the crystal growth pressure was 4 MPa. Grown up. The crack occurrence rate in Example 11 was as low as 10%. The results are summarized in Table 4.

(実施例12)
GaN結晶(III族窒化物結晶10)を成長させる際の結晶成長温度を900℃および結晶成長圧力を5MPaとした他は、実施例2と同様にしてGaN結晶(III族窒化物結晶10)を成長させた。実施例12におけるクラック発生率は10%と極めて低くすることができた。結果を表4にまとめた。なお、表4には、対比のため実施例2も合わせてまとめた。
(Example 12)
A GaN crystal (Group III nitride crystal 10) is formed in the same manner as in Example 2 except that the crystal growth temperature for growing the GaN crystal (Group III nitride crystal 10) is 900 ° C. and the crystal growth pressure is 5 MPa. Grown up. The crack occurrence rate in Example 12 was as low as 10%. The results are summarized in Table 4. In Table 4, Example 2 is also summarized for comparison.

Figure 0004939360
Figure 0004939360

表4から明らかなように、GaN基板(III族窒化物結晶基板1)の厚さが同じであれば、GaN結晶の成長条件が異なっても、同じクラック発生率が得られることがわかる。すなわち、厚さが0.5mm以上の主面の面積が大きなIII族窒化物結晶基板を用いることにより、種々の結晶成長条件においても低いクラック発生率でIII族窒化物結晶を成長させることができることがわかる。   As can be seen from Table 4, if the thickness of the GaN substrate (group III nitride crystal substrate 1) is the same, the same crack generation rate can be obtained even if the growth conditions of the GaN crystal are different. That is, by using a group III nitride crystal substrate having a major surface area of 0.5 mm or more and a large area, a group III nitride crystal can be grown with a low crack generation rate even under various crystal growth conditions. I understand.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明にかかる成長方法により得られたIII族窒化物結晶は、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視−紫外光検出などの半導体センサ、SAWデバイス(表面弾性波素子)、振動子、共振子、発振器、MEMS(微小電子機械システム)部品、圧電アクチュエータなどのデバイス用の基板などに用いられる。   Group III nitride crystals obtained by the growth method according to the present invention include light-emitting elements such as light-emitting diodes and laser diodes, electronic elements such as rectifiers, bipolar transistors, field-effect transistors, and HEMTs (high electron mobility transistors), temperature For sensors, pressure sensors, radiation sensors, semiconductor sensors such as visible-ultraviolet light detection, SAW devices (surface acoustic wave elements), vibrators, resonators, oscillators, MEMS (microelectromechanical system) components, piezoelectric actuators, etc. It is used for the substrate.

本発明にかかるIII族窒化物結晶の成長方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the growth method of the group III nitride crystal concerning this invention. 基板の厚さとクラック発生率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of a board | substrate, and a crack generation rate.

符号の説明Explanation of symbols

1 III族窒化物結晶基板、1m 主面、3 溶媒、5 窒素含有ガス、10 III族窒化物結晶、23 結晶成長装置。   1 Group III nitride crystal substrate, 1 m main surface, 3 solvent, 5 nitrogen-containing gas, 10 Group III nitride crystal, 23 crystal growth apparatus.

Claims (2)

液相法によるIII族窒化物結晶の成長方法であって、
前記III族窒化物結晶と同じ化学組成を有しかつ1.0mm以上2.0mm以下の厚さを有しかつ主面が20cm 2 以上の面積を有するIII族窒化物結晶基板を準備する工程と、
前記III族窒化物結晶基板の前記主面に、III族金属とアルカリ金属を含む溶媒に窒素含有ガスを溶解させた溶液を接触させて、前記主面上に前記III族窒化物結晶を成長させる工程と、を備え
前記溶媒は純度が99モル%以上のIII族金属と純度が99モル%以上のアルカリ金属とを含むIII族窒化物結晶の成長方法。
A method for growing a group III nitride crystal by a liquid phase method,
Preparing a III nitride crystal substrate on which the Group III have the same chemical composition as the nitride crystal and 2.0mm or less in thickness Yu vital principal surface than 1.0mm to have a 20 cm 2 or more areas When,
On the primary surface of the group III nitride crystal substrate, by contacting the solution of a nitrogen-containing gas in a solvent containing a group III metal and an alkali metal, growing said III-nitride crystal on the main surface A process ,
A method for growing a group III nitride crystal, wherein the solvent contains a group III metal having a purity of 99 mol% or more and an alkali metal having a purity of 99 mol% or more .
前記窒素含有ガスは純度が99モル%以上の窒素ガスである請求項1に記載のIII族窒化物結晶の成長方法。 The method for growing a group III nitride crystal according to claim 1, wherein the nitrogen-containing gas is a nitrogen gas having a purity of 99 mol% or more.
JP2007262114A 2007-10-05 2007-10-05 Group III nitride crystal growth method Active JP4939360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262114A JP4939360B2 (en) 2007-10-05 2007-10-05 Group III nitride crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262114A JP4939360B2 (en) 2007-10-05 2007-10-05 Group III nitride crystal growth method

Publications (2)

Publication Number Publication Date
JP2009091183A JP2009091183A (en) 2009-04-30
JP4939360B2 true JP4939360B2 (en) 2012-05-23

Family

ID=40663536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262114A Active JP4939360B2 (en) 2007-10-05 2007-10-05 Group III nitride crystal growth method

Country Status (1)

Country Link
JP (1) JP4939360B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245822B2 (en) * 2001-05-01 2009-04-02 株式会社リコー Method for producing group III nitride crystal
JP2005298269A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Group iii nitride crystal substrate and its manufacturing method, and group iii nitride semiconductor device
JP4714143B2 (en) * 2004-05-19 2011-06-29 住友電気工業株式会社 Group III nitride semiconductor crystal manufacturing method
JP4647525B2 (en) * 2006-03-20 2011-03-09 日本碍子株式会社 Method for producing group III nitride crystal

Also Published As

Publication number Publication date
JP2009091183A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5885650B2 (en) Method for producing improved crystalline Group III-nitride crystals by thermal ammonia growth from initial Group III-nitride seed crystals
JP5560528B2 (en) Method for producing group III nitride single crystal ingot and method for producing group III nitride single crystal substrate
TWI548787B (en) Freestanding iii-nitride single-crystal substrate and method of manufacturing semiconductor device utilizing the substrate
JP5584981B2 (en) GaN crystal growth method
JP2005194146A (en) Production method for group iii nitride crystal
JP2007161534A (en) Method for manufacturing nitride semiconductor crystal substrate
JP4939360B2 (en) Group III nitride crystal growth method
JP4528806B2 (en) GaN crystal growth method
JP4867981B2 (en) GaN crystal growth method
JP2010100449A (en) Method for growing group iii nitride crystal
JP4530004B2 (en) GaN crystal growth method
JP2009091182A (en) Method for growing group iii nitride crystal
JP5023834B2 (en) Semiconductor crystal growth method
JP5440636B2 (en) GaN single crystal and method for producing the same
JP2009029672A (en) Group iii nitride crystal and method for growing the same
JP2010024125A (en) Method for growing group iii nitride crystal
JP4957751B2 (en) GaN single crystal and manufacturing method thereof, and semiconductor device and manufacturing method thereof
JP2011001211A (en) Method for growing group iii nitride crystal
JP2009029673A (en) Group iii nitride crystal and method for growing the same
JP2009137771A (en) Method for growing group iii nitride crystal
US7892513B2 (en) Group III nitride crystal and method of its growth
JP5487594B2 (en) AlxGa1-xN crystal growth method
JP2012106906A (en) METHOD FOR PRODUCING GaN FILM
JP2010024124A (en) Method for growing group iii nitride crystal
KR20090113190A (en) Freestanding iii-nitride single-crystal substrate and method of manufacturing semiconductor device utilizing the substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250