JP4936584B2 - イオン化金属堆積用の高密度プラズマ源 - Google Patents

イオン化金属堆積用の高密度プラズマ源 Download PDF

Info

Publication number
JP4936584B2
JP4936584B2 JP2000246012A JP2000246012A JP4936584B2 JP 4936584 B2 JP4936584 B2 JP 4936584B2 JP 2000246012 A JP2000246012 A JP 2000246012A JP 2000246012 A JP2000246012 A JP 2000246012A JP 4936584 B2 JP4936584 B2 JP 4936584B2
Authority
JP
Japan
Prior art keywords
magnetic
target
magnetron
magnetic pole
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000246012A
Other languages
English (en)
Other versions
JP2001140070A (ja
Inventor
フー ジアンミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2001140070A publication Critical patent/JP2001140070A/ja
Application granted granted Critical
Publication of JP4936584B2 publication Critical patent/JP4936584B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【関連出願】
本出願は、1999年2月12日出願の出願第09/249,468号の一部継続出願である。
【0002】
【発明の属する技術分野】
本発明は、一般的には、物質のスパッタリングに関する。特に、スパッタリングを向上させるための磁場をつくりだすマグネトロンに関する。
【0003】
【従来の技術】
スパッタリング、或いは物理気相成長(PVD)と呼ばれるものは、半導体集積回路の製造において、金属及び関連物質の層を堆積させる最も一般的な方法である。図1に、従来のPVDリアクタ10の断面図が図式的に示され、この図は、カリフォルニア州サンタクララのアプライドマテリアルズ社(Applied Materials,Inc.)から入手可能なEndura PVDリアクタを基に示されている。リアクタ10は、真空チャンバ12を含み、この真空チャンバ12は、PVDターゲット14に密閉されており、PVDターゲット14は、ウエハ16上にスパッタ堆積される物質、大抵は金属から構成され、ウエハ16は、ヒータペデスタル18に固定されている。シールド20は、チャンバ内に固定されており、チャンバ壁12に物質がスパッタされないようにするとともに陽極接地面を与える。選択性DC電源22は、ターゲット14をシールド20に対して約-600VDCまで負のバイアスを加える。慣用的には、ペデスタル18、従ってウエハ16も電気的に浮動している状態になる。
【0004】
ガス供給源24は、スパッタリングワーキングガスを供給し、典型的には化学的に不活性なガスであるアルゴンをマスフローコントローラ26を介してチャンバ12に供給する。反応性金属窒化物、例えば窒化チタンのスパッタリングにおいて、窒素が別のガス供給源27から、それ自体のマスフローコントローラ26を介して供給される。Al2O3のような酸化物をつくるときには酸素も供給され得る。図示されるように、ガスは、チャンバの上部から、又は下から入れることが可能で、一つ以上の注入パイプからガスが導入される。注入パイプは、シールドの下を貫通しているか、又は、シールド20とペデスタル18の間のギャップを貫通している。真空装置28は、チャンバ内を低圧に保つ。基本的な圧力は、約10-7トル又はそれよりも低く保たれ得るが、ワーキングガスの圧力は、典型的には、約1〜1000ミリトルの間に維持される。コンピュータを有するコントローラ30は、DC電源22及びマスフローコントローラー26を含むリアクタを制御する。
【0005】
アルゴンがチャンバ内に導入されると、ターゲット14とシールド20の間のDC電圧がアルゴンに点火してプラズマに変え、正に帯電したアルゴンイオンが負に帯電したターゲット14に引きつけられる。イオンは、かなりのエネルギーでターゲット14に衝突し、ターゲットの原子又は原子クラスターをターゲット14からスパッタさせる。ターゲット粒子の一部は、ウエハ16に衝突し、それによって、ウエハ16上に堆積し、その結果、ターゲット物質の薄膜が形成される。金属窒化物の反応性スパッタリングにおいては、更に、窒素がチャンバ12に導入され、窒素がスパッタした金属イオンと反応してウエハ16上で金属窒化物を形成する。
【0006】
効率のよいスパッタリングを与えるために、ターゲット14の後ろにマグネトロン32が配置される。マグネトロン32の磁石34,36は向き合っており、磁石34,36の付近でチャンバ内に磁場を発生させる。磁場は電子を捉え、電子的中性を保つためにイオン密度もまた増し、マグネトロン32に隣接したチャンバ内に高密度プラズマ領域38が形成される。マグネトロン32は、大抵、ターゲット14のスパッタリングにおいて十分なカバレージが達成されるようにターゲット14の中心の周りを回転する。マグネトロンの形は、本特許出願の主題であり、図形は、示唆を意図しているに過ぎない。
【0007】
半導体集積回路における集積レベルの向上は、スパッタリング装置及びプロセスに対する要求を増加させることとなった。問題の多くは、コンタクトホールとバイアホールに付随するものである。図2の断面図に示されているように、バイアホール又はコンタクトホール40は、インタレベル誘電層42を介してエッチングされ、下の層又は基板46中の導電特徴44に達する。次に、スパッタリングは、正孔40の中に金属を充填するために使われ、インタレベルの電気的接続を供給する。下の層46が半導体基板の場合には、充填正孔40は、コンタクトホールと呼ばれ、もし下の層が、低レベルメタライゼーションレベルの場合、充填正孔40は、バイアホールと呼ばれる。簡単にするために、これから以降、我々は、ただバイアとのみ呼ぶことにする。インタレベルバイアの幅は、0.25.m以下近くまで減少し、一方、インタレベル誘電体の厚さは、約0.7.mでほぼ一定である。その結果、進歩した集積回路におけるバイアホールは、3以上のアスペクト比に増大する。開発中のいくつかの技術では、6以上のアスペクト比が必要とされている。
【0008】
そのような高いアスペクト比は、スパッタリングにおいて問題を呈する。何故なら、大抵のスパッタリングの形態は、強い異方性を持たず、垂直から離れたコサイン依存性が典型的であるので、最初にスパッタした物質は、正孔の上方に堆積しがちであり、架橋してしまう。従って、正孔の底部が埋まるのを妨げ、バイア金属中にボイドを生じる。
【0009】
しかしながら、充填している深部正孔は、スパッタ粒子のかなりの割合がターゲット14とペデスタル18の間のプラズマ中でイオン化することによって促進され得るということが知られてきた。図1のペデスタル18は、例え電気的に浮動しているとしても、DC自己バイアスを生じ、このDC自己バイアスがペデスタル18に隣接したプラズマシース及び誘電層42中の正孔40の深部を横切ってプラズマからのイオン化されたスパッタ粒子を引きつける。この効果は、更に、プラズマシースからウエハ16に向かうイオン化した粒子を加速させ、よってスパッタ堆積の方向性を制御する、付加的なペデスタル電極18のDC又はRFバイアスで強調され得る。かなりの割合のイオン化スパッタ原子でスパッタするプロセスは、イオン化金属堆積又は、イオン化金属めっき(IMP)と呼ばれる。正孔充填の効率を量的に測定する2つの関連した基準は、底部カバレージと側面カバレージである。図2に図式的に示されているように、スパッタリングの最初の段階では層50が堆積する。この層の表面又はブランケットの厚さはs1、底部の厚さはs2、側壁の厚さはs3である。底部カバレージは、S2/S1に等しく、側壁カバレージは、S3/S1に等しい。モデルは、非常に単純化されたものであるが、多くの状況においてはこれで十分である。
【0010】
イオン化割合を増加させる方法は、図1のチャンバ12の側面を取り囲むRFコイルを加えることなどによって高密度プラズマ(HDP)をつくりだすことである。HDPリアクタは、高密度アルゴンプラズマをつくりだすだけでなく、スパッタ原子のイオン化割合をも増加させる。しかしながら、HDP PVDリアクタは、新しくて比較的費用がかかり、堆積膜の品質は必ずしも最良ではない。図1のPVDリアクタのDCスパッタリングを主に用いて続けることが望ましい。
【0011】
イオン化率を高める他の方法は、ターゲットの形がシルクハットである中空陰極マグネトロンを用いることである。このタイプのリアクタは、しかし、稼動中に大変熱くなり、複雑な形をしたターゲットは、大変高価である。
【0012】
誘導結合HDPスパッタリアクタ、又は、中空陰極リアクタによってスパッタした銅は、バイアの側壁上に起伏状の銅膜を形成する傾向があり、更に、堆積した金属は、脱湿潤する傾向があることが観察されている。スパッタした銅層が、銅正孔充填を完了する電気めっきのようなその後の堆積プロセスへの所定の最低の厚さのシード層として使われるときに、厚さが様々になってしまうことは特に深刻である。
【0013】
従来技術において更に問題なのは、側壁カバレージが非対称である傾向があり、ターゲット中央に向いている側面がターゲット外側の大きな立体角度に向いたシールドされた側面よりも厚く被覆されることである。非対称によって、所定の最低の厚さのシード層を達成するために過度の堆積が必要になるだけでなく、フォトリソグラフィにおいてアラインメント印として使われるクロス形トレンチも生じ、トレンチを非対称に狭くなるように移動させる。
【0014】
深い正孔充填を促進する他の制御操作は、チャンバ圧である。一般的に、低チャンバ圧が正孔充填を促進すると考えられている。高い圧力では、スパッタ粒子が、中性又はイオン化のいずれもアルゴンキャリアガスの原子と衝突する可能性が高くなる。衝突によって、イオンを中性化され、速度が乱れる傾向があり、どちらの作用も正孔充填を低下させる。しかしながら、前述したように、スパッタリングは、少なくともターゲットに隣接したプラズマの存在に依存する。最低圧力がいくつかの要因に依存しているとはいえ、圧力が過度に下がる場合には、プラズマは崩壊する。
【0015】
Fu他による、1997年5月8日出願の米国特許出願第08/854,008号に開示されたように、極度の低圧プラズマスパッタリングは持続自己スパッタリング(SSS)である。SSSにおいて、正にイオン化したスパッタ原子の密度は、十分な数が負にバイアスが加えられたターゲットに引き戻されてイオン化した原子を再びスパッタするほど高い。限られた数のターゲット金属の正しい条件においては、セルフスパッタリングは、プラズマを維持し、アルゴンワーキングガスは不必要である。銅は、最もSSSを起こしやすい金属であるが、それは高電力、高磁場の条件においてだけである。銅の抵抗率が低く且つエレクトロマイグレーションに対する感受性が低いことから銅スパッタリングが開発されているのは重要なことである。しかしながら、銅SSSが商業的に便利になるためには、十分なカバレージ、高磁場マグネトロンの開発が求められている。
【0016】
ターゲットに印加される高電力は、、多分、持続自己スパッタリングの点で、低圧を可能にする。高電力は、また、イオン化密度を増す。しかしながら、過度の電力によって、高価な電源が必要になり、冷却の増強も必要になる。20〜30kWの過剰の電力レベルは、商業的な環境では実行不可能と考えられている。実際、適切な要因は、電力ではなく、マグネトロンの下の領域における電力密度である。その領域が、効果的なスパッタリングを促進する高密度プラズマの領域だからである。従って、小さな高磁場磁石は、最も容易に高イオン化密度をつくりだす。そのために、いくつかの先行技術によって小さな円形の磁石が開示されている。しかしながら、そのようなマグネトロンは、均一性を与えるために、ターゲットの中央において回転させる必要があるだけでなく、ターゲットの全体且つ完全に均一なカバレージを確かめるために放射状の走査も必要である。十分なマグネトロンカバレージが達成されない場合には、ターゲットが効率良く使用できないだけでなく、重要なことには、スパッタ堆積の均一性が低下し、スパッタ材料の一部がターゲットのスパッタされていない領域に再び堆積してしまう。更に、非スパッタ領域に再堆積した材料は、薄片となって剥がれ落ちるような厚さに積もり、深刻な問題を引き起こしてしまう。放射状の走査によって、潜在的にこれらの問題は回避されるが、必要な走査メカニズムは複雑であり、製造環境においては一般的に不適切であると考えられている。
【0017】
商業的に利用可能なマグネトロンの1つの種類は、Tepmanの米国特許第5,320,728号に例示されている腎臓形である。Parkerは、この形の拡張した形を米国特許第5,242,566号に開示している。図3の平面図に示されるように、Tepmanマグネトロン52は、腎臓形に基づいており、磁性の異なる磁極面54,56がほぼ一定の幅である回り道のギャップ57によって隔てられている。磁極面54,56は、図示されていないギャップ57を架橋している馬蹄形磁石によって結合されている。マグネトロンは、ターゲット14の中央にあり且つ腎臓形内部磁極面54の凹んだ縁近傍にある回転軸58のまわりを回転する。外部磁極面 56の凸面をなしている外周部は、その領域にあるギャップ57にほぼ平行であるが、ターゲット14の使用可能な部分の外周部に接近している。この形は、高磁場及び均一なスパッタリングに最適であるが、領域はターゲットのほぼ半分である。磁極ギャップ57から分離された領域においては磁場が比較的弱い。
【0018】
【発明が解決しようとする課題】
これらの理由により、深い正孔充填及び銅の持続自己スパッタリングを促進させるのに十分なカバレージを与える小さな高磁場マグネトロンを開発することが望ましい。
【0019】
【課題を解決するための手段】
本発明は、2つの等しい直径を持つ円よりも小さな領域を有する楕円形か又はそれに類する形のスパッタリングマグネトロンを含んでおり、ここでマグネトロンの2つの直径はマグネトロンの典型的な回転軸を基準にしてターゲットの半径に沿って伸びている。これらの形は、ターゲットの中央に関して非対称に配置されたループ状、楕円形、卵形、三角形、及び弧状三角形を含んでいる。マグネトロンは、ターゲットの裏面でマグネトロンの薄い端の好ましくは近傍にある点のまわりを回転し、より厚い端は、ターゲットの周囲に近接して配置される。好ましくは、磁束の合計はターゲット半径の2分の1の内側でよりも外側でより大きくなる。
【0020】
小さな領域は、18kWの電源から少なくとも600W/cm2の電力密度を、200mmウエハをスパッタ堆積するのに用いられる完全被覆されたスパッタリングターゲットに印加することを可能にする。
【0021】
マグネトロンは、周囲の外部磁極よりも内部磁極において小さな磁束を生じるように配置されている。よって、磁場は、スパッタリングチャンバの遠くまで届き、低圧スパッタリング及び持続自己スパッタリングを促進する。
【0022】
本発明は、また、このようなマグネトロンを用いて達成可能なスパッタリング法も含んでいる。小さな閉鎖領域に広がる高磁場は、持続自己スパッタリングを促進する。持続自己スパッタリングに向いていない多くの金属が、0.5ミリトル未満(しばしば0.2ミリトル未満)のチャンバ圧力で、また0.1ミリトルでさえもスパッタさせることが可能である。底部カバレージは、200mmウエハを支持するような大きさのペデスタル電極に250W未満のRFバイアスを印加することによって更に改善され得る。銅は、330mmターゲットと200mmウエハに対しては、18kWのDC電力で、完全な自己持続方式においてか又は0.3ミリトル以下の最小チャンバ圧においてスパッタされ得る。
【0023】
本発明は、低容量の電源による高電力密度スパッタリングを提供する。
【0024】
【発明の実施の形態】
本発明の実施例は、図4の平面図に示されたループ状マグネトロン60である。ループ状マグネトロン60は、対向した平行な中央直線側面を有する一方の磁気極性の中央棒状磁極面が2つの丸い端66によって結合されている。中央棒状磁極面62は、棒状磁極面と環状磁極面62、68を分けているほぼ一定の幅のギャップ70を有するもう一方の極性の伸長した外部環状磁極面68によって囲まれている。もう一方の磁気極性の外部磁極面68は、内部磁極面62と共にほぼ中心対称に2つの丸い端74によって結合された対向した平行な中央直線部分72を含んでいる。中央部分72と丸い端74は、幅がほぼ同じバンドである。間単に述べると、磁石によって磁極面62、68は対向した磁気極性をもつ。ここでもまた簡単に述べると、裏打プレートは磁気的に対向した磁極面62、68間の磁気継鉄とマグネトロン構造の支持体とを共に備えている。
【0025】
2つの磁極面62、68は図の平面にほぼ垂直に伸びる磁界を生じる特定の磁気極性で示されているが、本発明に関する限り、一組の反対の磁気極性が大体同じ磁気効果を生じることは当然理解されるであろう。図示されたアセンブリは、中央に磁場のない最小領域を備える閉鎖経路に垂直に伸びる平行な弧を有する概ねセミトロイダルな磁界を生じる。これは、結果としてトンネルのストラットを形成する磁界の閉鎖トンネルを生じる。
【0026】
図4の磁極アセンブリは、均一な構成のターゲット14の中心とほぼ一致した回転軸78の周りをかなり高い回転率でスパッタ堆積中に絶えず回転するものである。回転軸78は、外部磁極面68の一方の長形端80に又はその近傍に位置し、もう一方の長形端82はターゲット14の使用可能な外部半径範囲にほぼ位置する。ターゲットの中心に対する回転マグネトロン60の非対称配置は、十分なターゲットカバレージを得るにもかかわらず小さいマグネトロンを供する。ターゲットの使用可能な外周部は、異なったマグネトロンの設計が同じターゲットの異なる部分に使われることから容易に画成されない。しかしながら、ターゲットの使用可能な外周部はターゲットの平坦な領域によって画定され、スパッタ堆積されるウエハの直径をかなり超えるまでほとんど常に伸び、またターゲット面の領域よりいくぶん小さい。200mmウエハについては、325mmのターゲット面が典型的である。15%の使われないターゲット半径は、実用上限として見なされ得る。ループ状マグネトロンは従来技術において周知であるが、たいていターゲットの中心の周りに対称に配置される。記載された発明においては、ループ状マグネトロンは非対称に配置され、その内部端はターゲット中心の上に重なっているか又はターゲット中心からターゲット半径の好ましくは20%以内、更に好ましくは10%以内の半径位置で終わっている。図示されたループ状マグネトロンは、ターゲットの直径に沿って伸びている。
【0027】
図5の平面図に示されているように、2組の磁石90、92が磁極面62、68の裏に配置されて2つの磁気極性を生じる。磁極面62、68、磁石90、92、及びおそらく逆磁気継鉄の組合わせが、磁極面62、68によって画成された領域を有する2つの対向磁極を生じる。他の手段が、そのような磁極を得るのに使用されてもよい。
【0028】
2つのタイプの磁石90、92は、それぞれが垂直に面している端に軸方向に伸びている磁束を生じる、類似した構造及び組成であってもよい。磁気組成、直径、又は長さが異なる場合には、異なる磁石によって生じる磁束が異なってもよい。磁石90、92の断面図を図6に示す。軸に沿って伸びている円筒状の磁気コア93は、ネオジミウムホウ素鉄(NdBFe)のような強磁性材料から構成される。そのような材料は酸化されやすいことから、コア93は一緒に溶接した管側壁94と2つのほぼ円形のキャップ96からつくられたケースに封入され、気密缶を形成する。キャップ96は、軟らかい磁性材料、好ましくはSS410ステンレス鋼から構成され、管側壁96は非磁性材料、好ましくはSS304ステンレス鋼から構成される。それぞれのキャップ96は軸方向に伸びているピン97を含み、簡単に述べると、磁極面62、68の一方又は磁気継鉄内の対応する捕獲正孔に係合している。これによって、磁石90、92はマグネトロンに固定される。磁気コア93は、軸方向に沿って磁化されるが、2つの異なるタイプの磁石90、92は、図7の断面図に示されるように、マグネトロン60に向けられるので、内部磁極62の磁石90は一方の向きに垂直に伸びる磁界をもつように配列され、外部磁極68の磁石92はもう一方の向きに垂直に伸びる磁界をもつように配列される。即ち、対向する磁気極性をもつ。
【0029】
図7の断面図に示されるように、磁石90、92は、ターゲット14の裏のすぐ上に位置する磁極面62、68の上に(図1の向きを用いて)近接して配置される。ほぼ閉じられた形が外部磁極面68の外周部にほぼ適合している磁気継鉄98は、2つの磁極62、68を磁気的に結合するように磁石90、92の裏に近接して配置される。前述のように、磁極面62、68及び継鉄98の正孔は磁石90、92を固定し、図示されていないハードウエアは磁極面62、68を継鉄98に固定する。
【0030】
内部磁石90及び内部磁極面62は、一方の磁気極性の内部磁極を構成し、外部磁極面68は、もう一方の磁気極性の周りの外部磁極を構成する。磁気継鉄98は、内部磁極と外部磁極を磁気的に結合し、マグネトロンの裏面又は継鉄98に対して上面の磁界を実質的に限定する。よって、セミトロイダル磁界100が生じ、非磁気ターゲット14を介して真空チャンバ12へ伸びて高密度プラズマ領域38を画成する。磁界100は、非磁気ターゲット14を介して真空チャンバ12へ伸びて高密度プラズマ領域38の範囲を画成する。磁石90、92は、異なる磁力であってもよい。しかしながら、後に説明される理由により、外部磁石92によって生じる全磁束は内部磁石90によって生じる全磁束よりもかなり大きいことが望まれる。図示されるように、マグネトロン60は、ターゲット14のほぼ中央からターゲット14の使用可能な領域の縁まで水平に伸びている。磁気継鉄90及び2つの磁極面62、68は、SS416ステンレス鋼のような軟らかい磁性材料から形成されたプレートであることが好ましい。
【0031】
マグネトロン60の内部長形端80は、回転軸78に沿って伸びているシャフト104に接続され、モータ106によって回転する。図示されているように、マグネトロン60は、ターゲット14のほぼ中央からターゲット14の使用可能な領域の右側まで伸びている。Demarayらの米国特許第5,252,194号には、モータ106、マグネトロン60、及び真空チャンバ12間の接続の具体的な詳細が開示されている。マグネトロンアセンブリ60は、シャフト104の屈曲を避けるためにカウンタウェイティングを含まなければならない。回転78の中心は、外部磁極面72の内部長形端74内に配置されることが好ましいが、その位置は、わずかに異なる位置に最適化されてもよい。しかし、規格化された内部長形端80からマグネトロン60の長形の長さまで、20%以上外れないのが好ましく、更に好ましいのは10%である。最も好ましくは、長形端80近くの外部磁極面68の内部端は、回転中心78に重なる。
【0032】
図4のループ状構造は、簡単さと非常に小さな領域の利点をもつとともに十分なターゲットカバレージを与える。後述されるように、2つの磁極の非対称磁束は、低圧スパッタリング及び持続自己スパッタリングに有利である。
【0033】
図4のループ状構造は、また、非常に平らな楕円形として特徴づけることも可能である。他の楕円形もまた本発明の範囲内に含まれており、例えば、主軸がターゲットの半径に沿って伸び、短軸が回転の円周に好ましくは平行である楕円形といった、直径が連続して変化する連続湾曲形状のものが挙げられる。公開された日本特許出願第63-282263号にTabuchiが対称楕円マグネトロンを示している。しかしながら、この形は、特に磁石を内部磁極内に充填するために形が複雑であるという欠点がある。
【0034】
他の楕円形は、図8の平面図に示される卵形マグネトロン106によって表される。一方の磁気極性の外部磁極面108がもう一方の極性の内部磁極面110をほぼ一定のギャップ122で取り囲んでいる。両磁極面108、110は、卵の輪郭のような形であり、長い方の軸がターゲットの半径に沿って伸びている。しかしながら、回転軸78近傍の外部磁極面108の内部端112は、ターゲットの周囲近傍の外部端114より尖っている。卵形は、楕円形に関連しているがターゲット半径に対して非対称である。特に、短軸は、押されて中心よりターゲット周囲に近くなる。内部磁極面110とギャップ122は、同じような形をしている。そのような卵形は、多くの磁束が入りターゲット周囲に近くなり、スパッタリング均一性を改善する。そのような好ましい磁束分布は、中心から使用可能な外径まで伸びるターゲットの半径の1/2に対して確認され得る。改善された均一性については、半径の1/2の外部に位置する全磁束は、例えば、少なくとも3:2比、好ましくは1.8〜2.3だけ半径の1/2の内部に位置するより大きい。この構造におけるターゲットの半径の1/2の外部と内部の磁束の比は、約2:1である。
【0035】
関連した形は、図9の平面図に示される三角マグネトロン126によって表される。一方の磁気極性の三角形外部磁極面128がもう一方の磁気極性のほぼ固体の内部磁極面130をギャップ132で取り囲んでいる。角の丸い内部磁極130の三角形は、図6のボタン形磁石の六方最密充填を可能にする。外部磁極面128は、3つの直線部分134をもち、相互に60°で合わせられ、丸い角で接続している。好ましくは、丸い角136は、直線部分134より長さが短い。丸い角136は、回転中心78とターゲット中心近傍にターゲット半径の20%以内、好ましくは10%以内、最も好ましくは回転中心78に重なる外部磁極面128の頂点において位置する。三角形の形をした内部磁極部分130は、中央アパーチャを含むことができるが、該アパーチャのサイズは中央磁気カスプのサイズを最小にするように小さく維持することが好ましい。
【0036】
改良した三角形は、図10の弧状三角形マグネトロン140で表される。三角形内部磁極面130が弧状三角形外部磁極面142とそれらの間及びそれぞれの磁極の磁石の間のギャップ144及びギャップ144の裏の磁気継鉄と共に囲まれたものが含まれる。外部磁極面142には、丸い頂角148で相互に接続し、丸い外周の角152で弧部分150に接続した2つの直線部分が含まれる。頂角148は、回転中心78及びターゲット中心の近くに、ターゲット半径の好ましくは20%以内、更に好ましくは10%以内に置かれる。弧部分150は、ターゲットの外周部のほぼ近傍に位置する。曲率はターゲットと同じであってもよい。即ち、回転中心78から等距離であってもよいが、他の最適化曲率は弧部分が回転中心78に対してへこむように選ばれてもよい。チャンバ内のターゲット周囲近傍に、好ましくは25%以内、更に好ましくは15%以内に位置する。横山Yokoyamaらの公開日本特許出願第62-89864号には、複数の弧状三角形マグネトロンがターゲット中心の周りに対称に配置された利点が開示されている。しかしながら、複数のマグネトロンは、小さな全領域には供給しないので、スパッタリング用の高電力密度を達成しない。更に、Yokoyamaにおける個々のマグネトロン部分の尖点は、ターゲット中心から比較的離れて位置するので、多くの部分を除いてスパッタリングの均一性が悪い。
【0037】
図11の平面図に示される磁石の配置により磁界が生じる。第1極性の磁石160は、有利な六方最密充填配列で内部磁極面130に隣接して配置される。第2極性の磁石162は、外部磁極面142の弧部分150に隣接して配置され、第2極性の磁石164は、外部磁極面142の残りの部分に隣接して配置される。後述されるある状態においては、外部磁極面142の異なる部分に異なる強度の磁石を置くことが有利である。実施例においては、内部磁極に10個の磁石及び外部磁極に26個の磁石があり、同じ強度の磁石が内部磁極より外部磁極で2.6以上の磁束を生じる。
【0038】
図9及び図10の三角マグネトロン126、140では、ボタン形磁石の六方最密充填を促進する頂角が60°であるように示されているが、頂角は変化させることができ、特に60°より小さくすることができる。しかしながら、60°±15°は優れた均一性を与えると思われる。頂角は、本発明のマグネトロンの2つの重要なパラメーター、面積Aと周囲Pの数値に著しく影響する。図12の平面図に示されるように、弧状三角形マグネトロン140に対して最も容易に行われる簡単な計算から、頂角.の変化による一般的な影響がわかる。単純化した又はモデルの弧状三角形マグネトロン170では、2つの直線側面が半径RTのターゲットの中心と周辺間に伸び、回転軸78と一致した頂角に集まり、またターゲット14の使用可能な周囲にあてはまる弧側面が更に含まれる。単純化した弧状三角形マグネトロン170の面積Aは.RT 2/2であり、外周PはRT(2+.)であり、.はラジアンで測定される。図12には、半径がRT/2であり、回転軸78に固定した直径をもつモデルの円形マグネトロン172も示されている。面積Aは.RT 2/4であり、外周Pは.RTである。マグネトロン170、172は共に十分なターゲットカバレージを与える。頂角.に対する弧状三角形面積Aの依存は、線174で図13の規格化単位にプロットされ、円形面積については線176でプロットされる。90°以下の場合、三角形面積のほうがより小さい。三角形の外周Pの依存は、線178で図14にプロットされ、円周については線180でプロットされる。65.4°以下の場合、弧状三角形の外周のほうがより小さい。イオン化効率は、ターゲット電力が小さな面積に集中するので、面積を最小にすることにより高くなり、エッジロスが周辺の長さにほぼ比例するので、外周を最小にすることにより高くなる。当然のことながら面積は磁界を生成する磁石を収容するのに十分な大きさを必要としている。また、これらの計算は、均一性を無視している。円形マグネトロン170は、弧状三角形マグネトロン172に相対して均一性が低いようである。
【0039】
弧状三角形マグネトロン172のターゲットの1/2の半径の外側と内側の磁束の比は、(1+.)による2つの領域において側面170の長さによって近づくことができ、45°の頂角.については1.79、60°については2.05、75°については2.31、及び90°については2.57である。
【0040】
図10及び図11の弧状三角形配置のバリエーションは、頂角を、例えば、47°に小さくすることである。六方最密充填内部磁石160のほかに、1以上の内部磁石が六方最密充填磁石の内角から外部磁石164の内角に向かって線状に配置される。結果は、ループ状マグネトロンと弧状三角形マグネトロンの中間である。
【0041】
上記の形は、磁極面が用いられるボタン型磁石よりあまり大きくない領域のバンド状の幅であることを意味することが理解されるであろう。幅、特に外部磁極面の幅は、おそらく均一でなくても大きくすることができるが、追加の幅は所望の高磁界を生じるのに効率が悪い。
【0042】
上で示した形は、全てターゲット半径について対称であった。しかしながら、本発明のマグネトロンは、非対称の形、一方の半径方向に伸びている側面が図4のループ状の形であり、もう一方の側面が楕円形、例えば、図7の卵形であるか、又は一方の半径方向に伸びている側面が楕円形か直線であり、もう一方の側面にはターゲットの中心と周囲間に三角形の頂角がある。
【0043】
上記マグネトロンの全ては、内部磁極と外部磁極の非対称領域を有し、同様のボタン形磁石90、92の同様の充填を前提とすると、非対称磁束を有する。特に、図15に図式的に示された内部磁極190によって生じる全磁束∫B・dSは、取り囲んでいる外部磁極192によって生じるものより、例えば、多くても2/3、好ましくは1/2だけ少ない。全てのマグネトロンは、また外部磁極192によって取り囲まれたコンパクトな内部磁極190をもつものとして特徴づけられる。結果は、磁極190、192間のギャップ196に隣接したリアクタ処理領域内に非常に強い磁界分布であるが、磁気継鉄198の裏に近接した外部磁極192の磁界ラインとして処理領域194へ遠くに伸びている。深部ターゲットから処理領域194へ垂直に伸びる磁界の実質的部分は、多くの利点を与える。軽い電子が磁界ラインの周りを回ることから、伸長した磁界が電子を捕捉するので、深部高密度プラズマを処理領域194へ支持するのを援助する。同じ相互作用により、チャンバ接地シールドに近接して平行に伸びている磁界によって、シールドへの電子ロスが減少し、プラズマ密度が高くなる。結果として、プラズマは低圧で支持され得るし、自己持続もされ得る。磁界は、また、重い正粒子を部分的にトラップするので、イオン化スパッタ粒子をウエハの方へ向ける。
【0044】
本発明の磁石は、また、相対的に高い磁界を達成する。しかしながら、それ自体の磁界の強度は不十分である。Demarayらが上記特許に開示しているような従来のマグネトロンは、馬蹄形の磁極間の小さなギャップをもつ腎臓形直線通路に配置された馬蹄形磁石のラインを用いる。結果として、相対的に高い磁界の強度は腎臓形の周辺の領域に達成し得る。しかしながら、高磁界の直線形は、実質的に磁界のない領域を取り囲んでいる。結果として、電子は高磁場領域の外部だけでなく内部にも逃げ得る。対照的に、本発明の三角形マグネトロンの内部磁極は、最小領域の磁気カスプを生じる。内部磁極の一方の側面の磁界から電子が失われる場合には、もう一方の側面に捕獲されるので、一定の電力レベルに対してプラズマ密度を高める。更に、内部磁極はほぼ均一な磁束を生じる単一の磁化可能な磁極面を含んでいる。多数の内部磁極面が多数の内部磁石に用いられた場合には、磁界ラインは内部磁石間まで伸びる。
【0045】
本発明の設計の利点は、更に、一方の磁極が閉鎖ラインに形成され、もう一方の磁極を取り囲むことである。2組の磁極が近接して隔置されている開放終了ラインに馬蹄形磁石等を配置することにより磁界の強度の大きい非常に小さな直線的に伸びるマグネトロンを形成することが可能である。しかしながら、そのとき電子は開放端から容易に逃げるとともにプラズマの密度を低下し得る。
【0046】
本発明の有益な結果は、大部分において楕円形マグネトロン及び関連した形のマグネトロンが過度の電力を必要とせずに高いプラズマイオン化密度を生じることから達成されると思われる。それにもかかわらず、十分なターゲットカバレージが達成される。態様においては、本発明のマグネトロンは相対的に小さな領域をもつが、ラジアル走査せずに十分なターゲットカバレージを可能にする。60°の頂角を有する図10の三角形マグネトロン160の領域は、使用可能なターゲット領域の1/6(0.166)である。対照的に、円形マグネトロン162が使われ、ターゲット中心から周辺に同様に伸びる場合には、マグネトロン領域はターゲット領域の1/4(0.25)である。結果として、大きな円形マグネトロンを出力する一定の電源に対して電力密度は低い。ターゲットオーバーレイ%は、図3のTepman磁石については更に高い。
【0047】
小さな面積と十分なカバレージの組合わせは、ターゲット中心からその使用できる周辺(±15%)まで伸び且つターゲット半径よりかなり小さいターゲット半径の半分の横の寸法、即ち、ターゲット半径に沿った長形をもつ外部マグネトロンによって達成される。横の寸法は、回転経路に沿った外周で測定されなければならない。
【0048】
均一性は、回転中心近くの内部端よりターゲット周囲近傍の外部端において、ターゲット半径について横に広い楕円形によって高められる。即ち、短軸は、ターゲットの外周に向かってずれる。
【0049】
マグネトロンの小さな面積は、それでも十分なターゲットカバレージを与えるが、非常に高い電力密度が合理的なサイズの電源をターゲットに印加することを可能にする。Tepman設計と異なり、小さな面積は、磁場のない領域が内部にほとんど含まれない。200mmウエハについては、マグネトロンは約300mmの使用可能なターゲット径まで伸びる。弧状三角形マグネトロンの有効面積は、この大きな直径に付随した面積の約1/6、即ち、約117cm2である。従って、マグネトロンの一定の位置でスパッタされる領域の平均電力密度は、約150W/cm2である。誘導コイルを含まずに達成されるそのような高電力密度は、低アルゴン圧でプラズマを支持するか、或いは銅のような選定された金属の持続自己スパッタリングを可能にする。300mmウエハとでさえ、大きな寸法に比例した本発明の小さなマグネトロンと連結した27kW電源は、103W/cm2のターゲット電力密度を生じる。下記に示されるように、銅の持続自己スパッタリングには76W/cm2の電力密度が十分である。
【0050】
プロセス
図4及び図5のループ状マグネトロンを銅スパッタリングと共に試験した。構造においては、6個の磁石を中央磁極面62の後ろに置き、同じ強度であるが対向の極性の25個の磁石を外部磁極面68の後ろと周りに配置し、33cmターゲットと200mmウエハとの間の空間は190mmである。この構造により、±18%の堆積均一性を生じる。第2構造においては、磁石の強度が異なり、強いものは30%以上の磁束を生じる。6個の強力な磁石が中央磁極面の後ろに置かれ、25個の弱い磁石が外部磁極面の周りに置かれる。強力な内部磁極面にもかかわらず、外部磁石によって生じる全磁束は内部磁石によって生じるものより大きい。第2構造は、8.9%の改善された堆積均一性を生じる。第2構造は、また、幅0.5.m、深さ2.mのバイアホールに充填する優れたホールを与える。265nmのブランケット銅については、底部カバレージは10〜15%であり、側壁カバレージは約2.8%である。深部正孔充填は、高イオン化密度を与えるループ状マグネトロンの小さな面積によって促進される。第3構造においては、強力な磁石が外部磁極の端近傍の弱い磁石の一部に置き換わる。これにより、いくぶん良好な均一性が生じる。
【0051】
図10及び図11の弧状三角形マグネトロンは、スパッタリング組成の異なる一連の実験で試験した。ほとんど全ての実験について、ターゲットはウエハから190〜200mm間に隔置され、ターゲットの直径は200mmのウエハについては330mmであった。
【0052】

銅スパッタリングについて、内部磁極に10個の強力磁石160、外部磁極の弧部分150に沿って強力磁石162、及び外部磁極の残りに弱い磁石164を用いることにより均一性が改善される。強い方の磁石の直径は弱い方の磁石の直径より30%大きいが、同様の組成又は構造を有し、よって70%大きい統合磁束を生成する。
【0053】
銅の持続自己スパッタリングは、アルゴン環境中でプラズマにぶつかった後に達成され、ターゲットに印加される9kWのDC電力の使用可能直径は約30cmであり、弧状三角形マグネトロンにより電力密度76W/cm2を生じる。しかしながら、18kWのDC電力及びガスの漏れから少なくとも部分的に生じる約0.1ミリトルの最小アルゴン圧力で作動させ、液体冷却ペデスタルにウエハの裏面冷却を与えることが望ましい。0.1〜0.3ミリトルの高バックグラウンド圧は、スパッタイオンの散乱と脱イオン化が顕著に増加せずに効果的なウエハ冷却を増強する。これらの相対的に低いDC電力は、300mmウエハの進行中の装置開発のために重要であり、これらの数は20kWと40kWに比例する。40kWより大きい電源は、実行可能であっても高価なものであると考えられる。
【0054】
イオン化銅スパッタリングの適用は、深くて狭いバイアホールに銅のコンホーマルな薄いシード層を堆積することである。その後、正孔の残りを銅で急速且つ経済的に充填するために電気めっき又は無電解めっきが用いられ得る。
【0055】
実験においては、上方の幅が0.30.mであり1.2.mのシリカを貫通して伸びるバイアホールをまずTa/TaNバリヤ層で被覆した。弧状三角形マグネトロンを用いて、18kWのターゲット電力及び0.2ミリトルの圧力でバリヤ層上に堆積した。堆積を約0.15.mのブランケット厚さまで行った。バイアホールの両側を平滑に被覆した。実験から、銅の側壁の厚さがウエハエッジ部に位置するバイアの一方の側面で約7nm及びもう一方の側面で11.4nm(5%及び8%)であることがわかる。底部カバレージは約24nm(16%)である。ウエハ中央のバイアホールの側壁対称が改善される。平滑性はシード層として及び続いての銅の電気めっきの電極としての堆積層の使用を促進する。2つの側壁間の比較的良好な対称によって、ホトリソグラフィ決定を明らかにずらす従来技術の問題が除去される。
【0056】
アルミニウム
弧状三角形マグネトロンを用いたアルミニウムターゲットのスパッタリングは、12kWと18kWの印加電力の双方において約0.1ミリトルの最低圧で顕著な改善が達成された。アルミニウムスパッタリングについては、側壁カバレージ、特に底部カバレージが顕著に改善される。良好な均一性もまた、ウエハを支持する自己バイアスペデスタルがスパッタイオン化粒子を全領域を横切って引きつけるので高イオン化割合に部分的に関係すると思われる。本発明のマグネトロンは、イオン化割合を2%から少なくとも20%、たぶん25%に高めることが予想される。
【0057】
弧状三角形マグネトロンを、図3のTepmanマグネトロンに似ている従来のマグネトロンの動作と同様の動作条件下で比較した。アルミニウムスパッタリングの比較結果を表1に纏める。
【表1】
Figure 0004936584
【0058】
幅0.25.m及び深さ1.2.m、即ち、アスペクト比約5であるバイアホールのカバレージ結果を得た。従来のマグネトロンと比較した本発明の三角形マグネトロンにより底部カバレージは顕著に改善される。側壁カバレージも増加し、カバレージは上部から底部まで平滑且つ均一である。これらの2つの特性は、続いての堆積ステップのシード層としての堆積金属層の使用を促進させる。これは、第2堆積が電気めっきのような異なるプロセスで行われる銅については特に重要である。底部及び側壁の高カバレージは、本発明の三角形マグネトロンで達成されたスパッタアルミニウム原子の高イオン割合によると思われる。このイオン化割合は、25%以上であると思われる。プランケット(平面)堆積の均一性をターゲットとウエハ間の190mmの分離についてもロングスロー実施における290mmの分離についても求めた。本発明の三角形マグネトロンは、良好な均一性を、特にロングスローについて与える。良好な均一性もまた、ウエハを支持する自己バイアスペデスタルがイオン化スパッタ粒子を全領域を横切って引きつけるので高イオン化割合に関係があると思われる。同様に、本発明の三角形マグネトロンによって、2つの対向する側壁のカバレージ間の非対称が少ない。高イオン化密度は、一部には比較的小さな内部継鉄の面積が外部継鉄より実質的に小さいことによる。結果として、内部継鉄の一方の側面から失われた電子は、もう一方の側面によって捕獲されると考えられる。
【0059】
チタン
チタンをスパッタするために弧状三角形マグネトロンを用いた。窒化チタンとしばしば関連させたチタンは、コンタクトホールの底部のシリコンにシリサイドのコンタクトを与えるアルミニウム金属化において及び湿潤層として及び窒化チタンとの関連においてはコンタクトホールのシリコンに対するバリヤとして及びバイア又はコンタクト側壁上のアルミニウムとシリカの誘電体間のバリヤとしての働きをするのに有効である。従って、コンホーマルで比較的厚いコーティングが必要である。
【0060】
18kWのターゲットDC電力及び内部磁極の6個だけの磁石160と共にチタンターゲットを用いて一連の実験を行った。0.35ミリトルのチャンバ圧において、底部カバレージと均一性が良好であることが観察される。
【0061】
被覆されるバイアホールのアスペクト比(AR)の関数として底部カバレージを測定するためにチタン実験を続けた。ウエハバイアスを印加せず、ペデスタルヒータ18が電気的に浮動しているにもかかわらず、18kWのターゲット電力はターゲットを約30〜45Vに自己バイアスする。これらの条件下での底部カバレージは、図16のグラフのライン190によって示されている。底部カバレージは高アスペクト比の正孔に対して減少するが、AR=6において20%がなお許容範囲である。
【0062】
これらの実験を続けるにあたり、図1に示されるRF電源192をヒータペデスタル18に結合キャパシタ回路194を介して接続した。プラズマに隣接したウエハに印加したRF磁場がDC自己バイアスを生成することは既知である。100Wの400kHz電力を0.3ミリトルのチャンバ圧で印加するとき、底部カバレージは、図16のグラフのライン196で示されるように顕著に増加する。しかしながら、バイアス電力を250Wまで上げるとき、バイアホールの上部角の再スパッタリングとフェーシングが問題である。250Wの底部カバレージ結果をライン198で示す。4.5より高いアスペクト比については、250Wのウエハバイアスによる底部カバレージは、たいていは100Wのウエハバイアスより悪いので、バイアス電力は2MHz以下の低バイアス周波数に対して250Wより低く維持しなければならない。これらの電力は、200mmの円形基準ウエハに規格化されなければならない。300mmのような他のサイズのウエハも用いることができ、これらのウエハはフラット又はノッチを位置合わせすることから完全に円形でなくてもよい。しかしながら、上記の電力レベルが200mm円形基準ウエハに関係づけてから実質的に円形の加工ウエハの異なる領域に従って評価される場合には同じ効果が予想される。
【0063】
アスペクト比4.5のホールについて300WのRFウエハバイアスを13.56MHzの周波数で用いて実験を続けた。0.7ミリトルの圧力におけるブランケット堆積速度は128nm/分であり、底部カバレージは31%〜52%で変動する。1.4ミリトルの圧力における堆積速度は142nm/分であり、底部カバレージは42%〜62%で変動する。高い圧力における側壁カバレージは10.4%〜11.5%で変動し、認知できる側壁非対称は認められない。予想とは反対に0.7ミリトルより高い圧力によって、チタン堆積速度は高くなり、底部カバレージは良好になる。高バイアス周波数は、高バイアス電力を印加することを可能にする。
【0064】
窒化チタン
本発明のマグネトロンは、また、TiNのような反応性スパッタリングに使用することができ、窒素は、更に、スパッタ金属と反応させるために、例えば、チタンとTiNを生成し又はタンタルとTaNを生成するためにチャンバ内に加えられる。反応性スパッタリングは、更に複雑であり、化学的に変化する。TiNを生成する反応性スパッタリングは、2つの方式、金属方式と有害方式で動作することが既知である。金属方式は、ウエハ上に金色の高密度膜を生成する。高窒素フローをしばしば随伴する有害方式は、応力が小さいことが有利である紫色/褐色膜を生成する。しかしながら、有害方式膜は粒界が多く、膜欠陥によりチップ歩留まりが致命的に低下する。更に、有害方式における堆積速度は、金属方式の速度の典型的には1/4にすぎない。一般的には、有害方式においては窒素とターゲットとを反応させてTiターゲット上にTiN表面を形成し、金属方式においてはターゲット表面が清浄なままであり、TiNはウエハ上にのみ形成する。
【0065】
弧状三角形マグネトロンについて、スパッタ堆積チタンに用いられる同じチャンバ内で窒化チタンの反応性スパッタリングを試験した。
【0066】
スパッタ堆積窒化チタンの初期化条件は、金属方式において動作を得るために非常に重要であることがわかる。一連の開始実験においては、アルゴンのみがチャンバ内に加えられる。プラズマを約0.5ミリトルのアルゴン圧力で衝突させた後、アルゴンフローを5sccmに下げて0.3ミリトルの圧力を与える。窒素フローを段階的に100sccmまで上げてから、徐々に下げ、フローに対するチャンバ圧の依存性は図17に示されるヒステレシス形をとる。約50〜70sccmの窒素間の中間ランプアップ圧200は対応する中間ランプダウン圧202より低い。低圧204及び高圧206においては、ランプアップとランプダウン間に著しい分離がない。低圧204と中間ランプアップ圧200は金属方式でスパッタリングを生じ、高圧206と中間ランプダウン圧202は有害方式でスパッタリングを生じる。
【0067】
これらの結果は、一般的に好ましい金属方式の高操作堆積速度について、中間ランプアップ圧200を超えないこと、即ち、最大金属方式フローを超えないことが重要であり、これらの実験においては70sccmかそれよりわずかに高いが明確には80sccmより低いことを示している。アルゴンと窒素は、同時に且つ急速にオンにすることができるが、DC電力も急速にオンにすることが好ましい。
【0068】
しかしながら、有害方式の操作が好ましい用途がある。これは、まず高圧206にし、次にランプダウン中間圧202に下げることにより達成され得る。また、有害方式は、直ちに所望のガスフローをオンにし、スパッタリングDC電源を5kW/sを超えない速度で徐々にオンにするだけで達成され得る。
【0069】
窒化チタンは、プラズマをアルゴン中で衝突させた後に50sccmのN2フロー及び5sccmのArフローの金属方式においても有害方式においても高アスペクト比バイアホールにスパッタされた。これらのフローは、金属方式で1.7ミリトルの圧力及び有害方式で2.1ミリトルの圧力を生じる。堆積速度は、金属方式で100nm/分及び有害方式で30nm/分である。一方、金属方式で堆積される場合、TiN膜応力は大きいが、一方、有害方式はバイアホール上部近傍に突き出た起伏のある側壁厚さを受ける。一連の実験は、アスペクト比の異なるバイアホールにTiNを堆積した。図18のグラフに示される得られた底部カバレージ測定値は、ライン210では、5のアスペクト比でさえ相対的に高いままであり、ライン212では、有害方式のステップカバレージは常に低く、4以上のアスペクト比については劇的に低下することを示している。しかしながら、ウエハに更にバイアスが加えられる場合には、有害方式で堆積したTiNのステップカバレージは受け入れられる。
【0070】
Tiを堆積するのに用いられる同じチャンバ内でのTiNの堆積の成功から、Ti/TiNバリヤは連続動作において本発明に従って堆積され得ることが証明される。
【0071】
集積タングステンプラグプロセス
本発明の弧状マグネトロンで堆積したTi/TiNバリヤとバリヤ被覆正孔に化学気相成長(CVD)で堆積したタングステンプラグを組合わせた集積プロセスを証明するために2組の試験を行った。この組合わせは、タングステンCVDが気体前駆体として6フッ化タングステン(WF6)を用いていることから過去に問題があった。WF6は、Tiを攻撃するとともにプラグにボイドを生じる火山に似たWプラグに形成された構造を生じる傾向がある。
【0072】
第1組の試験においては、バリヤ層は、別の従来の無誘導スパッタリアクタ内の本発明の弧状マグネトロンで堆積した30nmのTiNで被覆された30nmのTiからなった。Ti/TiN堆積に続いて、チップを、強い放射ランプがウエハ表面を短時間急速に加熱する急速熱処理(RTP)に供した。第2組の試験においては、バリヤ層は第1組のように堆積した10nmのTiNによって被覆された30nmのTiからなった。しかしながら、第2試験においては、Ti/TiN堆積前にウエハをプラズマプレクリーンに供したが、後のRTPはなかった。いずれの場合にもタングステンがTi/TiN上にCVD堆積した。
【0073】
これらの実験から、いずれのプロセスも火山を生じないことがわかる。更に、TiNの厚さと抵抗率は良好な均一性を示している。TiN抵抗率は、45..-cm未満であることが測定される。アスペクト比が5:1である正孔においてウエハバイアスを使用せずにTiN/Ti二重層の20%の底部カバレージが認められる。ウエハバイアスによって、アスペクト比が10:1である正孔に同じ底部カバレージが生じる。従って、本発明のマグネトロンで行われたTi/TiNプロセスは、タングステンプラグプロセスに巧く組込まれ得る。本発明のマグネトロンは、また、他の材料、例えば、タングステンターゲットを用いてW、又はタンタルターゲットとプラズマ中に窒素ガスを用いてTaNをスパッタ堆積するために使用し得る。WNの反応性スパッタリングも企図される。
【0074】
このように、本発明のマグネトロンは、過度の電力を必要とせずに高密度プラズマをつくることができることから高イオン化割合を生じるのに効率がよい。それにもかかわらず、その十分なカバレージは、均一な堆積と十分なターゲット利用を可能にする。そのスパッタリング均一性は良好である。それにもかかわらず、複雑なメカニズムは必要としない。
【0075】
高性能の十分なカバレージスパッタリングを与える点で本発明のマグネトロンの有効性は、3つの相互に関係した相乗効果に基づくものである。マグネトロンの磁気領域は小さい。それにより、平均磁界を強くすることができ、プラズマロスを減少させることができる。小さなマグネトロンは、また、マグネトロンの下のターゲットの領域に高平均電力密度を印加することを可能にする。即ち、全体としてターゲットに印加される電力は相対的に弱いが、スパッタされる瞬間の実際の領域内の電力密度と得られたプラズマ密度は高い。マグネトロンの内部及び外部磁極の非対称は、マグネトロンの周辺を垂直に取り囲んで伸び且つチャンバ内の遠くに伸びる磁界部分を生じる。この磁界分布によって、プラズマロスが減少し、イオン化スパッタ粒子が基板へ導かれる。唯一の円周方向走査によりターゲットの十分なカバレージスパッタリングを与えるマグネトロン、及び均一なターゲットスパッタリング及び均一な基板堆積を生じる最適な形をとり得るマグネトロンは、これらの利点全てに恵まれている。
【0076】
そのような小さな高磁場磁石は、相対的に低いターゲット電力で持続自己スパッタリングを可能にし、0.5ミリトルより低い(好ましくは0.2ミリトルより低い)低圧で、また0.1ミリトルの低圧でさえも、アルミニウムやチタンのような材料のスパッタリングを可能にする。これらの圧力において、中性又はイオン化いずれにせよスパッタ粒子の低散乱によって、及びイオン化粒子の低中和によって深部正孔充填が促進され得る。しかしながら、少なくともチタンについては、本発明のマグネトロンの使用により、約0.7ミリトルより高いガス分圧を作用することにより改善されることがわかった。高磁場磁石は、更に、適切な範囲内でウエハにバイアスを加えることにより深くて狭い正孔に引きつけ得る高イオン化割合を促進する。
【0077】
これらの利点の全てが、かなり単純な設計のマグネトロンを用いて従来の容量結合DCスパッタリアクタにおいて得ることができる。本発明のマグネトロンが誘導結合RF電力によるHDPリアクタのような他の種類のスパッタリアクタにも有利に使用し得ることは当然のことである。
【図面の簡単な説明】
【図1】 DCプラズマスパッタリングリアクタの概略図である。
【図2】半導体集積回路内のインタレベルバイアの断面図である。
【図3】従来のマグネトロンの平面図である。
【図4】図7の4-4の線に沿って切った本発明のマグネトロンの実施例の磁極部分の平面図である。
【図5】図4のマグネトロンに用いられる磁石の平面図である。
【図6】本発明の実施例と共に用いられる磁石の1つの断面図である。
【図7】図4のマグネトロンの断面図である。
【図8】卵形マグネトロンの平面図である。
【図9】三角形の形をしたマグネトロンの平面図である。
【図10】弧状三角形マグネトロンと呼ばれる、図9の三角形の形をしたマグネトロンの変形の平面図である。
【図11】図10の弧状三角形マグネトロンに用いられる磁石の平面図である。
【図12】面積と周辺の長さに用いられる2つのモデルマグネトロンの平面図である。
【図13】三角形の面積及び円形マグネトロンの面積の角度依存性のグラフである。
【図14】図12の2種類のマグネトロンの周囲長さの角度依存性のグラフである。
【図15】本発明の記載された実施例により生じた磁界の理想化の側面図である。
【図16】チタンスパッタリングの底部カバレージにおけるRFウエハバイアスの影響を示すグラフである。
【図17】本発明のマグネトロンによる窒化チタンの反応性スパッタリングにおいて得られた2つの堆積方式を示す窒素フローに対するチャンバ圧の依存性のグラフである。
【図18】本発明のマグネトロンによる窒化チタンの反応性スパッタリングの2つのスパッタリング方式で得られたステップカバレージのグラフである。
【符号の説明】
10…PVCリアクタ、12…真空チャンバ、14…ターゲット、16…ウエハ、18…ヒータペデスタル、20…シールド、22…DC電源、24…ガス源、26…マスフローコントローラ、27…ガス源、28…真空装置、30…コントローラ、32…マグネトロン、34…磁石、36…磁石、38…高密度プラズマ領域、40…バイアホール又はコンタクトホール、42…誘電層、44…導電様相、46…下にある層又は基板、50…層、52…Tepmanマグネトロン、54…磁極面、56…磁極面、57…ギャップ、58…回転軸、60…ループ状マグネトロン、62…中央棒状磁極面、64…側面、66…丸い端、68…環状磁極面、70…ギャップ、72…直線部分、74…丸い端、78…回転軸、80…長形端、82…長形端、90…磁石、92…磁石、93…円筒状磁気コア、94…管状側壁、96…キャップ、97…ピン、98…磁気継鉄、100…磁場、104…シャフト、106…モータ、108…外部磁極面、110…内部磁極面、112…内部端、114…外部端、122…ギャップ、126…三角形マグネトロン、128…三角形マグネトロン、130…内部磁極面、132…ギャップ、134…直線部分、136…丸い角、140…弧状三角形マグネトロン、142…弧状三角形内部磁極面、144…ギャップ、146…直線部分、148…丸い頂角、150…弧部分、152…丸い外周角、160…磁石、162…磁石、164…磁石、170…単純化又はモデル弧状三角形マグネトロン、172…モデル円形マグネトロン、174…ライン、180…ライン、190…磁極、192…磁極、194…処理領域、196…ギャップ、198…磁気継鉄、200…中間ランプアップ圧、202…中間ランプダウン圧、204…低い圧力、206…高い圧力、210…ライン、212…ライン。

Claims (17)

  1. スパッタリングターゲットの裏面に配置可能であり且つ前記ターゲットの中心位置の周りに回転可能なマグネトロンアセンブリであって、
    前記中心位置の周りに非対称に配置された単一マグネトロンを備え
    中央開口部を有し且つ前記ターゲットの前記中心から記ターゲットの外周部に向かって延びる閉鎖バンドを含む第1磁気極性の第1磁極と
    前記開口部の第1領域に配置され且つ前記ターゲットの表面に沿って延びるギャップによって前記第1磁極から分離された第2磁気極性の第2磁極と
    を含み、
    前記第2磁極が、前記第1領域を横切って連続的に延び、磁場のない領域を実質的に有さず、前記中心位置の周りに非対称に配置され、
    前記第1磁極が前記第2磁極により生成される統合磁束よりも少なくとも50%大きい統合磁束を生成する、
    ことを特徴とするマグネトロンアセンブリ。
  2. 前記第1磁極が、各直線部分が前記ターゲットの中心から外向きに延びる2つの直線部分を含む三角形形状を有する、請求項1に記載のマグネトロンアセンブリ。
  3. 前記三角形形状が、前記ターゲットの外周部に隣接した弧の部分をさらに、請求項に記載のマグネトロンアセンブリ。
  4. 前記三角形形状が、前記ターゲットの中心から外向きに延び且つ60°±15°の角度で相互に傾いている2つの直線部分、請求項に記載のマグネトロンアセンブリ。
  5. 前記第1磁極が前記第2磁極によって生成されたものより少なくとも2倍の統合磁束を生成する、請求項に記載のマグネトロンアセンブリ。
  6. スパッタリングターゲットの裏面に配置可能であり且つ前記ターゲットの中心位置の周りに回転可能なマグネトロンアセンブリであって、
    前記中心位置の周りに非対称に配置された単一マグネトロンを備え、
    中央開口部を有し且つ前記ターゲットの前記中心から前記ターゲットの外周部に向かって延び、前記ターゲットの半径に実質的に平行に延び且つ前記中心位置に対して非対称に配置された2つの対向する直線部分を有する閉鎖バンドを含む第1磁気極性の第1磁極と、
    前記開口部内に前記中心位置の周りに非対称に配置され、前記ターゲットの表面に沿って延びるギャップによって前記第1磁極から分離され、前記ギャップにより囲まれた領域を横切って連続的に延び、磁場のない領域を実質的に有さない、前記第1磁気極性に対向する第2磁気極性の第2磁極と、
    前記第1磁極の部分として配置された第1磁気強度を有する第1の複数の磁石と、
    前記第2磁極の部分として配置された前記第1磁気強度より大きい第2磁気強度を有する第2の複数の磁石と、
    を具備し、
    前記第1の複数の磁石の全磁束が前記第2の複数の磁石の全磁束よりも大きい、
    ことを特徴とする、マグネトロンアセンブリ。
  7. スパッタリングターゲットの裏面に配置可能であり且つ前記ターゲットの中心位置の周りに回転可能なマグネトロンアセンブリであって
    統合磁束の第1値を生成する第1磁気極性の第1磁極であって、前記中心位置の周りに非対称に配置され、該中心位置から前記ターゲットの外周部に向かって延びる中央開口部を有する閉鎖バンドを含む、第1磁気極性の第1磁極と
    前記開口部内に配置され、統合磁束の第2値を生成する前記第1磁気極性に対向する第2磁気極性の第2磁極であって前記開口部を横切って連続的に延び、該開口部内において磁場のない領域を実質的に有さず、前記ターゲットの表面に沿って延びるギャップによって前記第1磁極から分離された第2磁気極性の第2磁極とを含み、
    前記第1値前記第2値に対する比が少なくとも1.5である、
    ことを特徴とするマグネトロンアセンブリ。
  8. 前記比が少なくとも2である、請求項に記載のマグネトロンアセンブリ。
  9. 三角形マグネトロンであって
    連続的に延びる対照的な三角形状の内部磁極面であって、該内部磁極面の外面内に磁場のない領域を実質的に有さない内部磁極面
    前記内部磁極面の平面に隣接した六方最密配列に配置された第1磁気極性の複数の第1磁石と
    点に集まる2つの実質的に直線の側面と前記頂点に対向する前記直線の側面の端に結合した第3側面と、を有し、前記内部磁極面を取り囲む、ほぼ三角形状の外部磁極面と
    前記外部磁極面の平面に沿い且つ隣接した閉鎖経路に配置された第2磁気極性の複数の第2磁石と、
    具備し
    前記複数の第2磁石の全磁束が前記複数の第1磁石の全磁束よりも大きい、
    ことを特徴とする三角形マグネトロン。
  10. 前記第3側面が前記頂点に対してくぼんだ弓形をもつ、請求項に記載の三角形マグネトロン。
  11. 前記第1磁石が第1磁気強度を有し、前記第2磁石が、前記第1磁気強度を有し且つ前記第3側面に沿って配置された第3磁石と、前記第1磁気強度より小さい第2磁気強度を有し且つ前記直線面に沿って配置された第4磁石と、を含む、請求項に記載の三角形マグネトロン。
  12. プラズマスパッタリングリアクタであって
    真空チャンバと
    前記チャンバ内で基板を支持するペデスタルと
    前記ペデスタルに対向しており、プラズマスパッタリングに電気的に結合するように適合されたスパッタリングターゲットと
    前記ペデスタルに対向して前記ターゲットの側面に配置されたマグネトロンと
    を具備し、
    該マグネトロンが、
    第1値を有する統合磁束を生成する第1磁気極性の外部磁極面であって、前記第1磁気極性に対向する第2磁気極性の内部磁極面を環状のギャップを介して囲む外部磁極面と、
    前記ターゲットの中心の周りで前記マグネトロンを回転させる回転シャフトと、を含み、
    前記内部磁極面が、前記ギャップにより囲まれた領域を横切って連続的に延び、磁場のない領域を実質的に有さず、第2値を有する統合磁束を生成するものであり、
    前記マグネトロンが前記中心の周りに非対称に配置され、
    前記第1値が前記第2値よりも少なくとも50%大きい、
    ことを特徴とする、プラズマスパッタリングリアクタ。
  13. 前記外部磁極面が、各直線部分が前記ターゲットの前記中心から外向きに延びる2つの直線部分を含む三角形状を有する、請求項12に記載のリアクタ。
  14. 前記三角形状が前記ターゲットの周囲に隣接した弧の部分を有する、請求項13に記載のリアクタ。
  15. 前記ターゲットに結合可能なDC電源と;前記チャンバの内部に結合した誘導コイルと;前記誘導コイルに結合可能なRF電源と、を更に含む、請求項12に記載のリアクタ。
  16. 装置内のペデスタル上に支持された実質的に円形の加工基板にアルミニウムを含むターゲットからのアルミニウムをスパッタする方法であって
    前記装置が、
    前記ペデスタルに対向する前記ターゲットの側面に配置されたマグネトロンを具備し、
    該マグネトロンが、
    第1の全磁気強度を有する一方の磁気極性の外部磁極面であって、磁場のない領域を外面内に実質的に有さずかつ前記第1の全磁気強度の2/3未満の第2の全磁気強度を有する、他方の磁気極性の内部磁極面、を囲む外部磁極面と、
    前記ターゲットの中心の周りで前記マグネトロンを回転させる回転シャフトと
    を含み
    当該方法が、
    前記ターゲット及び前記ペデスタルを含む真空チャンバ内にワーキングガスを加えるステップと
    前記真空チャンバを0.35ミリトル未満の圧力までポンピングするステップと
    直径が200mmである円形標準基板に規格化された18kW以下で前記ターゲットにDC電力を加えて、それによって前記ワーキングガスをプラズマに励起させて、前記加工基板に前記ターゲットからのアルミニウムをスパッタするステップと、
    を含む、ことを特徴とする方法。
  17. 前記圧力が0.1ミリトル以下である、請求項16に記載の方法。
JP2000246012A 1999-08-12 2000-08-14 イオン化金属堆積用の高密度プラズマ源 Expired - Lifetime JP4936584B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/373,097 US6183614B1 (en) 1999-02-12 1999-08-12 Rotating sputter magnetron assembly
US09/373097 1999-08-12

Publications (2)

Publication Number Publication Date
JP2001140070A JP2001140070A (ja) 2001-05-22
JP4936584B2 true JP4936584B2 (ja) 2012-05-23

Family

ID=23470933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246012A Expired - Lifetime JP4936584B2 (ja) 1999-08-12 2000-08-14 イオン化金属堆積用の高密度プラズマ源

Country Status (6)

Country Link
US (1) US6183614B1 (ja)
EP (1) EP1076352A3 (ja)
JP (1) JP4936584B2 (ja)
KR (1) KR100806988B1 (ja)
SG (1) SG87153A1 (ja)
TW (1) TW486718B (ja)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497802B2 (en) * 1999-02-12 2002-12-24 Applied Materials, Inc. Self ionized plasma sputtering
US6306265B1 (en) * 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
US8696875B2 (en) * 1999-10-08 2014-04-15 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US20030116427A1 (en) * 2001-08-30 2003-06-26 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US6398929B1 (en) * 1999-10-08 2002-06-04 Applied Materials, Inc. Plasma reactor and shields generating self-ionized plasma for sputtering
US10047430B2 (en) 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US6451177B1 (en) * 2000-01-21 2002-09-17 Applied Materials, Inc. Vault shaped target and magnetron operable in two sputtering modes
DE10196150B4 (de) * 2000-07-27 2013-07-04 Spp Process Technology Systems Uk Ltd. Magnetron-Sputtervorrichtung und Verfahren zum Steuern einer solchen Vorrichtung
US6627050B2 (en) * 2000-07-28 2003-09-30 Applied Materials, Inc. Method and apparatus for depositing a tantalum-containing layer on a substrate
US6780775B2 (en) * 2001-01-24 2004-08-24 Infineon Technologies Ag Design of lithography alignment and overlay measurement marks on CMP finished damascene surface
US6663754B2 (en) * 2001-04-13 2003-12-16 Applied Materials, Inc. Tubular magnet as center pole in unbalanced sputtering magnetron
SE521095C2 (sv) * 2001-06-08 2003-09-30 Cardinal Cg Co Förfarande för reaktiv sputtring
US6491801B1 (en) 2001-08-07 2002-12-10 Applied Materials, Inc. Auxiliary vertical magnet outside a nested unbalanced magnetron
US6495009B1 (en) * 2001-08-07 2002-12-17 Applied Materials, Inc. Auxiliary in-plane magnet inside a nested unbalanced magnetron
US6500676B1 (en) 2001-08-20 2002-12-31 Honeywell International Inc. Methods and apparatus for depositing magnetic films
KR100439474B1 (ko) * 2001-09-12 2004-07-09 삼성전자주식회사 스퍼터링 장치
KR100439475B1 (ko) * 2001-09-28 2004-07-09 삼성전자주식회사 금속층 적층방법 및 장치
US6750156B2 (en) 2001-10-24 2004-06-15 Applied Materials, Inc. Method and apparatus for forming an anti-reflective coating on a substrate
US6758950B2 (en) 2002-01-14 2004-07-06 Seagate Technology Llc Controlled magnetron shape for uniformly sputtered thin film
KR100846484B1 (ko) * 2002-03-14 2008-07-17 삼성전자주식회사 Rmim 전극 및 그 제조방법 및 이를 채용하는 스퍼터링장치
US7041200B2 (en) * 2002-04-19 2006-05-09 Applied Materials, Inc. Reducing particle generation during sputter deposition
US6887786B2 (en) * 2002-05-14 2005-05-03 Applied Materials, Inc. Method and apparatus for forming a barrier layer on a substrate
US20030216035A1 (en) * 2002-05-14 2003-11-20 Applied Materials, Inc. Method and apparatus for sputter deposition
US6852202B2 (en) * 2002-05-21 2005-02-08 Applied Materials, Inc. Small epicyclic magnetron with controlled radial sputtering profile
US6841050B2 (en) * 2002-05-21 2005-01-11 Applied Materials, Inc. Small planetary magnetron
US6979526B2 (en) * 2002-06-03 2005-12-27 Infineon Technologies Ag Lithography alignment and overlay measurement marks formed by resist mask blocking for MRAMs
US7504006B2 (en) * 2002-08-01 2009-03-17 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
US7147759B2 (en) * 2002-09-30 2006-12-12 Zond, Inc. High-power pulsed magnetron sputtering
US6896773B2 (en) * 2002-11-14 2005-05-24 Zond, Inc. High deposition rate sputtering
US20040140196A1 (en) * 2003-01-17 2004-07-22 Applied Materials, Inc. Shaping features in sputter deposition
WO2004074932A2 (en) * 2003-02-14 2004-09-02 Applied Materials, Inc. Method and apparatus for cleaning of native oxides with hydroge-containing radicals
US7297247B2 (en) * 2003-05-06 2007-11-20 Applied Materials, Inc. Electroformed sputtering target
US7910218B2 (en) 2003-10-22 2011-03-22 Applied Materials, Inc. Cleaning and refurbishing chamber components having metal coatings
US20050103620A1 (en) * 2003-11-19 2005-05-19 Zond, Inc. Plasma source with segmented magnetron cathode
US9771648B2 (en) * 2004-08-13 2017-09-26 Zond, Inc. Method of ionized physical vapor deposition sputter coating high aspect-ratio structures
US8500975B2 (en) * 2004-01-07 2013-08-06 Applied Materials, Inc. Method and apparatus for sputtering onto large flat panels
US20060049040A1 (en) * 2004-01-07 2006-03-09 Applied Materials, Inc. Apparatus and method for two dimensional magnetron scanning for sputtering onto flat panels
US7513982B2 (en) * 2004-01-07 2009-04-07 Applied Materials, Inc. Two dimensional magnetron scanning for flat panel sputtering
US9123508B2 (en) 2004-02-22 2015-09-01 Zond, Llc Apparatus and method for sputtering hard coatings
US7223612B2 (en) * 2004-07-26 2007-05-29 Infineon Technologies Ag Alignment of MTJ stack to conductive lines in the absence of topography
US20060021870A1 (en) * 2004-07-27 2006-02-02 Applied Materials, Inc. Profile detection and refurbishment of deposition targets
US7442624B2 (en) * 2004-08-02 2008-10-28 Infineon Technologies Ag Deep alignment marks on edge chips for subsequent alignment of opaque layers
US8088232B2 (en) * 2004-08-31 2012-01-03 H.C. Starck Inc. Molybdenum tubular sputtering targets with uniform grain size and texture
US20060042728A1 (en) 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets
EP1803142A1 (en) * 2004-09-24 2007-07-04 Zond, Inc. Apparatus for generating high-current electrical discharges
US20060081459A1 (en) * 2004-10-18 2006-04-20 Applied Materials, Inc. In-situ monitoring of target erosion
US7670436B2 (en) 2004-11-03 2010-03-02 Applied Materials, Inc. Support ring assembly
JP4531599B2 (ja) * 2005-03-17 2010-08-25 株式会社アルバック スパッタ源、スパッタ装置
US20060266639A1 (en) * 2005-05-24 2006-11-30 Applied Materials, Inc. Sputtering target tiles having structured edges separated by a gap
JP4923450B2 (ja) * 2005-07-01 2012-04-25 富士ゼロックス株式会社 バッチ処理支援装置および方法、プログラム
US8617672B2 (en) 2005-07-13 2013-12-31 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
US20070084720A1 (en) * 2005-07-13 2007-04-19 Akihiro Hosokawa Magnetron sputtering system for large-area substrates having removable anodes
US20070012663A1 (en) * 2005-07-13 2007-01-18 Akihiro Hosokawa Magnetron sputtering system for large-area substrates having removable anodes
US20070012559A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc. Method of improving magnetron sputtering of large-area substrates using a removable anode
US20070051616A1 (en) * 2005-09-07 2007-03-08 Le Hienminh H Multizone magnetron assembly
US7762114B2 (en) * 2005-09-09 2010-07-27 Applied Materials, Inc. Flow-formed chamber component having a textured surface
US7588668B2 (en) 2005-09-13 2009-09-15 Applied Materials, Inc. Thermally conductive dielectric bonding of sputtering targets using diamond powder filler or thermally conductive ceramic fillers
US20070056843A1 (en) * 2005-09-13 2007-03-15 Applied Materials, Inc. Method of processing a substrate using a large-area magnetron sputtering chamber with individually controlled sputtering zones
US20070056850A1 (en) * 2005-09-13 2007-03-15 Applied Materials, Inc. Large-area magnetron sputtering chamber with individually controlled sputtering zones
US8460519B2 (en) * 2005-10-28 2013-06-11 Applied Materials Inc. Protective offset sputtering
US8454804B2 (en) * 2005-10-28 2013-06-04 Applied Materials Inc. Protective offset sputtering
US9127362B2 (en) 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
CA2626073A1 (en) * 2005-11-01 2007-05-10 Cardinal Cg Company Reactive sputter deposition processes and equipment
KR100678640B1 (ko) * 2005-11-12 2007-02-05 삼성전자주식회사 Mim 커패시터를 구비하는 반도체 집적 회로 장치 및이의 제조 방법
US8647484B2 (en) 2005-11-25 2014-02-11 Applied Materials, Inc. Target for sputtering chamber
US20070283884A1 (en) * 2006-05-30 2007-12-13 Applied Materials, Inc. Ring assembly for substrate processing chamber
KR100910673B1 (ko) * 2006-08-04 2009-08-04 어플라이드 머티어리얼스, 인코포레이티드 다중 마그네트론들, 특히 2 레벨 접지형 마그네트론들의집단 스캐닝
JP4768689B2 (ja) 2006-09-22 2011-09-07 株式会社東芝 マグネトロン型スパッタリング装置および半導体装置の製造方法
TWI318417B (en) 2006-11-03 2009-12-11 Ind Tech Res Inst Hollow-type cathode electricity discharging apparatus
DE502006008952D1 (de) * 2006-11-14 2011-04-07 Applied Materials Inc Magnetron-Sputterquelle, Sputter-Beschichtungsanlage und Verfahren zur Beschichtung eines Substrats
US7981262B2 (en) * 2007-01-29 2011-07-19 Applied Materials, Inc. Process kit for substrate processing chamber
US7942969B2 (en) 2007-05-30 2011-05-17 Applied Materials, Inc. Substrate cleaning chamber and components
US8968536B2 (en) * 2007-06-18 2015-03-03 Applied Materials, Inc. Sputtering target having increased life and sputtering uniformity
US20090084317A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Atomic layer deposition chamber and components
US7901552B2 (en) * 2007-10-05 2011-03-08 Applied Materials, Inc. Sputtering target with grooves and intersecting channels
JP5521136B2 (ja) * 2007-10-26 2014-06-11 エリコン・アドヴァンスド・テクノロジーズ・アーゲー 3次元半導体パッケージングにおけるSi貫通ビアのメタライゼーションへのHIPIMSの適用
JP2009299184A (ja) * 2008-05-12 2009-12-24 Canon Anelva Corp 磁場発生装置、磁場発生方法、スパッタ装置及びデバイスの製造方法
US20100270262A1 (en) * 2009-04-22 2010-10-28 Applied Materials, Inc. Etching low-k dielectric or removing resist with a filtered ionized gas
US20140262754A1 (en) * 2013-03-15 2014-09-18 Semicat, Inc. Physical vapor deposition methods and systems to form semiconductor films using counterbalance magnetic field generators
KR101092172B1 (ko) * 2009-12-24 2011-12-13 주식회사 디엠에스 설정된 식각 조건에 따라 유도성 코일의 결합구조를 선택적으로 변경하는 플라즈마 반응기 및 이를 이용한 식각 방법
CN102844460A (zh) 2010-02-17 2012-12-26 东曹Smd有限公司 溅射靶材
US20120027954A1 (en) * 2010-07-30 2012-02-02 Applied Materials, Inc. Magnet for physical vapor deposition processes to produce thin films having low resistivity and non-uniformity
DE102011018363A1 (de) * 2011-04-20 2012-10-25 Oerlikon Trading Ag, Trübbach Hochleistungszerstäubungsquelle
CN103177918B (zh) * 2011-12-26 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管及等离子体加工设备
CN107923037B (zh) * 2015-09-08 2020-12-25 瑞士艾发科技 真空处理设备和用于真空处理基底的方法
US11024490B2 (en) 2017-12-11 2021-06-01 Applied Materials, Inc. Magnetron having enhanced target cooling configuration
CN110106487B (zh) * 2019-05-28 2020-07-14 上海交通大学 一种提高靶材使用率的磁控溅射圆形平面靶枪的磁靶
US11948784B2 (en) 2021-10-21 2024-04-02 Applied Materials, Inc. Tilted PVD source with rotating pedestal

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331406A1 (de) 1983-08-31 1985-03-14 Leybold-Heraeus GmbH, 5000 Köln Zerstaeubungskatode
ATE47253T1 (de) 1983-12-05 1989-10-15 Leybold Ag Magnetronkatode zum zerstaeuben ferromagnetischer targets.
JPS6289864A (ja) * 1985-06-27 1987-04-24 Matsushita Electric Ind Co Ltd マグネトロンスパツタ装置
JPS6260866A (ja) 1985-08-02 1987-03-17 Fujitsu Ltd マグネトロンスパツタ装置
US4818561A (en) * 1985-09-24 1989-04-04 Machine Technology, Inc. Thin film deposition apparatus and method
KR910005733B1 (ko) 1986-01-17 1991-08-02 가부시기가이샤 히다찌 세이사꾸쇼 플라즈마 처리방법 및 장치
DE3619194A1 (de) 1986-06-06 1987-12-10 Leybold Heraeus Gmbh & Co Kg Magnetron-zerstaeubungskatode fuer vakuum-beschichtungsanlagen
JPS63282263A (ja) * 1987-05-13 1988-11-18 Fuji Electric Co Ltd マグネトロンスパッタリング装置
JPS6428921A (en) * 1987-07-24 1989-01-31 Tokuda Seisakusho Plasma treatment device
DE3727901A1 (de) 1987-08-21 1989-03-02 Leybold Ag Zerstaeubungskathode nach dem magnetronprinzip
US4963239A (en) * 1988-01-29 1990-10-16 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
JPH01268868A (ja) * 1988-04-20 1989-10-26 Fuji Photo Film Co Ltd スパッタリング装置
JP2627651B2 (ja) 1988-10-17 1997-07-09 アネルバ株式会社 マグネトロンスパッタリング装置
JPH0361365A (ja) * 1989-07-28 1991-03-18 Ube Ind Ltd イオンアシストスパッタリング方法および装置
DE3929695C2 (de) 1989-09-07 1996-12-19 Leybold Ag Vorrichtung zum Beschichten eines Substrats
JP2934711B2 (ja) 1989-12-07 1999-08-16 カシオ計算機株式会社 スパッタ装置
JPH051373A (ja) * 1991-03-25 1993-01-08 Shin Meiwa Ind Co Ltd スパツタリング装置
DE4125110C2 (de) 1991-07-30 1999-09-09 Leybold Ag Magnetron-Zerstäubungskathode für Vakuumbeschichtungsanlagen
JPH0565642A (ja) 1991-09-10 1993-03-19 Matsushita Electric Ind Co Ltd 反応性スパツタリング装置
US5334302A (en) * 1991-11-15 1994-08-02 Tokyo Electron Limited Magnetron sputtering apparatus and sputtering gun for use in the same
US5262028A (en) 1992-06-01 1993-11-16 Sierra Applied Sciences, Inc. Planar magnetron sputtering magnet assembly
US5248402A (en) 1992-07-29 1993-09-28 Cvc Products, Inc. Apple-shaped magnetron for sputtering system
US5334804A (en) * 1992-11-17 1994-08-02 Fujitsu Limited Wire interconnect structures for connecting an integrated circuit to a substrate
US5417833A (en) 1993-04-14 1995-05-23 Varian Associates, Inc. Sputtering apparatus having a rotating magnet array and fixed electromagnets
TW271490B (ja) 1993-05-05 1996-03-01 Varian Associates
TW262566B (ja) 1993-07-02 1995-11-11 Tokyo Electron Co Ltd
US5415754A (en) 1993-10-22 1995-05-16 Sierra Applied Sciences, Inc. Method and apparatus for sputtering magnetic target materials
JPH07166346A (ja) 1993-12-13 1995-06-27 Ulvac Japan Ltd マグネトロンスパッタリング装置
JPH07252651A (ja) 1994-03-15 1995-10-03 Fujitsu Ltd マグネトロンスパッタリング装置及び金属薄膜成長方 法
GB2319262B (en) 1995-07-10 1999-02-24 Cvc Products Inc Permanent magnet array apparatus and method
JP3629305B2 (ja) 1995-07-27 2005-03-16 株式会社アルバック マグネトロンスパッタカソード
US5770025A (en) 1995-08-03 1998-06-23 Nihon Shinku Gijutsu Kabushiki Kaisha Magnetron sputtering apparatus
JP3935231B2 (ja) * 1996-09-18 2007-06-20 キヤノンアネルバ株式会社 スパッタリング装置
JP3925967B2 (ja) 1996-09-18 2007-06-06 キヤノンアネルバ株式会社 スパッタリング装置のマグネトロンカソード電極
US5897752A (en) * 1997-05-20 1999-04-27 Applied Materials, Inc. Wafer bias ring in a sustained self-sputtering reactor
US5795451A (en) 1997-06-12 1998-08-18 Read-Rite Corporation Sputtering apparatus with a rotating magnet array
JP4137198B2 (ja) * 1997-09-06 2008-08-20 キヤノンアネルバ株式会社 スパッタリング装置
US5976327A (en) * 1997-12-12 1999-11-02 Applied Materials, Inc. Step coverage and overhang improvement by pedestal bias voltage modulation
US6290825B1 (en) * 1999-02-12 2001-09-18 Applied Materials, Inc. High-density plasma source for ionized metal deposition

Also Published As

Publication number Publication date
KR20010021283A (ko) 2001-03-15
JP2001140070A (ja) 2001-05-22
TW486718B (en) 2002-05-11
EP1076352A2 (en) 2001-02-14
KR100806988B1 (ko) 2008-02-25
EP1076352A3 (en) 2005-11-23
US6183614B1 (en) 2001-02-06
SG87153A1 (en) 2002-03-19

Similar Documents

Publication Publication Date Title
JP4936584B2 (ja) イオン化金属堆積用の高密度プラズマ源
JP4837832B2 (ja) イオン化金属堆積用高密度プラズマ源
US6790323B2 (en) Self ionized sputtering using a high density plasma source
JP4564750B2 (ja) プラズマスパッタリング用回転マグネトロンを組み合わせたマグネットアレイ
US7618521B2 (en) Split magnet ring on a magnetron sputter chamber
JP5068404B2 (ja) マグネトロンスパッタリングリアクターにおける同軸状電磁石
US6277249B1 (en) Integrated process for copper via filling using a magnetron and target producing highly energetic ions
US6497802B2 (en) Self ionized plasma sputtering
US6497796B1 (en) Apparatus and method for controlling plasma uniformity across a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101022

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101027

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4936584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term