JP4936525B2 - Composite superconductor - Google Patents

Composite superconductor Download PDF

Info

Publication number
JP4936525B2
JP4936525B2 JP2007005317A JP2007005317A JP4936525B2 JP 4936525 B2 JP4936525 B2 JP 4936525B2 JP 2007005317 A JP2007005317 A JP 2007005317A JP 2007005317 A JP2007005317 A JP 2007005317A JP 4936525 B2 JP4936525 B2 JP 4936525B2
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
composite
groove
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007005317A
Other languages
Japanese (ja)
Other versions
JP2007214121A (en
Inventor
利行 三戸
一也 高畑
俊哉 岡田
俊男 牛山
昌弘 杉本
宏和 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Sky Aluminum Corp
Inter University Research Institute Corp National Institute of Natural Sciences
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Sky Aluminum Corp
Inter University Research Institute Corp National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Sky Aluminum Corp, Inter University Research Institute Corp National Institute of Natural Sciences filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007005317A priority Critical patent/JP4936525B2/en
Publication of JP2007214121A publication Critical patent/JP2007214121A/en
Application granted granted Critical
Publication of JP4936525B2 publication Critical patent/JP4936525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、従来の合金超電導材料(NbTi等)だけでなく、機械的歪みに弱い化合物超電導材料(Nb3Sn、Nb3Al、Bi系超電導材料、Y系超電導材料、MgB2系超電導材料)等からなる超電導体にも適用可能な、超電導体とアルミニウム等の金属材料とを複合化した複合超電導体に関するものである。以下、本明細書でアルミニウムとは規格上の純アルミニウム及びアルミニウム合金をいうものとする。 The present invention includes not only conventional alloy superconducting materials (NbTi, etc.) but also compound superconducting materials that are vulnerable to mechanical strain (Nb 3 Sn, Nb 3 Al, Bi-based superconducting materials, Y-based superconducting materials, MgB 2- based superconducting materials) The present invention relates to a composite superconductor in which a superconductor and a metal material such as aluminum are combined. Hereinafter, the term “aluminum” as used herein refers to standard pure aluminum and aluminum alloys.

超電導体は、その超電導特性を維持するため、液化ヘリウム等の冷媒に浸漬したり、冷凍機等と組み合わせたりして、強制的な方法や間接的な方法により、冷却して使用するのが一般的である。具体的には、アルミニウムの高い比熱、高い熱伝導度、調整しやすい電気伝導度、小さい比重、低い放射性等の特徴を生かし、該アルミニウムとNbTi等の合金超電導材料からなる超電導体と複合化した複合超電導体が実用化されている(特許文献1)。   In order to maintain the superconducting properties of superconductors, it is generally used by cooling them by forced or indirect methods by immersing them in a refrigerant such as liquefied helium or combining them with a refrigerator. Is. Specifically, taking advantage of the characteristics of aluminum such as high specific heat, high thermal conductivity, easy electrical conductivity, small specific gravity, and low radioactivity, it was combined with a superconductor made of an alloy superconducting material such as aluminum and NbTi. A composite superconductor has been put into practical use (Patent Document 1).

しかしながら、さらに高性能な超電導体を得るには、臨界電流密度、臨界磁場、臨界温度といった超電導特性が優れた化合物超電導材料等を超電導体とし、その超電導体とアルミニウム等の金属部材との熱的、機械的、電気的な接触状態が制御された複合超電導体とする必要がある。 However, in order to obtain a higher performance superconductor, a compound superconducting material having excellent superconducting properties such as critical current density, critical magnetic field, and critical temperature is used as the superconductor, and the thermal conductivity between the superconductor and a metal member such as aluminum is used. It is necessary to use a composite superconductor with controlled mechanical and electrical contact.

しかしながら、化合物超電導材料は、原材料を伸線加工や圧延加工等の中間熱処理を繰り返して所定の寸法に加工した後、超電導体として機能させるための化合物超電導体を生成させる熱処理を施すと、機械的歪みに弱くなり、その後の塑性加工は超電導特性を低下させないために、大きな制約を受ける。すなわち、化合物超電導体生成熱処理を施した化合物超電導体(以下、化合物超電導体というときは、化合物超電導体を生成させる熱処理を施したものをいう)を金属部材と複合化した複合超電導体の場合、従来の合金系超電導材料の超電導体に適用されてきた被覆押し出しや複合伸線等の製造方法を適用すると、塑性加工が加わることにより、部分的にその臨界電流特性が低下することがあり、実用化までには至っていない。   However, the compound superconducting material is mechanically subjected to a heat treatment that produces a compound superconductor for functioning as a superconductor after processing the raw material into a predetermined size by repeating intermediate heat treatment such as wire drawing and rolling. Since it becomes weak to strain and subsequent plastic working does not deteriorate the superconducting properties, it is subject to great restrictions. That is, in the case of a composite superconductor in which a compound superconductor that has been subjected to a compound superconductor generation heat treatment (hereinafter referred to as a compound superconductor is a heat treatment that generates a compound superconductor) combined with a metal member, When manufacturing methods such as coated extrusion and composite wire drawing that have been applied to superconductors of conventional alloy-based superconducting materials, the critical current characteristics may be partially reduced due to the addition of plastic working. It has not yet been realized.

また、複合超電導体の押し出し被覆法や複合伸線法以外の方法として、2つの銅製の部材を組み合わせた金属部材により形成された中空部にNb3Snからなる化合物超電導体を配置し、前記銅製部材の接合部をハンダ付けしたもの(非特許文献1)があるが、アルミニウムは、熱伝導度が大きく、比熱が高いため大きな熱量を急速に与えなければならないだけでなく、酸化し易く酸化被膜を除去しないとハンダ付けやロウ付けが困難である。 Further, as a method other than the extrusion coating method and the composite wire drawing method of a composite superconductor, a compound superconductor made of Nb 3 Sn is disposed in a hollow portion formed by a metal member combining two copper members, and the copper There is a soldered joint part (Non-Patent Document 1), but aluminum has a high thermal conductivity and high specific heat, so it must not only provide a large amount of heat quickly, but it is also easy to oxidize. Soldering or brazing is difficult without removing.

従って、前記銅製部材に代えてアルミニウム製部材を金属部材とし、その接合をハンダ付けやロウ付けで行うことは、実用的では無い。一方、アーク溶接(ティグ溶接やミグ溶接)は、溶接時に金属部材に与える熱量の調節が難しく、接合部の寸法精度を損なったり、溶接時の熱歪によって超電導体が変形し、臨界電流特性が部分的に低下したりする危険があるので、実用的では無い。   Therefore, it is not practical to use an aluminum member as a metal member instead of the copper member and to perform the joining by soldering or brazing. On the other hand, in arc welding (TIG welding or MIG welding), it is difficult to adjust the amount of heat given to the metal member during welding, the dimensional accuracy of the joint is impaired, the superconductor deforms due to thermal strain during welding, and the critical current characteristics are This is not practical because there is a risk of partial degradation.

さらに別の方法として、Nb3Alからなる化合物超電導体と管状のステンレス合金からなる金属部材を複合化した複合超電導体の例(非特許文献2)はあるが、この複合超電導体は金属部材の隙間部に液体ヘリウムを流すことにより超電導体を強制的に冷却することを目的としたものであり、超電導体と複合化されるアルミニウムからなる金属部材との接触状態を制御しようとする本発明の目的を達成することはできない。
特開2000-164053号公報 低温工学39巻9号 2004年 383〜390頁、 安藤俊就 低温工学38巻8号 2003年 391〜398頁、 小泉徳潔ら
As another method, there is an example of a composite superconductor (Non-Patent Document 2) in which a compound superconductor made of Nb 3 Al and a metal member made of a tubular stainless alloy are combined, but this composite superconductor is made of a metal member. The purpose of this invention is to forcibly cool the superconductor by flowing liquid helium into the gap, and the contact state between the superconductor and a metal member made of aluminum combined with the superconductor is controlled. The goal cannot be achieved.
JP 2000-164053 A Cryogenic Engineering Vol.39 No.9 2004 383-390, Toshiaki Ando Cryogenic Engineering Vol.38 No.8 2003 391-398

本発明は、従来の合金超電導材料(NbTi等)だけでなく、機械的歪みに弱い化合物超電導材料(Nb3Sn、Nb3Al、Bi系超電導材料、Y系超電導材料、MgB2系超電導材料)等からなる超電導体をアルミニウム等の金属材料で被覆した複合超電導体を提供することを目的とする。 The present invention includes not only conventional alloy superconducting materials (NbTi, etc.) but also compound superconducting materials that are vulnerable to mechanical strain (Nb 3 Sn, Nb 3 Al, Bi-based superconducting materials, Y-based superconducting materials, MgB 2- based superconducting materials) It is an object of the present invention to provide a composite superconductor obtained by coating a superconductor composed of, etc. with a metal material such as aluminum.

本発明の複合超電導体の第1の態様は、超電導体と、
1つ又は2つ以上の部材が前記超電導体を被覆するように摩擦撹拌接合法(FSW: Friction Stir Welding)によって接合され、かつ前記部材の少なくとも1つがアルミニウムまたはアルミニウム合金からなる金属部材と
を有する複合超電導体である。
The first aspect of the composite superconductor of the present invention is a superconductor,
One or more members are joined by friction stir welding (FSW) so as to cover the superconductor, and at least one of the members is a metal member made of aluminum or an aluminum alloy ;
Is a composite superconductor having

本発明の複合超電導体の第2の態様は、前記金属部材は、溝部を有する第一部材と、該溝部上部に嵌合される第二部材からなり、前記第一部材と前記第二部材が接合されて形成される中空部に超電導体が配置されていることを特徴とする複合超電導体である。   In a second aspect of the composite superconductor of the present invention, the metal member includes a first member having a groove portion and a second member fitted to the upper portion of the groove portion, and the first member and the second member are The composite superconductor is characterized in that a superconductor is disposed in a hollow portion formed by bonding.

本発明の複合超電導体の第3の態様は、前記超電導体は前記金属部材の中空部に単独または前記超電導体と前記金属部材間の熱伝導を行う伝熱部材と共に配置されており、前記複合超電導体の垂直断面において、前記超電導体と前記伝熱部材の断面積の合計が、前記中空部の断面積に対する割合(以下、この割合を充填率という)70%以上であることを特徴とする複合超電導体である。
前記充填率が70%より小さくなると、超電導体と金属部材との熱的、機械的、電気的な接触状態の制御が著しく困難になるので好ましくない。なお、前記充填率は、前記超電導体に与える圧力によって適宜選択するものとする。
According to a third aspect of the composite superconductor of the present invention, the superconductor is disposed alone or together with a heat transfer member that conducts heat between the superconductor and the metal member in the hollow portion of the metal member. In the vertical cross section of the superconductor, the total cross-sectional area of the superconductor and the heat transfer member is 70% or more of the ratio to the cross-sectional area of the hollow portion (hereinafter, this ratio is referred to as a filling rate). It is a composite superconductor.
If the filling rate is less than 70%, it is not preferable because it is extremely difficult to control the thermal, mechanical, and electrical contact state between the superconductor and the metal member. In addition, the said filling rate shall be suitably selected according to the pressure given to the said superconductor.

本発明の複合超電導体の第4の態様は、前記金属部材は、断面が略円形であることを特徴とする複合超電導体である。   A fourth aspect of the composite superconductor of the present invention is the composite superconductor characterized in that the metal member has a substantially circular cross section.

本発明の複合超電導体の第5の態様は、前記超電導体は化合物超電導材料からなることを特徴とする複合超電導体である。
ここで、化合物超電導材料の例としては、金属間化合物超電導材のNb3Sn、Nb3Al、MgB2等や、酸化物超電導材料のBi系超電導材料、Y系超電導材料等がある。
A fifth aspect of the composite superconductor of the present invention is a composite superconductor characterized in that the superconductor is made of a compound superconducting material.
Here, examples of compound superconducting materials include intermetallic compound superconducting materials such as Nb 3 Sn, Nb 3 Al, and MgB 2 , oxide superconducting materials such as Bi-based superconducting materials, and Y-based superconducting materials.

本発明の複合超電導体の第の態様は、前記摩擦攪拌接合法が前記超電導体を加圧しながら行われることを特徴とする複合超電導体である。 A sixth aspect of the composite superconductor of the present invention is a composite superconductor characterized in that the friction stir welding method is performed while pressurizing the superconductor.

本発明により、超電導体とアルミニウム等の金属部材との熱的、機械的、電気的接触状態を制御可能とする複合超電導体の構造を見いだし、用途に応じた特性の複合超電導体を得ることができる。特に、超電導体に印加される機械的歪みを制御することが可能になったことにより、臨界電流等を含む化合物超電導材料からなる超電導体の超電導特性の低下を抑制することができるだけでなく、さらに、ある程度の大きさの機械的歪みをかけることにより臨界電流を増大させることができる化合物超電導材料を用いて複合超電導体とした場合には、超電導特性を向上させることもできる。   According to the present invention, it is possible to find a structure of a composite superconductor capable of controlling the thermal, mechanical, and electrical contact state between the superconductor and a metal member such as aluminum, and obtain a composite superconductor having characteristics according to the application. it can. In particular, since it is possible to control the mechanical strain applied to the superconductor, it is possible not only to suppress a decrease in superconducting properties of a superconductor made of a compound superconducting material including a critical current, When a compound superconducting material is used that can increase the critical current by applying a mechanical strain of a certain magnitude, the superconducting characteristics can be improved.

以下、図1〜3を参照し、本発明の複合超電導体を説明する。図1(a)は、断面が矩形状の複合超電導体を説明する。矩形断面の溝型アルミニウム(第一部材)1は、上部の広幅溝6と広幅溝6よりも狭幅の下部の狭幅溝5からなる2段に溝を有する断面矩形のアルミニウム材からなる部材である。狭幅溝5に超電導成形撚線4を配置し、広幅溝6に嵌合するアルミニウムからなる嵌合形材(第二部材)2を嵌合させ、上面に現れる2箇所の継ぎ目8aと8bを摩擦攪拌接合(以下、FSWという)で接合する。   Hereinafter, the composite superconductor of the present invention will be described with reference to FIGS. FIG. 1 (a) illustrates a composite superconductor having a rectangular cross section. The groove-shaped aluminum (first member) 1 having a rectangular cross section is a member made of an aluminum material having a rectangular cross section having a groove in two stages, which is composed of an upper wide groove 6 and a lower narrow groove 5 narrower than the wide groove 6. It is. The superconducting molded stranded wire 4 is arranged in the narrow groove 5, and the fitting shape member (second member) 2 made of aluminum fitting in the wide groove 6 is fitted, and the two joints 8a and 8b appearing on the upper surface are connected. Join by friction stir welding (hereinafter referred to as FSW).

FSWで接合する際には、図面で上方からFSWの回転工具7aで押さえつけて接合を行うことは、部材内に配置された超電導体(図1(a)においては、超電導成形撚線4)の幅広面に対して垂直方法に圧力が加わるとともに溝内の空隙を少なくすることができる点で望ましい。また、前記接合にはレーザビーム溶接による接合を適用することも出来る。この場合には、溶接部位の直近を押さえロールで押さえつけるとFSWと同様な効果を得ることができる。狭幅溝5と広幅溝6は1段の溝でも良い。また、金属材からなる嵌合形材(第二部材)2の材質は矩形断面の溝型アルミニウム(第一部材)1と同じでもよいし、異種の金属材でもよい。   When joining with FSW, pressing with the FSW rotary tool 7a from the top in the drawing means joining of the superconductor (superconducting stranded wire 4 in FIG. 1 (a)) in the member. It is desirable in that pressure is applied to the vertical method with respect to the wide surface and the gaps in the grooves can be reduced. Moreover, the joining by laser beam welding can also be applied to the said joining. In this case, the same effect as FSW can be obtained by pressing the immediate vicinity of the welded portion with a pressing roll. The narrow groove 5 and the wide groove 6 may be one-stage grooves. The material of the fitting shape member (second member) 2 made of a metal material may be the same as that of the groove-shaped aluminum (first member) 1 having a rectangular cross section, or may be a different metal material.

図1(b)は、フラット部を有し、断面が円形状である複合超電導体を説明する図である。フラット部材の円形断面の溝型アルミニウム部材(第一部材)9の溝10に超電導体成形撚線4を配置し、その上に金属材からなる嵌合形材(第二部材)2を嵌合させ、2箇所の継ぎ目8aと8bの間にFSWの回転工具7aを当て、1回のFSWにより2箇所の継ぎ目8aと8bを1度に接合したものである。この溝10は図1(a)の狭幅溝5と広幅溝6のように2段の溝でも良い。また、金属材からなる嵌合形材2の材質は円形断面の溝型アルミニウム部材9と同じでもよいし、異種の金属材でもよい。   FIG. 1 (b) is a diagram illustrating a composite superconductor having a flat portion and a circular cross section. A superconductor-molded stranded wire 4 is placed in a groove 10 of a groove-shaped aluminum member (first member) 9 having a circular cross section of a flat member, and a fitting shape member (second member) 2 made of a metal material is fitted thereon. The FSW rotary tool 7a is applied between the two joints 8a and 8b, and the two joints 8a and 8b are joined at one time by one FSW. The groove 10 may be a two-stage groove such as the narrow groove 5 and the wide groove 6 in FIG. Further, the material of the fitting shape member 2 made of a metal material may be the same as the grooved aluminum member 9 having a circular cross section, or may be a different metal material.

図1(c)は、フラット部と開口部を有し、断面が円形状である複合超電導体を説明する図である。開口部を有するフラット部付の円形断面の溝型アルミニウム部材11は、積層超電導体12を配置する開口部の下の溝部13を有し、開口部として1面が開いており、積層超電導体12を前記開いた面から内部に配置し、前記開口部を閉じた後、その継ぎ目14をFSWで接合して、円形断面の溝型アルミニウム部材11の内部に積層超電導体12を配置したものである。なお、前記開口部を閉じる方法としては、前記開口部を積層超電導体12を配置する前に円形断面の溝型アルミニウム部11の弾性領域内で変形させておき、積層超電導体12を溝部13へ配置した後、円形断面の溝型アルミニウム部11の弾性力を利用して閉じる方法や、円形断面の溝型アルミニウム部11が初期状態から前記開口部が積層超電導体12を溝部13に配置するのに十分に開いているものを用いて、サイドロールや締めダイスなどによって、機械的に閉じる方法を用いることができる。   FIG. 1 (c) is a diagram illustrating a composite superconductor having a flat portion and an opening, and having a circular cross section. The groove-shaped aluminum member 11 having a flat section with a flat portion having an opening has a groove 13 below the opening where the laminated superconductor 12 is disposed, and one surface is open as the opening, and the laminated superconductor 12 Is disposed inside from the opened surface, the opening is closed, and then the joint 14 is joined by FSW, and the laminated superconductor 12 is disposed inside the groove-shaped aluminum member 11 having a circular cross section. . As a method of closing the opening, the opening is deformed in the elastic region of the groove-shaped aluminum part 11 having a circular cross section before the laminated superconductor 12 is arranged, and the laminated superconductor 12 is moved to the groove 13. After the placement, a method of closing using the elastic force of the groove-shaped aluminum part 11 having a circular cross section, or the opening of the groove-shaped aluminum part 11 having a circular cross section from the initial state arranges the laminated superconductor 12 in the groove part 13. For example, a method of using a material that is sufficiently open and mechanically closing with a side roll or a fastening die can be used.

図1(d)は2分割された溝型アルミニウムの形材の内部に超電導体が配置されたフラット部を有し、断面が半割型の円形状の複合超電導体を説明する図である。フラット部付の半割型円形断面の溝型アルミニウム部材15a、15bの半割溝16a、16bに、積層超電導体12を配置し、半割部を閉じた後、積層超電導体12を加圧しながら継ぎ目17a、17bをFSWで接合して、内部に積層超電導体12を配置したものである。
積層超電導体12などの超電導体と複合化するアルミニウム部材は、その内部に超電導体を配置できる形状であれば良いが、接合時に、内部に配置した超電導体を溝の底辺に外部より押し付けられる構造とすることが望ましい。
FIG. 1 (d) is a diagram for explaining a circular composite superconductor having a flat portion in which a superconductor is disposed inside a groove-shaped aluminum member divided into two and having a half-shaped cross section. The laminated superconductor 12 is placed in the half-grooved grooves 16a and 16b of the half-shaped circular cross-section aluminum member 15a and 15b with a flat part, and after closing the half-divided part, the laminated superconductor 12 is pressurized The joints 17a and 17b are joined by FSW, and the laminated superconductor 12 is arranged inside.
The aluminum member to be combined with the superconductor such as the laminated superconductor 12 may have any shape as long as the superconductor can be disposed therein, but the structure in which the superconductor disposed inside is pressed against the bottom of the groove from the outside at the time of joining. Is desirable.

次に、複合超電導体に用いる超電導体の形態の例を図2(a)から(g)に示す。図2(a)は複数本の丸線形状の超電導素線3を丸撚りした超電導丸撚線18である。ここでは、超電導素線3を19本丸撚りした超電導丸撚線18を示しているが、特にこれに限られるものではない。図2(b)は複数本の丸線形状の超電導素線3を撚り合わせ平角状に成形した超電導成形撚線4(平角成形撚線)である。ここでは、超電導素線3を8本平角状に成形した超電導成形撚線4を示しているが、特にこれに限られるものではない。図2(c)は超電導成形撚線4の上下を伝熱部材としてアルミニウム板19a、19bで束ねた複合超電導成形撚線20である。ここでは、超電導素線3を8本平角状に成形した超電導成形撚線4を用いているが、特にこれに限られるものではない。また、ここでは伝熱部材としてアルミニウム板19a,19bを用いているが、材質は特にこれに限られるものではない。図2(d)は複数本のテープ形状の超電導素線21を積層した超電導積層導体22である。ここでは、テープ形状の超電導素線21を4枚積層したものを示しているが、特にこれに限られるものではない。図2(e)は,平角成形され超電導成形撚線4を奇数本転位させながら集合させた超電導転位導体23である。ここでは、超電導成形撚線4を9本転位させているが、特にこれに限られるものではない。図2(f)は平角成形された超電導成形撚線4を伝熱部材の媒体としてハンダ24に含浸したものである。ここでは、超電導素線3を8本平角状に成形した超電導成形撚線4を用いているが、特にこれに限られるものではない。また、ここでは伝熱部材の媒体としてハンダ24を用いているが、材質は特にこれに限られるものではない。図2(g)は, 超電導転位導体23の周囲にアルミニウムからなるテープ25を巻きつけた導体である。ここでは、超電導成形撚線4を9本転位させた超電導転位導体23を用いているが、特にこれに限られるものではない。また、ここではテープ25はアルミニウムを用いているが、材質は特にこれに限られるものではない。   Next, examples of the form of the superconductor used for the composite superconductor are shown in FIGS. 2 (a) to 2 (g). FIG. 2 (a) shows a superconducting round stranded wire 18 in which a plurality of round wire-shaped superconducting strands 3 are twisted. Here, a superconducting round stranded wire 18 in which 19 superconducting strands 3 are twisted is shown, but the present invention is not limited to this. FIG. 2 (b) shows a superconducting stranded wire 4 (flat-shaped stranded wire) in which a plurality of round wire-shaped superconducting wires 3 are twisted and formed into a flat rectangular shape. Here, superconducting-molded stranded wire 4 in which eight superconducting strands 3 are formed into a flat rectangular shape is shown, but the present invention is not limited to this. FIG. 2 (c) shows a composite superconducting stranded wire 20 bundled with aluminum plates 19a and 19b with the superconducting stranded wire 4 above and below the heat transfer member. Here, superconducting-molded stranded wire 4 in which eight superconducting strands 3 are formed into a flat rectangular shape is used, but the present invention is not limited to this. Moreover, although aluminum plate 19a, 19b is used as a heat-transfer member here, a material in particular is not restricted to this. FIG. 2 (d) shows a superconducting laminated conductor 22 in which a plurality of tape-shaped superconducting wires 21 are laminated. Here, four tape-shaped superconducting wires 21 are laminated, but the present invention is not limited to this. FIG. 2 (e) shows a superconducting dislocation conductor 23 that is formed by rectangular forming and is assembled while odd-numbered superconducting molded stranded wires 4 are dislocated. Here, nine superconducting molded stranded wires 4 are dislocated, but the present invention is not limited to this. FIG. 2 (f) shows a case where the solder 24 is impregnated with the superconducting molded stranded wire 4 formed into a rectangular shape as a medium of the heat transfer member. Here, superconducting-molded stranded wire 4 in which eight superconducting strands 3 are formed into a flat rectangular shape is used, but the present invention is not limited to this. Here, the solder 24 is used as a medium of the heat transfer member, but the material is not particularly limited to this. FIG. 2 (g) shows a conductor in which a tape 25 made of aluminum is wound around the superconducting dislocation conductor 23. Here, the superconducting dislocation conductor 23 in which nine superconducting molded stranded wires 4 are dislocated is used, but the present invention is not limited to this. Here, the tape 25 uses aluminum, but the material is not particularly limited to this.

複合超電導体に用いる超電導体は上記いずれの形態でも良い。モノリス線であってもよい。特に間接冷却される複合超電導体は、溝型アルミニウム部材の内部に超電導体を密に配置して、外側のアルミニウム部材と十分に密着される形状であればよい。超電導体を外側のアルミニウム部材で十分に冷却するためである。そのためには、超電導体が配置される溝(図1(a)では、狭幅溝5)の深さdは、超電導体(図1(a)では、超電導成形撚線4)の厚みtよりも小さく上部から圧縮した場合に、溝型アルミニウム部材の底辺に押し付けられることが、電気的接触状態、機械的安定性、熱伝導性等を保持する点で望ましい。   The superconductor used for the composite superconductor may be in any of the above forms. It may be a monolithic wire. In particular, the composite superconductor that is indirectly cooled may have any shape as long as the superconductor is densely arranged inside the grooved aluminum member and is sufficiently in close contact with the outer aluminum member. This is because the superconductor is sufficiently cooled by the outer aluminum member. For this purpose, the depth d of the groove in which the superconductor is arranged (in FIG. 1A, narrow groove 5) is determined from the thickness t of the superconductor (superconducting molded stranded wire 4 in FIG. 1A). However, when compressed from the top, it is preferable that the groove-type aluminum member is pressed against the bottom of the groove-shaped aluminum member from the viewpoint of maintaining an electrical contact state, mechanical stability, thermal conductivity, and the like.

複合超電導体に用いる超電導体を外周の金属からなる部材で臨界温度以下に冷却するためには、超電導体と金属部材とを十分に接触させる必要がある。その手段として、超電導体をハンダ金属に含浸させ、又はアルミニウム等からなるテープを巻きつけて熱伝導体とし、超電導体と外側の金属部材との熱伝導を促進する。そこで、複合超電導体の垂直断面において、前記超電導体と前記伝熱部材の断面積の合計が、前記中空部の断面積に対する割合(以下、この割合を充填率という)を70%以上とする。この充填率が70%より小さくなると、超電導体と金属部材との熱的、機械的、電気的接触状態の制御が著しく困難になるので好ましくない。なお、この充填率は、前記複合超電導を構成する部材の断面設計と超電導体に与える圧力によって適宜選択することができる。   In order to cool a superconductor used for a composite superconductor to a critical temperature or lower with a member made of a metal on the outer periphery, it is necessary to sufficiently contact the superconductor and the metal member. As a means for this, a superconductor is impregnated in a solder metal, or a tape made of aluminum or the like is wound to form a heat conductor to promote heat conduction between the superconductor and the outer metal member. Therefore, in the vertical cross section of the composite superconductor, the ratio of the total cross-sectional area of the superconductor and the heat transfer member to the cross-sectional area of the hollow portion (hereinafter, this ratio is referred to as a filling rate) is 70% or more. When the filling rate is less than 70%, it is not preferable because control of the thermal, mechanical, and electrical contact state between the superconductor and the metal member becomes extremely difficult. This filling rate can be appropriately selected depending on the cross-sectional design of the members constituting the composite superconductivity and the pressure applied to the superconductor.

図3に長尺の超電導複合体の形態の例を示す。図3(a)は矩形断面の溝型アルミニウム部材1が超電導成形撚線4よりも短く、矩形断面の溝型アルミニウム部材1をつなぎ合わせた複合超電導体を示す。複数の矩形断面の溝型アルミニウム部材1を隙間無く配置し、図1(a)などと同様に複数の矩形断面の溝型アルミニウム部材1の連続した狭幅溝5に超電導成形撚線4を配置し、更に嵌合形材2を広幅溝6に嵌合させ、上面に現れる2箇所の継ぎ目8aと8bをFSWで接合する。複数の矩形断面の溝型アルミニウム部材1同士を接合する際、継ぎ目(周方向)26はFSWやレーザビーム溶接法を用いても良いし、他の接合方法を適用してもよい。また、図1(a)に限らず、図1(b)から(d)に関しても同様に、複数のアルミニウム部材をつなぎ合わせてもよい。図3(b)はアルミニウム部材を予め所定のコイル形状にした後、超電導体の特性を劣化させない歪の範囲内の歪みを印加して、超電導体を溝部に配置させてFSWで接合した長尺複合超電導体を示す。予め所定のコイル形状にした曲げた形状のフラット部付の円形断面の溝型アルミニウム部材9’の曲げた形状の溝10’に、特性を劣化させない歪の範囲内の歪みを印加した曲げた形状の超電導成形撚線4’を配置させ、更に曲げた形状の嵌合形材2’を曲げた形状の溝10’に嵌合し、上面に現れる2箇所の継ぎ目8aと8b の間にFSWの回転工具7aを当て、FSWで接合する。また、図1(b)に限らず、図1(a)、(c)、(d)に関しても同様に、予め所定のコイル形状にして長尺複合超電導体を形成してもよい。   FIG. 3 shows an example of the form of a long superconducting composite. FIG. 3 (a) shows a composite superconductor in which the groove-shaped aluminum member 1 having a rectangular cross section is shorter than the superconducting molded stranded wire 4 and the groove-shaped aluminum members 1 having a rectangular cross section are joined together. A plurality of rectangular aluminum channel members 1 having a rectangular cross section are arranged without gaps, and a superconducting stranded wire 4 is arranged in a continuous narrow groove 5 of a plurality of rectangular aluminum channel members 1 having a rectangular cross section, as in FIG. Further, the fitting shape member 2 is fitted into the wide groove 6, and the two joints 8a and 8b appearing on the upper surface are joined by FSW. When joining the groove-shaped aluminum members 1 having a plurality of rectangular cross sections, the joint (circumferential direction) 26 may use FSW or a laser beam welding method, or other joining methods may be applied. Further, not only in FIG. 1 (a) but also in FIGS. 1 (b) to 1 (d), a plurality of aluminum members may be joined together. Fig. 3 (b) shows a long piece of aluminum member that has been pre-shaped into a coil shape, then applied a strain within the range of strain that does not degrade the characteristics of the superconductor, placed the superconductor in the groove, and joined by FSW A composite superconductor is shown. A bent shape in which a strain within a range of strain that does not deteriorate the characteristics is applied to the groove-shaped groove 10 ′ of the groove-shaped aluminum member 9 ′ having a circular cross section with a flat portion that has been bent into a predetermined coil shape in advance. The superconducting molded stranded wire 4 'is placed, and the bent shape fitting 2' is fitted into the bent groove 10 ', and the FSW is formed between the two seams 8a and 8b appearing on the upper surface. Apply rotary tool 7a and join with FSW. Further, not only in FIG. 1 (b) but also in FIGS. 1 (a), (c) and (d), a long composite superconductor may be formed in a predetermined coil shape in advance.

直径0.82mm、銅比1、ブロンズ比2.3、フィラメント径3.5mm、ツイストピッチ25mmの反応熱処理前のNb3Sn超電導素線3をブロンズ法により製作し、素線表面にCrメッキ加工を施した後、該CrメッキNb3Sn超電導素線3を8本撚り合わせて平角成形加工を施し、その後、650℃×96hrsのNb3Sn反応熱処理をアルゴン雰囲気中で行って、幅3.4mm×厚さ1.57mm、撚りピッチ35mmの反応熱処理済みのNb3Sn平角の超電導成形撚線4を得た。 Nb 3 Sn superconducting element wire 3 before reaction heat treatment with diameter 0.82mm, copper ratio 1, bronze ratio 2.3, filament diameter 3.5mm, twist pitch 25mm is manufactured by bronze method, and the surface of the element wire is Cr plated Then, 8 pieces of the Cr-plated Nb 3 Sn superconducting wire 3 were twisted to form a flat rectangular shape, and then Nb 3 Sn reaction heat treatment at 650 ° C. × 96 hrs was performed in an argon atmosphere to obtain a width 3.4 mm × thickness 1.57 A superconducting-molded stranded wire 4 of Nb 3 Sn flat square, which had been subjected to reaction heat treatment with a mm and twist pitch of 35 mm, was obtained.

一方、幅17mm×厚さ11mmのアルミニウム3004(調質H112)合金の中央に、幅7mm×深さ5mmの広幅溝6と幅3.5mm×深さ1.55mmの狭幅溝5の2段の溝加工を施した断面が矩形の矩形断面の溝型アルミニウム部材1と、幅7mm×深さ5mmの幅広溝に嵌合するアルミニウム3004(調質H112)合金からなる嵌合形材2を製作した。反応熱処理済みのNb3Sn平角の超電導成形撚線4を幅3.5mm×深さ1.55mmの狭幅溝5に挿入した後、嵌合形材2を幅7mm×深さ5mmの広幅溝6に嵌合させ、矩形断面の溝型アルミニウム部材1と嵌合形材2の2箇所の継ぎ目8b,8cを、それぞれFSWによって接合した。接合の際、FSWの回転工具7aを嵌合形材2に押し当てることにより、間接的に反応熱処理済みのNb3Sn平角の超電導成形撚線4の幅広面に対して垂直に面圧がかかるようにして、幅17mm×厚さ11mmの複合超電導体を得た。なお、接合に際しては鋼製の回転工具を使用し、回転数:2500rpm、接合速度200mm/分で、工具を水平移動させる条件を採用した。 On the other hand, in the center of aluminum 3004 (tempered H112) alloy 17mm wide x 11mm thick, there are two steps of a wide groove 6 of width 7mm x depth 5mm and narrow groove 5 of width 3.5mm x depth 1.55mm A grooved aluminum member 1 having a rectangular cross section with a processed cross section and a fitting shape 2 made of an aluminum 3004 (tempered H112) alloy that fits into a wide groove having a width of 7 mm and a depth of 5 mm were manufactured. After inserting the Nb 3 Sn flat superconducting stranded wire 4 that has been heat-treated in the reaction into the narrow groove 5 having a width of 3.5 mm and a depth of 1.55 mm, the fitting section 2 is formed into a wide groove 6 having a width of 7 mm and a depth of 5 mm. The two joints 8b and 8c of the groove-shaped aluminum member 1 and the fitting shape member 2 having a rectangular cross section were joined by FSW. At the time of joining, surface pressure is applied perpendicularly to the wide surface of the Nb 3 Sn flat superconducting molded stranded wire 4 that has been indirectly heat-treated by pressing the FSW rotary tool 7a against the fitting 2 In this way, a composite superconductor having a width of 17 mm and a thickness of 11 mm was obtained. Note that a steel rotating tool was used for joining, and the conditions were adopted in which the tool was moved horizontally at a rotational speed of 2500 rpm and a joining speed of 200 mm / min.

直径0.82mm、銅比1、ブロンズ比2.3、フィラメント径3.5mm、ツイストピッチ25mmの反応熱処理前のNb3Sn超電導素線3をブロンズ法により製作し、素線表面にCrメッキ加工を施した後、該CrメッキNb3Sn超電導素線3を8本撚り合わせて幅3.4mm×厚さ1.57mm、撚りピッチ35mmの超電導成形撚線4を製作した。その後、この超電導成形撚線4を9本55mmピッチで転位させて、幅7.0mm×厚さ8.0mmの転位導体とし、650℃×96hrsのNb3Sn反応熱処理をアルゴン雰囲気中で行うことにより、反応熱処理済みのNb3Snの超電導転位導体23を得た。 Nb 3 Sn superconducting element wire 3 before reaction heat treatment with diameter 0.82mm, copper ratio 1, bronze ratio 2.3, filament diameter 3.5mm, twist pitch 25mm is manufactured by bronze method, and the surface of the element wire is Cr plated Then, eight of the Cr-plated Nb 3 Sn superconducting wires 3 were twisted to produce a superconducting molded stranded wire 4 having a width of 3.4 mm, a thickness of 1.57 mm, and a twist pitch of 35 mm. Then, this superconducting molded stranded wire 4 is dislocated at a 55 mm pitch to form a dislocation conductor with a width of 7.0 mm × a thickness of 8.0 mm, and Nb 3 Sn reaction heat treatment at 650 ° C. × 96 hrs is performed in an argon atmosphere, A Nb 3 Sn superconducting dislocation conductor 23 having been heat-treated by reaction was obtained.

一方、幅17mm×厚さ17mmのアルミニウム3004(調質H112)合金の中央に、幅7.2mm×深さ12.5mmの溝加工を施した矩形断面の溝型アルミニウム部材と、この溝に反応熱処理済みのNb3Snの超電導転位導体23を挿入した状態で、嵌合するアルミニウム3004(調質H112)合金からなる幅7.1mm×厚さ4.5mmの嵌合形材2を製作した。反応熱処理済みのNb3Snの超電導転位導体23を矩形断面の溝型アルミニウム部材1の溝10に挿入した後、嵌合形材2を溝10に嵌合させ、矩形断面の溝型アルミニウム部材1と嵌合形材2の2箇所の継ぎ目8a,8bを、それぞれFSWによって接合した。接合の際、FSWの回転工具7aを嵌合形材2に押し当てることにより、間接的に反応熱処理済みのNb3Snの超電導転位導体23中のNb3Sn平角の超電導成形撚線4の幅広面に対して垂直に面圧がかかるようにして、幅17mm×厚さ17mmの複合超電導体を得た。なお、接合に際しては実施例1と同様に鋼製の回転工具7aを使用し、回転数:2500rpm、接合速度200mm/分で、工具を水平移動させる条件を採用した。 On the other hand, a grooved aluminum member with a rectangular cross-section with a groove of 7.2 mm width x 12.5 mm depth in the center of an aluminum 3004 (tempered H112) alloy 17 mm wide x 17 mm thick, and a reactive heat treatment in this groove With the Nb 3 Sn superconducting dislocation conductor 23 inserted, a fitting shape 2 having a width of 7.1 mm and a thickness of 4.5 mm made of an aluminum 3004 (tempered H112) alloy to be fitted was manufactured. After inserting the Nb 3 Sn superconducting dislocation conductor 23 having been subjected to the reaction heat treatment into the groove 10 of the groove-shaped aluminum member 1 having the rectangular cross section, the fitting shape member 2 is fitted into the groove 10 to obtain the groove-shaped aluminum member 1 having the rectangular cross section. The two joints 8a and 8b of the fitting shape 2 were joined by FSW. During bonding, by pressing the rotating tool 7a of FSW to Hamagokatachizai 2, wide indirectly reaction heat treated Nb 3 Nb in Sn superconducting transition conductor 23 3 Sn flat superconducting molded stranded wire 4 A composite superconductor having a width of 17 mm and a thickness of 17 mm was obtained by applying a surface pressure perpendicular to the surface. In joining, a steel rotating tool 7a was used in the same manner as in Example 1, and the conditions for horizontally moving the tool at a rotational speed of 2500 rpm and a joining speed of 200 mm / min were employed.

比較例Comparative example

実施例1で作製した反応熱処理済みのNb3Sn平角の超電導成形撚線4と同じものを製作し、従来技術の押し出し被覆法(コンフォーム法)を用いて、実施例1と同じ外形寸法となるようにアルミニウム3004合金と複合化した複合超電導体を作製し比較例とした。 The same heat treatment-processed Nb 3 Sn flat superconducting stranded wire 4 manufactured in Example 1 was manufactured, and the same external dimensions as in Example 1 were obtained using the conventional extrusion coating method (conform method). A composite superconductor composited with an aluminum 3004 alloy was prepared as a comparative example.

本発明による実施例1、2の複合超電導体と比較例の複合超電導体の性能を比較した結果を表1に示す。実施例1の複合超電導では、臨界電流の低下は見られなかったが、従来技術を用いた比較例の複合超電導体では、臨界電流が半分以下に低下した。実施例2の複合超電導体においては、実施例1と同様に臨界電流の低下は殆ど無く、10Tの外部磁場下において10kA以上の通電が可能であり、全断面積当たりの導体電流である臨界電流密度としては、実施例1の複合超電導体の5倍以上であった。   Table 1 shows the result of comparing the performance of the composite superconductors of Examples 1 and 2 according to the present invention and the composite superconductor of the comparative example. In the composite superconductivity of Example 1, the critical current did not decrease, but in the composite superconductor of the comparative example using the prior art, the critical current decreased to half or less. In the composite superconductor of Example 2, as in Example 1, there is almost no decrease in critical current, and it can be energized at 10 kA or more under an external magnetic field of 10 T, and the critical current is the conductor current per total cross-sectional area. The density was 5 times or more that of the composite superconductor of Example 1.

これは、超電導体が大きくなっても接合部位は同等の大きさなので、相対的に複合した金属部材の割合を小さくできるためである。尚、複合化したアルミニウム部材の強度については、実施例1および実施例2の複合超電導体では、低下しなかったが、比較例の複合超電導体では強度が低下した。これは、押し出し時に加わる熱のためである。一方、熱伝導性については、実施例1および実施例2の複合超電導体の熱伝導性は、超電導体とアルミニウム部材の金属的な結合が生じる比較例の複合超電導体には及ばないものの、実用レベルは十分満たしていた。
以上より、本発明による複合超電導体は、臨界電流特性の低下を抑制する効果が確認され、さらに、大容量導体に適用した場合の有用性も明らかであることから、総合的に従来技術よりも優れていると評価できる。
This is because even if the superconductor is large, the joint portion is the same size, so that the ratio of the relatively complex metal members can be reduced. The strength of the composite aluminum member did not decrease in the composite superconductors of Example 1 and Example 2, but the strength decreased in the composite superconductor of the comparative example. This is due to the heat applied during extrusion. On the other hand, regarding the thermal conductivity, the thermal conductivity of the composite superconductors of Example 1 and Example 2 is not practical compared to the composite superconductor of the comparative example in which a metallic bond between the superconductor and the aluminum member occurs. The level was well met.
From the above, the composite superconductor according to the present invention has been confirmed to have an effect of suppressing a decrease in critical current characteristics, and further, the usefulness when applied to a large-capacity conductor is clear. It can be evaluated as excellent.

核融合発電機、大型SMES等の間接冷却型の大型超電導体や、パルス型SMES等の伝導冷却型の小・中型超電導体等への適用だけでなく、リニアモーターカー、変圧器、発電機などの幅広い超電導応用機器で使用される超電導体への適用が出来る。   Not only applied to fusion generators, indirect cooling large superconductors such as large SMES, and conduction cooling small and medium superconductors such as pulsed SMES, but also linear motor cars, transformers, generators, etc. It can be applied to superconductors used in a wide range of superconducting applications.

複合超電導体の形態の例を説明する図である。 (a)断面が矩形状で、2箇所の継ぎ目を2回のFSW加工により接合した、2箇所の接合部を有する複合超電導体 (b)断面がフラット部を有する円形状で、2箇所の継ぎ目を1回のFSW加工により接合した、2箇所の接合部を有する複合超電導体 (c)断面がフラット部を有する円形状で、1箇所の継ぎ目を1回のFSW加工により接合した、1箇所の接合部を有する複合超電導体 (d)断面がフラット部を有する円形状で、2箇所の継ぎ目を2回のFSW加工により接合した、2箇所の接合部を有する複合超電導体It is a figure explaining the example of the form of a composite superconductor. (a) Composite superconductor having two joints with a rectangular cross section and two joints joined by two FSW processes (b) Circular cross section with two flat joints and two joints Composite superconductor with two joints joined by one FSW process (c) A cross-section with a circular shape with a flat part, one seam joined by one FSW process Composite superconductor with joints (d) Composite superconductor with two joints in which the cross-section is circular with a flat part and two seams are joined by two FSW processes 超電導体の形態の例を示す図である。 (a)丸形状の超電導素線を19本撚り合わせた丸撚線 (b)丸形状の超電導素線を8本撚り合わせて圧縮成形した成形撚線 (c)超電導成形撚線を金属部材で上下挟んだ複合成形撚線 (d)テープ形状の超電導素線を4枚積層した積層導体 (e)超電導成形撚線を9本転位させた転位導体 (f)超電導成形撚線をハンダで含浸した導体 (g)超電導成形撚線を9本転位させた転位導体の周囲にテープを巻きつけた導体It is a figure which shows the example of the form of a superconductor. (a) Round stranded wire in which 19 round superconducting strands are twisted together (b) Molded stranded wire in which 8 round superconducting strands are twisted together and compression molded (c) Superconducting shaped strands are made of metal members Composite-formed stranded wire sandwiched between upper and lower layers (d) Laminated conductor with 4 tape-shaped superconducting strands laminated (e) Dislocation conductor with 9 superconducting-molded stranded wires displaced (f) Superconducting formed stranded wire impregnated with solder Conductor (g) Conductor in which tape is wrapped around a dislocation conductor obtained by transposing nine superconducting molded stranded wires 長尺導体の製造形態を説明する図である。 (a)嵌合形材や超電導体よりも溝型金属部材が長手方向に短い場合に、溝型金属部材を長手方向にFSWで接合しながらつなぐ製造形態。 (b)溝型金属部材を予め所定のコイル形状にした後、超電導体の特性を劣化させない歪の範囲内の歪みを印加して、超電導体を溝部に配置した後、嵌合形材を嵌合し、FSWによって接合する製造形態。It is a figure explaining the manufacture form of a elongate conductor. (a) A manufacturing form in which, when a grooved metal member is shorter in the longitudinal direction than the fitting shape or superconductor, the grooved metal member is joined while being joined in the longitudinal direction by FSW. (b) After the groove-shaped metal member is preliminarily formed into a predetermined coil shape, a strain within a range that does not deteriorate the characteristics of the superconductor is applied, the superconductor is placed in the groove, and then the fitting shape is fitted. Manufacturing form that is joined by FSW.

符号の説明Explanation of symbols

1 矩形断面の溝型アルミニウム部材(第一部材)
2 嵌合形材(第二部材)
2’曲げた形状の嵌合形材
3 超電導素線
4 超電導成形撚線(t=厚さ)
4’曲げた形状の超電導成形撚線
5 下部の狭幅溝(d:溝深さ)
6 上部の広幅溝
7a FSWの回転工具
7b FSW接合部
7c FSW接合部
7d FSW接合部
8a 継ぎ目
8b 継ぎ目
9 フラット部付の円形断面の溝型アルミニウム部材
9’曲げた形状のフラット部付の円形断面の溝型アルミニウム部材
10 溝
10’曲げた形状の溝
11 開口部を有するフラット部付の円形断面の溝型アルミニウム部材
12 積層超電導体
13 開口部の下の溝部
14 継ぎ目
15a フラット部付の半割型円形断面の溝型アルミニウム部材
15b フラット部付の半割型円形断面の溝型アルミニウム部材
16a 半割溝
16b 半割溝
17a 継ぎ目
17b 継ぎ目
18 超電導丸撚線
19a アルミニウム板
19b アルミニウム板
20 複合超電導成形撚線
21 テープ形状の超電導線
22 超電導積層導体
23 超電導転位導体
24 ハンダ
25 テープ
26 継ぎ目(周方向)



1 Rectangular aluminum channel (first member)
2 Fitting shape (second member)
2 'bent shape fitting 3 3 superconducting wire 4 superconducting stranded wire (t = thickness)
4 'Bent shape superconducting stranded wire 5 Lower narrow groove (d: groove depth)
6 Upper wide groove 7a FSW rotating tool 7b FSW joint 7c FSW joint 7d FSW joint 8a Seam 8b Seam 9 Circular section grooved aluminum member with flat part 9 'Circular section with bent flat part Groove-shaped aluminum member 10 Groove 10 'Curved groove 11 Groove-shaped aluminum member 12 having a flat section with an opening 12 Laminated superconductor 13 Groove 14 below the opening Seam 15a Half with flat Groove-shaped aluminum member 15b with a circular shape and a half-shaped groove-shaped aluminum member 16a with a flat portion
16b Half groove 17a Seam 17b Seam 18 Superconducting round stranded wire 19a Aluminum plate 19b Aluminum plate 20 Composite superconducting stranded wire 21 Tape-shaped superconducting wire 22 Superconducting laminated conductor 23 Superconducting dislocation conductor 24 Solder 25 Tape 26 Seam (circumferential direction)



Claims (6)

超電導体と、
1つ又は2つ以上の部材が前記超電導体を被覆するように摩擦撹拌接合法(FSW)によって接合され、かつ前記部材の少なくとも1つがアルミニウムまたはアルミニウム合金からなる金属部材と
を有する複合超電導体。
Superconductors,
One or more members are joined by friction stir welding (FSW) so as to cover the superconductor, and at least one of the members is a metal member made of aluminum or an aluminum alloy ;
A composite superconductor having:
前記金属部材は、溝部を有する第一部材と、該溝部上部に嵌合される第二部材からなり、前記第一部材と前記第二部材が接合されて形成される中空部に超電導体が配置されていることを特徴とする請求項1に記載の複合超電導体。   The metal member includes a first member having a groove portion and a second member fitted to the upper portion of the groove portion, and a superconductor is disposed in a hollow portion formed by joining the first member and the second member. The composite superconductor according to claim 1, wherein 前記超電導体は、前記金属部材の中空部に単独または前記超電導体と前記金属部材間の熱伝導を行う伝熱部材と共に配置されており、前記複合超電導体の垂直断面において、前記超電導体と前記伝熱部材の断面積の合計が、前記中空部の断面積に対して70%以上であることを特徴とする請求項1に記載の複合超電導体。   The superconductor is disposed alone or together with a heat transfer member that conducts heat between the superconductor and the metal member in a hollow portion of the metal member, and in the vertical cross section of the composite superconductor, the superconductor and the superconductor 2. The composite superconductor according to claim 1, wherein the total cross-sectional area of the heat transfer member is 70% or more with respect to the cross-sectional area of the hollow portion. 前記金属部材は断面が略円形であることを特徴とする請求項1に記載の複合超電導体。   The composite superconductor according to claim 1, wherein the metal member has a substantially circular cross section. 前記超電導体は化合物超電導材料からなることを特徴とする請求項1乃至4のいずれか1項に記載の複合超電導体。   The composite superconductor according to any one of claims 1 to 4, wherein the superconductor is made of a compound superconducting material. 前記摩擦撹拌接合法(FSW)は、前記超電導体を加圧しながら行われることを特徴とする請求項1に記載の複合超電導体。 The composite superconductor according to claim 1 , wherein the friction stir welding method (FSW) is performed while pressurizing the superconductor.
JP2007005317A 2006-01-16 2007-01-15 Composite superconductor Active JP4936525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007005317A JP4936525B2 (en) 2006-01-16 2007-01-15 Composite superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006007993 2006-01-16
JP2006007993 2006-01-16
JP2007005317A JP4936525B2 (en) 2006-01-16 2007-01-15 Composite superconductor

Publications (2)

Publication Number Publication Date
JP2007214121A JP2007214121A (en) 2007-08-23
JP4936525B2 true JP4936525B2 (en) 2012-05-23

Family

ID=38492333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007005317A Active JP4936525B2 (en) 2006-01-16 2007-01-15 Composite superconductor

Country Status (1)

Country Link
JP (1) JP4936525B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492691B2 (en) * 2010-07-16 2014-05-14 株式会社日立製作所 Manufacturing method of MgB2 superconducting multi-core wire
JP2014002833A (en) * 2010-09-24 2014-01-09 Fujikura Ltd Oxide superconducting wire and method of manufacturing the same
JP6090933B2 (en) 2011-09-06 2017-03-08 古河電気工業株式会社 Composite superconductor and method of manufacturing composite superconductor
FI20145755A (en) * 2014-09-01 2016-03-02 Luvata Espoo Oy Metal set comprising a superconductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265939B2 (en) * 1995-08-31 2002-03-18 日立電線株式会社 Manufacturing method of composite superconducting conductor
JPH0973824A (en) * 1995-09-04 1997-03-18 Hitachi Cable Ltd Manufacture of composite superconducting conductor
JPH0973821A (en) * 1995-09-06 1997-03-18 Hitachi Cable Ltd Aluminum stabilized composite superconducting conductor
JP3472452B2 (en) * 1997-09-11 2003-12-02 日立電線株式会社 Aluminum stabilized superconducting conductor
JPH10321060A (en) * 1997-05-23 1998-12-04 Furukawa Electric Co Ltd:The Alminum-stabilized superconducting wire
JP3464423B2 (en) * 1998-09-22 2003-11-10 古河電気工業株式会社 Manufacturing method of aluminum stabilized superconducting wire
JP2001283653A (en) * 2000-01-25 2001-10-12 Hitachi Cable Ltd Aluminum composite superconducting cable

Also Published As

Publication number Publication date
JP2007214121A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
WO2007081005A1 (en) Composite superconductor
US4611390A (en) Method of manufacturing superconducting compound stranded cable
EP2041810B1 (en) Wire-in-channel superconductor
JP4936525B2 (en) Composite superconductor
EP2118941B1 (en) Soldered superconductor with hard insulation
GB2498961A (en) Methods of joining superconducting wires
JP6090933B2 (en) Composite superconductor and method of manufacturing composite superconductor
US6449834B1 (en) Electrical conductor coils and methods of making same
JP5100533B2 (en) Superconducting conductor connection method, connection structure, connection member
JP3051078B2 (en) Connection method of superconducting conductor
US5704993A (en) High conductivity composite metal
JPH01122677A (en) Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium
CN214395739U (en) Pre-arranged structure beneficial to aluminum-copper welding
JP6078522B2 (en) Superconducting wire and superconducting coil using the same
JP3445332B2 (en) Manufacturing method of superconducting cable in conduit
JPH05880B2 (en)
JPS58169712A (en) Method of producing composite superconductive wire
JP2003021477A (en) Heat exchanger and method for manufacturing the same
JPH03284869A (en) Clad material for lead frame
CN117381127A (en) Welding method of heat exchanger and heat exchanger
JPS60205016A (en) Manufacturing method of slidable compound member
JPH07254446A (en) Compound superconducting wire and conductor jointing structure and jointing method
JPH0850981A (en) Manufacture of superconductor
JPS58105530A (en) Superconductive magnet
JP2001076552A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250