JP4935201B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4935201B2
JP4935201B2 JP2006165135A JP2006165135A JP4935201B2 JP 4935201 B2 JP4935201 B2 JP 4935201B2 JP 2006165135 A JP2006165135 A JP 2006165135A JP 2006165135 A JP2006165135 A JP 2006165135A JP 4935201 B2 JP4935201 B2 JP 4935201B2
Authority
JP
Japan
Prior art keywords
drain water
sensor
ultrasonic
drain
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006165135A
Other languages
Japanese (ja)
Other versions
JP2007333533A5 (en
JP2007333533A (en
Inventor
奨 藤原
政幸 渡久地
保之 小宮
貴司 保坂
睦 吉本
晴男 笹島
茂昭 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006165135A priority Critical patent/JP4935201B2/en
Publication of JP2007333533A publication Critical patent/JP2007333533A/en
Publication of JP2007333533A5 publication Critical patent/JP2007333533A5/ja
Application granted granted Critical
Publication of JP4935201B2 publication Critical patent/JP4935201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

本発明は、ドレン水量を検知する冷熱機器に関するものである。   The present invention relates to a cooling / heating device for detecting the amount of drain water.

代表的な冷熱機器である冷凍冷蔵ショーケースは、図9に示すようにショーケース本体の下部に形成される機械室3内に凝縮器2や圧縮機などにより構成される冷凍装置を配設し、ショーケース本体の背面側に設置した冷却器で冷却した冷気で商品収納庫1内に収納した商品を冷却するもので、冷気は循環される。   As shown in FIG. 9, a freezer / refrigeration showcase, which is a typical refrigeration equipment, has a refrigeration apparatus including a condenser 2 and a compressor disposed in a machine room 3 formed at the bottom of the showcase body. The product stored in the product storage 1 is cooled by the cool air cooled by the cooler installed on the back side of the showcase body, and the cool air is circulated.

冷気は前記のように庫内の空気が循環されるものであるが、商品収納庫1の前面が商品の出入口として開放されているため、ここから暖かい外気が流入し、これに含まれる湿気が冷却器で結露し霜となる。   As described above, the cool air is circulated in the cabinet, but since the front surface of the product storage 1 is opened as a product entrance, warm outside air flows from here, and moisture contained therein is Condensation occurs in the cooler and forms frost.

そして、この着霜により冷却器の能力が低下することを防ぐため、適宜除霜するが、除霜された水分がドレン水として発生する。   And in order to prevent that the capacity | capacitance of a cooler falls by this frost formation, although it defrosts suitably, the defrosted water | moisture content generate | occur | produces as drain water.

このドレン水は、通常は排水用のパイプが接続されてこのパイプで店舗外の排水溝に導かれるが、パイプが接続されるとこの配管によってショーケースの設置位置が固定される。そこで、移動が容易なように圧縮機が組み込まれているショーケースでは、移動性が損なわれないようドレン水もショーケース内に設置したドレンパンやドレンタンクなどのドレン水受け4に貯留している。   The drain water is usually connected to a drain pipe and led to a drain groove outside the store by this pipe. When the pipe is connected, the installation position of the showcase is fixed by this pipe. Therefore, in a showcase in which a compressor is incorporated for easy movement, drain water is also stored in a drain water receiver 4 such as a drain pan or drain tank installed in the showcase so as not to impair mobility. .

このようにドレン水受け4にドレン水を溜める場合、定期的に排水する必要が生じるが、ドレン水の発生量は機器が設置される周囲温度や周囲湿度、ショーケースのサイズや使用温度帯、庫内に収納している商品の量などによって左右される。   In this way, when drain water is stored in the drain water receiver 4, it is necessary to drain it regularly, but the amount of drain water generated depends on the ambient temperature and humidity where the equipment is installed, the size and operating temperature range of the showcase, It depends on the amount of products stored in the cabinet.

このため、ドレン水の貯留量を把握して溢水する前に排水する必要があり、従来は、フロート21を水位センサ5として設けて貯留量を検出していた。このフロート21方式の水位センサ5は、図10に示すようにドレン水受け4に浮かべたフロート21が水位の上昇によりフロートガイドにそって所定の高さまで移動すると、この高さ位置にセットしてある満水警報ランプ点灯スイッチ22の接点を押す。   For this reason, it is necessary to grasp the storage amount of drain water and drain it before overflowing. Conventionally, the float 21 is provided as the water level sensor 5 to detect the storage amount. As shown in FIG. 10, when the float 21 floated on the drain water receiver 4 moves to a predetermined height along the float guide as the water level rises, the float 21 type water level sensor 5 is set to this height position. The contact of a certain full water warning lamp lighting switch 22 is pushed.

その結果、機械室3に設置してあるコントローラ24に設けたドレン水満水警報ランプ23が点灯し、ドレン水受け4にドレン水が満水になったことを報知する。   As a result, the drain water full warning lamp 23 provided in the controller 24 installed in the machine room 3 is turned on to notify the drain water receiver 4 that the drain water is full.

ところで、ドレン水受け4が配設される機械室3は、ショーケース全体の構造上、商品収納庫1の下方に形成されるという制約から、高さに制限があり、ドレン水受け4の高さを20mm〜40mmという低い値におさえる必要がある。   By the way, the machine room 3 in which the drain water receiver 4 is disposed is limited in height due to the restriction that it is formed below the product storage 1 due to the structure of the entire showcase. It is necessary to keep the thickness as low as 20 mm to 40 mm.

このため、フロート21の移動量も少なくなって、検知の精度が出にくく、満水貯留量の半分以下の水位で満水警報が発せられることもある。これに対処すべく、検知精度が上がるようにフロート21の設置を調整しても、ドレン水受け4にフロート21を浮かべるという機械的な構造であるため、ドレン水受け4からドレン水を排水する毎にフロート21をドレン水受け4から一度外し、再度、設置をやり直すことになり、このときに設置位置がずれてしまうこともあって、検知精度を確保するのが困難である。   For this reason, the amount of movement of the float 21 is reduced, detection accuracy is difficult to be obtained, and a full water warning may be issued at a water level less than half of the full water storage amount. In order to cope with this, even if the installation of the float 21 is adjusted so that the detection accuracy is increased, the drain water is drained from the drain water receiver 4 because the float 21 is floated on the drain water receiver 4. Each time the float 21 is removed from the drain water receiver 4 and the installation is performed again. At this time, the installation position may be shifted, and it is difficult to ensure the detection accuracy.

さらに、フロート21は使用している間にコケやゴミが付着して浮力が変化したり、可動部の動きがスムーズでなくなったりして故障しやすい。   Furthermore, the float 21 is liable to break down during use because moss or dust adheres to it and the buoyancy changes or the movement of the movable part becomes smooth.

なお、ドレン水受け4に貯留したドレン水を蒸発装置で蒸発させて空気中に放出する方法もあるが、この蒸発装置も1、2年の短期間でゴミの付着などによって性能が劣化したり、夏場のドレン水の量が多い時期には蒸発装置だけでは処理しきれず排水作業の併用が別途必要となるので、蒸発装置を使用する場合でもやはりドレン水の満水を報知する必要がある。 There is also a method in which the drain water stored in the drain water receiver 4 is evaporated by an evaporator and released into the air. However, the performance of this evaporator also deteriorates due to dust adhesion in a short period of one or two years. When the amount of drain water in summer is large, it cannot be treated with the evaporator alone, and it is necessary to use drainage work separately. Therefore, even when the evaporator is used, it is necessary to notify the full drain water.

そこで、機械的ではない方法でドレン水の満水を検知する方法として、超音波センサを水位センサとして使用する方法があり、ドレン水受けの上方に超音波センサを設置し、ここから水面に向けて発信した超音波が水面に反射して戻り受信されるまでの時間を計測して超音波センサと水面との距離、すなわち水位を計測するものである(例えば特許文献1参照)。
特開2001−59765号公報
Therefore, as a method for detecting the fullness of drain water by a non-mechanical method, there is a method of using an ultrasonic sensor as a water level sensor. An ultrasonic sensor is installed above the drain water receiver, and from here toward the water surface. The time until the transmitted ultrasonic wave is reflected back to the water surface and received is measured to measure the distance between the ultrasonic sensor and the water surface, that is, the water level (see, for example, Patent Document 1).
JP 2001-59765 A

超音波センサを使用する方法は、図11、図12に示すように超音波センサ9の水位センサ音波発振部20を制御するパルス発振部である送信回路部6から発信されたパルス信号が水面で反射されて受信回路部7に戻るまでの時間を計測し、この時間をもとに演算処理回路部8で超音波センサと水面との距離、すなわち水位を算出するもので、受信回路部7はコントローラ24に接続される。   As shown in FIGS. 11 and 12, the method of using the ultrasonic sensor is such that the pulse signal transmitted from the transmission circuit unit 6 which is a pulse oscillation unit for controlling the water level sensor sound wave generation unit 20 of the ultrasonic sensor 9 is on the water surface. The time until it is reflected and returned to the receiving circuit unit 7 is measured, and based on this time, the arithmetic processing circuit unit 8 calculates the distance between the ultrasonic sensor and the water surface, that is, the water level. The receiving circuit unit 7 Connected to the controller 24.

一般に超音波センサでは、測定距離を延ばすためには超音波信号の減衰分を考慮して超音波発振素子への入力を上げ音圧を高めることが必要とされる一方で、近距離測定のためには送信波形に受信波形が重ならないよう、送信波形の影響を短くするために音圧を下げる必要がある。それでも通常PZT素子で使用できる20KHzの周波数では駆動電圧の雑音や安定度が精度に影響して70mm以下を正確に測定することが不可となる。   In general, in order to extend the measurement distance in an ultrasonic sensor, it is necessary to increase the sound pressure by raising the input to the ultrasonic oscillation element in consideration of the attenuation of the ultrasonic signal. In order to reduce the influence of the transmission waveform, it is necessary to lower the sound pressure so that the reception waveform does not overlap the transmission waveform. Nevertheless, at a frequency of 20 KHz that can be normally used in a PZT element, noise and stability of the drive voltage affect the accuracy, and it becomes impossible to accurately measure 70 mm or less.

図13に示すように送信波形に受信波形が重ならない距離は実際には70〜150mmであり、受信波形の減衰で受信確認できなくなる距離が200mm以上である。これにより、正常に測定できる範囲は70mm以上であることがわかる。ちなみに送信波形に受信波形が重なるような近距離で20msecごとに行った応答時間は、図14のグラフに示すように大きなバラツキがあり、正確に検出できないことが判明している。   As shown in FIG. 13, the distance that the received waveform does not overlap the transmitted waveform is actually 70 to 150 mm, and the distance at which reception cannot be confirmed due to the attenuation of the received waveform is 200 mm or more. Thereby, it can be seen that the range that can be normally measured is 70 mm or more. Incidentally, it has been found that the response time performed every 20 msec at a short distance such that the received waveform overlaps the transmitted waveform has a large variation as shown in the graph of FIG. 14 and cannot be accurately detected.

ところが、前記のようにショーケース本体の下方に形成される機械室は高さに制限があり、正常に測定できる範囲に超音波センサをセットすることが困難である。これに対処すべく、前記従来例である特開2001−59765号公報に記載の発明は、超音波の発信部と水面との間に反射鏡を設置して、発信部から発信された発信信号を途中で反射鏡で反射させて進行方向を変換させてから水面に到達させるようにしたもので、反射鏡の設置により信号が発信されてから受信されるまでの距離を稼ぎ、超音波センサと水面との距離を正常に測定できる範囲としようとするものである。   However, as described above, the machine room formed below the showcase body is limited in height, and it is difficult to set the ultrasonic sensor in a range that can be normally measured. In order to cope with this, the invention described in Japanese Patent Application Laid-Open No. 2001-59765, which is the conventional example, has a reflecting mirror installed between the ultrasonic wave transmitting section and the water surface, and the transmission signal transmitted from the transmitting section. Is reflected by a reflecting mirror on the way to change the direction of travel and reach the water surface.By installing the reflecting mirror, the distance from when the signal is transmitted to when it is received is obtained. It is intended to be within a range where the distance from the water surface can be measured normally.

しかしながら、このように反射鏡を使用する方法は、構造が複雑となるだけでなく、反射鏡を介在させる分だけ測定精度も落ちるおそれがある。   However, such a method using a reflecting mirror not only complicates the structure, but also may reduce the measurement accuracy by the amount of interposing the reflecting mirror.

本発明の目的は前記従来例の不都合を解消し、超音波センサの利点を活かしこれを水位センサとして使用してドレン水受けに貯留したドレン水の満水を検知し、報知するとともに、満水状態が解除されたことを確実に検出できる冷熱機器を提供することにある。
The object of the present invention is to eliminate the inconvenience of the conventional example, and to take advantage of the ultrasonic sensor as a water level sensor to detect and notify the full water of the drain water stored in the drain water receiver, An object of the present invention is to provide a cooling / heating device that can reliably detect the release.

本発明は前記目的を達成するため、ドレン水受けとその上方に超音波センサを設け、前記センサから発信され、ドレン受け内のドレン水から反射される超音波を前記センサで検出し、前記センサとドレン水間の距離またはドレン水受け内のドレン水量を測定する冷熱機器において、前記ドレン水受けが設置される冷熱機器の底部の、超音波センサから発信される超音波の進行位置に、凹部を形成することを特徴とするものである。
In order to achieve the above object, the present invention provides a drain water receiver and an ultrasonic sensor above the drain water receiver, detects ultrasonic waves transmitted from the sensor and reflected from the drain water in the drain receiver, and the sensor In the cooling / heating device for measuring the distance between the water and the drain water or the amount of drain water in the drain water receiver, a recess is formed at the position where the ultrasonic wave transmitted from the ultrasonic sensor is transmitted at the bottom of the cooling / heating device where the drain water receiver is installed. It is characterized by forming .

以上述べたように本発明の冷熱機器は、ドレン水受けとその上方に超音波センサを設け、前記センサから発信され、ドレン受け内のドレン水から反射される超音波を前記センサで検出し、前記センサとドレン水間の距離またはドレン水受け内のドレン水量を測定する冷熱機器において、前記ドレン水受けが設置される冷熱機器の底部の、超音波センサから発信される超音波の進行位置に、凹部を形成したから、満水状態が解除されたことを確実に検出できるものである。 As described above, the cooling / heating apparatus of the present invention includes a drain water receiver and an ultrasonic sensor above the drain water receiver, detects ultrasonic waves transmitted from the sensor and reflected from the drain water in the drain receiver, In the cooling / heating device for measuring the distance between the sensor and the drain water or the amount of drain water in the drain water receiver, the ultrasonic wave transmitted from the ultrasonic sensor is located at the bottom of the cooling / heating device where the drain water receiver is installed. Since the concave portion is formed, it can be reliably detected that the full water state has been released.

以下、図面について本発明の実施形態を詳細に説明する。図1は本発明の冷凍冷蔵ショーケースのドレン水検知装置の実施形態を示す正面図、図2は同上ドレン水検知装置が設置されたショーケースの斜視図で、ショーケースの全体構成は図9について説明した従来例と同様であるから同一の参照符号を付してここでの詳細な説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view showing an embodiment of a drain water detection device for a refrigerated showcase according to the present invention, FIG. 2 is a perspective view of the showcase in which the same drain water detection device is installed, and the entire configuration of the showcase is shown in FIG. Are the same as those of the conventional example described above, and the same reference numerals are assigned and detailed description thereof is omitted.

本発明のドレン水検知装置も従来と同様に水位センサ5として超音波センサ9を用いるものであるが、図1について機械室3に配設されるドレン水受け4と超音波センサ9との位置関係を説明する。   The drain water detector of the present invention also uses an ultrasonic sensor 9 as the water level sensor 5 as in the prior art, but the positions of the drain water receiver 4 and the ultrasonic sensor 9 disposed in the machine room 3 in FIG. Explain the relationship.

機械室3の高さは一例として300mmであり、図13で説明した超音波センサ9で正常に距離測定できる範囲を確保できる。機械室3のこの限定された高さの範囲内に超音波センサ9とドレン水受け4は、測定に付随する空気を除いて他の部材を介すことなく、非接触状態で配置され、ドレン水受け4は、超音波センサ9との距離を確保するために高さの低いもの(深さの浅いもの)として例えば40mm程度のものとする。   The height of the machine room 3 is 300 mm as an example, and a range in which the distance can be normally measured by the ultrasonic sensor 9 described in FIG. 13 can be secured. Within this limited height range of the machine room 3, the ultrasonic sensor 9 and the drain water receiver 4 are arranged in a non-contact state without passing through other members except for air associated with the measurement. The water receiver 4 is assumed to have a low height (shallow depth), for example, about 40 mm in order to secure a distance from the ultrasonic sensor 9.

そして、ドレン水受け4の口縁を限界レベルとしてこの限界レベルと超音波センサ9の超音波発信素子兼受信素子との距離を、超音波センサ9で正常に測定できる範囲の最小限値である70mmに設定し、この限界レベルよりもさらに10mm下方に満水レベルを設定する。   And it is the minimum value of the range which can measure normally the distance of this limit level and the ultrasonic transmitter / receiver element of the ultrasonic sensor 9 with the mouth of the drain water receiver 4 as the limit level. The water level is set to 70 mm, and the full water level is set 10 mm below the limit level.

これにより、満水レベルが超音波センサ9の発信部から80mm離れた高さに位置し、満水レベルを正常測定可能範囲内に確実に位置させることができ、ドレン水受け4からドレン水が溢れるまで10mmの余裕を残してこの満水レベルで満水を報知するようにした。   As a result, the full water level is located at a height of 80 mm away from the transmitter of the ultrasonic sensor 9, and the full water level can be reliably positioned within the normal measurable range until the drain water overflows from the drain water receiver 4. Full water was reported at this full water level, leaving a margin of 10 mm.

そして、ドレン水受け4が排水のためにショーケースからはずされたことを検知するための手段として、図4に示すようにドレン水受け4が設置されるショーケースの底部10で、超音波の進行方向に超音波センサ9との距離が延長されるよう凹部11を形成する。   As a means for detecting that the drain water receiver 4 has been removed from the showcase for drainage, as shown in FIG. 4, at the bottom 10 of the showcase where the drain water receiver 4 is installed, The recess 11 is formed so that the distance from the ultrasonic sensor 9 is extended in the traveling direction.

また、ドレン水受け4が排水のためにショーケースからはずされたことを検知するその他の方法は、図5に示すように、ドレン水受け4が載置されるショーケースの底部10で、超音波センサ9から発信される超音波の進行位置に、発信された超音波を超音波センサ9の受信部に戻さないようにする手段として、底部10に超音波を吸収し反射させない吸音材12を取り付けた。   In addition, as shown in FIG. 5, another method for detecting that the drain water receiver 4 has been removed from the showcase due to drainage is performed at the bottom 10 of the showcase on which the drain water receiver 4 is placed. As a means for preventing the transmitted ultrasonic wave from returning to the receiving part of the ultrasonic sensor 9 at the position where the ultrasonic wave transmitted from the acoustic wave sensor 9 travels, a sound absorbing material 12 that absorbs the ultrasonic wave and does not reflect it on the bottom 10 is provided. Attached.

または、図6に示すように、超音波の正規の受信方向から外れた方向に向けて超音波が反射するように、発信された超音波の進行方向に位置するショーケースの底部10を斜めに形成し、この斜めの形成部位に超音波反射板を設けて超音波反射部13とした。この場合の斜めの角度は、例えば受信方向から5度以上ずらした角度に設定する。   Alternatively, as shown in FIG. 6, the bottom 10 of the showcase located in the traveling direction of the transmitted ultrasonic wave is inclined so that the ultrasonic wave is reflected in a direction deviating from the normal reception direction of the ultrasonic wave. The ultrasonic reflection plate 13 was formed by providing an ultrasonic reflection plate at the oblique formation site. The oblique angle in this case is set to an angle shifted by 5 degrees or more from the reception direction, for example.

前記斜めの形成部位は、図6のように一方の方向にのみ傾斜する傾斜部に限定されるものではなく、発信された超音波が受信部に戻らないようにすればよく、発信方向とは異なる方向に反射されればよいものであるから、図7のように連続する複数の波形(山形)部14に形成することもできる。   The oblique forming portion is not limited to the inclined portion inclined only in one direction as shown in FIG. 6, and it is sufficient that the transmitted ultrasonic wave does not return to the receiving portion. Since it only needs to be reflected in different directions, it can be formed in a plurality of continuous waveform (mountain) portions 14 as shown in FIG.

かかるショーケースのドレン水検知装置を用いてドレン水の満水を検知する方法を説明する。図3は検知の基本動作を示すフローチャートで、超音波センサ9の超音波発信素子から発信する超音波は、下方のドレン水受け4に貯留したドレン水の水面に反射して戻り、超音波受信素子で受信されるが、この間の時間を計測し、この時間をもとにしてショーケースコントローラ24の演算処理回路部8で超音波センサ9と水面との距離、すなわち水位が算出される(ステップ1)。   A method for detecting the full water of the drain water using the drain water detection device of such a showcase will be described. FIG. 3 is a flowchart showing the basic operation of detection. The ultrasonic wave transmitted from the ultrasonic transmission element of the ultrasonic sensor 9 is reflected back to the surface of the drain water stored in the lower drain water receiver 4 to receive the ultrasonic wave. Although it is received by the element, the time during this time is measured, and the distance between the ultrasonic sensor 9 and the water surface, that is, the water level is calculated by the arithmetic processing circuit unit 8 of the showcase controller 24 based on this time (step) 1).

そして、距離が満水レベルである80mmよりも近くなれば(ステップ2)、満水レベルに達したものと判断してドレン水満水警報ランプ23に出力して満水報知を開始する(ステップ3)。その後、超音波センサ9と水面との距離が80mm以上になれば(ステップ2)、この報知を受けてドレン水受け4からドレン水が排水されたものと判断して、満水報知を停止する(ステップ4)。この満水報知は超音波センサ9と水面との距離が80mm以上になるまで継続されるもので、ドレン水が確実に排水されるまで停止しない。   Then, if the distance is closer than the full water level of 80 mm (step 2), it is determined that the full water level has been reached and is output to the drain water full warning lamp 23 to start full water notification (step 3). Thereafter, if the distance between the ultrasonic sensor 9 and the water surface becomes 80 mm or more (step 2), it is determined that drain water has been drained from the drain water receiver 4 upon receiving this notification, and the full water notification is stopped ( Step 4). This full water notification is continued until the distance between the ultrasonic sensor 9 and the water surface reaches 80 mm or more, and does not stop until the drain water is surely drained.

ここで、満水報知後、満水報知を停止するまでの排水確認動作を図8のフローチャートについて説明する。図3のフローチャートと同一の動作については同一のステップ番号を付してある。満水報知が開始された(ステップ3)後も、超音波センサ9によるドレン水の水面までの距離測定は継続している(ステップ5)。   Here, the drainage confirmation operation after the full water notification until the full water notification is stopped will be described with reference to the flowchart of FIG. The same operations as those in the flowchart of FIG. 3 are denoted by the same step numbers. Even after the full water notification is started (step 3), the measurement of the distance to the water surface of the drain water by the ultrasonic sensor 9 continues (step 5).

この間、ドレン水受け4がショーケースの底部10に設置されたままの状態で、内部のドレン水のみが掻き出されるなどして水位が徐々に低下していけば、水位の変化によって測定される時間も変化し、前回との測定時間の差が例えば0.02msec以内で(ステップ6)、このような状態が例えば10回連続し(ステップ7)、最終的に距離が80mmより遠くになれば(ステップ8)、排水されたものと判断して満水報知を停止する(ステップ4)。   During this time, if the drain water receiver 4 is still installed at the bottom 10 of the showcase and only the drain water inside is scraped off, the water level gradually decreases, so that the water level is measured. If the time also changes, and the difference in measurement time from the previous time is within 0.02 msec (step 6), such a state continues for example 10 times (step 7), and finally the distance becomes more than 80 mm. (Step 8), it is determined that the water has been drained, and the full water notification is stopped (Step 4).

前記(ステップ6)で、前回との測定時間の差が例えば0.02msec以内かを判断したのは、この計測時間0.02msecは、式(1)で示すとおり音速から常温において距離に換算すれば約7mmである。
L(m)=340(m/sec)×t(sec) (1)
このような近距離の中に10回の測定が連続して入ることは、水面が距離判定可能な位置で且つ安定している状態であると判断出来できる。よって図14の状態ではないことを確認してから、満水報知を停止する為の80mmの距離判断を行うものである。
In the above (Step 6), it is determined whether the difference in measurement time from the previous time is within 0.02 msec, for example. This measurement time 0.02 msec is converted from the sound speed to the distance at room temperature as shown in Equation (1) About 7 mm.
L (m) = 340 (m / sec) × t (sec) (1)
It can be determined that the water surface is in a position where the distance can be determined and is in a stable state when ten measurements are continuously performed in such a short distance. Therefore, after confirming that it is not the state of FIG. 14, the distance judgment of 80 mm for stopping a full water alert | report is performed.

このことは、満水警報を出した後、水面が上昇してドレン水受けから溢れる距離までの間で図14の領域になってしまっても、ステップ5、ステップ6によりドレン水が多いのにも係わらず、間違って満水報知を停止してしまうことを防止している。   This means that even if the water level rises and reaches the area overflowing from the drain water receiver after the full water warning is issued, the amount of drain water is high due to steps 5 and 6. Regardless, it prevents accidental stop of full water notification.

ここで図4のように、更にドレン水受け4の下の底部に10mmの凹部を設ければ、ドレン水受け4を外した場合、この場合は距離が120mmとなり、更に確実に遠い距離を測定できるのでより確実な水なし判定が可能となる。
また、図8には示していないが、ステップ7の下に、距離は115mm以上かの判断を設けることで、ドレン水受け4が外されたことを認識することが可能になる。
Here, as shown in FIG. 4, if a recess of 10 mm is further provided at the bottom of the drain water receiver 4, when the drain water receiver 4 is removed, the distance becomes 120 mm in this case, and a farther distance is measured more reliably. Since it is possible, more reliable waterless determination is possible.
Although not shown in FIG. 8, it is possible to recognize that the drain water receiver 4 has been removed by determining whether the distance is 115 mm or more under step 7.

よってドレン水受け4が浅い構造の場合に満水報知停止の判断を、僅かな水位の低下で行うのではなく、ドレン水受け4が外されたことで起きる大きな距離変化に置き換えることができるので正確な満水報知停止判断を構築できる。 Therefore, when the drain water receiver 4 has a shallow structure, the determination of the full water notification stop is not performed by a slight decrease in the water level, but can be replaced with a large change in distance that occurs when the drain water receiver 4 is removed. Can make a full water notification stop decision.

一方、前記(ステップ6)の段階で、前回との測定時間の差が例えば0.02msec以内でない場合、超音波が発信されてから測定時間内(1.6msec)に応答信号がない場合(ステップ9)、すなわち受信波形がない場合は、ドレン水受け4が排水のためにショーケースの底部10から取り外されているものと判断してこのような状態が10回連続すれば(ステップ10)、満水報知を停止する。   On the other hand, if the difference in measurement time from the previous time is not within 0.02 msec in the stage of (Step 6), no response signal is received within the measurement time (1.6 msec) after the ultrasonic wave is transmitted (Step m). 9) That is, when there is no received waveform, if it is determined that the drain water receiver 4 has been removed from the bottom 10 of the showcase for drainage, and such a state continues 10 times (step 10), Stop full water notification.

ここでの1.6msecは式(1)より距離換算で500mm以上となる。
この500mmの設定の理由は、水位センサ9はドレン受け4の状に設置するときに、当然に水位センサ9として正しく測定できる範囲内に置くことになるので、この場合200mm以内に設置となり、この状態では測定結果は200mm以内になるはずである。
Here, 1.6 msec is 500 mm or more in terms of distance from the equation (1).
The reason for setting this 500 mm is that when the water level sensor 9 is installed in the shape of the drain receiver 4, it is naturally placed within a range that can be measured correctly as the water level sensor 9. In the state, the measurement result should be within 200 mm.

しかし、水位センサ9が応答信号を得られない場合も想定される。
よって、そのような場合を正しく判断するために、本来ありえない距離としてここでは250mmを設定し、その往復500mmを伝播する時間の1.6msecを応答信号がないと判断する時間に設定した。
当然、応答信号がない状態として、一番の理由はドレン水がない状態、もしくはドレン水受け4そのものが無い状態が上げられる。
However, a case where the water level sensor 9 cannot obtain a response signal is also assumed.
Therefore, in order to correctly determine such a case, 250 mm is set as an impossible distance, and 1.6 msec of the propagation time of 500 mm in the round trip is set as a time for determining that there is no response signal.
Naturally, as a state where there is no response signal, the main reason is a state where there is no drain water or a state where there is no drain water receiver 4 itself.

よって図5に示すように吸音材12を設けた場合は、この上からドレン水受け4が取り外されることで、超音波センサ9からの超音波信号が吸音材12に到達しここで吸収されて応答信号が反射しなくなり、図6、図7のように超音波反射部13や波形部14を形成した場合は、超音波センサ9から発信された超音波がこの超音波反射部13や波形部14にまで到達し、ここで受信回路部7とは異なる方向に反射されるから、受信される反射波が存在しなくなるので、結果としてドレン水受けが外されたと判断できる。   Therefore, when the sound absorbing material 12 is provided as shown in FIG. 5, the drain water receiver 4 is removed from above, so that the ultrasonic signal from the ultrasonic sensor 9 reaches the sound absorbing material 12 and is absorbed there. When the response signal is not reflected and the ultrasonic reflection portion 13 and the waveform portion 14 are formed as shown in FIGS. 6 and 7, the ultrasonic wave transmitted from the ultrasonic sensor 9 is converted into the ultrasonic reflection portion 13 and the waveform portion. 14 and is reflected in a direction different from that of the receiving circuit unit 7, so that there is no reflected wave to be received. As a result, it can be determined that the drain water receiver has been removed.

以上のようにして本発明では近距離を測定しにくいという特質を有する超音波センサ9を使用してドレン水受け4内のドレン水の満水を検知する場合、機械室3という限られたスペースの中であっても測定可能範囲にドレン水受け4と超音波センサ9とを配置し、確実に測定可能な範囲で満水を報知し、報知後は排水が確認されるまでは報知を継続して排水されたことの確認も行えるものである。   As described above, when the fullness of the drain water in the drain water receiver 4 is detected using the ultrasonic sensor 9 having the characteristic that it is difficult to measure a short distance in the present invention, the machine room 3 has a limited space. Even if it is in the middle, the drain water receiver 4 and the ultrasonic sensor 9 are arranged in the measurable range, the full water is informed within the measurable range, and the notification is continued until the drainage is confirmed after the informing. It is also possible to confirm that the water has been drained.

なお、超音波式の距離測定は周囲温度により音速が変化するため、温度変化分だけ測定誤差が生じ、この誤差は、70mm離れると約15mmの誤差となる。このため、ドレン水受け4の深さが40mmの場合、この誤差を考慮すると水量が半分程度で満水警報を出力しなければならなくなってしまうが、本発明では周囲温度を計測して、この検出温度をもとにして誤差を修正し、正しい距離を測定する。   In the ultrasonic distance measurement, since the sound speed changes depending on the ambient temperature, a measurement error is caused by the temperature change, and this error becomes an error of about 15 mm when the distance is 70 mm. For this reason, when the depth of the drain water receiver 4 is 40 mm, if this error is taken into consideration, the water amount must be about half and a full water warning must be output. In the present invention, however, the ambient temperature is measured and detected. Correct the error based on the temperature and measure the correct distance.

前記超音波による距離測定を図15について説明すると、ドレン水検知装置の周辺温度を検出する温度センサとしてサーミスタ15は制御装置16の入力側に接続されている水位センサ入力17に接続され、図11に示すようにサーミスタ15すなわち温度補正用の温度検出器の温度検出回路18は、超音波センサ9の回路内に配置される。   The distance measurement using ultrasonic waves will be described with reference to FIG. 15. The thermistor 15 is connected to a water level sensor input 17 connected to the input side of the control device 16 as a temperature sensor for detecting the ambient temperature of the drain water detection device. As shown in FIG. 2, the temperature detection circuit 18 of the thermistor 15, that is, the temperature detector for temperature correction, is arranged in the circuit of the ultrasonic sensor 9.

図16は超音波センサ9の水位センサ音波発振部20を示し、温度補正のための温度検出用の素子19aを、音響通路外装部(ホーン)20aの開口部(センサデバイス)近傍に取り付けて外部温度の影響を計測する。   FIG. 16 shows a water level sensor sound wave oscillating unit 20 of the ultrasonic sensor 9, and a temperature detecting element 19a for temperature correction is attached in the vicinity of the opening (sensor device) of the acoustic path exterior part (horn) 20a. Measure the effect of temperature.

また、別の温度検出用の素子19bをPZT振動子20bを固着している共振金属板20cに取り付けた。これは共振金属板20cが温度の影響をうけやすく材料膨張する特質に着目したもので、共振振動板20cの端部に温度検出用の素子19bを固着して環境温度を計測しこれをコントロール基板側で補正するようにした。   Further, another temperature detecting element 19b is attached to the resonant metal plate 20c to which the PZT vibrator 20b is fixed. This is based on the characteristic that the resonant metal plate 20c is easily affected by temperature and the material expands. The temperature detecting element 19b is fixed to the end of the resonant diaphragm 20c, and the environmental temperature is measured. The correction was made on the side.

補正方法は下記のとおりである。空気中の音の速度は温度が高いほど速くなり、一般的に用いられているセシ温度(T)による音速(V)を求める式は、
V=331.5+0.61T m/sec
である。
また、湿度の影響は、15℃の状態で湿度0%から100%になると約0.3%程度早くなる。
The correction method is as follows. The speed of sound in the air increases as the temperature increases, and the formula for calculating the speed of sound (V) based on the commonly used Cesi temperature (T) is:
V = 331.5 + 0.61T m / sec
It is.
Further, the influence of humidity is accelerated by about 0.3% when the humidity is changed from 0% to 100% at 15 ° C.

しかし、湿度は空気中の音の速度の影響よりも、水位センサを構成する、部材が吸湿することでの影響の方が空気より大きくなることもあるため、湿度による影響を一概に示すことは出来ない。そのため、その水位センサ9の仕様ごとに湿度特性を作成することが必要になる。 However, humidity may be larger than air due to the moisture absorption of the components that make up the water level sensor, rather than the effect of the speed of sound in the air. I can't. Therefore, it is necessary to create a humidity characteristic for each specification of the water level sensor 9.

よって、距離は音速が速くなると近いと判断するので、温度が高くなると距離を近く判定する。そのため、ここではセシ0℃を基準にして、仮に20℃の時の時間をt20とするならば、0℃での戻り時間t0はt0=t20(1+0.61/331.5×20)で算出できる。そして、このt0を基準にして距離換算をいつも行えば、温度による影響を排除できる。   Therefore, it is determined that the distance is close when the sound speed is high. Therefore, the distance is determined close when the temperature is high. Therefore, here, assuming that the time at 20 ° C. is t20 with reference to 0 ° C., the return time t0 at 0 ° C. is calculated as t0 = t20 (1 + 0.61 / 331.5 × 20). it can. If the distance is always converted based on this t0, the influence of temperature can be eliminated.

なお、前記実施形態は、縦型の冷凍冷蔵ショーケースに実施される場合を説明したが、これに限定されるものではなく、上面が開口している平型のタイプのものや、冷蔵専用、冷凍専用のショーケースについても実施可能であり、当然類する冷熱機器においても実施可能なことは言うまでもない。   In addition, although the said embodiment demonstrated the case implemented to a vertical-type freezing and refrigeration showcase, it is not limited to this, The thing of the flat type with which the upper surface is open, refrigeration-only, Needless to say, the present invention can also be applied to a freezer-only showcase, and can also be applied to a similar cooling / heating apparatus.

また、所定水量を満水レベルにおいて使用したが、これに限るものではく、数値も前記実施形態に限定されるものではない。   Moreover, although the predetermined amount of water was used at the full water level, the present invention is not limited to this, and the numerical value is not limited to the above embodiment.

本発明の実施形態である冷熱機器のドレン水検知装置を示す正面図である。It is a front view which shows the drain water detection apparatus of the cooling / heating apparatus which is embodiment of this invention. 本発明の実施形態であるドレン水検知装置を備えた冷熱機器の斜視図である。It is a perspective view of the cooling / heating apparatus provided with the drain water detection apparatus which is embodiment of this invention. 本発明の実施形態である冷熱機器のドレン水検知方法の基本動作を示すフローチャートである。It is a flowchart which shows the basic operation | movement of the drain water detection method of the cooling / heating apparatus which is embodiment of this invention. 本発明の実施形態である冷熱機器のドレン水検知装置の第1例を示す正面図である。It is a front view which shows the 1st example of the drain water detection apparatus of the cooling / heating apparatus which is embodiment of this invention. 本発明の実施形態である冷熱機器のドレン水検知装置の第2例を示す正面図である。It is a front view which shows the 2nd example of the drain water detection apparatus of the cooling / heating apparatus which is embodiment of this invention. 本発明の実施形態である冷熱機器のドレン水検知装置の第3例を示す正面図である。It is a front view which shows the 3rd example of the drain water detection apparatus of the cooling / heating apparatus which is embodiment of this invention. 本発明の実施形態である冷熱機器のドレン水検知装置の第4例を示す正面図である。It is a front view which shows the 4th example of the drain water detection apparatus of the cooling / heating apparatus which is embodiment of this invention. 本発明の冷熱機器のドレン水検知方法の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the drain water detection method of the cold-heating apparatus of this invention. 従来のドレン水検知装置を備えた冷熱機器の斜視図である。It is a perspective view of the cooling / heating apparatus provided with the conventional drain water detection apparatus. 従来の冷熱機器のドレン水検知装置の正面図である。It is a front view of the drain water detection apparatus of the conventional cold energy apparatus. 超音波センサの制御ブロック図である。It is a control block diagram of an ultrasonic sensor. 超音波センサの波形図である。It is a wave form diagram of an ultrasonic sensor. 超音波センサによる測定可能範囲を示すグラフである。It is a graph which shows the measurable range by an ultrasonic sensor. 超音波センサによる送信波形と受信波形の重なる領域での測定結果を示すグラフである。It is a graph which shows the measurement result in the field where the transmission waveform and reception waveform by an ultrasonic sensor overlap. 水位センサの制御ブロック図である。It is a control block diagram of a water level sensor. 水位センサの音波発振部の説明図である。It is explanatory drawing of the sound wave oscillation part of a water level sensor.

符号の説明Explanation of symbols

1 商品収納庫、2 凝縮器、3 機械室、4 ドレン水受け、5 水位センサ、6 送信回路部、7 受信回路部、8 演算処理回路部、9 超音波センサ、10 底部、11 凹部、12 吸音材、13 超音波反射部、14 波形部、15 サーミスタ、16 制御装置、17 水位センサ入力、18 温度検出回路部、19a,19b 温度検出用の素子、20 水位センサ音波発振部、20a 音響通路外装部、20b PZT振動子、20c 共振金属板、21 フロート、22 満水警報ランプ点灯用スイッチ、23 満水警報ランプ、24 コントローラ。   DESCRIPTION OF SYMBOLS 1 Goods storage, 2 Condenser, 3 Machine room, 4 Drain water receptacle, 5 Water level sensor, 6 Transmission circuit part, 7 Reception circuit part, 8 Arithmetic processing circuit part, 9 Ultrasonic sensor, 10 Bottom part, 11 Recessed part, 12 Sound absorbing material, 13 Ultrasonic reflection part, 14 Waveform part, 15 Thermistor, 16 Control device, 17 Water level sensor input, 18 Temperature detection circuit part, 19a, 19b Temperature detection element, 20 Water level sensor sound wave oscillating part, 20a Acoustic path Exterior part, 20b PZT vibrator, 20c resonant metal plate, 21 float, 22 full water alarm lamp lighting switch, 23 full water alarm lamp, 24 controller.

Claims (6)

ドレン水受けとその上方に超音波センサを設け、前記センサから発信され、ドレン受け内のドレン水から反射される超音波を前記センサで検出し、前記センサとドレン水間の距離またはドレン水受け内のドレン水量を測定する冷熱機器において、
前記ドレン水受けが設置される冷熱機器の底部の、超音波センサから発信される超音波の進行位置に、凹部を形成することを特徴とする冷熱機器。
A drain water receiver and an ultrasonic sensor above the drain water receiver, the ultrasonic wave transmitted from the sensor and reflected from the drain water in the drain receiver is detected by the sensor, and the distance between the sensor and the drain water or the drain water receiver In the refrigeration equipment that measures the amount of drain water in
A cooling device, wherein a concave portion is formed at a traveling position of an ultrasonic wave transmitted from an ultrasonic sensor at a bottom portion of the cooling device in which the drain water receiver is installed .
前記ドレン水受けが設置される冷熱機器の底部の凹部は少なくとも10mmの深さとすることを特徴とする請求項1記載の冷熱機器。
The cooling / heating device according to claim 1, wherein the recess of the bottom of the cooling / heating device in which the drain water receiver is installed has a depth of at least 10 mm .
ドレン水受けとその上方に超音波センサを設け、前記センサから発信され、ドレン受け内のドレン水から反射される超音波を前記センサで検出し、前記センサとドレン水間の距離またはドレン水受け内のドレン水量を測定する冷熱機器において、
前記ドレン水受けが設置される冷熱機器の底部の、超音波センサから発信される超音波の進行位置に、超音波センサの受信部に戻さないようにする手段を設けたことを特徴とする冷熱機器。
A drain water receiver and an ultrasonic sensor above the drain water receiver, the ultrasonic wave transmitted from the sensor and reflected from the drain water in the drain receiver is detected by the sensor, and the distance between the sensor and the drain water or the drain water receiver In the refrigeration equipment that measures the amount of drain water in
Cooling heat , characterized in that means for preventing return to the receiving part of the ultrasonic sensor is provided at the position of the ultrasonic wave transmitted from the ultrasonic sensor at the bottom of the cooling / heating device in which the drain water receiver is installed. machine.
前記発信された超音波を超音波センサの受信部に戻さないようにする手段は、吸音材であることを特徴とする請求項記載の冷熱機器。
The cooling / heating device according to claim 3 , wherein the means for preventing the transmitted ultrasonic wave from returning to the receiving unit of the ultrasonic sensor is a sound absorbing material.
前記発信された超音波を超音波センサの受信部に戻さないようにする手段は、超音波の受信方向から外れた方向に向けて斜めに設置した超音波反射部であることを特徴とする請求項記載の冷熱機器。
The means for preventing the transmitted ultrasonic wave from returning to the reception unit of the ultrasonic sensor is an ultrasonic reflection unit installed obliquely in a direction deviating from the reception direction of the ultrasonic wave. Item 4. The cooling / heating device according to item 3 .
前記超音波反射部は複数の波型に形成されることを特徴とする請求項記載の冷熱機器。
The cooling / heating apparatus according to claim 5, wherein the ultrasonic reflection part is formed into a plurality of corrugations.
JP2006165135A 2006-06-14 2006-06-14 Refrigeration equipment Active JP4935201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165135A JP4935201B2 (en) 2006-06-14 2006-06-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165135A JP4935201B2 (en) 2006-06-14 2006-06-14 Refrigeration equipment

Publications (3)

Publication Number Publication Date
JP2007333533A JP2007333533A (en) 2007-12-27
JP2007333533A5 JP2007333533A5 (en) 2009-04-02
JP4935201B2 true JP4935201B2 (en) 2012-05-23

Family

ID=38933146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165135A Active JP4935201B2 (en) 2006-06-14 2006-06-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4935201B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272748B (en) * 2018-06-29 2022-09-13 三菱电机株式会社 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771864A (en) * 1993-08-31 1995-03-17 Sanyo Electric Co Ltd Cooling storage cabinet
JPH10122844A (en) * 1996-10-22 1998-05-15 Ueda Nippon Musen Kk Ultrasonic measuring device and its temperature correction method
JP2001059765A (en) * 1999-08-23 2001-03-06 Fuji Electric Co Ltd Measuring apparatus of amount of water in tank
JP2001272266A (en) * 2000-03-27 2001-10-05 Ricoh Elemex Corp Ultrasonic level gauge

Also Published As

Publication number Publication date
JP2007333533A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US10401071B2 (en) Ice maker with capacitive water level sensing
US9644879B2 (en) Apparatus and method for sensing ice thickness and detecting failure modes of an ice maker
JP4412385B2 (en) Refrigerant leak detection method for refrigeration cycle equipment
JP2020038049A (en) Ultrasonic bin control in ice machine
KR101423332B1 (en) Method for operating ice maker for refrigerator
US20120042667A1 (en) Microprocessor controlled defrost termination
WO2017081872A1 (en) Device for detecting refrigerant leakage in refrigeration cycle
US11193264B2 (en) Toilet overflow prevention system and method
JP2017089983A5 (en)
JP4935201B2 (en) Refrigeration equipment
KR20100054488A (en) Ice maker and controlling method for the same
US20050120727A1 (en) Freezer with defrosting indicator
JP2004286745A (en) Device for measuring filling level of liquid in vessel
JP2008180532A (en) Distance measuring apparatus
JP4755537B2 (en) Drain water detection device for refrigerated showcase
JP2012093172A (en) Detecting device of drain water of showcase
US20050223721A1 (en) Vacuum insulated refrigerator cabinet and method for assessing thermal conductivity thereof
US4348869A (en) Means for detecting the accumulation of frost in a low temperature refrigeration system
JP2008020111A (en) Showcase
JP2008180531A (en) Distance-measuring device
US20220090955A1 (en) System and method for measuring the filling level of a fluid container by means of acoustic waves
JP2007333507A (en) Apparatus equipped with distance sensor
JP2008045833A (en) Showcase
JP2008045832A (en) Showcase
KR101057063B1 (en) Refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250