JP4934361B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP4934361B2
JP4934361B2 JP2006186169A JP2006186169A JP4934361B2 JP 4934361 B2 JP4934361 B2 JP 4934361B2 JP 2006186169 A JP2006186169 A JP 2006186169A JP 2006186169 A JP2006186169 A JP 2006186169A JP 4934361 B2 JP4934361 B2 JP 4934361B2
Authority
JP
Japan
Prior art keywords
hull
ship
width
propeller
shaft center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006186169A
Other languages
Japanese (ja)
Other versions
JP2008013039A (en
Inventor
竹実 松村
昭彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006186169A priority Critical patent/JP4934361B2/en
Publication of JP2008013039A publication Critical patent/JP2008013039A/en
Application granted granted Critical
Publication of JP4934361B2 publication Critical patent/JP4934361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、プロペラ位置における伴流分布を改善した、ツイン・スケグ・タイプのプロペラ推進の船舶に関する。   The present invention relates to a propeller propulsion ship of twin skeg type with improved wake distribution at a propeller position.

大型船舶などの2軸船においては、そのプロペラ軸を支持する方法が幾つかあるが、図12に示すような、プロペラ軸を船体の一部で包むようにしたツイン・スケグ・タイプ(ツイン・ゴンドラ・タイプ)の2軸プロペラ推進の船舶1Xが使用されることがある(例えば、特許文献1参照。)。   There are several methods for supporting the propeller shaft in a biaxial ship such as a large ship, but a twin skeg type (twin gondola) in which the propeller shaft is wrapped by a part of the hull as shown in FIG. A type 1) 2-axis propeller propulsion ship 1X may be used (see, for example, Patent Document 1).

この船舶1Xにおいては、スケグ10の内側のトンネル部(トンネル状船底凹部)2を流れる流速が、トンネル部2の外側を流れる流速よりも速くなる傾向があり、そのため、プロペラディスク面内に流れ込む流れにおいて外側と内側の流速の差が大きくなって伴流分布が不均一になるという問題がある。その結果、プロペラを作動させたときに、プロペラの翼が異なる流速部分を繰り返し通過することになるため、プロペラ軸に振動が発生し、このプロペラ軸を支持する船体にも振動が伝播して、船体振動が誘発される場合がある。また、プロペラキャビテーションも発生し易くなるという問題もある。   In this ship 1X, the flow velocity that flows through the tunnel portion (tunnel-shaped bottom bottom recess) 2 inside the skeg 10 tends to be faster than the flow velocity that flows outside the tunnel portion 2, and therefore flows into the propeller disk surface. However, there is a problem that the wake distribution becomes non-uniform because the difference between the flow velocity on the outside and the inside becomes large. As a result, when the propeller is actuated, the propeller blades repeatedly pass through different flow velocity portions, so vibration is generated in the propeller shaft, and vibration is also propagated to the hull that supports the propeller shaft, Hull vibration may be induced. There is also a problem that propeller cavitation is likely to occur.

なお、このプロペラ面における流れの均一化を図ったものとして、プロペラ軸の保護スリーブをその上方に位置する船尾部船体表面にフィレットで支持させるようにしたフィレット方式の2軸船ではあるが、プロペラ軸保護スリーブの下側部にプロペラ軸の突出位置よりも船首側まで延びるようにフィンを取り付けて、このフィンの前端部側を船体表面部の流線に沿う向きに張出す一方、後端部側を下向きに張り出した構造にして、船底からの流れをこのフィンで誘導して、プロペラ面に均一に流れ込ますようにした、多軸船の推進性能向上装置が提案されている(例えば、特許文献2参照。)。
特開平08−133172号公報 特開平10−167183号公報
It is to be noted that the flow on the propeller surface is made uniform, and the propeller shaft protective sleeve is a fillet type biaxial ship in which the propeller shaft protective sleeve is supported by a fillet on the stern hull surface located above the propeller shaft. A fin is attached to the lower part of the shaft protection sleeve so as to extend to the bow side from the protruding position of the propeller shaft, and the front end side of this fin is extended in the direction along the streamline of the hull surface part, while the rear end part A propulsion performance improvement device for a multi-axis ship has been proposed that has a structure with the side projecting downward, and the flow from the bottom of the ship is guided by this fin so that it flows uniformly into the propeller surface (for example, (See Patent Document 2).
Japanese Patent Laid-Open No. 08-133172 JP-A-10-167183

本発明は、ツイン・スケグ・タイプのプロペラ推進の船舶において、プロペラ・ディスク面内の流れをより均一化でき、プロペラ作動に伴う船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる船舶を提供することにある。   The present invention is capable of making the flow in the propeller disk surface more uniform in a twin-skeg type propeller-propelled ship, reducing the occurrence of hull vibrations associated with the operation of the propeller, and reducing the occurrence of propeller cavitation. It is to provide a ship that can.

上記の目的を達成するための本発明の船舶は、満載喫水における方形係数が0.65以上0.90以下のツイン・スケグ・タイプのプロペラ推進の船舶であって、船尾垂線よりラン長さの25%以上30%以下前方の範囲内の少なくとも1つの断面船体形状において、シャフトセンタより外側の船体幅が、シャフトセンタ高さの30%以上90%以下の高さ分だけ基線より上の水線位置で局所的な最大値を持つと共に、該局所的な最大値を持つ水線位置で、シャフトセンタを含む鉛直線により分けられる内外の船体幅に関して、内側の船体幅と外側の船体幅の合計が満載喫水における船体幅の10%以上25%以下で内側の船体幅よりも外側の船体幅が大きく構成すると共に、船尾垂線より垂線間長の5%前方の断面船体形状において、シャフトセンタより外側及び内側の船体幅が、シャフトセンタ高さの40%以上100%以下の高さ分だけ基線より上の水線位置で局所的な最大値をそれぞれ持つと共に、内側の船体幅よりも外側の船体幅が大きく構成することを特徴として構成される。 In order to achieve the above object, the ship of the present invention is a twin-skeg type propeller-propelled ship having a square coefficient of 0.65 or more and 0.90 or less in full draft, and has a run length longer than that of the stern vertical line. In at least one cross-section hull shape in the range of 25% to 30% forward, the width of the hull outside the shaft center is higher than the baseline by 30% to 90% of the shaft center height. In addition to the local maximum value at the position and the waterline position having the local maximum value, the inner hull width and the outer hull width are summed with respect to the inner and outer hull widths separated by the vertical line including the shaft center. along with the outer hull width than the inner hull width 10% to 25% or less of the hull width is configured largely in but full draft, in a 5% front sectional hull of a perpendicular line between the length from the stern vertical, Sha The width of the hull outside and inside the toe center has a local maximum at the position of the waterline above the baseline by the height of 40% or more and 100% or less of the shaft center height, and is larger than the inner hull width. The outer hull width is configured to be large .

この構成により、従来のツイン・スケグ・タイプの船舶におけるスケグの外側において、船底から船体に沿って上昇してくる流れを、淀みが発生し易いプロペラの上部側に巻き込むことができ、このプロペラの外側の上部部分の流速を増加して、伴流分布を均一化して改善することができる。この伴流分布の改善により、プロペラ作動時の船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   With this configuration, the flow rising along the hull from the bottom of the ship on the outside of the skeg in a conventional twin-skeg type ship can be entangled on the upper side of the propeller that is prone to stagnation. The flow rate in the outer upper part can be increased and the wake distribution can be made uniform and improved. By improving the wake distribution, it is possible to reduce the occurrence of hull vibration during propeller operation and the occurrence of propeller cavitation.

また、この構成により、プロペラディスクの直前の断面位置形状を、スケグの外側において、船底からの流れをプロペラの上部側に流れ込ませることができる形状にすることができるので、このプロペラ上部における流速をより増加することができ、伴流分布をより改善することができる。 In addition, with this configuration, the cross-sectional position shape immediately before the propeller disk can be made a shape that allows the flow from the ship bottom to flow into the upper side of the propeller outside the skeg. The wake distribution can be further improved.

この構成によれば、2軸の間のトンネル部における流速を、流速抑制部材で減少させることができるので、スケグの外側の部分の比較的遅い流速にスケグの内側の部分の流速を近づけることができ、伴流分布を改善することができる。なお、この流速抑制部材は側面視で楔形状に形成された部材で構成することができ、別部材として船尾端に取り付けても良く、船体形状の一部として船尾端に一体的に形成してもよい。   According to this configuration, since the flow velocity in the tunnel portion between the two axes can be reduced by the flow velocity suppressing member, the flow velocity in the inner portion of the skeg can be made closer to the relatively slower flow velocity in the outer portion of the skeg. And the wake distribution can be improved. The flow rate restraining member can be constituted by a member formed in a wedge shape in a side view, and may be attached to the stern end as a separate member or integrally formed at the stern end as a part of the hull shape. Also good.

更に、上記の目的を達成するための本発明の船舶は、上記のスケグの形状と上記の流速抑制部材との両方を備えた船舶として構成される。この併用した構成によれば、両方の相乗効果が生じ、著しく伴流分布を改善できる。   Furthermore, the ship of the present invention for achieving the above object is configured as a ship having both the shape of the skeg and the flow velocity suppressing member. According to this combined configuration, both synergistic effects occur, and the wake distribution can be remarkably improved.

従って、上記の船舶によれば、伴流分布の不均一性を改善できるので、プロペラ作動時の船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   Therefore, according to the above-described ship, the non-uniformity of the wake distribution can be improved, so that it is possible to reduce the occurrence of hull vibration during propeller operation and the occurrence of propeller cavitation.

次に、上記の構成における数値的な意味について説明する。上記の構成で、満載喫水における方形係数(Cb)の下限を0.65以上とするのは、方形係数が0.65未満の比較的痩せている船舶では、伴流分布の不均一性は大きな問題とならず、方形係数が0.65以上の比較的肥っている船舶で伴流分布の不均一性が問題となる上に、本発明の効果が大きいためである。この方形係数は、船体の水線下の容積のやせている度合を示す係数であり、船の排水容積と水線下の長さ・幅・平均喫水で表される直方体容積との比である。この方形係数は喫水によって多少変化するので、ここでは、満載喫水における方形係数とする。なお、方形係数の上限に関しては、理論的には1.0であるが、方形係数が1.0の船型は箱型となるので、自航する場合は殆ど使用されない。そのため、ここでは上限値を実用的な範囲の0.90とした。   Next, the numerical meaning in the above configuration will be described. In the above configuration, the lower limit of the square coefficient (Cb) in the full draft is 0.65 or more because the wake distribution is highly uneven in a relatively thin ship having a square coefficient of less than 0.65. This is because there is no problem, the non-uniformity of the wake distribution becomes a problem in a relatively fertile ship having a square factor of 0.65 or more, and the effect of the present invention is great. This square coefficient is a coefficient indicating the degree of thinness of the volume under the waterline of the hull, and is the ratio of the drainage volume of the ship and the rectangular parallelepiped volume expressed by the length, width, and average draft under the waterline. . Since this square coefficient slightly changes depending on the draft, the square coefficient in the full draft is used here. The upper limit of the square coefficient is theoretically 1.0, but the hull form with a square coefficient of 1.0 is a box type and is hardly used for self-navigation. Therefore, here, the upper limit value is set to 0.90, which is a practical range.

また、ツイン・スケグ・タイプのプロペラ推進の船舶とするのは、ツイン・スケグ・タイプの場合には、2軸の間にトンネル部を有する構造となるため、2軸間のトンネル部の流れと外側の流れとがスケグにより分離されて、プロペラディスク面に流れ込むために、プロペラディスク面内における伴流分布の不均一性が大きくなるので、本発明の効果が大きいからである。一方、シャフトブラケットでプロペラ軸を支持する構造では、2軸間の流れと外側の流れとが分離されずにプロペラディスク面に流れ込むため、プロペラディスク面内における伴流分布の不均一性はそれほど大きくならない。   In addition, the twin-skeg type propeller propulsion ship has a structure having a tunnel part between two axes in the case of a twin-skeg type. This is because the outer flow is separated by the skeg and flows into the propeller disk surface, so that the non-uniformity of the wake distribution in the propeller disk surface increases, and the effect of the present invention is great. On the other hand, in the structure in which the propeller shaft is supported by the shaft bracket, the flow between the two shafts and the outer flow flow into the propeller disk surface without being separated, so the wake distribution in the propeller disk surface is very uneven. Don't be.

また、断面船体形状の位置に関しては、船底からの流れが、船尾垂線よりラン長さ(船尾側の平行部の終端位置から船尾垂線までの長さ)の25%以上30%以下前方の範囲内で、船底から上部側に流れ込み始めるので、この範囲内の断面位置(第1の断面位置)の船体形状が重要となる。25%未満であると、既に船底からの流れに淀みが生じていたり、船底からの渦の巻き込みを利用したプロペラ上部側の加速効果が薄れ、30%を越えていると船底からの流れが少ないため、この形状にする効果が少なくなる。そのため、この第1の断面船体形状を規定する位置をこの範囲内とする。   Regarding the position of the cross-section hull shape, the flow from the bottom of the ship is within the range of 25% or more and 30% or less of the run length (the length from the ending position of the parallel part on the stern side to the stern vertical) from the stern vertical line. Therefore, since it starts to flow into the upper side from the ship bottom, the hull shape of the cross-sectional position (first cross-sectional position) within this range becomes important. If it is less than 25%, stagnation has already occurred in the flow from the bottom of the ship, or the acceleration effect on the upper side of the propeller using the swirl of the vortex from the ship bottom will fade, and if it exceeds 30%, the flow from the bottom will be small Therefore, the effect of this shape is reduced. Therefore, the position that defines the first cross-sectional hull shape is within this range.

この第1の断面位置において、その断面船体形状が、シャフトセンタより外側の船体幅が、基線よりシャフトセンタ高さの30%以上90%以下、上の水線位置(第1の水線位置)で、局所的な最大値を持つことにより、外側の断面船体形状は、上部側が開かない形状となり、下側から上側に行くに連れて膨らみ、局所的な最大値部分で大きく膨らんだ後、そのままか再度小さくなる形状、即ち、鉛直な形状(ここでは、首部を持つ形状という)になるか、外側上部が窪んで上部に括れ部を持つ形状かになる。そのため、船体から流れ込んで来る水流をプロペラ上部に導くことができる。シャフトセンタ高さの30%未満であると、下脹れすぎてプロペラディスク面内における伴流分布の不均一性が増し、また、90%を越えると上部方向に拡大するV字形状に近づき、流れを上部に導く効果が薄れる。   At this first cross-sectional position, the cross-sectional hull shape is such that the hull width outside the shaft center is 30% or more and 90% or less of the shaft center height above the base line, and the upper water line position (first water line position). By having a local maximum value, the outer cross-sectional hull shape becomes a shape where the upper side does not open, swells as it goes from the lower side to the upper side, and after it swells greatly at the local maximum value part, it remains as it is It becomes a shape that becomes smaller again, that is, a vertical shape (here, referred to as a shape having a neck), or a shape in which the outer upper part is recessed and the upper part has a constricted part. Therefore, the water flow flowing from the hull can be guided to the upper part of the propeller. If it is less than 30% of the shaft center height, it will expand too much, increasing the non-uniformity of the wake distribution in the propeller disk surface, and if it exceeds 90%, it will approach a V-shaped shape that expands upward, The effect of guiding the flow upward is diminished.

また、この外側の船体幅が局所的な最大値を持つ水線位置(第1の水線位置)でシャフトセンタラインを含む鉛直線により分けられる内外の船体幅に関して、内側の船体幅よりも外側の船体幅が大きく構成することで、淀みが発生し易い部分に船底からの流れをプロペラの上流側に流れ込ませることができるので、淀みの発生を抑制することができる。   In addition, the inner and outer hull widths separated by the vertical line including the shaft center line at the water line position (first water line position) where the outer hull width has a local maximum value are outside the inner hull width. Since the hull width is configured to be large, the flow from the bottom of the ship can be caused to flow into the upstream side of the propeller in a portion where stagnation is likely to occur, so that the occurrence of stagnation can be suppressed.

更に、この第1の水線位置で、内側の船体幅と外側の船体幅の合計が、満載喫水における船体幅の10%以上25%以下であるように構成することにより、淀み発生抑制効果と抵抗増加のバランスを巧く取ることができる。10%未満であると淀み発生抑制効果が少なく、また、25%を越えると抵抗増加が大きくなり過ぎる。従って、10%以上25%以下が良い。   Further, by configuring the inner hull width and the outer hull width to be 10% or more and 25% or less of the hull width in the full draft at this first waterline position, You can balance the resistance increase skillfully. If it is less than 10%, the effect of suppressing the occurrence of stagnation is small, and if it exceeds 25%, the increase in resistance becomes too large. Therefore, 10% to 25% is preferable.

また、第2の断面船体形状を規定する第2の断面位置として、プロペラディスク面の直前となる、船尾垂線より垂線間長の5%前方の位置を選んでいる。この第2の断面位置において、シャフトセンタより外側の船体幅が、基線よりシャフトセンタ高さの40%以上100%以下、上の水線位置(第2の水線位置)で局所的な最大値を持つことに加えて、この第2の水線位置での内側の船体幅と外側の船体幅の合計に対して、基線よりもシャフトセンタ高さの170%上の水線位置(第3の水線位置)での内側の船体幅と外側の船体幅の合計が、0.0倍以上0.4倍以下となる上部括れ部を持つように構成すると、外側の断面船体形状は、下側から上側に行くに連れて膨らみ、局所的な最大値部分で大きく膨らんだ後、再度小さくなる形状、即ち、外側上部が窪んで上部くびれ部となる。そのため、船底から流れ込んで来る水流を船体に沿ってプロペラ上部に効率的に導くことができる。第2の水線位置が、シャフトセンタ高さの40%未満であると、下脹れ過ぎてプロペラディスク面内における伴流分布の不均一性が増し、また、100%を越えると上部方向に拡大するV字形状に近づき、流れをプロペラ上部に導く効果が薄れる。また、船体幅の比が0.4倍を越えると括れ部の括れ具合が少なく導入効果が薄れる。なお、プロペラ上部前方の船尾端が、船尾垂線より5%Lpp(垂線間長)以上前にある場合には、この比が0.0となるので、0.0倍を下限としている。つまり、船尾垂線より垂線間長の5%前方の位置よりも更に前方にプロペラ上部前の船尾端がある場合も含んでいる。   In addition, as the second cross-sectional position that defines the second cross-sectional hull shape, a position 5% ahead of the stern perpendicular to the stern perpendicular is selected immediately before the propeller disk surface. In this second cross-sectional position, the hull width outside the shaft center is 40% or more and 100% or less of the shaft center height from the base line, and the local maximum value at the upper water line position (second water line position). In addition, the water line position (the third water line position 170% above the shaft center height with respect to the sum of the inner hull width and the outer hull width at the second water line position is If it is configured to have an upper constricted part that the total of the inner hull width and the outer hull width at the waterline position is 0.0 times or more and 0.4 times or less, the outer cross-sectional hull shape is the lower side Bulges from the upper side to the upper side, bulges greatly at the local maximum value portion, and then becomes smaller again, that is, the outer upper portion is recessed to form an upper constricted portion. Therefore, the water flow flowing from the bottom of the ship can be efficiently guided to the upper part of the propeller along the hull. If the position of the second water line is less than 40% of the shaft center height, it will be overexpanded to increase the non-uniformity of the wake distribution in the propeller disk surface. The effect of guiding the flow to the upper part of the propeller is reduced by approaching the expanding V shape. Further, when the ratio of the hull width exceeds 0.4 times, the tightness of the narrowed portion is small and the introduction effect is reduced. When the stern end in front of the upper part of the propeller is 5% Lpp (length between the vertical lines) or more before the stern vertical, this ratio is 0.0, so 0.0 is the lower limit. That is, the case where the stern end in front of the upper portion of the propeller is further forward than the position 5% ahead of the length between the stern perpendiculars.

本発明の船舶によれば、ツイン・スケグ・タイプのプロペラ推進の船舶において、プロペラ・ディスク面内の流れをより均一化でき、プロペラ作動に伴う船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   According to the ship of the present invention, in the twin-skeg type propeller-propelled ship, the flow in the propeller disk surface can be made more uniform, the generation of hull vibrations accompanying propeller operation, and the occurrence of propeller cavitation Can be reduced.

以下、図面を参照して本発明に係る船舶の実施の形態について説明する。本発明の対象となる船舶は、伴流分布が不均一になり易い、満載喫水(Load Water Line)LWLにおける方形係数(Cb)が0.65以上0.90以下のシャフトブラケットを有しない、2軸のプロペラ推進の船舶、所謂、ツイン・スケグ・タイプの船舶である。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings. The ship which is the object of the present invention does not have a shaft bracket having a square coefficient (Cb) of 0.65 or more and 0.90 or less in a full load draft (Load Water Line) LWL, in which the wake distribution tends to be uneven. A shaft propeller propulsion vessel, a so-called twin-skeg type vessel.

図1に示すように、第1の実施の形態の船舶1Aは、スケグ10の形状が、下脹れで、基線BLより上で膨らみ部11を持ち、その上部が広がらない形状の部分(以下首部と言うことにする)を有して形成されるか、好ましくは、上部が括れた形状部分(以下括れ部と言うことにする)を有して形成される。この首部又は括れ部12によって船底からの流れを図1の矢印Fで示すように、図2及び図3に示すプロペラ3の外側上部部分に導き、この外側上部部分の流速を速めることにより、プロペラディスク面Xp内における伴流分布の均一化を図る。   As shown in FIG. 1, a ship 1A according to the first embodiment has a shape of a skeg 10 that is inflated, has a bulging portion 11 above the base line BL, and has an upper portion that does not spread (hereinafter referred to as “the skeg”). The neck portion is referred to as a neck portion, or preferably, the upper portion is formed into a constricted shape portion (hereinafter referred to as a constricted portion). As shown by the arrow F in FIG. 1, the flow from the bottom of the ship is guided to the outer upper portion of the propeller 3 shown in FIGS. 2 and 3 by this neck or constricted portion 12, and the propeller is increased by increasing the flow velocity of the outer upper portion. The wake distribution in the disk surface Xp is made uniform.

このスケグ10の下膨れ形状は、図2及び図3に示す、船尾垂線APよりラン長さLrの25%以上30%以下前方の範囲内の少なくとも1つの断面船体形状(第1の断面船体形状)X1は、次のような特徴を持つ形状に形成される。なお、図2のLppは船尾垂線APと船首垂線FPの距離である垂線間長を示し、Lrは平行部Lpの終わる位置Peから船尾垂線APまでの距離であるラン長さを示し、Leは平行部Lpが始まる位置Psから船首垂線FPまでの距離であるエントランス長さを示す。   The bottom bulge shape of the skeg 10 is at least one cross-section hull shape (first cross-section hull shape) within a range of 25% or more and 30% or less of the run length Lr from the stern vertical line AP shown in FIGS. X1 is formed in a shape having the following characteristics. Note that Lpp in FIG. 2 indicates the length between the perpendiculars that is the distance between the stern perpendicular AP and the bow perpendicular FP, Lr indicates the run length that is the distance from the position Pe where the parallel portion Lp ends to the stern perpendicular AP, and Le is The entrance length which is the distance from the position Ps where the parallel part Lp starts to the bow perpendicular line FP is shown.

第1の特徴は、図4に示すように、第1の断面船体形状X1において、シャフトセンタSCより外側の船体幅B1oが、シャフトセンタ高さdscの30%以上90%以下の高さ分だけ、基線BLより上の第1の水線位置d1mで局所的な最大値B1omを持つように形成される。つまり、d1m=0.3×dsc〜0.9×dscとなる。この構成により、船底から船体に沿って上昇してくる流れに対して、局所的な最大値B1omを持たせて膨らみ部11を設けて、即ち、船体を張り出して渦流れを生成し、この膨らみ部11の上部の括れ部(あるいは首部)12で船底からの渦流れをプロペラ3の上部側に導くことができる。   As shown in FIG. 4, the first feature is that, in the first cross-sectional hull shape X1, the hull width B1o outside the shaft center SC is equal to or more than 30% to 90% of the shaft center height dsc. , The first horizontal line position d1m above the base line BL is formed to have a local maximum value B1om. That is, d1m = 0.3 × dsc to 0.9 × dsc. With this configuration, the bulging portion 11 is provided with a local maximum value B1 om with respect to the flow rising along the hull from the bottom of the ship, that is, the bulge is generated by projecting the hull, and this bulge is generated. The vortex flow from the ship bottom can be guided to the upper side of the propeller 3 by the constricted portion (or neck portion) 12 at the upper portion of the portion 11.

また、第2の特徴は、図4に示すように、シャフトセンタSCを含む鉛直線SCLにより分けられる内外の船体幅B1o,B1iに関して、外側の船体幅B1oが局所的な最大値B1omを持つ第1の水線位置d1mでは、内側の船体幅B1imと外側の船体幅B1omの合計B1m(=B1im+B1om)が、満載喫水線LWLにおける船体幅Bの10%以上25%以下に形成されると共に、内側の船体幅B1imよりも外側の船体幅B1omが大きく形成される。つまり、B1m=0.10×B〜0.25×Bで、かつ、B1om>B1imとされる。これにより、スケグ10による抵抗増加を抑制しつつ、スケグ10の周囲の流れをプロペラ3の上部部分に効率よく導くことができるようになる。   Further, as shown in FIG. 4, the second feature is that the outer hull width B1o has a local maximum value B1om with respect to the inner and outer hull widths B1o and B1i divided by the vertical line SCL including the shaft center SC. At the waterline position d1m of 1, the total B1m (= B1im + B1om) of the inner hull width B1im and the outer hull width B1om is formed to be 10% or more and 25% or less of the hull width B in the full load waterline LWL, The outer hull width B1om is formed larger than the hull width B1im. That is, B1m = 0.10 × B to 0.25 × B and B1om> B1im. Thereby, the flow around the skeg 10 can be efficiently guided to the upper portion of the propeller 3 while suppressing an increase in resistance due to the skeg 10.

更に、好ましくは、このスケグ10の下膨れ形状は、図3に示す、船尾垂線APより垂線間長Lppの5%前方の断面船体形状(第2の断面船体形状)X2は、図5に示すように、シャフトセンタSCより外側の船体幅B2oが、シャフトセンタ高さdscの40%以上100%以下の高さ分だけ基線BLより上の第2の水線位置d2mで局所的な最大値B2omを持つように形成される。つまり、d2m=0.4×dsc〜1.0×dscとなる。この構成により、船底から船体に沿って上昇してくる流れに対して、淀みが発生し易い部分に局所的な最大値B2omを持たせて膨らみ部11を設けて、即ち、船体を張り出して、船底からの流れをプロペラ上部側に導くことができる。   Further, preferably, the swelled shape of the skeg 10 is a cross-sectional hull shape (second cross-sectional hull shape) X2 that is 5% ahead of the length Lpp between the stern vertical AP as shown in FIG. Further, the hull width B2o outside the shaft center SC has a local maximum value B2om at the second waterline position d2m above the base line BL by a height of 40% to 100% of the shaft center height dsc. Formed to have. That is, d2m = 0.4 × dsc to 1.0 × dsc. With this configuration, with respect to the flow rising along the hull from the bottom of the ship, the bulging portion 11 is provided with a local maximum value B2om in a portion where stagnation is likely to occur, that is, the hull is extended, The flow from the bottom of the ship can be guided to the upper side of the propeller.

それと共に、この第2の断面船体形状X2は、第2の水線位置d2mでの内側の船体幅B2imと外側の船体幅B2omの合計B2m(=B2im+B2om)に対して、基線BLよりもシャフトセンタ高さdscの170%上の第3の水線位置d2n(=1.7×dsc)での内側の船体幅B2inと外側の船体幅B2onの合計B2n(=B2in+B2on)が、0.0倍以上0.4倍以下となるように形成される。つまり、B2n=0.0×B2m〜0.4×B2mとされる。この構成により、膨らみ部11の上部の括れ部12により船底からの流れをより効率よくプロペラ3の上部側に導くことができる。   At the same time, the second cross-section hull shape X2 has a shaft center more than the base line BL with respect to the total B2m (= B2im + B2om) of the inner hull width B2im and the outer hull width B2om at the second waterline position d2m. The total B2n (= B2in + B2on) of the inner hull width B2in and the outer hull width B2on at the third waterline position d2n (= 1.7 × dsc) 170% above the height dsc is 0.0 times or more. It is formed to be 0.4 times or less. That is, B2n = 0.0 × B2m to 0.4 × B2m. With this configuration, the flow from the ship bottom can be more efficiently guided to the upper side of the propeller 3 by the constricted portion 12 at the upper portion of the bulging portion 11.

上記の構成の船舶1Aによれば、船底からの流れをプロペラ3の上部側に導いて、プロペラ3の外側の上部部分の流速を増加することができるので、伴流分布を均一化でき、プロペラ作動時の船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   According to the ship 1A having the above configuration, the flow from the bottom of the ship can be guided to the upper side of the propeller 3 to increase the flow velocity of the upper portion outside the propeller 3, so that the wake distribution can be made uniform and the propeller can be made uniform. It is possible to reduce the occurrence of hull vibration during operation and the occurrence of propeller cavitation.

次に、第2の実施の形態について説明する。図6〜図8に示すように、この第2の実施の形態の船舶1Bは、2軸間のトンネル部2の後方の船体の後端部に、流速抑制部材20を取り付けて構成する。   Next, a second embodiment will be described. As shown in FIGS. 6-8, the ship 1B of this 2nd Embodiment attaches the flow-rate suppression member 20 to the rear-end part of the hull of the back of the tunnel part 2 between 2 axes, and is comprised.

この流速抑制部材20は、その流体抵抗によりトンネル部2内の流れを邪魔して、プロペラディスク面Xp内におけるシャフトセンタSCより内側の流速を減速させる部材であればよいが、この流速抑制部材20は抵抗増加の少ない方が良く、好ましくは、図7に示すような側面視で楔形状をした部材で形成し、船長方向の長さL1を垂線間長Lppの0.01倍以上0.03倍以下とし、船底との間の角度αを3度以上15度以下とする。つまり、L1=0.01×Lpp〜0.03×Lppで、かつ、α=3°〜15°とする。この範囲の大きさにすると流速低減効果と抵抗増加のバランスが取れる。また、船舶1Bの幅方向には、図8に示すようにトンネル部2の全幅に設けても良く、抵抗増加を少なくすることを考慮して、中央部分を省いて、2つに分離して設けてもよい。   The flow rate suppressing member 20 may be a member that obstructs the flow in the tunnel portion 2 due to its fluid resistance and decelerates the flow rate inside the shaft center SC in the propeller disk surface Xp. Is preferably formed of a wedge-shaped member in a side view as shown in FIG. 7, and the length L1 in the ship length direction is 0.01 times 0.03 or more of the inter-perpendicular length Lpp. The angle α to the bottom of the ship is 3 degrees or more and 15 degrees or less. That is, L1 = 0.01 × Lpp to 0.03 × Lpp and α = 3 ° to 15 °. If the size is within this range, the effect of reducing the flow velocity and increasing the resistance can be balanced. Further, in the width direction of the ship 1B, it may be provided in the entire width of the tunnel portion 2 as shown in FIG. 8, and in consideration of reducing resistance increase, the central portion is omitted and separated into two. It may be provided.

上記の構成の船舶1Bによれば、2軸の間のトンネル部2における流速を流速抑制部材20で減少させることができるので、スケグ10の外側の部分の比較的遅い流速にスケグ10の内側の部分の流速を近づけることができ、伴流分布を改善することができる。そして、この伴流分布の改善により、プロペラ作動時の船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   According to the ship 1B having the above-described configuration, the flow velocity in the tunnel portion 2 between the two axes can be reduced by the flow velocity suppressing member 20, so The flow velocity of the portion can be made closer, and the wake distribution can be improved. By improving the wake distribution, it is possible to reduce the occurrence of hull vibration during propeller operation and the occurrence of propeller cavitation.

次に、第3の実施の形態について説明する。図9〜図11に示すように、この第3の実施の形態の船舶1Cは、第1の実施の形態の船舶1Aの構成に加えて、更に、2軸間のトンネル部2の後方の船体の後端部に流速抑制部材20を取り付けて構成する。   Next, a third embodiment will be described. As shown in FIGS. 9 to 11, the ship 1C according to the third embodiment has a hull behind the tunnel portion 2 between two axes in addition to the configuration of the ship 1A according to the first embodiment. A flow rate suppressing member 20 is attached to the rear end portion of the rear end portion.

この流速抑制部材20は、第2の実施の形態と同様に、好ましくは、図7に示すような側面視で楔形状をした形状に形成し、船長方向の長さL1を垂線間長Lppの0.01倍以上0.03倍以下とし、船底との間の角度αを3度以上15度以下とする。つまり、L1=0.01×Lpp〜0.03×Lppで、かつ、α=3°〜15°とする。また、船舶1Cの幅方向には、図9に示すようにトンネル部2の全幅に設けても良く、抵抗増加を少なくすることを考慮して、中央部分を省いて、2つに分離して設けてもよい。   As in the second embodiment, the flow velocity suppressing member 20 is preferably formed in a wedge-like shape in a side view as shown in FIG. 7, and the length L1 in the ship length direction is equal to the length Lpp between perpendiculars. 0.01 times or more and 0.03 times or less, and the angle α to the ship bottom is 3 degrees or more and 15 degrees or less. That is, L1 = 0.01 × Lpp to 0.03 × Lpp and α = 3 ° to 15 °. Further, in the width direction of the ship 1C, it may be provided in the entire width of the tunnel portion 2 as shown in FIG. 9, and in consideration of reducing the resistance increase, the central portion is omitted and separated into two. It may be provided.

上記の構成の船舶1Cによれば、第1の実施の形態の船舶1Aにおけるスケグ10の形状による伴流分布の改善効果に加えて、第2の実施の形態の船舶1Bにおける流速抑制部材20による伴流分布の改善効果を奏することができ、この相乗効果により、伴流分布を著しく改善できる。   According to the ship 1C having the above-described configuration, in addition to the effect of improving the wake distribution due to the shape of the skeg 10 in the ship 1A of the first embodiment, the flow rate suppressing member 20 in the ship 1B of the second embodiment. The effect of improving the wake distribution can be obtained, and the wake distribution can be remarkably improved by this synergistic effect.

そして、上記の構成の船舶1A,1B,1Cによれば、2軸のツイン・スケグ・タイプのプロペラ推進の船舶において、プロペラ・ディスク面内の流れをより均一化でき、プロペラ作動に伴う船体振動の発生の低減、及び、プロペラキャビテーションの発生の低減を図ることができる。   According to the ships 1A, 1B, and 1C having the above-described configuration, in the twin-shaft type propeller-propelled ship, the flow in the propeller disk surface can be made more uniform, and the hull vibration accompanying the propeller operation. It is possible to reduce the generation of propeller and cavitation of propeller cavitation.

第1の実施の形態の船舶の船体後部を示す正面形状図である。It is a front shape figure showing the hull rear part of the ship of a 1st embodiment. 第1の実施の形態の船舶の断面位置を示す図である。It is a figure which shows the cross-sectional position of the ship of 1st Embodiment. 図2の船体後部の部分拡大図である。FIG. 3 is a partially enlarged view of the rear part of the hull of FIG. 2. 図1の船舶の第1位置の断面船体形状を示す片舷の正面形状図である。FIG. 3 is a front view of a single gutter showing a cross-sectional hull shape at a first position of the ship of FIG. 1. 図1の船舶の第2位置の断面船体形状を示す片舷の正面形状図である。FIG. 3 is a front view of a single gutter showing a cross-sectional hull shape at a second position of the ship of FIG. 1. 第2の実施の形態の船舶の船体後部を示す部分側面形状図である。It is a partial side surface figure which shows the hull rear part of the ship of 2nd Embodiment. 図6の流速抑制部材を示す部分拡大図である。It is the elements on larger scale which show the flow-rate suppression member of FIG. 第2の実施の形態の船舶の船体後部を示す正面形状図である。It is a front shape figure which shows the hull rear part of the ship of 2nd Embodiment. 第3の実施の形態の船舶の船体後部を示す正面形状図である。It is a front shape figure which shows the hull rear part of the ship of 3rd Embodiment. 図9の船舶の第1位置の断面船体形状を示す片舷の正面形状図である。FIG. 10 is a frontal view of a single shaft showing a cross-sectional hull shape at a first position of the ship of FIG. 9. 図9の船舶の第2位置の断面船体形状を示す片舷の正面形状図である。FIG. 10 is a frontal view of a single gutter showing a cross-sectional hull shape at a second position of the ship of FIG. 9. 従来技術におけるツイン・スケグ・タイプの船舶の船体後部を示す正面形状図である。It is a front shape figure which shows the hull rear part of the twin skeg type ship in a prior art.

符号の説明Explanation of symbols

1A,1B,1C,1X 船舶
2 トンネル部
3 プロペラ
10 スケグ
11 膨らみ部
12 括れ部
20 流速抑制部材
AP 船尾垂線
B 満載喫水における船体幅
BL 基線(ベースライン)
B1i,B2i シャフトセンタの内側の船体幅
B1m,B2m 片舷の船体幅
B1o,B2o シャフトセンタの外側の船体幅
B1om,B2om 局所的な最大値
CL センタライン
d1m 第1の水線位置
d2m 第2の水線位置
d2n 第3の水線位置
dsc シャフトセンタ高さ
FP 船首垂線
L1 流速抑制部材の船長方向の長さ
Lpp 垂線間長
Lr ラン長さ
LWL 満載喫水線
SC シャフトセンタ
SCL シャフトセンタを含む鉛直線
X1 第1の断面船体形状
X2 第2の断面船体形状
Xa 船尾端の断面船体形状
Xp プロペラディスク面
α 流速抑制部材の船底との間の角度
1A, 1B, 1C, 1X Ship 2 Tunnel part 3 Propeller 10 Skeg 11 Swelling part 12 Constriction part 20 Flow rate control member AP Stern vertical line B Hull width at full draft BL Base line (baseline)
B1i, B2i Hull width inside shaft center B1m, B2m Hull width on one side B1o, B2o Hull width outside shaft center B1om, B2om Local maximum value CL Center line d1m First waterline position d2m Second Water line position d2n Third water line position dsc Shaft center height FP Bow vertical line L1 Length in the ship length direction of the flow velocity suppressing member Lpp Length between perpendicular lines Lr Run length LWL Full load water line SC Shaft center SCL Vertical line including shaft center X1 First cross-section hull shape X2 Second cross-section hull shape Xa Cross-section hull shape at stern end Xp Propeller disc surface α Angle between flow velocity restraint member and bottom of ship

Claims (3)

満載喫水における方形係数が0.65以上0.90以下のツイン・スケグ・タイプのプロペラ推進の船舶であって、
船尾垂線よりラン長さの25%以上30%以下前方の範囲内の少なくとも1つの断面船体形状において、シャフトセンタより外側の船体幅が、シャフトセンタ高さの30%以上90%以下の高さ分だけ基線より上の水線位置で局所的な最大値を持つと共に、該局所的な最大値を持つ水線位置で、シャフトセンタを含む鉛直線により分けられる内外の船体幅に関して、内側の船体幅と外側の船体幅の合計が満載喫水における船体幅の10%以上25%以下で内側の船体幅よりも外側の船体幅が大きく構成すると共に、
船尾垂線より垂線間長の5%前方の断面船体形状において、シャフトセンタより外側及び内側の船体幅が、シャフトセンタ高さの40%以上100%以下の高さ分だけ基線より上の水線位置で局所的な最大値をそれぞれ持つと共に、内側の船体幅よりも外側の船体幅が大きく構成することを特徴とする船舶。
A twin-skeg type propeller propulsion ship with a square coefficient of 0.65 or more and 0.90 or less in a full draft,
The width of the hull outside the shaft center is 30% or more and 90% or less of the shaft center height in at least one cross-section hull shape in the range of 25% or more and 30% or less of the run length from the stern vertical line. The inner hull width with respect to the inner and outer hull widths divided by the vertical line including the shaft center at the waterline position above the baseline and at the waterline position with the local maximum value only. And the outer hull width is 10% to 25% of the hull width in the full draft and the outer hull width is larger than the inner hull width,
In the cross-sectional hull shape 5% ahead of the stern perpendicular, the width of the hull outside and inside the shaft center is above the baseline by 40% to 100% of the shaft center height. A ship having a local maximum value and an outer hull width larger than an inner hull width.
2軸間のトンネル部の後方の船体の後端部に、該トンネル部内の流速を減速させる流速抑制部材を側面視で楔形状をした部材で形成して設けたことを特徴とする請求項1記載の船舶。 2. A flow velocity suppressing member for reducing the flow velocity in the tunnel portion formed by a wedge-shaped member in a side view is provided at the rear end portion of the hull behind the tunnel portion between the two shafts. The listed ship. 前記流速抑制部材を船舶の幅方向に関してトンネル部の全幅に、または、中央部を省いて2つに分離して設けたことを特徴とする請求項2記載の船舶。 The ship according to claim 2, wherein the flow velocity suppressing member is provided in the entire width of the tunnel part in the width direction of the ship or by separating the flow rate suppressing member into two parts while omitting the central part .
JP2006186169A 2006-07-06 2006-07-06 Ship Active JP4934361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186169A JP4934361B2 (en) 2006-07-06 2006-07-06 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186169A JP4934361B2 (en) 2006-07-06 2006-07-06 Ship

Publications (2)

Publication Number Publication Date
JP2008013039A JP2008013039A (en) 2008-01-24
JP4934361B2 true JP4934361B2 (en) 2012-05-16

Family

ID=39070505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186169A Active JP4934361B2 (en) 2006-07-06 2006-07-06 Ship

Country Status (1)

Country Link
JP (1) JP4934361B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665013B2 (en) * 2016-03-31 2020-03-13 三菱重工業株式会社 Bottom structure of twin skeg ship and twin skeg ship
EP3501965A1 (en) * 2017-12-22 2019-06-26 Meyer Turku Oy Marine vessel
CN110550142B (en) * 2019-04-30 2021-04-27 上海外高桥造船有限公司 Hull line type of large liquefied gas carrier
JP7326172B2 (en) * 2020-01-17 2023-08-15 三菱重工業株式会社 vessel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133172A (en) * 1994-11-09 1996-05-28 Ishikawajima Harima Heavy Ind Co Ltd Stern shape for twin skeg ship type
JP2001219892A (en) * 2000-02-10 2001-08-14 Mitsubishi Heavy Ind Ltd Hull resistance reducing device
DE10206669A1 (en) * 2002-02-18 2003-08-28 Siemens Ag Ship with electrically-driven rudder-propeller units, includes flow channel between skegs, designed for low resistance and propulsion performance enhancement

Also Published As

Publication number Publication date
JP2008013039A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
KR101094539B1 (en) Stern shape for displacement type ship
JP5986856B2 (en) Commercial cargo ship
JP4934361B2 (en) Ship
KR102463848B1 (en) Vessel
JP3490392B2 (en) Transom stern type stern shape
JP4889238B2 (en) Ship with bow fin
JPS6035693A (en) Device for affecting initial inflow current of propeller
KR100720295B1 (en) Ship with air-resistance reducing apparatus
JP2008247050A (en) Vessel drag reducing device and vessel
JP4721711B2 (en) How to design a huge ship
JP6361877B2 (en) High-speed ship hull form
JP4689384B2 (en) 2 axis ship
JP6239711B1 (en) Ship duct equipment
JP4216858B2 (en) Ship
JP2006341640A (en) Propelling performance improving device for twin skeg ship
KR101886920B1 (en) Rudder for ship
JP4721836B2 (en) Ship
JP5387981B2 (en) Ship wave resistance reduction device
JP5032873B2 (en) 2-axis twin skeg ship
JP6582296B2 (en) Ship rudder and ship
JP4639176B2 (en) Stern fin arrangement structure
JP5028000B2 (en) Ship
JP4557375B2 (en) Stern type of uniaxial enlargement ship
JP3134108U (en) Stern end fin
JPWO2008099672A1 (en) Stern shape of a displacement type ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Ref document number: 4934361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350