JP4933725B2 - Manufacturing method of aluminum alloy plate for bottle can with excellent formability - Google Patents

Manufacturing method of aluminum alloy plate for bottle can with excellent formability Download PDF

Info

Publication number
JP4933725B2
JP4933725B2 JP2004265083A JP2004265083A JP4933725B2 JP 4933725 B2 JP4933725 B2 JP 4933725B2 JP 2004265083 A JP2004265083 A JP 2004265083A JP 2004265083 A JP2004265083 A JP 2004265083A JP 4933725 B2 JP4933725 B2 JP 4933725B2
Authority
JP
Japan
Prior art keywords
temperature
range
bottle
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004265083A
Other languages
Japanese (ja)
Other versions
JP2006077310A (en
Inventor
保史 清水
和彦 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2004265083A priority Critical patent/JP4933725B2/en
Publication of JP2006077310A publication Critical patent/JP2006077310A/en
Application granted granted Critical
Publication of JP4933725B2 publication Critical patent/JP4933725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Description

この発明は、基本的には絞り・しごき加工(DI加工)およびネッキング加工、ネジ加工(スクリュー加工)が施されて成形され、さらに内容物充填後にキャップ取付加工が施されるボトル形状のアルミニウム缶(アルミニウムボトル缶)の缶胴として使用されるアルミニウム合金板、特に胴部の直径に対する口部の直径の縮径率が30%以上のアルミニウムボトル缶の缶胴部に使用されるアルミニウム合金板の製造方法に関するものである。 The present invention is basically a bottle-shaped aluminum can which is formed by drawing / ironing (DI processing), necking, screw processing (screw processing), and cap mounting after filling the contents. An aluminum alloy plate used as a can body of (aluminum bottle can), particularly an aluminum alloy plate used in a can body portion of an aluminum bottle can having a diameter reduction ratio of 30% or more with respect to the diameter of the body portion . It relates to a manufacturing method.

近年に至り、主として飲料缶として、アルミニウム合金製のボトル缶の需要が増大している。このアルミニウムボトル缶は、缶胴部の上部に、直径が漸減する肩部を介して口部を形成しかつその口部にネジ部を形成して、ねじ込み方式のキャップを取付けて閉止したものであり、開栓後も再度キャップをねじ込むことにより閉止可能とされている。   In recent years, the demand for bottle cans made of aluminum alloys has been increasing mainly as beverage cans. This aluminum bottle can is closed by attaching a screw-in type cap to the upper part of the can body part through a shoulder part with a gradually decreasing diameter and a screw part at the mouth part. Yes, even after opening, it can be closed by screwing the cap again.

このようなボトル缶の缶胴については、口部の直径をD、胴部の直径をDとすれば、
{(D−D)/D}×100
で表わされる縮径率が30%とされるのが通常である。
For the can body of such a bottle can, if the diameter of the mouth is D 1 and the diameter of the body is D 0 ,
{(D 0 -D 1 ) / D 0 } × 100
In general, the reduction ratio expressed by is 30%.

ところでボトル缶の缶胴は、従来の通常の2ピースDI缶、すなわち蓋部を缶胴部に対して別体で作って巻締めし、蓋部の一部をタブにより開栓する形式のDI缶と比較して、口部の縮径率が2倍から数倍以上と大きく、また缶の製造工程もDI缶とはかなり異なるため、その材料としてもDI缶の材料とは異なる要求を満足させる必要がある。したがって従来の一般的なDI缶の缶胴材料として成形性向上を図った材料をそのままボトル缶の缶胴に使用しても、ボトル缶の缶胴として適当とは限らないのが実情である。   By the way, the can body of the bottle can is a conventional normal two-piece DI can, that is, a DI in which the lid is made separately from the can body and wound, and a part of the lid is opened with a tab. Compared with cans, the diameter reduction ratio of the mouth is 2 to several times larger, and the manufacturing process of cans is quite different from DI cans. It is necessary to let Therefore, even if a material that is improved in moldability as a conventional can body material of a DI can is used as it is in a can body of a bottle can, it is not always appropriate as a can body of a bottle can.

すなわち、ボトル缶の缶胴は前述のように口部の縮径率がDI缶の缶胴より格段に大きいため、口部に対するネッキング加工として強加工を施す必要があり、そのため従来のDI缶用の材料をそのままボトル缶に使用した場合、ネッキング加工時に口部にシワ等の成形不良が発生しやすい問題がある。ここでネッキング性改善のためには、ネッキング開始時の強度を低くしておくことが有効と考えられるが、ボトル缶では、内容物の充填後のキャップ取付工程において缶胴のネッキングした部位に対して縦方向および横方向から荷重を加えるため、その際の口部の座屈を防止するためにある程度の強度が必要であり、したがってネッキング性改善のために単純に低強度化を図るというわけにはいかない。   In other words, as described above, the can body of the bottle can has a much larger diameter reduction than the can body of the DI can. Therefore, it is necessary to perform strong processing as a necking process for the mouth portion. When this material is used for a bottle can as it is, there is a problem that molding defects such as wrinkles are likely to occur at the mouth during necking. Here, in order to improve necking performance, it is considered effective to reduce the strength at the start of necking. However, in bottle cans, in the cap mounting process after filling the contents, Therefore, a certain amount of strength is required to prevent buckling of the mouth at that time, and therefore the strength is simply reduced to improve necking. I don't know.

例えばDI缶用の缶胴用材料として提案されている、特許文献1では、フランジ成形性改善のためにMn固溶量を0.16%以下に規制することとしているが、口部の縮径率が大きいボトル缶では、フランジ加工よりも前のネッキング加工段階でシワが発生することが問題なのであり、したがって素板強度がある程度以下でなければ、Mn固溶量を0.16%以下に規制してもネッキング加工でのシワ発生を抑制することは困難であり、また逆に強度を低下させ過ぎれば、前述のようにキャップ取付工程で座屈が発生してしまうおそれがある。   For example, in Patent Document 1 proposed as a material for a can body for a DI can, the Mn solid solution amount is restricted to 0.16% or less in order to improve flange formability. For bottle cans with a high rate, it is a problem that wrinkles occur in the necking process prior to flange processing. Therefore, if the strength of the base plate is not less than a certain level, the Mn solid solution amount is regulated to 0.16% or less. Even so, it is difficult to suppress the generation of wrinkles in necking, and conversely, if the strength is excessively reduced, buckling may occur in the cap mounting process as described above.

一方近年は、もっぱらボトル缶向けの材料として、成形性改善を目的とした提案も例えば特許文献2〜特許文献4においてなされている。   On the other hand, in recent years, proposals aimed at improving moldability have been made exclusively as materials for bottle cans, for example, in Patent Documents 2 to 4.

特許文献2では、特定の成分組成のアルミニウム合金を用いて、板製造プロセス条件を細かく規定して、胴部の強度を満足させるとともに、ネッキング加工中やネジ加工中にさらに加工硬化させることにより、口頸部の強度が高くカール加工性に優れたものが得られるとしているが、この提案の方法では板製造プロセス中に2回もの中間焼鈍を必須としており、そのため製造コストが高くかつ生産性が低くならざるを得ない。製造コストの低減、生産性向上のためには中間焼鈍を省略することが望まれるが、特許文献2に示されるプロセスから単純に中間焼鈍を省いてしまえば、ボトル缶に適した特性を有する板が得られないことは明らかである。   In Patent Document 2, by using an aluminum alloy having a specific component composition, the plate manufacturing process conditions are finely defined to satisfy the strength of the body portion, and by further work hardening during necking and screwing, Although the neck and neck have high strength and excellent curl processability, the proposed method requires two intermediate annealings during the plate manufacturing process, which results in high manufacturing costs and high productivity. It must be lowered. In order to reduce manufacturing costs and improve productivity, it is desirable to omit intermediate annealing. However, if intermediate annealing is simply omitted from the process shown in Patent Document 2, a plate having characteristics suitable for bottle cans. It is clear that cannot be obtained.

また特許文献3では、例えば210℃×10分保持のベーキング後の耐力を所定範囲内に規制することによって、ネッキング性を確保することとしている。しかしながらベーキング後の耐力が所定範囲内に収まっていても、DI加工時やネッキング加工時の強度増加が大きい材料では、ボトル缶の口部成形不良が発生するおそれがあり、したがって特許文献3の提案でもボトル缶として最適な材料を得ることは困難である。   Further, in Patent Document 3, for example, the necking property is secured by regulating the proof stress after baking at 210 ° C. × 10 minutes within a predetermined range. However, even if the proof strength after baking is within a predetermined range, a material having a large increase in strength at the time of DI processing or necking processing may cause a defective formation of the mouth portion of the bottle can. However, it is difficult to obtain the optimal material for a bottle can.

さらに特許文献4では、素板のn値(いわゆる加工硬化指数)を一定の値以下とすることによって、DI加工、ネッキング加工、ネジ加工での加工硬化を抑えて、良好なネッキング性やネジ加工性を確保するとしている。しかしながら素板のn値は、冷間圧延後の材料の回復状態に支配されるから、必ずしも材料の加工硬化性能を表わしておらず、したがって例えば歪みが回復しておらずn値が低い材料(TS−YS差が小さく、伸びが小さい材料)でも、Mn固溶量が多くてDI加工時やネッキング加工時における強度増加が大きい材料では、ボトル缶の口部の成形不良が発生してしまうおそれがある。   Furthermore, in Patent Document 4, by setting the n value (so-called work hardening index) of the base plate to a certain value or less, work hardening in DI processing, necking processing, and screw processing is suppressed, and good necking property and screw processing are achieved. It is supposed to secure sex. However, since the n value of the base plate is governed by the recovery state of the material after cold rolling, it does not necessarily represent the work-hardening performance of the material, and thus, for example, a material that has not recovered strain and has a low n value ( A material with a small TS-YS difference and a small elongation), but with a large amount of Mn solid solution and a large increase in strength during DI processing or necking processing, there is a risk of forming defects at the mouth of the bottle can. There is.

特開平5−331588号公報JP-A-5-331588 特開2003−306750号公報JP 2003-306750 A 特開2003−256366号公報JP 2003-256366 A 特開2003−82429号公報JP 2003-82429 A

前述のようにボトル缶の缶胴は、口部の縮径率が従来のDI缶と比較して格段に大きく、そのため強ネッキング加工時においてシワなどの成形不良が発生しないなど、ネッキング加工性が優れていることが要求されるとともに、内容物充填後のキャップ取付工程での荷重による座屈の発生を防止するために、口部の強度をある程度以上確保する必要があり、またそのほか、製造コスト低減、生産性の向上のために、板製造プロセスとして中間焼鈍を省略したプロセスを適用可能とすることが望まれる。   As mentioned above, the can body of the bottle can has a necking workability such that the diameter reduction ratio of the mouth is much larger than that of the conventional DI can, and thus molding defects such as wrinkles do not occur during strong necking. In addition to being required to be superior, it is necessary to secure a certain degree of strength at the mouth to prevent buckling due to the load in the cap mounting process after filling the contents. In order to reduce and improve productivity, it is desirable to be able to apply a process in which intermediate annealing is omitted as a plate manufacturing process.

そこでこの発明では、ボトル缶の缶胴に適した材料として、強ネッキング加工でもネッキング加工性が優れると同時に、キャップ取付時の荷重にも耐え得る口部強度が確保された材料を中間焼鈍を省略したプロセスにより製造コストの低減、生産性の向上を図りつつ製造する方法を提供することを課題としている。 Therefore, in this invention, as a material suitable for the can body of a bottle can, strong and at the same time necking is excellent in necking, the material mouth intensity is ensured to withstand the load at the time the cap attached, the intermediate annealing abbreviated process by reducing the manufacturing cost, and the challenge is to provide a method of manufacturing while improving productivity.

前述のような課題を解決するべく本発明者等がボトル缶の缶胴用材料およびその製造プロセスについて鋭意実験・検討を重ねた結果、ボトル缶用アルミニウム合金の成分組成を適切に調整すると同時に、Mn固溶量を特に0.1〜0.17%の範囲内に規制し、かつ素板強度(0.2%耐力)を所定の範囲内に調整することによって、ボトル缶の缶胴に必要な性能、特に口部成形性(ネッキング性)および口部強度を確保し得ることを見出し、さらにはそのような材料を、中間焼鈍を省略したプロセスで製造する方法を開発し、この発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors conducted extensive experiments and examinations on the material for the can body of the bottle can and its manufacturing process, and as a result, appropriately adjusted the component composition of the aluminum alloy for the bottle can, Necessary for the can body of bottle cans by regulating the Mn solid solution amount within the range of 0.1 to 0.17% and adjusting the base plate strength (0.2% proof stress) within the specified range. Have been found to be able to ensure excellent performance, particularly mouth formability (necking property) and mouth strength, and further developed a method for producing such a material by a process in which intermediate annealing is omitted. It came to.

具体的には、請求項1の発明のボトル缶用アルミニウム合金板の製造方法は、Si0.18〜0.4%、Mg0.7〜1.2%、Mn0.7〜1.2%、Cu0.10〜0.3%、Fe0.3〜0.7%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を鋳造し、得られた鋳塊に対し、550〜610℃の範囲内の温度で3時間以上の均質化処理を施して、100℃/hr以下の冷却速度で200℃以下の温度域まで冷却し、次いで熱間圧延開始温度まで加熱昇温するにあたり、その昇温過程における375℃以上450℃未満の温度域内に1.5〜6hrの範囲内の時間滞在させて、引続き450〜500℃の範囲内の温度まで昇温させ、かつその450〜500℃の温度域で1.5〜4hr保持し、引続き450〜500℃の範囲内の温度で熱間圧延を開始し、さらに310℃以上の温度で熱間圧延を終了させ、その後中間焼鈍を施すことなく圧延率85%以下で冷間圧延を施すことにより、Mn固溶量が0.1〜0.17%の範囲内でかつ0.2%耐力が265N/mm2未満のボトル缶用アルミニウム合金板を得ることを特徴とするものである。 Specifically, the manufacturing method of the aluminum alloy plate for bottle cans of the invention of claim 1 is Si 0.18 to 0.4%, Mg 0.7 to 1.2%, Mn 0.7 to 1.2%, Cu0. An aluminum alloy containing 10 to 0.3% and Fe 0.3 to 0.7% with the balance being Al and unavoidable impurities is cast, and the obtained ingot is within a range of 550 to 610 ° C. When the temperature is raised to a temperature range of 200 ° C. or less at a cooling rate of 100 ° C./hr or less and then heated to the hot rolling start temperature, the temperature rise process In the temperature range of 375 ° C. or higher and lower than 450 ° C. for a time in the range of 1.5 to 6 hours, and subsequently raised to a temperature in the range of 450 to 500 ° C., and in the temperature range of 450 to 500 ° C. Hold for 1.5-4 hrs, continue 450- By starting hot rolling at a temperature in the range of 00 ° C., further terminating hot rolling at a temperature of 310 ° C. or higher, and then performing cold rolling at a rolling rate of 85% or less without performing intermediate annealing, An aluminum alloy plate for a bottle can having a Mn solid solution amount in the range of 0.1 to 0.17% and a 0.2% proof stress of less than 265 N / mm 2 is obtained.

この発明のボトル缶用アルミニウム合金板の製造方法によれば、合金の成分組成を適切に調整すると同時に、Mn固溶量および素板強度を適切に規制することによって、ボトル缶の缶胴用材料として、口部の強ネッキング加工にも耐えてシワ発生等の成形不良を招くことなく、良好なネッキング性を示し、また内容物充填後のキャップ取付工程で口部に大きな荷重が加わっても座屈が生じることを確実に防止することができるボトル缶用アルミニウム合金板を得ることができ、しかも中間焼鈍を省略したプロセスで上述のようにボトル缶用材料として優れた性能を有するものを製造することができ、したがって中間焼鈍の省略により製造コストの低減、生産性の向上を図ることができる。 According to the method for producing an aluminum alloy plate for a bottle can of the present invention, by appropriately adjusting the component composition of the alloy and at the same time appropriately regulating the Mn solid solution amount and the strength of the base plate , the material for the can body of the bottle can As a result, it can withstand strong necking of the mouth and does not cause molding defects such as wrinkling, and exhibits good necking properties, and even when a large load is applied to the mouth during the cap mounting process after filling the contents. bending it possible to obtain a reliable aluminum alloy sheet for bottle cans is Ru can be prevented resulting, moreover produce has excellent performance as a bottle cans material as described above in process is omitted intermediate annealing Therefore, it is possible to reduce the manufacturing cost and improve the productivity by omitting the intermediate annealing.

先ずこの発明のボトル缶用アルミニウム合金板の製造方法における合金成分組成の限定理由について説明する。 First it will be described the reasons for limitation of the alloy component compositions definitive in the production method of an aluminum alloy sheet for bottle cans this invention.

Si0.18〜0.4%:
Siは、Al(Fe,Mn)Si系合金間化合物(α相)を生成させるために必要な元素である。このα相は、しごき加工時において潤滑効果を発揮して、材料がダイスへ焼付くことを防止する機能を有しており、しごき加工を施して製されるボトル缶の材料には必要不可欠である。またSi添加量によってMn固溶量が変化するから、SiはMn固溶量制御手段としても有効に機能する。Si量が0.18%未満では、ダイスへの焼付き防止に必要なα相が充分に得られない。一方Si量が0.4%を越えれば、圧延時やベーキング時においてAl−Mg−Si系やAl−Mg−Cu系の金属間化合物の析出が促進されて、高強度化や脆化により成形性が低下してしまうおそれがある。そこでSi量は、0.18〜0.4%の範囲内に規制することとした。
Si 0.18-0.4%:
Si is an element necessary for generating an Al (Fe, Mn) Si-based inter-alloy compound (α phase). This α phase has a function of preventing lubrication of the material on the die by exerting a lubricating effect during ironing, and is indispensable for bottle cans made by ironing. is there. Further, since the Mn solid solution amount varies depending on the Si addition amount, Si functions effectively as a Mn solid solution amount control means. If the Si content is less than 0.18%, the α phase necessary for preventing seizure on the die cannot be obtained sufficiently. On the other hand, if the Si content exceeds 0.4%, precipitation of Al-Mg-Si and Al-Mg-Cu intermetallic compounds is promoted during rolling and baking, and forming due to high strength and embrittlement. May deteriorate. Therefore, the amount of Si is regulated within the range of 0.18 to 0.4%.

Mg0.7〜1.2%:
Mgは固溶強化による強度向上に寄与し、また圧延時やベーキング時において析出して強度向上に寄与する金属間化合物の構成元素でもある。Mg量が0.7%未満では、Mg添加による強度向上の効果が不充分であり、一方Mg量が1.2%を越えれば、圧延時や成形中の加工硬化が大きくなり、しごき性やネッキング性が低下してしまう。そこでMg量は0.7〜1.2%の範囲内とした。
Mg 0.7-1.2%:
Mg contributes to strength improvement by solid solution strengthening and is also a constituent element of an intermetallic compound that precipitates during rolling and baking and contributes to strength improvement. If the amount of Mg is less than 0.7%, the effect of improving the strength by adding Mg is insufficient. On the other hand, if the amount of Mg exceeds 1.2%, work hardening during rolling or forming increases, and ironing properties and Necking performance is reduced. Therefore, the Mg content is set in the range of 0.7 to 1.2%.

Mn0.7〜1.2%:
Mnは強度を向上させるとともに、前述のα相の生成を通じてしごき加工時の焼付き防止に不可欠な元素である。Mn量が0.7%未満ではこれらの効果が充分に得られず、一方Mn量が1.2%を越えれば、粗大な晶出物が多くなって、しごき性やネッキング性が低下する。そこでMn量は0.7〜1.2%の範囲内とした。なお後に改めて説明するように、Mnは単純にその添加量を0.7〜1.2%の範囲内に調整するだけではなく、その固溶量を0.1〜0.17%の範囲内に規制する必要がある。
Mn 0.7-1.2%:
Mn is an element essential for improving the strength and preventing seizure during ironing through the formation of the α phase. If the amount of Mn is less than 0.7%, these effects cannot be sufficiently obtained. On the other hand, if the amount of Mn exceeds 1.2%, coarse crystallized products increase, and the ironing property and necking property decrease. Therefore, the amount of Mn is set within a range of 0.7 to 1.2%. As will be described later, Mn not only simply adjusts the amount of addition within the range of 0.7 to 1.2% but also reduces the amount of solid solution within the range of 0.1 to 0.17%. It is necessary to regulate.

Fe0.3〜0.7%:
Feは、SiやMnと同様にα相の生成に必要な元素であり、またSiと同様にその添加量によってMn固溶量を制御することも可能である。Fe量が0.3%未満では、α相生成を通じてのしごき加工時におけるダイスの焼付き防止効果が充分に得られず、一方Fe量が0.7%を越えれば、粗大晶出物が生成されて成形性が低下する。したがってFe量は0.3〜0.7%の範囲内とした。
Fe 0.3-0.7%:
Fe is an element necessary for the formation of the α-phase similarly to Si and Mn, and the amount of Mn solid solution can be controlled by the amount of addition as with Si. If the amount of Fe is less than 0.3%, the effect of preventing die seizure during ironing through α phase generation cannot be sufficiently obtained, while if the amount of Fe exceeds 0.7%, coarse crystals are formed. As a result, moldability is reduced. Therefore, the amount of Fe is set within a range of 0.3 to 0.7%.

Cu0.10〜0.3%:
Cuは、圧延時やベーキング時におけるAl−Mg−Cu系金属間化合物の析出を通じて強度向上に寄与する元素である。Cu量が0.10%未満ではその効果が不充分であり、一方Cu量が0.3%を越えればネッキング加工開始時の強度が高くなり過ぎるため、成形性が低下する。そこでCu量は0.10〜0.3%の範囲内とした。
Cu0.10-0.3%:
Cu is an element that contributes to strength improvement through precipitation of an Al—Mg—Cu intermetallic compound during rolling or baking. If the amount of Cu is less than 0.10%, the effect is insufficient. On the other hand, if the amount of Cu exceeds 0.3%, the strength at the start of the necking process becomes too high, and the formability deteriorates. Therefore, the amount of Cu is set within the range of 0.10 to 0.3%.

以上の各成分のほかは基本的にはAlおよび不可避的不純物とすれば良い。なお通常のアルミニウム合金においては、鋳塊結晶粒微細化のために少量のTiを単独で、あるいは微量のBと組合せて添加することもあるが、この発明の場合も0.2%程度以下のTi、0.005%程度以下のBの添加を排除するものではない。   Other than the above components, basically, Al and inevitable impurities may be used. In a normal aluminum alloy, a small amount of Ti may be added alone or in combination with a small amount of B for refining ingot crystal grains. This does not exclude the addition of Ti and B of about 0.005% or less.

さらに、この発明のボトル缶用アルミニウム合金板では、合金の成分組成を前述のように調整するだけではなく、固溶Mn量を特に0.1〜0.17%の範囲内に規制する必要がある。その理由は次の通りである。   Furthermore, in the aluminum alloy plate for bottle cans of this invention, it is necessary not only to adjust the component composition of the alloy as described above, but also to regulate the solid solution Mn content within a range of 0.1 to 0.17%. is there. The reason is as follows.

すなわち、Mn固溶量が0.17%を越えれば、DI加工中において転位の整理が妨げられるため、DI加工後の転位密度が増加して、ネッキング加工開始時の強度が高くなり過ぎるおそれがあり、さらにネッキング加工中の強度上昇も大きくなってネッキング性が損なわれてしまう。一方、ネッキングされた部分には最終的にはキャップが取付けられるが、このキャップ取付けの際には縦方向および横方向から力が加えられ、この際の荷重による座屈を防止するためにはある程度以上の口部強度が必要となる。そしてMn固溶量が0.1%未満では、上述のような座屈を防止するために必要な強度を確保することが困難となる。そこでこの発明ではMn固溶量を0.1〜0.17%の範囲内に規制することとした。なおMn固溶量は、Mn添加量のほか、前述のようにSi添加量やFe添加量によって制御することができ、さらに製造プロセスの面からは、後述するように主として均質化処理条件およびその後の熱間圧延開始までの温度履歴条件を適切に規制することによって制御することができる。   That is, if the Mn solid solution amount exceeds 0.17%, disorganization of the dislocation is hindered during DI processing, so that the dislocation density after DI processing increases and the strength at the start of necking processing may become too high. In addition, the increase in strength during necking is increased, and the necking property is impaired. On the other hand, a cap is finally attached to the necked part, but when this cap is attached, force is applied from the vertical direction and the horizontal direction. The above mouth strength is required. If the Mn solid solution amount is less than 0.1%, it is difficult to ensure the strength necessary for preventing the buckling as described above. Therefore, in the present invention, the Mn solid solution amount is regulated within the range of 0.1 to 0.17%. In addition to the Mn addition amount, the Mn solid solution amount can be controlled by the Si addition amount and the Fe addition amount as described above. Further, from the viewpoint of the manufacturing process, the homogenization treatment conditions and the subsequent conditions are mainly as described later. It is possible to control by appropriately regulating the temperature history condition until the start of hot rolling.

またこの発明のボトル缶用アルミニウム合金板の製造方法においては、素板(ボトル缶製造のための成形を行なう前の段階の板)の0.2%耐力を、265N/mm2未満に規制する必要がある。その理由は次の通りである。 The Oite the manufacturing method of an aluminum alloy sheet for bottle cans this invention, the 0.2% yield strength of the material plate (a stage before the plate performing molding for bottle can manufacturing), less than 265N / mm 2 It is necessary to regulate. The reason is as follows.

すなわち、素板の0.2%耐力が265N/mm2以上では、ネッキング加工開始時の強度が高くなり過ぎて、ネッキング加工時にシワが発生しやすくなってしまう。そこでネッキング加工時におけるシワ発生等の成形不良発生を防止するために、0.2%耐力を265N/mm2未満に規制することとした。なおこのような素板強度の規制は、成分組成を前述のように適切に調整すると同時に、製造プロセスにおいて、後述するように熱間圧延開始までの温度履歴の適切な制御による金属組織の制御と、冷間圧延率の適切な規制によって達成することができる。 That is, if the 0.2% proof stress of the base plate is 265 N / mm 2 or more, the strength at the start of the necking process becomes too high, and wrinkles are likely to occur during the necking process. Therefore, in order to prevent the occurrence of molding defects such as wrinkling during necking, the 0.2% proof stress is regulated to less than 265 N / mm 2 . In addition, the regulation of the strength of the base plate appropriately adjusts the component composition as described above, and at the same time controls the metal structure in the manufacturing process by appropriately controlling the temperature history until the hot rolling starts as described later. Can be achieved by appropriate regulation of the cold rolling rate.

次にこの発明のボトル缶用アルミニウム合金板の製造方法の各プロセスについて説明する。 Next will be explained for each process of manufacturing how the aluminum alloy sheet for bottle cans this invention.

先ず前述のような成分組成のアルミニウム合金を、DC鋳造などの常法によって鋳造し、得られた鋳塊に対して均質化処理を行なう。   First, an aluminum alloy having the above composition is cast by a conventional method such as DC casting, and the resulting ingot is homogenized.

この均質化処理は、550℃以上、610℃以下の範囲内の温度で3時間以上行なう必要がある。ここで、均質化処理温度が550℃未満では、Mn系析出物が多量に生成されてMn固溶量の低下には有利となるが、しごき性向上に必要なα相が充分に得られない。また均質化処理の上記範囲内の温度での保持が3時間未満でも、充分なα相が生成されない。一方均質化処理温度が610℃を越えれば、バーニング発生のおそれがある。したがって均質化処理は550〜610℃で3時間以上行なう必要がある。なお均質化処理時間の上限は特に規制しないが、通常は生産性等の点から24時間以下とすることが望ましい。   This homogenization treatment needs to be performed for 3 hours or more at a temperature in the range of 550 ° C. or more and 610 ° C. or less. Here, when the homogenization temperature is less than 550 ° C., a large amount of Mn-based precipitates are produced, which is advantageous for lowering the Mn solid solution amount, but the α phase necessary for improving the ironing property cannot be obtained sufficiently. . Further, even if the homogenization treatment is maintained at a temperature within the above range for less than 3 hours, a sufficient α phase is not generated. On the other hand, if the homogenization temperature exceeds 610 ° C., burning may occur. Therefore, it is necessary to perform the homogenization treatment at 550 to 610 ° C. for 3 hours or more. The upper limit of the homogenization treatment time is not particularly limited, but it is usually preferably 24 hours or less from the viewpoint of productivity.

均質化処理後には、100℃/hr以下の冷却速度で空冷等により200℃以下の温度域、例えば室温まで冷却し、熱間圧延のための再加熱を行なう。ここで、均質化処理後には、冷却せずに直ちに(連続的に)熱間圧延を開始する方法も従来から適用されているが、均質化処理後に一旦冷却してから再加熱する方が実操業上の温度管理や生産性等の点で優れているばかりでなく、均質化処理後に100℃/hr以下の冷却速度で200℃以下の温度域まで冷却することにより、その冷却過程で微細なMn系析出物を生成させてMn固溶量を低下させるに有利となる。ここで、均質化処理後の冷却速度が100℃/hrを越える場合、Mn系析出物を充分に析出させることができず、そのためMn固溶量を低下させる効果が得られないから、100℃/hr以下の冷却速度で冷却する必要がある。但し、微細な析出物が多過ぎれば、冷間圧延後の素板強度が上昇してしまう問題が発生するから、次に述べるように熱間圧延のための再加熱時の条件を適切に制御することとしている。   After the homogenization treatment, it is cooled to a temperature range of 200 ° C. or lower, such as room temperature, by air cooling or the like at a cooling rate of 100 ° C./hr or lower, and reheated for hot rolling. Here, after the homogenization treatment, a method of starting hot rolling immediately (continuously) without cooling has also been applied conventionally, but it is more effective to once cool and then reheat after the homogenization treatment. Not only is it excellent in terms of temperature control and productivity in operation, but it is fine in the cooling process by cooling to a temperature range of 200 ° C or less at a cooling rate of 100 ° C / hr or less after homogenization. It is advantageous to reduce the amount of Mn solid solution by generating Mn-based precipitates. Here, when the cooling rate after the homogenization treatment exceeds 100 ° C./hr, the Mn-based precipitate cannot be sufficiently precipitated, and therefore the effect of reducing the Mn solid solution amount cannot be obtained. It is necessary to cool at a cooling rate of less than / hr. However, if there are too many fine precipitates, there will be a problem that the strength of the base sheet after cold rolling will increase, so the conditions during reheating for hot rolling are appropriately controlled as described below. To do.

すなわち、前述のように均質化処理後、100℃/hr以下の冷却速度で200℃以下の温度域まで冷却した後、熱間圧延のために再加熱するにあたっては、熱間圧延開始温度(後述するように450〜500℃)まで加熱昇温させる迄の間の昇温過程で、375℃以上450℃未満の温度域内に1.5〜6時間滞在させる。このように再加熱のための昇温過程で375℃以上450℃未満の温度域で1.5時間以上滞在させることにより、前述のような均質化処理後の冷却過程で析出した微細な析出物が成長して、冷間圧延後の強度上昇に寄与しなくなり、素板強度の過度の上昇を抑えることが可能となる。ここで、375℃未満の温度域では析出物の成長はあまり進行せず、また375℃以上450℃未満の温度域での滞在時間が6時間を越えればコスト的に不利となるだけである。なおこのような再加熱時の昇温過程における375℃以上450℃未満の温度域で1.5〜6時間滞在させるとは、その温度域内で1.5〜6時間かけて徐々に昇温させても良く、あるいはその温度域内の一定温度で1.5〜6時間保持したり、あるいはその温度域内で段階的に昇温させながらトータルの時間を1.5〜6時間に制御したりしても良い。   That is, after the homogenization treatment as described above, after cooling to a temperature range of 200 ° C. or less at a cooling rate of 100 ° C./hr or less, when reheating for hot rolling, the hot rolling start temperature (described later) In the temperature raising process until the temperature is raised to 450 to 500 ° C., the temperature is kept at 375 ° C. or more and less than 450 ° C. for 1.5 to 6 hours. In this way, fine precipitates precipitated in the cooling process after the homogenization treatment as described above by staying in the temperature range of 375 ° C. or higher and lower than 450 ° C. for 1.5 hours or more in the temperature rising process for reheating. Grows and does not contribute to an increase in strength after cold rolling, and an excessive increase in the base plate strength can be suppressed. Here, the growth of the precipitate does not progress much in the temperature range below 375 ° C., and if the stay time in the temperature range of 375 ° C. or higher and lower than 450 ° C. exceeds 6 hours, it is only disadvantageous in terms of cost. In addition, when staying in a temperature range of 375 ° C. or higher and lower than 450 ° C. for 1.5 to 6 hours in such a temperature rising process during reheating, the temperature is gradually increased over 1.5 to 6 hours within the temperature range. Or may be maintained at a constant temperature within the temperature range for 1.5 to 6 hours, or the total time may be controlled to 1.5 to 6 hours while gradually raising the temperature within the temperature range. Also good.

上述のように熱間圧延開始温度までの昇温過程で375℃以上450℃未満の温度域に1.5〜6時間滞在させた後には、引続いて450〜500℃の範囲内の熱間圧延開始温度域まで昇温させるが、素板強度の上昇を抑えるには前述の375℃以上450℃未満の温度域での1.5〜6時間の滞在だけでは不充分であり、その後の450〜500℃の温度域で1.5〜4時間滞在させる必要がある。すなわち、熱間圧延開始温度である450〜500℃の温度域では、より高温であるため析出と同時に微細析出物の再固溶も生じ、微細析出物の消滅に有効となる。そして450〜500℃の温度域で1.5時間以上滞在させることによって、微細析出物による素板強度の上昇を抑えることが可能となる。但し、この温度域で4時間を越える長時間保持することはコスト的に不利となるだけである。   After staying in the temperature range of 375 ° C. or higher and lower than 450 ° C. for 1.5 to 6 hours in the temperature raising process up to the hot rolling start temperature as described above, the hot rolling is continuously within the range of 450 to 500 ° C. Although the temperature is raised to the rolling start temperature range, it is not sufficient to stay for 1.5 to 6 hours in the temperature range of 375 ° C. or higher and lower than 450 ° C. in order to suppress the increase in the base plate strength. It is necessary to stay in a temperature range of ˜500 ° C. for 1.5 to 4 hours. That is, in the temperature range of 450 to 500 ° C., which is the hot rolling start temperature, since the temperature is higher, reprecipitation of fine precipitates occurs simultaneously with precipitation, which is effective for disappearance of fine precipitates. And it becomes possible to suppress the raise of the base-plate intensity | strength by a fine precipitate by making it stay for 1.5 hours or more in the temperature range of 450-500 degreeC. However, holding for a long time exceeding 4 hours in this temperature range is only disadvantageous in terms of cost.

以上のように、均質化処理後に一旦冷却した後の熱間圧延開始温度までの昇温過程の制御、および熱間圧延開始温度域での保持によって、素板強度の上昇を抑制を抑えることが可能となる。なお、熱間圧延開始温度域(450〜500℃)での1.5〜4時間の保持時間とは、熱間圧延のための再加熱の炉から材料を取出した後、実際に熱間圧延が開始されるまでの時間をも含めることはもちろんである。   As described above, it is possible to suppress the increase in the base plate strength by controlling the temperature rising process to the hot rolling start temperature after being once cooled after the homogenization treatment and maintaining in the hot rolling start temperature range. It becomes possible. The holding time of 1.5 to 4 hours in the hot rolling start temperature range (450 to 500 ° C.) is actually hot rolling after the material is taken out from the reheating furnace for hot rolling. Of course, this includes the time until the start.

上述のようにして450〜500℃の温度に1.5〜4時間保持した材料については、その温度域で熱間圧延を開始する。ここで、熱間圧延開始温度が450℃未満では、充分な熱間圧延終了温度が得られず、熱間圧延後の中間焼鈍を省略したプロセスでは耳率が悪化し、一方500℃を越えればMn系析出物の再固溶が進行してMn固溶量が増加してしまうから、熱間圧延開始温度は450〜500℃の範囲内とした。   For the material held at a temperature of 450 to 500 ° C. for 1.5 to 4 hours as described above, hot rolling is started in that temperature range. Here, if the hot rolling start temperature is less than 450 ° C., a sufficient hot rolling end temperature cannot be obtained, and the ear rate is deteriorated in the process in which the intermediate annealing after hot rolling is omitted, while if it exceeds 500 ° C. Since re-dissolution of the Mn-based precipitate proceeds and the amount of Mn solid solution increases, the hot rolling start temperature was set within the range of 450 to 500 ° C.

熱間圧延は310℃以上の温度で終了させ、その後は中間焼鈍を施すことなく、最終板厚まで冷間圧延を行なう。ここで、熱間圧延終了温度が310℃未満では、その後の中間焼鈍を省略したプロセスでは、良好な耳率特性が得られなくなり、そのため中間焼鈍を行なう必要が生じて生産性が低下してしまう。   Hot rolling is terminated at a temperature of 310 ° C. or higher, and thereafter, cold rolling is performed to the final thickness without intermediate annealing. Here, when the hot rolling finish temperature is less than 310 ° C., in the process in which the subsequent intermediate annealing is omitted, it is not possible to obtain good ear ratio characteristics, so that it is necessary to perform the intermediate annealing and the productivity is lowered. .

冷間圧延は85%以下の圧延率で行なう。冷間圧延率が85%を越えれば、素板強度が高くなってこの発明で規定する上限を越えてしまう。   Cold rolling is performed at a rolling rate of 85% or less. If the cold rolling rate exceeds 85%, the strength of the base plate increases and exceeds the upper limit defined in the present invention.

以上のようにして、Mn固溶量が0.1〜0.17%の範囲内でかつ0.2%耐力265N/mm2未満のボトル用アルミニウム合金板を得ることができる。 As described above, an aluminum alloy plate for a bottle having a Mn solid solution amount in the range of 0.1 to 0.17% and a 0.2% proof stress of less than 265 N / mm 2 can be obtained.

以下にこの発明の実施例を示す。なお実施例記載の各条件は飽くまで一例に過ぎず、これらの記載がこの発明の範囲を制限するものではないことはもちろんである。   Examples of the present invention will be described below. It should be noted that the conditions described in the examples are merely examples until they are tired, and it goes without saying that these descriptions do not limit the scope of the present invention.

実施例1:
表1の合金番号No.1〜No.16に示す各合金組成のAl合金を常法により溶解鋳造し、厚さ500mmの鋳塊を製造した。次いで580℃×5hの均質化処理後、一旦100℃/h以下の冷却速度で室温まで空冷した。その後再加熱し、昇温中に375℃以上450℃未満の範囲を2時間で通過させて470℃まで加熱し、さらにその温度で1.4時間保持した後、470℃で熱間圧延を開始した。320℃、板厚2.6mmで熱間圧延を終了し、中間焼鈍を行なうことなく冷間圧延を通常の方法で行ない、0.4mmのアルミニウム板を製造した。
Example 1:
Alloy No. in Table 1 1-No. An Al alloy having each alloy composition shown in FIG. 16 was melt-cast by a conventional method to produce an ingot having a thickness of 500 mm. Next, after a homogenization treatment at 580 ° C. × 5 h, it was once air-cooled to room temperature at a cooling rate of 100 ° C./h or less. After that, it was re-heated, passed through a range of 375 ° C or higher and lower than 450 ° C in 2 hours, heated to 470 ° C, held at that temperature for 1.4 hours, and then started hot rolling at 470 ° C did. Hot rolling was completed at 320 ° C. and a plate thickness of 2.6 mm, and cold rolling was performed by a normal method without performing intermediate annealing to produce a 0.4 mm aluminum plate.

得られた各板について、Mn固溶量を調べたので、その結果を表1中に示した。また各板について引張試験を行なうとともに、ボトル缶成形性評価として、DI加工性、ネッキング加工性を調べ、さらにキャップ取付時の成形性・強度評価として、テーパー部終点の硬度を調べ、それらの結果を表2に示した。   About each obtained board, since the amount of Mn solid solution was investigated, the result was shown in Table 1. In addition, a tensile test is performed on each plate, and the DI processability and necking processability are examined as a bottle can moldability evaluation, and the hardness of the taper part end point is examined as a moldability / strength evaluation during cap attachment. Are shown in Table 2.

これらの試験方法、評価方法の詳細は次の通りである。   The details of these test methods and evaluation methods are as follows.

引張り試験:
最終板から圧延方向に作製したJIS5号引張り試験片について、引張り速度20mm/分で引張り試験を行ない、素板耐力(BBYS)を求めた。また、最終板をベーキング処理として205℃×10分保持した後、同様に引張り試験を行ない、ベーキング後耐力(ABYS)を求めた。なおベーキング後耐力は、220N/mm2未満の場合に耐圧不足として不合格とされる。
Tensile test:
About the JIS No. 5 tensile test piece produced in the rolling direction from the final plate, a tensile test was performed at a pulling speed of 20 mm / min to obtain a base plate yield strength (BBYS). Further, after the final plate was held at 205 ° C. for 10 minutes as a baking treatment, a tensile test was performed in the same manner to determine post-baking yield strength (ABYS). In addition, when the post-baking proof stress is less than 220 N / mm 2 , it is rejected as insufficient pressure resistance.

缶成形性評価:
内径66mmφのDI缶を多数製缶し、トリミングと205℃×10分間の乾燥工程相当のベーキング処理を施した。その後、ネッキング成形とカール成形を行ない、次の項目で評価した。
(1)DI性
DI加工時に、破胴やゴーリング(キズ)が発生した場合を×、発生がないものを○とした。
(2)ネッキング加工性
口部径が40mmφになるようネッキング加工を施した。評価は目視により、シワ無しを○、若干シワが発生したものを△、多数シワが発生したものを×とした。
Can moldability evaluation:
A large number of DI cans having an inner diameter of 66 mmφ were made, and subjected to trimming and baking treatment corresponding to a drying step at 205 ° C. for 10 minutes. Then, necking molding and curl molding were performed, and the following items were evaluated.
(1) DI property In the case of DI processing, a case where a broken body or a goling (scratch) occurred was indicated as x, and a case where there was no occurrence was indicated as ○.
(2) Necking workability Necking was performed so that the diameter of the mouth was 40 mmφ. The evaluation was made by visually observing no wrinkles as ◯, slight wrinkles as Δ, and many wrinkles as x.

テーパー部終点の硬度:
前述の缶成形性評価と同様にDI缶を多数製缶してベーキング処理を施し、ネッキング加工を行った後、缶を切断し、テーパー部(肩部)の終点、すなわちテーパー部の最上部の硬度を測定した。硬度測定はビッカース硬度計を用いて荷重を200gとした。圧延方向0、180°より4点測定し、平均を求めた。ここで、硬度が80Hv未満の場合、その後のネジ切り加工後の強度が不足してキャップ取付時に成形不良が発生するから不合格(×印)、80Hv以上ではキャップ取付時の強度が充分に確保できることから、合格(○印)とした。
Hardness of taper end point:
Similar to the above can moldability evaluation, a large number of DI cans were manufactured and baked, and after necking, the can was cut and the end of the taper (shoulder), that is, the top of the taper Hardness was measured. The hardness was measured using a Vickers hardness tester with a load of 200 g. Four points were measured from the rolling direction 0, 180 °, and the average was obtained. Here, if the hardness is less than 80 Hv, the strength after the subsequent threading process is insufficient and a molding failure occurs when the cap is attached. Since it was possible, it was set as a pass (circle).

Figure 0004933725
Figure 0004933725

Figure 0004933725
Figure 0004933725

表2に示すように、この発明の成分組成範囲内でかつMn固溶量、素板強度もこの発明で規定する範囲内にある本発明例の場合(No.1〜No.6)には、ベーキング後の強度も充分にあり、また成形性も良好であった。一方比較例のうち、No.7、No.11、No.15は、それぞれSi、Cu、Mgが多いため素板強度が高過ぎ、そのためMn固溶量は規定範囲内であるが、ネッキング加工性が劣っていた。またNo.9、No.13は、それぞれFe、Mnが規定量を越えているため、Al−Fe−Mn系の粗大晶出物が増加し、しごき加工性が劣っていた。さらにNo.8、No.10は、Si、Feが少ないためDI加工性に劣っていた。そしてまたNo.14は、Mnが少ないためDI加工性に劣るほか、Mn固溶量が少な過ぎてネッキング後の強度が低かった。さらにNo.12、No.16は、Cu、Mgが少ないため、ネッキング後の強度が低かった。   As shown in Table 2, in the case of the present invention example (No. 1 to No. 6), which is within the component composition range of the present invention, and the Mn solid solution amount and the base plate strength are also within the range defined by the present invention. Also, the strength after baking was sufficient, and the moldability was also good. On the other hand, of the comparative examples, No. 7, no. 11, no. No. 15 had a large amount of Si, Cu, and Mg, respectively, so that the strength of the base plate was too high. Therefore, the Mn solid solution amount was within the specified range, but the necking workability was inferior. No. 9, no. In No. 13, since Fe and Mn each exceeded the specified amount, the Al-Fe-Mn coarse crystallized product increased and the ironing workability was inferior. Furthermore, no. 8, no. No. 10 was inferior in DI processability due to less Si and Fe. And no. No. 14 was inferior in DI processability due to a small amount of Mn, and the Mn solid solution amount was too small and the strength after necking was low. Furthermore, no. 12, no. No. 16 had low Cu and Mg, so the strength after necking was low.

実施例2:
表1の合金番号No.1に示す成分組成のAl合金を常法により溶解鋳造し、厚さ500mmの鋳塊を製造した。次いで580℃×4hの均質化処理を施した後、一旦室温まで100℃/h以下の冷却速度で空冷した。その後、表3のA〜Eに示す種々の条件で再加熱、熱間圧延、冷間圧延を実施した。
Example 2:
Alloy No. in Table 1 An Al alloy having the composition shown in No. 1 was melted and cast by a conventional method to produce an ingot having a thickness of 500 mm. Next, after homogenization at 580 ° C. × 4 h, the mixture was once air-cooled to room temperature at a cooling rate of 100 ° C./h or less. Thereafter, reheating, hot rolling, and cold rolling were performed under various conditions shown in A to E of Table 3.

得られた各板について、Mn固溶量および素板耐力を調べた。その結果を表3中に示す。   About each obtained board, the Mn solid solution amount and the base plate yield strength were investigated. The results are shown in Table 3.

Figure 0004933725
Figure 0004933725

表3に示すように、この発明の製造プロセス条件を満たすA、Bのプロセスで製造された板は、素板強度、Mn固溶量ともにこの発明の範囲内にある。   As shown in Table 3, both the strength of the base plate and the solid solution amount of Mn are within the scope of the present invention for the plates manufactured by the processes A and B that satisfy the manufacturing process conditions of the present invention.

一方、Cのプロセスの場合、再加熱時における375〜450℃の温度域での通過時間が短か過ぎ、またDのプロセスでは冷間圧延率が大き過ぎ、いずれの場合も素板強度がこの発明で規定する範囲を越えてしまった。またEのプロセスでは、均質化処理後、室温まで冷却することなく連続的に熱間圧延を行なったため、Mn固溶量がこの発明で規定する範囲を越えてしまった。   On the other hand, in the case of the process C, the passing time in the temperature range of 375 to 450 ° C. at the time of reheating is too short, and in the process D, the cold rolling rate is too large. The range specified in the invention has been exceeded. Further, in the process E, since the hot rolling was continuously performed without cooling to room temperature after the homogenization treatment, the Mn solid solution amount exceeded the range specified in the present invention.

Claims (1)

Si0.18〜0.4%(mass%、以下同じ)、Mg0.7〜1.2%、Mn0.7〜1.2%、Cu0.10〜0.3%、Fe0.3〜0.7%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を鋳造し、得られた鋳塊に対し、550〜610℃の範囲内の温度で3時間以上の均質化処理を施して、100℃/hr以下の冷却速度で200℃以下の温度域まで冷却し、次いで熱間圧延開始温度まで加熱昇温するにあたり、その昇温過程における375℃以上450℃未満の温度域内に1.5〜6hrの範囲内の時間滞在させて、引続き450〜500℃の範囲内の温度まで昇温させ、かつその450〜500℃の温度域で1.5〜4hr保持し、引続き450〜500℃の範囲内の温度で熱間圧延を開始し、さらに310℃以上の温度で熱間圧延を終了させ、その後中間焼鈍を施すことなく圧延率85%以下で冷間圧延を施すことにより、Mn固溶量が0.1〜0.17%の範囲内でかつ0.2%耐力が265N/mm2未満のボトル缶用アルミニウム合金板を得ることを特徴とする、成形性に優れたボトル缶用アルミニウム合金板の製造方法。 Si 0.18 to 0.4% (mass%, the same shall apply hereinafter) , Mg 0.7 to 1.2%, Mn 0.7 to 1.2%, Cu 0.10 to 0.3%, Fe 0.3 to 0.7 %, And the balance is made of aluminum and inevitable impurities, and the resulting ingot is subjected to a homogenization treatment for 3 hours or more at a temperature in the range of 550 to 610 ° C. When cooling to a temperature range of 200 ° C. or less at a cooling rate of ° C./hr or less, and then heating to a hot rolling start temperature, the temperature is increased from 1.5 to less than 450 ° C. Stay for 6 hours in the range, continue to heat up to a temperature in the range of 450-500 ° C, and hold for 1.5-4 hours in the temperature range of 450-500 ° C, continue in the range of 450-500 ° C Start hot rolling at a temperature within The hot rolling is finished at a temperature of 310 ° C. or higher, and then cold rolling is performed at a rolling rate of 85% or less without intermediate annealing, so that the Mn solid solution amount is in the range of 0.1 to 0.17%. A method for producing an aluminum alloy plate for a bottle can excellent in formability, characterized in that an aluminum alloy plate for a bottle can having a 0.2% proof stress of less than 265 N / mm 2 is obtained.
JP2004265083A 2004-09-13 2004-09-13 Manufacturing method of aluminum alloy plate for bottle can with excellent formability Expired - Fee Related JP4933725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265083A JP4933725B2 (en) 2004-09-13 2004-09-13 Manufacturing method of aluminum alloy plate for bottle can with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265083A JP4933725B2 (en) 2004-09-13 2004-09-13 Manufacturing method of aluminum alloy plate for bottle can with excellent formability

Publications (2)

Publication Number Publication Date
JP2006077310A JP2006077310A (en) 2006-03-23
JP4933725B2 true JP4933725B2 (en) 2012-05-16

Family

ID=36157003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265083A Expired - Fee Related JP4933725B2 (en) 2004-09-13 2004-09-13 Manufacturing method of aluminum alloy plate for bottle can with excellent formability

Country Status (1)

Country Link
JP (1) JP4933725B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254874A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy sheet for packaging container and method of manufacturing the same
JP5449693B2 (en) * 2008-03-28 2014-03-19 株式会社神戸製鋼所 Aluminum alloy cold-rolled plate for bottle can and method for producing the same
JP2009242830A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP6405014B1 (en) * 2017-09-20 2018-10-17 株式会社Uacj Aluminum alloy plate for bottle can body and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657738B2 (en) * 1997-05-12 2005-06-08 古河スカイ株式会社 Method for producing aluminum alloy plate for can body with low ear rate
JPH11140576A (en) * 1997-11-07 1999-05-25 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can body minimal in dispersion of flange length and its production
JP2002256366A (en) * 2001-02-27 2002-09-11 Kobe Steel Ltd Aluminum sheet for bottle
JP2003082429A (en) * 2001-09-11 2003-03-19 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP4205458B2 (en) * 2002-03-20 2009-01-07 株式会社神戸製鋼所 Aluminum-based hot rolled plate and can body plate using the same

Also Published As

Publication number Publication date
JP2006077310A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP4933725B2 (en) Manufacturing method of aluminum alloy plate for bottle can with excellent formability
JP2008274319A (en) Method for manufacturing aluminum alloy sheet for beverage can body
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP2009108342A (en) Aluminum alloy plate for forming, and its manufacturing method
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP2521330B2 (en) Manufacturing method of high formability aluminum alloy hard plate
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
TW202142705A (en) Method of fabricating high temperature resistant and impact resistant aluminum alloy
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JP2007270348A (en) Method for manufacturing body for automobile
JPH0941062A (en) Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPH04276047A (en) Production of hard aluminum alloy sheet for forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4933725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees