JP4932761B2 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP4932761B2
JP4932761B2 JP2008046986A JP2008046986A JP4932761B2 JP 4932761 B2 JP4932761 B2 JP 4932761B2 JP 2008046986 A JP2008046986 A JP 2008046986A JP 2008046986 A JP2008046986 A JP 2008046986A JP 4932761 B2 JP4932761 B2 JP 4932761B2
Authority
JP
Japan
Prior art keywords
hydraulic
vane member
housing
retard
advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008046986A
Other languages
Japanese (ja)
Other versions
JP2009203886A (en
Inventor
敏之 金子
孝太郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008046986A priority Critical patent/JP4932761B2/en
Publication of JP2009203886A publication Critical patent/JP2009203886A/en
Application granted granted Critical
Publication of JP4932761B2 publication Critical patent/JP4932761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は、内燃機関の吸気弁や排気弁である機関弁の開閉タイミングなどを運転状態に応じて可変制御する内燃機関のバルブタイミング制御装置に関する。   The present invention relates to a valve timing control device for an internal combustion engine that variably controls the opening / closing timing of an engine valve that is an intake valve or an exhaust valve of the internal combustion engine in accordance with an operating state.

従来の内燃機関のバルブタイミング制御装置としては種々提供されており、その一つとして、本出願人が先に出願した例えば以下の特許文献1に記載されたものが知られている。   Various conventional valve timing control devices for internal combustion engines are provided, and one of them is disclosed in, for example, the following Patent Document 1 previously filed by the present applicant.

このバルブタイミング制御装置は、機関のクランクシャフトあるいはカムシャフトの一方側と一体的に回転するハウジングと、前記ハウジング内に回転自在に収容され、前記クランクシャフトとカムシャフトの他方側と一体的に回転するベーン部材と、前記ベーン部材の径方向へ延びるベーンを介して前記ハウジング内に隔成された遅角油圧室及び進角油圧室と、前記遅角油圧室と進角油圧室に油圧を選択的に給排することにより、前記ハウジングとベーン部材の相対回動位相を遅角側あるいは進角側に変化させる第1油圧回路と、前記ベーン部材を相対回動位相の遅角側と進角側の中間位置で保持する保持機構と、該保持機構を油圧によって作動させる第2油圧回路と、を備えている。   This valve timing control device is a housing that rotates integrally with one side of the crankshaft or camshaft of the engine, and is rotatably accommodated within the housing, and rotates integrally with the crankshaft and the other side of the camshaft. The hydraulic pressure is selected for the vane member to be moved, the retarded hydraulic chamber and the advanced hydraulic chamber separated in the housing via the vane extending in the radial direction of the vane member, and the retarded hydraulic chamber and the advanced hydraulic chamber. A first hydraulic circuit that changes a relative rotation phase of the housing and the vane member to a retard side or an advance side by supplying and discharging in an automatic manner, and an advance angle of the vane member with respect to the retard side of the relative rotation phase. And a second hydraulic circuit that operates the holding mechanism with hydraulic pressure.

前記第1油圧回路は、その一部が前記カムシャフトのジャーナル部から内部軸方向に沿って形成されて、前記各遅角、進角油圧室にそれぞれ連通するようになっている。   A part of the first hydraulic circuit is formed from the journal portion of the camshaft along the internal axis direction, and communicates with each of the retard angle and advance angle hydraulic chambers.

一方、前記第2油圧回路は、その一部が前記ハウジングの前端側に挿通配置された通路構成部の内部に形成されて、前記保持機構に連通するようになっている。   On the other hand, a part of the second hydraulic circuit is formed inside a passage constituting part that is inserted and arranged on the front end side of the housing, and communicates with the holding mechanism.

そして、機関停止には、前記各油圧室や保持機構の各受圧室に油圧が供給されず、したがって、ベーン部材はハウジングに対して中間位相位置に保持された状態になり、機関を始動時にも前記保持機構による保持状態が維持される。   When the engine is stopped, the hydraulic pressure is not supplied to the hydraulic chambers or the pressure receiving chambers of the holding mechanism. Therefore, the vane member is held in an intermediate phase position with respect to the housing, and the engine is started even when the engine is started. The holding state by the holding mechanism is maintained.

その後、機関の定常運転に移行した場合は、前記第1、第2油圧回路から各油圧室や各受圧室への油圧の給排によって保持機構の保持状態が解除されて、ベーン部材がハウジングに対して正逆回転して相対回転位相を進角側あるいは遅角側へ変換するようになっている。
特開2006−9673号公報
Thereafter, when the engine shifts to steady operation, the holding state of the holding mechanism is released by the supply and discharge of the hydraulic pressure from the first and second hydraulic circuits to the hydraulic chambers and the pressure receiving chambers, and the vane member is moved to the housing. On the other hand, it rotates forward and backward to convert the relative rotational phase to the advance side or the retard side.
Japanese Patent Laid-Open No. 2006-9673

前記従来のバルブタイミング制御装置にあっては、第2油圧回路の一部が形成された通路構成部側ではシール部材によって十分なシール性が確保されているが、前記第1油圧回路の一部が形成されたカムシャフト側ではシール部材などが存在しないことから作動油のシール性が不十分になる。   In the conventional valve timing control device, a sufficient sealing performance is ensured by the seal member on the side of the passage forming part where a part of the second hydraulic circuit is formed, but a part of the first hydraulic circuit is provided. Since there is no seal member or the like on the camshaft side where the oil is formed, the sealing performance of the hydraulic oil becomes insufficient.

このため、前記第1油圧回路から各油圧室に供給される油圧がカムシャフト側の通路からリークし易くなり、前記各油圧室への油圧の供給応答性が低下する。この結果、前記ベーン部材の相対回転位相変換の応答性が低下して、機関運転状態の変化に即応することができなくなるおそれがある。   For this reason, the hydraulic pressure supplied from the first hydraulic circuit to each hydraulic chamber is likely to leak from the passage on the camshaft side, and the supply response of the hydraulic pressure to each hydraulic chamber is reduced. As a result, the responsiveness of the relative rotational phase conversion of the vane member is lowered, and there is a possibility that it cannot immediately respond to the change in the engine operating state.

本発明は、前記従来装置の技術的課題に鑑みて案出されたもので、請求項1記載の発明は、機関のクランクシャフトあるいはカムシャフトの一方側と一体的に回転するハウジングと、前記ハウジング内に回転自在に収容され、前記クランクシャフトとカムシャフトの他方側と一体的に回転するベーン部材と、前記ベーン部材の径方向へ延びるベーンを介して前記ハウジング内に隔成された遅角油圧室及び進角油圧室と、前記遅角油圧室と進角油圧室に油圧を選択的に給排することにより、前記ハウジングとベーン部材の相対回動位相を遅角側あるいは進角側に変化させる第1油圧回路と、前記ベーン部材を相対回動位相の遅角側と進角側の中間位置で規制するロック機構と、該ロック機構を油圧によって作動させる第2油圧回路と、を備え、前記第1油圧回路からリークする作動油の漏れ量が、前記第2油圧回路からリークする作動油の漏れ量よりも少なくなるように形成し、機関停止時には、前記ロック機構によってベーン部材を中間位置にロックすることを特徴としている。 The present invention has been devised in view of the technical problem of the conventional apparatus. The invention according to claim 1 is a housing that rotates integrally with one side of a crankshaft or a camshaft of an engine, and the housing. A retarding hydraulic pressure that is accommodated in the housing and is separated into the housing via a vane member that rotates integrally with the crankshaft and the other side of the camshaft, and a vane that extends in a radial direction of the vane member. The relative rotation phase of the housing and the vane member is changed to the retarded angle side or the advanced angle side by selectively supplying and discharging the hydraulic pressure to the chamber and the advanced hydraulic chamber, and the retarded hydraulic chamber and the advanced hydraulic chamber. A first hydraulic circuit, a lock mechanism that restricts the vane member at an intermediate position between a retard angle side and an advance angle side of a relative rotation phase, and a second hydraulic circuit that operates the lock mechanism with oil pressure, Serial amount of leakage of hydraulic fluid leaking from the first hydraulic circuit, said second hydraulic circuit is formed so as to be less than the amount of leakage of hydraulic fluid leaking from, when the engine is stopped, an intermediate position the vane member by the locking mechanism It is characterized by locking .

請求項2に記載の発明は、とりわけ、第1油圧回路の一部を、前記ハウジングの前記カムシャフトと反対側の前端側に形成された保持穴に嵌入保持された通路構成部の内部に形成すると共に、前記保持穴と通路構成部との間に、シール部材を設け、機関停止時には、前記ロック機構によってベーン部材を中間位置にロックすることを特徴としている。 According to the second aspect of the present invention, in particular, a part of the first hydraulic circuit is formed inside a passage component that is fitted and held in a holding hole formed on the front end side of the housing opposite to the camshaft. In addition, a seal member is provided between the holding hole and the passage component, and the vane member is locked at an intermediate position by the lock mechanism when the engine is stopped .

本発明によれば、前記遅角油圧室と進角油圧室とに油圧を選択的に供給する第1油圧回路の一部を通路構成部内に形成して、シール部材によって通路構成部から外部への油圧のリークを十分に防止することができるため、前記各油圧室への油圧の供給応答性の低下を抑制できる。この結果、前記ベーン部材の相対回転位相変換の応答性が向上して、機関運転状態の変化に即応することができる。   According to the present invention, a part of the first hydraulic circuit for selectively supplying the hydraulic pressure to the retard hydraulic chamber and the advanced hydraulic chamber is formed in the passage configuration portion, and the passage member from the passage configuration portion to the outside is formed by the seal member. Since the hydraulic pressure leakage can be sufficiently prevented, it is possible to suppress a decrease in the responsiveness of the hydraulic pressure supply to the hydraulic chambers. As a result, the responsiveness of the relative rotational phase conversion of the vane member is improved, and it is possible to immediately respond to changes in the engine operating state.

以下、本発明に係る内燃機関のバルブタイミング制御装置をベーンタイプのものに適用した実施形態を図面に基づいて説明する。   Hereinafter, an embodiment in which a valve timing control device for an internal combustion engine according to the present invention is applied to a vane type will be described with reference to the drawings.

図1〜図3は本発明の一実施形態を示し、機関のクランクシャフトによりタイミングチェーンを介して回転駆動される回転部材であるスプロケット1と、機関前後方向に沿って配置されて、前記スプロケット1に対して相対回動可能に設けられた吸気側のカムシャフト2と、前記スプロケット1とカムシャフト2との間に配置されて、該両者の相対回動位相を変換する位相変換機構3と、該位相変換機構3を作動させる第1油圧回路4と、を備えている。   1 to 3 show an embodiment of the present invention, and a sprocket 1 that is a rotating member that is rotationally driven by a crankshaft of an engine via a timing chain, and the sprocket 1 that is disposed along the longitudinal direction of the engine. A camshaft 2 on the intake side provided so as to be relatively rotatable, a phase conversion mechanism 3 disposed between the sprocket 1 and the camshaft 2 to convert the relative rotation phase between the two, And a first hydraulic circuit 4 for operating the phase conversion mechanism 3.

前記スプロケット1は、ほぼ肉厚円板状の本体5と、該本体5の外周一端部に一体に設けられて、前記タイミングチェーンが巻回された歯車部6を有している。前記本体5は、後述するハウジングの後端開口を閉塞するリアカバーとして構成され、外周部の円周方向所定位置に貫通孔5aが形成されている。   The sprocket 1 has a substantially thick disk-shaped main body 5 and a gear portion 6 that is integrally provided at one end of the outer periphery of the main body 5 and around which the timing chain is wound. The main body 5 is configured as a rear cover that closes a rear end opening of a housing, which will be described later, and a through hole 5a is formed at a predetermined position in the circumferential direction of the outer peripheral portion.

前記カムシャフト2は、図外のシリンダヘッドにカム軸受を介して回転自在に支持され、外周面には機関弁である吸気弁を開作動させる複数のカムが軸方向の位置に一体に固定されていると共に、一端部の内部軸心方向に雌ねじ孔2aが形成されている。   The camshaft 2 is rotatably supported by a cylinder head (not shown) via a cam bearing, and a plurality of cams for opening an intake valve, which is an engine valve, are integrally fixed to an axial position on the outer peripheral surface. In addition, a female screw hole 2a is formed in the inner axial direction of one end.

前記位相変換機構3は、図1及び図3に示すように、前記スプロケット1と一体に設けられたハウジング7と、前記カムシャフト2の一端部の雌ねじ孔2aに螺着するカムボルト8を介して固定されて、前記ハウジング7内に回転自在に収容されたベーン部材9と、前記ハウジング7内に形成されて、該ハウジング7の内周面に有する3つの隔壁部10とベーン部材9とによって隔成されたそれぞれ3つの遅角油圧室11及び進角油圧室12と、を備えている。   As shown in FIGS. 1 and 3, the phase conversion mechanism 3 includes a housing 7 provided integrally with the sprocket 1 and a cam bolt 8 that is screwed into a female screw hole 2 a at one end of the camshaft 2. The vane member 9 is fixed and rotatably accommodated in the housing 7, and the three partition walls 10 formed on the inner peripheral surface of the housing 7 and the vane member 9 are separated by the vane member 9. Each of the three retarded hydraulic chambers 11 and the advanced hydraulic chamber 12 is provided.

前記ハウジング7は、円筒状のハウジング本体と、該ハウジング本体の前端開口を閉塞するフロントカバー13と、後端開口を閉塞する前記スプロケット本体5とからなり、ハウジング本体とフロントカバー13及びスプロケット本体5とは、前記隔壁部10を貫通する3本のボルト14によって共締め固定されている。前記フロントカバー13は、中央の外面に円筒部13aが一体に設けられている。   The housing 7 includes a cylindrical housing body, a front cover 13 that closes a front end opening of the housing body, and the sprocket body 5 that closes a rear end opening. The housing body, the front cover 13, and the sprocket body 5 Are fixed together by three bolts 14 penetrating the partition wall 10. The front cover 13 is integrally provided with a cylindrical portion 13a on a central outer surface.

前記ベーン部材9は、図1及び図3に示すように金属材によって一体に形成され、カムシャフト2の一端部にカムボルト8によって固定されたベーンロータ15と、該ベーンロータ15の外周面に円周方向のほぼ120°等間隔位置に放射状に突設された3つのベーン16とから構成されている。   The vane member 9 is integrally formed of a metal material as shown in FIGS. 1 and 3, and the vane rotor 15 is fixed to one end portion of the camshaft 2 by a cam bolt 8. The vane member 9 is circumferentially disposed on the outer peripheral surface of the vane rotor 15. And three vanes 16 projecting radially at approximately 120 ° equidistant positions.

前記ベーンロータ15は、ほぼ円筒状に形成され、前端面15bのほぼ中央位置に薄肉な段差小径な円筒状の支持部15aが一体に設けられており、この支持部15aの外面と前端面15bとによって前記フロントカバー13を回転自在に支持している。一方、前記ベーン16は、それぞれが各隔壁部10の間に配置されていると共に、外周面にハウジング本体の内面との間をシールするシール部材17がそれぞれ設けられている。   The vane rotor 15 is formed in a substantially cylindrical shape, and a thin cylindrical step portion 15a having a small step is provided at a substantially central position of the front end surface 15b. The outer surface of the support portion 15a and the front end surface 15b Thus, the front cover 13 is rotatably supported. On the other hand, each of the vanes 16 is disposed between the partition walls 10, and a seal member 17 is provided on the outer peripheral surface for sealing between the inner surface of the housing body.

また、前記各ベーン16の正逆回転方向の両側面と各隔壁部13の両側面との間に、前述した各遅角油圧室11と各進角油圧室12が隔成されており、各遅角油圧室11と各進角油圧室12とは、前記ベーンロータ15の内部にほぼ放射状に形成された第1連通孔11aと第2連通孔12aによって同じ油圧室同士がそれぞれ連通されている。   Further, the retard hydraulic chambers 11 and the advance hydraulic chambers 12 described above are defined between both side surfaces of the vanes 16 in the forward / reverse rotation direction and both side surfaces of the partition walls 13, respectively. The retarded hydraulic chamber 11 and each advanced hydraulic chamber 12 are in communication with each other through the first communicating hole 11a and the second communicating hole 12a formed substantially radially inside the vane rotor 15, respectively.

前記第1油圧回路4は、前記各遅角、進角油圧室11,12に対して油圧を選択的に供給あるいは排出するもので、図1に示すように、各遅角油圧室11に対して第1連通路11aを介して油圧を給排する遅角油通路18と、各進角油圧室12に対して第2連通路12aを介して油圧を給排する進角油通路19と、該各通路18,19に作動油(油圧)を選択的に供給するオイルポンプ20と、機関運転状態に応じて前記遅角油通路18と進角油通路19の流路を切り換える給排制御手段である第1電磁切換弁21とを備えている。前記オイルポンプ20は、機関のクランクシャフトによって回転駆動するトロコイドポンプなどの一般的なものである。   The first hydraulic circuit 4 selectively supplies or discharges hydraulic pressure to or from each of the retard angle and advance angle hydraulic chambers 11 and 12, and as shown in FIG. A retard oil passage 18 that supplies and discharges hydraulic pressure via the first communication passage 11a, an advance oil passage 19 that supplies and discharges hydraulic pressure to and from each advance hydraulic chamber 12 via the second communication passage 12a, An oil pump 20 that selectively supplies hydraulic oil (hydraulic pressure) to each of the passages 18 and 19, and a supply / discharge control means that switches between the retard oil passage 18 and the advance oil passage 19 according to the engine operating state. The first electromagnetic switching valve 21 is provided. The oil pump 20 is a general one such as a trochoid pump that is rotationally driven by an engine crankshaft.

前記遅角油通路18と進角油通路19とは、それぞれの一端部が前記第1電磁切換弁21に接続されている一方、他端側が前記ベーン部材9のベーンロータ15の内部及び支持部15a内に挿通保持されたほぼ円柱状の通路構成部37内に軸方向に沿って平行に形成された通路部18a、19aと前記第1,第2連通路11a、12aとを介して前記各遅角油圧室11と各進角油圧室12にそれぞれ連通している。   Each of the retard oil passage 18 and the advance oil passage 19 has one end connected to the first electromagnetic switching valve 21 and the other end inside the vane rotor 15 of the vane member 9 and a support portion 15a. Each of the slow passages is formed through passage portions 18a and 19a formed in parallel in the axial direction in a substantially cylindrical passage constitution portion 37 inserted and held therein and the first and second communication passages 11a and 12a. The angular hydraulic chamber 11 and each advance hydraulic chamber 12 communicate with each other.

また、前記通路構成部37の外周面の軸方向の前後位置には、円環状の嵌着溝が形成されていると共に、該各嵌着溝に、前記各通路部18a、19aと第1、第2連通路11a、12aとの間をシールする2つのシール部材41a、41bが嵌着固定されている。   In addition, annular fitting grooves are formed at axially front and rear positions of the outer peripheral surface of the passage constituting portion 37, and the passage portions 18a, 19a and the first, Two sealing members 41a and 41b that seal between the second communication passages 11a and 12a are fixedly fitted.

前記第1電磁切換弁21は、図1に示すように、4ポート3位置の比例型弁であって、図外の電子コントローラによって、バルブボディ内に軸方向へ摺動自在に設けられたスプール弁体を前後方向に移動させて、オイルポンプ20の吐出通路20aと前記いずれかの油通路18,19と連通させると同時に、該他方の油通路18,19とドレン通路22とを連通させるようになっている。なお、オイルポンプ20の吸入通路とドレン通路22とはオイルパン23内に連通している。   As shown in FIG. 1, the first electromagnetic switching valve 21 is a 4-port 3-position proportional valve, and is a spool that is slidable in the axial direction in the valve body by an electronic controller (not shown). The valve body is moved in the front-rear direction so that the discharge passage 20a of the oil pump 20 communicates with one of the oil passages 18 and 19, and at the same time the other oil passage 18 and 19 and the drain passage 22 communicate with each other. It has become. The suction passage and the drain passage 22 of the oil pump 20 communicate with the oil pan 23.

前記コントローラは、内部のコンピュータが図外のクランク角センサ(機関回転数検出)やエアーフローメータ、水温センサ、スロットルバルブ開度センサおよびカムシャフト2の現在の回転位相を検出するカム角センサなどの各種センサ類からの情報信号を入力して現在の機関運転状態を検出すると共に、第1電磁切換弁21や後述する第2電磁切換弁36の各電磁コイルに制御パルス電流を出力するようになっている。   The controller includes a crank angle sensor (engine speed detection), an air flow meter, a water temperature sensor, a throttle valve opening sensor, and a cam angle sensor that detects the current rotation phase of the camshaft 2. Information signals from various sensors are input to detect the current engine operating state, and a control pulse current is output to each electromagnetic coil of the first electromagnetic switching valve 21 and a second electromagnetic switching valve 36 described later. ing.

そして、この実施形態では、図1、図3に示すように、ハウジング7に対してベーン部材9を最遅角側と最進角側の中間回転位相位置に保持する保持機構が設けられている。この保持機構は、前記スプロケット本体5の内側面の円周方向の所定位置に形成された第1、第1係合部である第1、第2係合溝24,25と、前記ベーン部材9の2つのベーン16,16の内部に設けられて、前記各係合溝24,25にそれぞれ係脱する第1、第2突出部である第1、第2係合ピン26,27と、該各係合ピン26,27を各係合溝24,25に対して係合あるいは係合を解除する第2油圧回路28とを備えている。   In this embodiment, as shown in FIGS. 1 and 3, a holding mechanism that holds the vane member 9 at the intermediate rotational phase position between the most retarded angle side and the most advanced angle side with respect to the housing 7 is provided. . The holding mechanism includes first and second engaging grooves 24 and 25 which are first and first engaging portions formed at predetermined positions in the circumferential direction on the inner surface of the sprocket body 5, and the vane member 9. First and second engaging pins 26 and 27 which are first and second projecting portions provided inside the two vanes 16 and 16 and engaged with and disengaged from the engaging grooves 24 and 25, respectively. A second hydraulic circuit 28 for engaging or releasing the engagement pins 26 and 27 with respect to the engagement grooves 24 and 25 is provided.

前記第1係合溝24は、スプロケット本体5の内側面の前記ベーン部材9の最遅角側の回転位置よりも進角側に寄った位置に対応した位置に形成されて、その内径が模式的な図6に示すように、前記第1係合ピン26の先端部26bの外径よりも大きく形成されて、ここに係合された第1係合ピン26がベーン部材9の円周方向へ僅かに移動可能になっている。 The first engagement groove 24 is formed at a position corresponding to a position closer to the advance side than the rotation position of the vane member 9 on the inner side surface of the sprocket body 5 with respect to the advance angle side. As shown in FIG. 6, the first engagement pin 26 formed larger than the outer diameter of the tip end portion 26 b of the first engagement pin 26 is engaged with the vane member 9 in the circumferential direction. It is possible to move slightly.

前記第2係合溝25は、図6に示すように、その形成位置が同じくベーン部材9の最遅角側の回転位置よりも進角側に寄った位置、つまり第1係合ピン26が第1係合溝24に係合された位置で第2係合ピン27が係合される位置に形成され、内周面25aが断面ほぼ台形状のテーパ面に形成されている。また、この第2係合溝25は、内部が前記溝形成部の底壁に穿設された油孔25bと分岐路19bとを介して前記進角油通路19に連通している。   As shown in FIG. 6, the second engagement groove 25 is formed at a position where the formation position is closer to the advance side than the rotation position on the most retarded side of the vane member 9, that is, the first engagement pin 26. The second engagement pin 27 is formed at a position engaged with the first engagement groove 24, and the inner peripheral surface 25a is formed in a tapered surface having a substantially trapezoidal cross section. The second engagement groove 25 communicates with the advance oil passage 19 through an oil hole 25b formed in the bottom wall of the groove forming portion and a branch passage 19b.

前記第1係合ピン26は、一つのベーン16の内部軸方向に貫通形成された第1ピン孔16a内に摺動自在に配置され、基端部の外周面に受圧部となる第1大径部26aが一体に形成されていると共に、ほぼ円柱状の先端部26bの外周面が該第1係合ピン26の摺動方向と平行な平行面に形成され、その先端面が平坦に形成されている。また、この第1係合ピン26は、基端部側の凹溝底面とフロントカバー13の内面との間に弾装された付勢手段である第1スプリング29のばね力によって第1係合溝24に係合する方向へ付勢されている。   The first engagement pin 26 is slidably disposed in a first pin hole 16a formed so as to penetrate in the inner axial direction of one vane 16, and a first large pin serving as a pressure receiving portion on the outer peripheral surface of the base end portion. The diameter portion 26a is integrally formed, and the outer peripheral surface of the substantially cylindrical tip portion 26b is formed in a parallel plane parallel to the sliding direction of the first engagement pin 26, and the tip surface is formed flat. Has been. Further, the first engagement pin 26 is first engaged by the spring force of the first spring 29 which is an urging means elastically mounted between the bottom surface of the groove on the base end side and the inner surface of the front cover 13. It is biased in a direction to engage with the groove 24.

前記第2係合ピン27は、他のベーン16の内部軸方向に貫通形成された第2ピン孔16b内に摺動自在に配置され、基端部の外周面に受圧部となる第2大径部27aが一体に形成されていると共に、先端部27bが前記第2係合溝25とほぼ同形の断面ほぼ台形状のテーパ面に形成されている。また、この先端部27bの外径は、第2係合溝25の内径よりも小さく形成されて遊嵌状態に係合して、ベーン部材9が僅かに回転可能になっている。また、この第2係合ピン27は、基端部側の凹溝底面とフロントカバー13の内面との間に弾装された付勢手段である第2スプリング30のばね力によって第2係合溝25に係合する方向へ付勢されている。   The second engagement pin 27 is slidably disposed in a second pin hole 16b formed penetrating in the direction of the internal axis of the other vane 16, and a second large pin serving as a pressure receiving portion on the outer peripheral surface of the base end portion. The diameter portion 27 a is integrally formed, and the tip end portion 27 b is formed on a tapered surface having a substantially trapezoidal cross section substantially the same shape as the second engagement groove 25. Further, the outer diameter of the distal end portion 27b is formed smaller than the inner diameter of the second engagement groove 25 and is engaged in a loosely fitted state, so that the vane member 9 can be slightly rotated. The second engagement pin 27 is engaged with the second engagement pin 27 by the spring force of the second spring 30 which is an urging means elastically mounted between the bottom surface of the groove on the base end side and the inner surface of the front cover 13. It is biased in a direction to engage with the groove 25.

前記第2油圧回路28は、図1及び図6に記載されているように、前記第1、第2ピン孔16a、16bの前記第1、第2スプリング29、30が収容された空間部に形成された第1押込用受圧室31a及び第2押込用受圧室31bと、第1ピン孔16aの段差部と第1係合ピン26の第1大径部26aとの間に形成された第1解除用受圧室32と、第2ピン孔16bの段差部と第2係合ピン27の第2大径部27aとの間に形成された第2解除用受圧室33と、第1、第2押込用受圧室31a、31bと第2解除用受圧室33に対して前記オイルポンプ20から吐出通路20aの分岐通路20bから油圧を選択的に供給、あるいはドレン通路22を介して排出する第1、第2給排通路34,35と、機関の状態に応じて前記第1、第2給排通路34,35を切り換える第2電磁切換弁36とを備えている。   As shown in FIGS. 1 and 6, the second hydraulic circuit 28 is formed in a space portion in which the first and second springs 29 and 30 of the first and second pin holes 16 a and 16 b are accommodated. The first pressing pressure receiving chamber 31a and the second pressing pressure receiving chamber 31b that are formed, and a step formed between the stepped portion of the first pin hole 16a and the first large diameter portion 26a of the first engaging pin 26 are provided. A first release pressure receiving chamber 32; a second release pressure receiving chamber 33 formed between the step portion of the second pin hole 16b and the second large diameter portion 27a of the second engagement pin 27; The hydraulic pressure is selectively supplied from the oil pump 20 through the branch passage 20b of the discharge passage 20a to the two-pressing pressure receiving chambers 31a, 31b and the second release pressure receiving chamber 33, or is discharged through the drain passage 22. , The second supply / discharge passages 34 and 35 and the first and second supply / discharge passages according to the state of the engine. And a second electromagnetic switching valve 36 for switching the road 34, 35.

前記第1押込用受圧室31aは、第2電磁切換弁36を介して吐出通路20aから後述する第1油通路孔38aを介して内部に供給された油圧と第1スプリング29のばね力との合成力により前記第1係合ピン26を第1係合溝24方向へ押し込むようになっている。前記第2押込用受圧室31bは、前記吐出通路20aから後述の第2油通路孔38bを介して内部に供給された油圧と第2スプリング30のばね力との合成力により第2係合ピン27を第2係合溝25方向へ押し込むようになっている。   The first pushing pressure receiving chamber 31 a is formed by the hydraulic pressure supplied from the discharge passage 20 a through the second electromagnetic switching valve 36 through the first oil passage hole 38 a described later and the spring force of the first spring 29. The first engaging pin 26 is pushed in the direction of the first engaging groove 24 by the combined force. The second pushing pressure receiving chamber 31b has a second engagement pin by a combined force of the hydraulic pressure supplied from the discharge passage 20a through a second oil passage hole 38b described later and the spring force of the second spring 30. 27 is pushed in the direction of the second engagement groove 25.

一方、第1解除用受圧室32と前記第2解除用受圧室33は、遅角油圧室11や進角油圧室12への供給油圧と一緒に内部にそれぞれ供給された油圧によって、第1、第2係合ピン26,27を各スプリング29,30のばね力に抗して第1、第2係合溝24,25から後退させてそれぞれの係合を解除するようになっている。   On the other hand, the first release pressure receiving chamber 32 and the second release pressure receiving chamber 33 are provided with the first and second release pressure receiving chambers 33 by the hydraulic pressure supplied to the retard hydraulic chamber 11 and the advanced hydraulic chamber 12 respectively. The second engagement pins 26 and 27 are retracted from the first and second engagement grooves 24 and 25 against the spring force of the springs 29 and 30 to release the respective engagements.

前記第1、第2給排通路34,35は、各一端側が前記第2電磁切換弁36の対応する通路孔に接続されている一方、他端側の第1、第2給排通路部34a、35aが前記カムシャフト2の一端部の内部軸方向に平行に形成されている。また、前記ベーンロータ15の内部には、前記第1給排通路部34aと前記第1押込用受圧室31aとを連通する前記第1油通路孔38aが形成されていると共に、第1給排通路部34aと第2押込用受圧室31bとを連通する前記第2油通路孔38bが形成されている。   Each of the first and second supply / discharge passages 34 and 35 is connected at one end side to a corresponding passage hole of the second electromagnetic switching valve 36, while the first and second supply / discharge passage portions 34a on the other end side. , 35a are formed in parallel to the internal axial direction of one end of the camshaft 2. The vane rotor 15 has a first oil passage hole 38a communicating with the first supply / discharge passage portion 34a and the first pushing pressure receiving chamber 31a, and a first supply / discharge passage. The second oil passage hole 38b is formed to communicate the portion 34a and the second pushing pressure receiving chamber 31b.

一方、前記第2給排通路部35aと第2解除用受圧室33とを連通する第3油通路孔39が形成されている。また、前記第1解除用受圧室32には、前記遅角油圧室11に給排される油圧がベーン部材9の内部に形成された油孔40を介して給排されるようになっている。   On the other hand, a third oil passage hole 39 that connects the second supply / discharge passage portion 35a and the second release pressure receiving chamber 33 is formed. The first release pressure receiving chamber 32 is configured to supply and discharge hydraulic pressure supplied to and discharged from the retard hydraulic chamber 11 through an oil hole 40 formed in the vane member 9. .

前記第2電磁切換弁36は、4ポート3位置の比例型弁であって、前記電子コントローラから出力された制御電流(オン−オフ)や内部のバルブスプリングのばね力によってスプール弁体により、前記第1,第2給排通路34,35と前記吐出通路20a及びドレン通路22とを適宜選択的に連通させるようになっている。   The second electromagnetic switching valve 36 is a four-port, three-position proportional valve, and is controlled by a spool valve body by a control current (on-off) output from the electronic controller or a spring force of an internal valve spring. The first and second supply / discharge passages 34 and 35 are connected to the discharge passage 20a and the drain passage 22 selectively as appropriate.

また、第1係合溝24は、図6に示すように、ベーン部材9の内部に形成された導入孔42を介して前記進角油圧室12と連通しており、前記導入孔42は、第1係合溝24に対して円周方向に沿って開口形成され、ここに供給された油圧によって係合状態にある第1係合ピンの先端部26bの外面を第1係合溝24の内面に径方向(スプロケット本体5の円周方向)から押し付ける押圧機構として機能するようになっている。 Further, as shown in FIG. 6, the first engagement groove 24 communicates with the advance hydraulic chamber 12 via an introduction hole 42 formed inside the vane member 9, An opening is formed along the circumferential direction with respect to the first engagement groove 24, and the outer surface of the distal end portion 26 b of the first engagement pin that is engaged by the hydraulic pressure supplied thereto is formed on the outer surface of the first engagement groove 24. It functions as a pressing mechanism that presses against the inner surface from the radial direction (circumferential direction of the sprocket body 5) .

さらに、前記ベーン部材9の支持部15aの外周側には、図1に示すように、ベーン部材9を遅角側から中間位相方向へ回転付勢する捩りばね43が装着されており、この捩りばね43は、一端43aが前記フロントカバー13の円筒部13aに形成された係止孔に係止され、他端43bがベーンロータ15に形成された円周方向の長孔15cに係止されている(図3参照)。   Further, on the outer peripheral side of the support portion 15a of the vane member 9, as shown in FIG. 1, a torsion spring 43 that urges the vane member 9 to rotate in the intermediate phase direction from the retard side is mounted. One end 43 a of the spring 43 is locked in a locking hole formed in the cylindrical portion 13 a of the front cover 13, and the other end 43 b is locked in a circumferential long hole 15 c formed in the vane rotor 15. (See FIG. 3).

なお、前記フロントカバー13の円筒部13aの開口端側の内周には、前記捩りばね43の一端側を保持するリング部材44が嵌着固定されている。   A ring member 44 that holds one end of the torsion spring 43 is fitted and fixed to the inner periphery of the cylindrical portion 13a of the front cover 13 on the opening end side.

以下、本実施形態の作用を図3〜図5及び図6〜13に基づいて説明する。   Hereinafter, the operation of the present embodiment will be described with reference to FIGS. 3 to 5 and FIGS.

まず、機関が停止している状態では、オイルポンプ20が駆動していないので、図6に示すように、各油圧室11,12や第1係合溝24及び各受圧室31〜33内には油圧が供給されることなく、したがって、第1、第2係合ピン26,27は、各スプリング29,30のばね力によってその先端部26b、27bがそれぞれ第1、第2係合溝24,25内に係合状態になっている。   First, in a state where the engine is stopped, the oil pump 20 is not driven. Therefore, as shown in FIG. 6, the oil pumps 11 and 12, the first engagement grooves 24, and the pressure receiving chambers 31 to 33 are placed in the respective hydraulic chambers. No hydraulic pressure is supplied to the first and second engagement pins 26 and 27. Therefore, the distal ends 26b and 27b of the first and second engagement pins 26 and 27 are respectively brought into the first and second engagement grooves 24 by the spring force of the springs 29 and 30, respectively. , 25 are engaged.

また、この状態における第1電磁切換弁21は、スプール弁体がスプリングのばね力で最大一方向の摺動位置に保持されて吐出通路20aと進角油通路19とを連通させ、遅角油通路18とドレン通路22とを連通している。一方、第2電磁切換弁36は、スプール弁体がスプリングのばね力で最大一方向の摺動位置に保持されて吐出通路20aと第1給排通路34を連通し、第2給排通路35とドレン通路2を連通している。   Further, in this state, the first electromagnetic switching valve 21 is such that the spool valve body is held at the sliding position in the maximum one direction by the spring force of the spring, and the discharge passage 20a and the advance oil passage 19 are communicated with each other. The passage 18 and the drain passage 22 communicate with each other. On the other hand, in the second electromagnetic switching valve 36, the spool valve body is held in the sliding position in the maximum one direction by the spring force of the spring, and the discharge passage 20a and the first supply / discharge passage 34 are communicated with each other. And the drain passage 2 communicate with each other.

したがって、機関始動する際に、イグニッションスイッチをオン操作すると、図7に示すように、その直後の機関の初爆(クランキング開始)によってオイルポンプ20が駆動してその吐出油圧が、第1給排通路34などを介して第1、第2押込用受圧室31a、31bと進角油圧室12及び導入孔42を介して第1係合溝24内に供給される。このため、第1係合ピン26と第2係合ピン27は、第1、第2押込用受圧室31a、31b内の油圧と第1,第2スプリング29、30のばね力との合成力によって第1、第2係合溝24、25内で係合状態が維持されている。   Therefore, when the ignition switch is turned on when the engine is started, as shown in FIG. 7, the oil pump 20 is driven by the first explosion (start of cranking) immediately after that, and the discharge hydraulic pressure is changed to the first supply pressure. The first and second pressure receiving chambers 31a and 31b, the advance hydraulic chamber 12 and the introduction hole 42 are supplied into the first engagement groove 24 through the discharge passage 34 and the like. For this reason, the first engagement pin 26 and the second engagement pin 27 are combined force of the hydraulic pressure in the first and second pressure receiving chambers 31a and 31b and the spring force of the first and second springs 29 and 30. Thus, the engaged state is maintained in the first and second engaging grooves 24 and 25.

続いて、クランキングが完了してアイドリング運転が開始される直前では、図8に示すように、今度は第2電磁切換弁36に電子コントローラから制御電流が出力されて、スプール弁体が他方向に摺動して第1給排通路34をドレン通路22と連通させ、第2給排通路35と吐出通路20aとを連通路させる。このため、第1、第2押込用受圧室31a、31b内が低圧になる一方、第2解除用受圧室33が高圧になると共に、進角油圧室19の油圧が分岐路19aを介して第2係合溝25内に供給されて高圧になり、これにより、第2係合ピン27が第2係合溝25からスムーズに退出して係合が解除される。   Subsequently, immediately before the cranking is completed and the idling operation is started, as shown in FIG. 8, the control current is output from the electronic controller to the second electromagnetic switching valve 36, and the spool valve body is moved in the other direction. The first supply / discharge passage 34 communicates with the drain passage 22 and the second supply / discharge passage 35 communicates with the discharge passage 20a. For this reason, the pressure in the first and second pressure receiving chambers 31a and 31b becomes low, while the pressure in the second release pressure receiving chamber 33 becomes high, and the hydraulic pressure in the advance hydraulic chamber 19 passes through the branch passage 19a. 2 is supplied into the engagement groove 25 and becomes a high pressure, whereby the second engagement pin 27 smoothly retracts from the second engagement groove 25 and the engagement is released.

一方、第1係合ピン26は、導入孔42からの径方向からの油圧によって先端部26bの外面の一部が、矢印で示すように、第1係合溝24の内面に径方向から強く圧接し、その摩擦抵抗によって第1係合溝24内に強固に係合保持される。   On the other hand, the first engagement pin 26 has a portion of the outer surface of the tip end portion 26b that is strongly against the inner surface of the first engagement groove 24 from the radial direction by the hydraulic pressure from the introduction hole 42 in the radial direction. The first engagement groove 24 is firmly engaged and held by the frictional resistance.

このとき、第1係合ピン26は、平坦な先端面が第1係合溝24の底面に密着状態に当接していることから、導入孔42から導入された油圧は、第1係合ピン26を解除させる方向へは力が働かない。   At this time, since the flat front end surface of the first engagement pin 26 is in close contact with the bottom surface of the first engagement groove 24, the hydraulic pressure introduced from the introduction hole 42 is No force acts in the direction to release 26.

また、この機関始動時は、前述のように、両方あるいは一方の係合ピン26,27が各係合溝24,25に係合していることから、ベーン部材9は、図3に示すように、最遅角位相と最進角位相の中間位相位置に確実に保持されている。したがって、かかる機関の始動性が良好になる。   Further, at the time of starting the engine, as described above, both or one of the engaging pins 26 and 27 are engaged with the engaging grooves 24 and 25, so that the vane member 9 is as shown in FIG. In addition, the intermediate phase position between the most retarded angle phase and the most advanced angle phase is reliably held. Therefore, the startability of such an engine is improved.

次に、アイドリング運転に移行した場合は、図9に示すように、第2電磁切換弁36はそのままであるが、今度は電子コントローラから第1電磁切換弁21に制御電流が出力されてスプール弁体を他方側へ僅かに移動させて、進角油通路19を閉止して進角油圧室12内に油圧を保持すると共に、吐出通路20aと遅角油通路18とを連通する。   Next, in the case of shifting to idling operation, as shown in FIG. 9, the second electromagnetic switching valve 36 remains as it is, but this time, a control current is output from the electronic controller to the first electromagnetic switching valve 21, and the spool valve The body is moved slightly to the other side, the advance oil passage 19 is closed to hold the oil pressure in the advance oil pressure chamber 12, and the discharge passage 20a and the retard oil passage 18 are communicated.

このため、遅角油圧室11に油圧が供給されて高圧になり、ベーン部材9が遅角位相側へ僅かに回転し、これによって、第1係合ピン26が第1係合溝24内で同方向に移動しての先端部26bの外面と第1係合溝24の内面と圧接が解除される。   For this reason, the hydraulic pressure is supplied to the retarded hydraulic chamber 11 to increase the pressure, and the vane member 9 slightly rotates to the retarded phase side, whereby the first engagement pin 26 is moved in the first engagement groove 24. The pressure contact between the outer surface of the tip end portion 26b and the inner surface of the first engagement groove 24 after moving in the same direction is released.

同時に、第1解除用受圧室32に油孔40を介して油圧が供給されて、該受圧室32が高圧になり、これによって、第1係合ピン26は、第1係合溝24からスムーズに退出して係合が解除される。このため、ベーン部材9は、正逆方向の自由な回転が可能になる。   At the same time, the hydraulic pressure is supplied to the first release pressure receiving chamber 32 through the oil hole 40, and the pressure receiving chamber 32 becomes high pressure. As a result, the first engagement pin 26 smoothly moves from the first engagement groove 24. And the engagement is released. For this reason, the vane member 9 can freely rotate in the forward and reverse directions.

その後、例えば機関低回転低負荷域に移行した場合は、図10に示すように、第1電磁切換弁21にさらに大きな制御電流が出力されて、スプール弁体が進角油通路19とドレン通路22が連通され、遅角油通路18と吐出通路20aが連通状態を維持する。これによって、図4に示すように、進角油圧室12内の油圧が排出されて低圧になる一方、遅角油圧室11が高圧になって、ハウジング7に対してベーン部材9を最遅角側に回転させる。したがって、スプロケット1に対してカムシャフト2が最遅角側の回転位相に変換される。   Thereafter, for example, when the engine shifts to a low engine speed and low load range, as shown in FIG. 10, a larger control current is output to the first electromagnetic switching valve 21, and the spool valve body is moved to the advance oil passage 19 and the drain passage. 22, the retarded oil passage 18 and the discharge passage 20a maintain the communication state. As a result, as shown in FIG. 4, the hydraulic pressure in the advance hydraulic chamber 12 is discharged and becomes low pressure, while the retard hydraulic chamber 11 becomes high pressure, and the vane member 9 is moved to the most retarded angle with respect to the housing 7. Rotate to the side. Therefore, the camshaft 2 is converted into the most retarded rotational phase with respect to the sprocket 1.

これにより、吸排気弁のバルブオーバーラップが小さくなり、シリンダ内での残留ガスが減少して燃焼効率が向上し、機関回転の安定化と燃費の向上が図れる。   As a result, the valve overlap of the intake and exhaust valves is reduced, the residual gas in the cylinder is reduced, the combustion efficiency is improved, the engine rotation is stabilized, and the fuel efficiency is improved.

また、例えば機関高回転高負荷域に移行すると、図11に示すように、第1電磁切換弁21により遅角油通路18とドレン通路22が連通されて遅角油圧室11が低圧になる一方、吐出通路20aと進角油通路19及び第2係合溝25が連通されて進角油圧室12と第2係合溝25が高圧になる。このため、第2係合ピン27は、第2スプリング30のばね力に抗して後退位置を維持していると共に、ベーン部材9は、図5に示すように、ハウジング7に対して最進角側に回転してさせる。これにより、カムシャフト2が最進角側の回転位相に変換される。   Further, for example, when the engine shifts to a high engine speed and high load range, as shown in FIG. 11, the retarded oil passage 18 and the drain passage 22 are communicated with each other by the first electromagnetic switching valve 21, and the retarded hydraulic chamber 11 becomes low pressure. The discharge passage 20a, the advance oil passage 19 and the second engagement groove 25 communicate with each other, and the advance hydraulic chamber 12 and the second engagement groove 25 become high pressure. Therefore, the second engagement pin 27 maintains the retracted position against the spring force of the second spring 30, and the vane member 9 is most advanced with respect to the housing 7 as shown in FIG. Rotate to the corner side. Thereby, the camshaft 2 is converted into the rotational phase on the most advanced angle side.

したがって、バルブオーバーラップが大きくなって、吸気の充填効率が高くなり、機関の出力トルクの向上が図れる。   Therefore, the valve overlap is increased, the intake charging efficiency is increased, and the output torque of the engine can be improved.

このように、カムシャフト2の遅角、進角位相への変換は、機関運転状態に応じて任意に設定することが可能になる。   As described above, the conversion of the camshaft 2 into the retard angle and advance angle phase can be arbitrarily set according to the engine operating state.

さらに、機関を停止する際には、停止前の時点では、通常はアイドリング状態になるから、ベーン部材9が図9に示すほぼ中間回転位置に戻されている。この状態でイグニッションスイッチをオフ操作すると、図12に示すように、機関の回転が完全に停止する前のいまだ僅かに回転している段階で、第1電磁切換弁21のスプール弁体を中間位置に保持して遅角油通路18と進角油通路19とを閉止すると共に、第2電磁切換弁36が第2給排通路35と吐出通路20aを連通させる。   Further, when the engine is stopped, the vane member 9 is returned to the substantially intermediate rotational position shown in FIG. When the ignition switch is turned off in this state, as shown in FIG. 12, the spool valve body of the first electromagnetic switching valve 21 is moved to the intermediate position at a stage where the rotation of the engine is still slightly before completely stopping. The retard oil passage 18 and the advance oil passage 19 are closed while the second electromagnetic switching valve 36 connects the second supply / discharge passage 35 and the discharge passage 20a.

さらに、機関を停止する際には、停止前の時点では、通常はアイドリング状態になるから、ベーン部材9が、図に示すほぼ中間回転位置に戻されている。この状態でイグニッションスイッチをオフ操作すると、図12に示すように、機関の回転が完全に停止する前のいまだ僅かに回転している段階で、第1電磁切換弁21のスプール弁体を中間位置に保持して遅角油通路18と進角油通路19とを閉止すると共に、第2電磁切換弁36が第2給排通路35と吐出通路20aを連通させる。 Further, when stopping the engine, at the time of the previous stop, because usually becomes idle, the vane member 9 has returned to almost the intermediate rotational position shown in FIG. When the ignition switch is turned off in this state, as shown in FIG. 12, the spool valve body of the first electromagnetic switching valve 21 is moved to the intermediate position at a stage where the rotation of the engine is still slightly before completely stopping. The retard oil passage 18 and the advance oil passage 19 are closed while the second electromagnetic switching valve 36 connects the second supply / discharge passage 35 and the discharge passage 20a.

その後、機関が完全に停止する直前では、図13に示すように、第1電磁切換弁21によって進角油圧室12に油圧が供給されて高圧になり、これによって、ベーン部材9は、第1係合ピン26の第1係合溝24での移動範囲内において進角側へ回転する。したがって、第2係合ピン27は、先端部27bが第2係合溝25と合致した時点で第2スプリング30のばね力によって該第2係合溝25内に係合して、初期の移動位置(図6の中間位置)に保持される。   Thereafter, immediately before the engine is completely stopped, as shown in FIG. 13, the hydraulic pressure is supplied to the advance hydraulic chamber 12 by the first electromagnetic switching valve 21 to increase the pressure, whereby the vane member 9 is Within the range of movement of the engagement pin 26 in the first engagement groove 24, it rotates to the advance side. Therefore, the second engagement pin 27 is engaged with the second engagement groove 25 by the spring force of the second spring 30 when the tip end portion 27b matches the second engagement groove 25, and the initial movement is performed. It is held at the position (intermediate position in FIG. 6).

以上のように、本実施形態では、機関の始動時において両係合ピン26,27を解除する際には、両方を同時にではなく、クランキング開始からアイドリング運転直前までの間に、前述したように、第2係合ピン27を第2係合溝25から解除しても、第1係合ピン26の先端部26b外面が第1係合溝24の内面に径方向から押付けられてその摩擦抵抗により、係合状態が維持され、その後、油圧室11,2に油圧が供給された段階で第1係合ピン26を解除するようになっているため、ベーン部材9は、かかる始動時における各油圧室11,12に供給された油圧や交番トルクによるばたつきの発生を十分に抑制することができる。この結果、異音の発生を防止できる。   As described above, in the present embodiment, when releasing both the engagement pins 26 and 27 at the time of starting the engine, not both at the same time but between the start of cranking and immediately before the idling operation, as described above. Even if the second engagement pin 27 is released from the second engagement groove 25, the outer surface of the tip end portion 26 b of the first engagement pin 26 is pressed against the inner surface of the first engagement groove 24 from the radial direction, and the friction is generated. Since the engagement state is maintained by the resistance, and the hydraulic pressure is supplied to the hydraulic chambers 11 and 2 after that, the first engagement pin 26 is released. It is possible to sufficiently suppress the occurrence of fluttering due to the hydraulic pressure and alternating torque supplied to the hydraulic chambers 11 and 12. As a result, the generation of abnormal noise can be prevented.

また、第2係合ピン27が第2解除用受圧室33内の油圧によって第2係合溝25から解除された後に、第1係合ピン26を解除するようにし、この解除までの間では第1係合ピン26が第1係合溝24に径方向から確実に押付けられているため、第1係合ピン26が誤って解除されてしまうことがない。   Further, after the second engagement pin 27 is released from the second engagement groove 25 by the hydraulic pressure in the second release pressure receiving chamber 33, the first engagement pin 26 is released. Since the first engagement pin 26 is reliably pressed against the first engagement groove 24 from the radial direction, the first engagement pin 26 is not accidentally released.

一方、イグニッションスイッチをオフ操作して機関が完全に停止されるまでの間では、先に第1係合ピン26が第1係合溝24内に係合され、その後に第2係合ピン27を係合するようになっているため、カムの交番トルクに起因したベーン部材9のばたつきの発生を十分に防止できる。   On the other hand, until the engine is completely stopped after the ignition switch is turned off, the first engagement pin 26 is first engaged in the first engagement groove 24 and then the second engagement pin 27 is engaged. Therefore, the occurrence of flapping of the vane member 9 due to the alternating torque of the cam can be sufficiently prevented.

また、機関再始動時は、前記両係合ピン26,27が両係合溝24,25に係合した状態ではベーン部材9が中間回転位相位置に保持されていることから、始動性が良好になる。   Further, when the engine is restarted, the vane member 9 is held at the intermediate rotational phase position when both the engagement pins 26 and 27 are engaged with both the engagement grooves 24 and 25, so that the startability is good. become.

さらに、この実施形態では、第2係合ピン27の先端部27bの外周面及び第2係合溝25の内周面がテーパ面に形成されていることから、係脱性が良好になる。   Furthermore, in this embodiment, since the outer peripheral surface of the front end portion 27b of the second engagement pin 27 and the inner peripheral surface of the second engagement groove 25 are formed as tapered surfaces, the engagement / disengagement property is improved.

そして、本実施例では、前記遅角油圧室11と進角油圧室12とに油圧を選択的に供給する遅角油通路18と進角油圧室19の各通路部18a、19aを通路構成部37の内部に形成して、2つのシール部材41a、41bによって通路構成部37から外部への油圧のリークを十分に防止することができる。   In this embodiment, the retard oil passage 18 for selectively supplying the hydraulic pressure to the retard hydraulic chamber 11 and the advance hydraulic chamber 12 and the passage portions 18a and 19a of the advance hydraulic chamber 19 are connected to the passage constituting portion. It is possible to sufficiently prevent the leakage of hydraulic pressure from the passage component 37 to the outside by the two seal members 41a and 41b.

このため、前記各油圧室11,12への油圧の供給応答性の低下を抑制でき、この結果、前記ベーン部材9の相対回転位相変換の応答性が向上して、機関運転状態の変化に即応することができる。   For this reason, it is possible to suppress a decrease in the response of the hydraulic pressure supply to the respective hydraulic chambers 11 and 12, and as a result, the response of the relative rotational phase conversion of the vane member 9 is improved, so that the response to changes in the engine operating state can be quickly realized. can do.

また、この実施例では、前述のように、イグニッションスイッチをオン操作すると、その直後の機関の初爆(クランキング開始)によってオイルポンプ20が駆動してその吐出油圧が、第1給排通路34などを介して第1、第2押込用受圧室31a、31bの両方に供給されることから、第1係合ピン26と第2係合ピン27は、第1、第2押込用受圧室31a、31b内の油圧と第1,第2スプリング29、30のばね力との合成力によって第1、第2係合溝24、25内で係合状態を確実に維持することが可能になる。   Further, in this embodiment, as described above, when the ignition switch is turned on, the oil pump 20 is driven by the first explosion (start of cranking) immediately after that and the discharge hydraulic pressure is changed to the first supply / discharge passage 34. The first engagement pin 26 and the second engagement pin 27 are supplied to both the first and second pressing pressure receiving chambers 31a and 31b through the first and second pressing pressure receiving chambers 31a. , 31b and the spring force of the first and second springs 29, 30 make it possible to reliably maintain the engagement state in the first and second engagement grooves 24, 25.

また、例えばクランキングが完了してアイドリング運転が開始される直前では、図8に示すように、第2解除用受圧室33が高圧になると共に、前記第2係合溝25も分岐路19bを介して進角油通路19の油圧が供給されて高圧になることから、第2係合ピン27の第2係合溝25からの退出作動が一層良好になって第2係合ピン27による係合を速やかに解除することができる。   Further, for example, immediately before the cranking is completed and the idling operation is started, as shown in FIG. 8, the second release pressure receiving chamber 33 becomes high pressure, and the second engagement groove 25 also passes through the branch path 19b. Since the hydraulic pressure of the advance oil passage 19 is supplied to the high pressure via the second engagement pin 27, the retraction operation of the second engagement pin 27 from the second engagement groove 25 is further improved. The match can be canceled promptly.

本発明は、前記実施形態の構成に限定されるものではなく、バルブタイミング制御装置を吸気側ばかりか排気側に適用することも可能である。   The present invention is not limited to the configuration of the above embodiment, and the valve timing control device can be applied not only to the intake side but also to the exhaust side.

本発明のバルブタイミング制御装置の一実施形態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows one Embodiment of the valve timing control apparatus of this invention. 同バルブタイミング制御装置の斜視図である。It is a perspective view of the valve timing control device. 本実施形態によるバルブタイミングを中間制御位置に保持した状態を示す作用説明図である。It is an effect explanatory view showing the state where valve timing by this embodiment was held in the middle control position. 本実施形態によるバルブタイミングを遅角側に制御した状態を示す作用説明図である。It is an operation explanatory view showing the state where valve timing by this embodiment was controlled to the retard side. 本実施形態によるバルブタイミングを進角側に制御した状態を示す作用説明図である。It is effect | action explanatory drawing which shows the state which controlled the valve timing by this embodiment to the advance side. 機関停止時におけるバルブタイミング制御装置の両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both the engagement pins of the valve timing control apparatus at the time of an engine stop. 機関始動直後における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both engagement pins immediately after engine starting. 機関始動時における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both engagement pins at the time of engine starting. 機関アイドリング運転時における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both the engagement pins at the time of engine idling operation. 遅角制御時における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both the engagement pins at the time of retardation control. 進角制御時における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both the engagement pins at the time of advance angle control. 機関停止準備中における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both engagement pins in preparation for an engine stop. 機関停止時における両係合ピンの係脱作用状態を模式的に示す断面図である。It is sectional drawing which shows typically the engagement / disengagement state of both engagement pins at the time of an engine stop.

符号の説明Explanation of symbols

1…スプロケット
2…カムシャフト
3…位相変換機構
4…第1油圧回路
7…ハウジング
9…ベーン部材
10…隔壁部
11…遅角油圧室
12…進角油圧室
16…ベーン
18…遅角油通路
19…進角油通路
20…オイルポンプ
20a…吐出通路
21…第1電磁切換弁
22…ドレン通路
24…第1係合溝
25…第2係合溝
26…第1係合ピン
27…第2係合ピン
28…第2油圧回路
31a、31b…第1、第2押込用受圧室
32・33…第1、第2解除用受圧室
34・35…第1、第2給排通路
36…第2電磁切換弁
37…通路構成部
41a、41b…シール部材
DESCRIPTION OF SYMBOLS 1 ... Sprocket 2 ... Camshaft 3 ... Phase conversion mechanism 4 ... 1st hydraulic circuit 7 ... Housing 9 ... Vane member 10 ... Bulkhead part 11 ... Delay angle hydraulic chamber 12 ... Advance hydraulic chamber 16 ... Vane 18 ... Delay angle oil passage DESCRIPTION OF SYMBOLS 19 ... Advance oil passage 20 ... Oil pump 20a ... Discharge passage 21 ... 1st electromagnetic switching valve 22 ... Drain passage 24 ... 1st engagement groove 25 ... 2nd engagement groove 26 ... 1st engagement pin 27 ... 2nd Engaging pin 28 ... second hydraulic circuit 31a, 31b ... first and second pressure receiving chambers 32, 33 ... first, second release pressure receiving chambers 34,35 ... first, second supply / discharge passage 36 ... first 2 Electromagnetic switching valve 37 ... Passage component 41a, 41b ... Seal member

Claims (4)

機関のクランクシャフトあるいはカムシャフトの一方側と一体的に回転するハウジングと、
前記ハウジング内に回転自在に収容され、前記クランクシャフトとカムシャフトの他方側と一体的に回転するベーン部材と、
前記ベーン部材の径方向へ延びるベーンを介して前記ハウジング内に隔成された遅角油圧室及び進角油圧室と、
前記遅角油圧室と進角油圧室に油圧を選択的に給排することにより、前記ハウジングとベーン部材の相対回動位相を遅角側あるいは進角側に変化させる第1油圧回路と、
前記ベーン部材を相対回動位相の遅角側と進角側の中間位置で規制するロック機構と、
該ロック機構を油圧によって作動させる第2油圧回路と、
を備え、
前記第1油圧回路からリークする作動油の漏れ量が、前記第2油圧回路からリークする作動油の漏れ量よりも少なくなるように形成し
機関停止時には、前記ロック機構によってベーン部材を中間位置にロックすることを特徴とする内燃機関のバルブタイミング制御装置。
A housing that rotates integrally with one side of the crankshaft or camshaft of the engine;
A vane member that is rotatably accommodated in the housing and rotates integrally with the crankshaft and the other side of the camshaft;
A retard hydraulic chamber and an advanced hydraulic chamber separated in the housing via a vane extending in a radial direction of the vane member;
A first hydraulic circuit that changes a relative rotation phase of the housing and the vane member to a retard side or an advance side by selectively supplying and discharging hydraulic pressure to and from the retard hydraulic chamber and the advance hydraulic chamber;
A lock mechanism for restricting the vane member at an intermediate position between the retard side and the advance side of the relative rotation phase;
A second hydraulic circuit for operating the lock mechanism by hydraulic pressure;
With
The amount of hydraulic fluid leaking from the first hydraulic circuit is formed to be smaller than the amount of hydraulic fluid leaking from the second hydraulic circuit ,
A valve timing control device for an internal combustion engine , wherein the vane member is locked at an intermediate position by the lock mechanism when the engine is stopped .
機関のクランクシャフトあるいはカムシャフトの一方側と一体的に回転するハウジングと、
前記ハウジング内に回転自在に収容され、前記クランクシャフトとカムシャフトの他方側と一体的に回転するベーン部材と、
前記ベーン部材の径方向へ延びるベーンを介して前記ハウジング内に隔成された遅角油圧室及び進角油圧室と、
前記遅角油圧室と進角油圧室に油圧を選択的に給排することにより、前記ハウジングとベーン部材の相対回動位相を遅角側あるいは進角側に変化させる第1油圧回路と、
前記ベーン部材を相対回動位相の遅角側と進角側の中間位置で規制するロック機構と、
該ロック機構を油圧によって作動させる第2油圧回路と、
を備え、
前記第1油圧回路の一部を、前記ハウジングの前記カムシャフトと反対側の前端側に形成された保持穴に嵌入保持された通路構成部の内部に形成すると共に、
前記保持穴と通路構成部との間に、シール部材を設け、
機関停止時には、前記ロック機構によってベーン部材を中間位置にロックすることを特徴とする内燃機関のバルブタイミング制御装置。
A housing that rotates integrally with one side of the crankshaft or camshaft of the engine;
A vane member that is rotatably accommodated in the housing and rotates integrally with the crankshaft and the other side of the camshaft;
A retard hydraulic chamber and an advanced hydraulic chamber separated in the housing via a vane extending in a radial direction of the vane member;
A first hydraulic circuit that changes a relative rotation phase of the housing and the vane member to a retard side or an advance side by selectively supplying and discharging hydraulic pressure to and from the retard hydraulic chamber and the advance hydraulic chamber;
A lock mechanism for restricting the vane member at an intermediate position between the retard side and the advance side of the relative rotation phase;
A second hydraulic circuit for operating the lock mechanism by hydraulic pressure;
With
A part of the first hydraulic circuit is formed inside a passage component that is fitted and held in a holding hole formed on a front end side of the housing opposite to the camshaft,
A seal member is provided between the holding hole and the passage component,
A valve timing control device for an internal combustion engine , wherein the vane member is locked at an intermediate position by the lock mechanism when the engine is stopped .
前記通路構成部の外周面に環状の嵌着溝を形成すると共に、該嵌着溝に前記シール部材を嵌着保持したことを特徴とする請求項2に記載の内燃機関のバルブタイミング制御装置。   The valve timing control device for an internal combustion engine according to claim 2, wherein an annular fitting groove is formed on an outer peripheral surface of the passage constituting portion, and the seal member is fitted and held in the fitting groove. 前記シール部材を、前記通路構成部の内部に形成されて前記遅角油圧室と進角油圧室にそれぞれ連通する複数の通路部に対応して複数設けたことを特徴とする請求項2または3に記載の内燃機関のバルブタイミング制御装置。   4. The seal member according to claim 2, wherein a plurality of the seal members are provided corresponding to a plurality of passage portions formed inside the passage constituting portion and communicating with the retard hydraulic chamber and the advance hydraulic chamber, respectively. A valve timing control device for an internal combustion engine according to claim 1.
JP2008046986A 2008-02-28 2008-02-28 Valve timing control device for internal combustion engine Expired - Fee Related JP4932761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046986A JP4932761B2 (en) 2008-02-28 2008-02-28 Valve timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046986A JP4932761B2 (en) 2008-02-28 2008-02-28 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009203886A JP2009203886A (en) 2009-09-10
JP4932761B2 true JP4932761B2 (en) 2012-05-16

Family

ID=41146402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046986A Expired - Fee Related JP4932761B2 (en) 2008-02-28 2008-02-28 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4932761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189070B2 (en) * 2009-12-18 2013-04-24 日立オートモティブシステムズ株式会社 Actuator and variable valve operating apparatus for internal combustion engine to which this actuator is applied
WO2012008354A1 (en) * 2010-07-15 2012-01-19 アイシン精機株式会社 Valve open/close period control device and valve open/close period control mechanism
JP5483119B2 (en) 2011-07-07 2014-05-07 アイシン精機株式会社 Valve opening / closing timing control device and valve opening / closing timing control mechanism
JP5803363B2 (en) 2011-07-12 2015-11-04 アイシン精機株式会社 Valve timing adjustment system
US9057292B2 (en) 2011-07-12 2015-06-16 Aisin Seiki Kabushiki Kaisha Valve timing adjustment system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389383B2 (en) * 1999-12-24 2009-12-24 アイシン精機株式会社 Valve timing control device
JP2004116410A (en) * 2002-09-26 2004-04-15 Aisin Seiki Co Ltd Valve timing control device
JP2004143971A (en) * 2002-10-22 2004-05-20 Aisin Seiki Co Ltd Valve timing controller
US6997150B2 (en) * 2003-11-17 2006-02-14 Borgwarner Inc. CTA phaser with proportional oil pressure for actuation at engine condition with low cam torsionals
JP4177297B2 (en) * 2004-06-25 2008-11-05 株式会社日立製作所 Valve timing control device for internal combustion engine
JP4358180B2 (en) * 2005-11-04 2009-11-04 株式会社日立製作所 Valve timing control device for internal combustion engine
JP4484843B2 (en) * 2006-04-28 2010-06-16 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Also Published As

Publication number Publication date
JP2009203886A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4177297B2 (en) Valve timing control device for internal combustion engine
JP5873339B2 (en) Valve timing control device for internal combustion engine
JP5550480B2 (en) Valve timing control device for internal combustion engine
JP5357137B2 (en) Valve timing control device for internal combustion engine
JP5763432B2 (en) Valve timing control device for internal combustion engine
JP5403341B2 (en) Valve timing control device
JP6120628B2 (en) Valve timing control system for internal combustion engine and lock release mechanism for valve timing control device for internal combustion engine
WO2016021280A1 (en) Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
JP2012097594A (en) Valve timing control device of internal combustion engine
JP4997182B2 (en) Valve timing control device for internal combustion engine
JP4950949B2 (en) Valve timing control device for internal combustion engine
JP4932761B2 (en) Valve timing control device for internal combustion engine
JP2013185442A (en) Valve timing control device of internal combustion engine
JP6079676B2 (en) Valve timing control device
JP4803251B2 (en) Valve timing adjusting device for internal combustion engine
JP6091277B2 (en) Valve timing control device for internal combustion engine
US9506378B2 (en) Variable valve timing control apparatus of internal combustion engine
JP2018059415A (en) Hydraulic control valve and valve timing control device of internal combustion engine
JP5980086B2 (en) Valve timing control device for internal combustion engine
WO2012086085A1 (en) Variable valve device for internal combustion engine
JP6251778B2 (en) Valve timing control device for internal combustion engine
JP5793107B2 (en) Variable valve operating device for internal combustion engine
JP5916497B2 (en) Valve timing control device for internal combustion engine and hydraulic oil supply / discharge structure of the valve timing control device
JP2016065534A (en) Valve timing control device for internal combustion engine
JP6533322B2 (en) Valve timing control system for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees