JP4931944B2 - High hardness coating and method for forming the same - Google Patents

High hardness coating and method for forming the same Download PDF

Info

Publication number
JP4931944B2
JP4931944B2 JP2009028254A JP2009028254A JP4931944B2 JP 4931944 B2 JP4931944 B2 JP 4931944B2 JP 2009028254 A JP2009028254 A JP 2009028254A JP 2009028254 A JP2009028254 A JP 2009028254A JP 4931944 B2 JP4931944 B2 JP 4931944B2
Authority
JP
Japan
Prior art keywords
layer
film
cbn
linear expansion
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009028254A
Other languages
Japanese (ja)
Other versions
JP2010185095A (en
Inventor
正男 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Priority to JP2009028254A priority Critical patent/JP4931944B2/en
Publication of JP2010185095A publication Critical patent/JP2010185095A/en
Application granted granted Critical
Publication of JP4931944B2 publication Critical patent/JP4931944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、高硬度被膜およびその形成方法に関し、特に、母材上に形成された中間層と、この中間層の上に形成された窒化ホウ素(以下、BNと言う。)膜と、を具備する、高硬度被膜およびその形成方法に関する。   The present invention relates to a high-hardness film and a method for forming the same, and particularly includes an intermediate layer formed on a base material and a boron nitride (hereinafter referred to as BN) film formed on the intermediate layer. The present invention relates to a high-hardness film and a method for forming the same.

BN膜、とりわけ立方晶系のBN(以下、cBNと言う。)膜は、非常に硬い高硬度被膜として知られており、切削工具や成形金型等の耐摩耗性が要求される部材の性能を向上させるのに好適である。その一方で、cBN膜は、当該切削工具や成形金型等の代表的な母材である超硬合金や高速度鋼等との密着性(相性)が悪い、という性質を有する。この性質を補うには、cBN膜の形成に先立って、適当な中間層を形成する必要がある。従来、この中間層として、例えば特許文献1に開示されているように、窒化チタン(以下、TiNと言う。)膜、厳密にはチタン(以下、Tiと言う。)膜とTiN膜とTi膜との3層構造が、採用されていた。また、中間層とcBN膜との密着性をより向上させるべく、cBN膜の形成に際して、まず、ホウ素(以下、Bと言う。)膜が形成され、これに続いて、Bに対する窒素(以下、NまたはNと言う。)の比率が漸増するBN膜が形成され、その上で、cBN膜が形成されていた。 BN films, particularly cubic BN (hereinafter referred to as cBN) films, are known as extremely hard and hard films, and performance of members that require wear resistance such as cutting tools and molding dies. It is suitable for improving. On the other hand, the cBN film has a property of poor adhesion (compatibility) with a cemented carbide, high-speed steel, or the like, which is a representative base material of the cutting tool or molding die. In order to compensate for this property, it is necessary to form an appropriate intermediate layer prior to the formation of the cBN film. Conventionally, as this intermediate layer, for example, as disclosed in Patent Document 1, a titanium nitride (hereinafter referred to as TiN) film, strictly speaking, a titanium (hereinafter referred to as Ti) film, a TiN film, and a Ti film are used. The three-layer structure was adopted. Further, in order to further improve the adhesion between the intermediate layer and the cBN film, a boron (hereinafter referred to as B) film is first formed in the formation of the cBN film, followed by nitrogen (hereinafter referred to as B). A BN film having a gradually increasing ratio of N or N 2 was formed, and a cBN film was formed thereon.

特開2002−105624号公報(第0038段落〜第0040段落)JP 2002-105624 A (paragraphs 0038 to 0040)

ところで、上述の切削工具や成形金型等は、その使用過程において、摩擦熱により高温になる。従って、このような切削工具や成形金型等に適用されるcBN膜は、それ相応の高温にまで耐え得ることが必要とされる。しかしながら、上述の如く中間層としてTiN膜が採用された従来のcBN膜によれば、これらTiN膜とcBN膜とを含む母材の温度が約500[℃]以上になると、当該TiN膜とcBN膜との界面でクラック等の膜破壊が生じ、この結果、cBN膜が剥離する、という問題がある。これは、主に、TiN膜とcBN膜との間での線膨張率の差異によるものと、推察される。   By the way, the above-mentioned cutting tool, molding die, and the like become high temperature due to frictional heat in the process of use. Therefore, a cBN film applied to such a cutting tool or a molding die is required to withstand a corresponding high temperature. However, according to the conventional cBN film in which the TiN film is employed as the intermediate layer as described above, when the temperature of the base material including the TiN film and the cBN film becomes about 500 [° C.] or more, the TiN film and the cBN film There is a problem that film destruction such as cracks occurs at the interface with the film, and as a result, the cBN film peels off. This is presumably due to the difference in the coefficient of linear expansion between the TiN film and the cBN film.

具体的には、TiN膜の線膨張率は、9.4[×10−6/℃]であり、cBN膜の線膨張率は、6.0[×10−6/℃]である。ここで、例えば、室温が0[℃]であり、母材の温度が当該室温(=0[℃])から500[℃]まで変化する、と仮定する。この場合、TiN膜は、cBN膜との界面において、例えば10[mm]という長さ寸法を単位長さとすると、この単位長さ当たり47.0[μm](=9.8[×10−6/℃]×500[℃]×10[mm])の線膨張を生じる。一方、cBN膜は、TiN膜との界面において、同単位長さ当たり30.0[μm](=6.0[×10−6/℃]×500[℃]×10[mm])の線膨張を生じる。つまり、TiN膜とcBN膜との間で、単位長さ当たり17.0[μm](=|49[μm]−30[μm]|)という線膨張差、言わば20[μm]弱の線膨張差、が生じる。この単位長さ当たりの線膨張差が約20[μm]に達すると、TiN膜とcBN膜との界面でクラック等の膜破壊が生じ、ひいてはcBN膜が剥離することが、経験上、判明している。このことから、TiN膜とcBN膜とを含む母材の温度が約500[℃]以上になると、cBN膜が剥離する。 Specifically, the linear expansion coefficient of the TiN film is 9.4 [× 10 −6 / ° C.], and the linear expansion coefficient of the cBN film is 6.0 [× 10 −6 / ° C.]. Here, for example, it is assumed that the room temperature is 0 [° C.] and the temperature of the base material changes from the room temperature (= 0 [° C.]) to 500 [° C.]. In this case, the TiN film has a unit length of 10 [mm] at the interface with the cBN film, for example, 47.0 [μm] per unit length (= 9.8 [× 10 −6). / ° C.] × 500 [° C.] × 10 [mm]). On the other hand, the cBN film has a line of 30.0 [μm] (= 6.0 [× 10 −6 / ° C.] × 500 [° C.] × 10 [mm]) per unit length at the interface with the TiN film. Causes swelling. That is, a linear expansion difference of 17.0 [μm] (= | 49 [μm] −30 [μm] |) per unit length between the TiN film and the cBN film, that is, a linear expansion of less than 20 [μm]. Difference. Experience has shown that when this linear expansion difference per unit length reaches about 20 [μm], film destruction such as cracks occurs at the interface between the TiN film and the cBN film, and the cBN film peels off. ing. For this reason, when the temperature of the base material including the TiN film and the cBN film becomes about 500 [° C.] or higher, the cBN film is peeled off.

そこで、本発明は、従来よりもさらに高温に耐え得るcBN膜を含む高硬度被膜を提供することを、目的とする。   Therefore, an object of the present invention is to provide a high-hardness film including a cBN film that can withstand higher temperatures than conventional.

この目的を達成するために、本発明のうちの第1発明は、母材上に形成された中間層と、この中間層の上に形成されたBN膜、特にcBN膜と、を具備する高硬度被膜において、当該中間層が、窒素クロム層であること、を特徴とする。   In order to achieve this object, a first invention of the present invention is a high-level device comprising an intermediate layer formed on a base material, and a BN film, particularly a cBN film, formed on the intermediate layer. In the hardness coating, the intermediate layer is a nitrogen chromium layer.

即ち、本第1発明では、中間層として、窒化クロム層、例えばCrN層、が採用される。このCrN層の線膨張率は、7.5[×10−6/℃]であり、従来の中間層としてのTiN膜の線膨張率(=9.4[×10−6/℃])に比べて、cBN膜の線膨張率(=6.0[×10−6/℃])に近い。このようにcBN膜の線膨張率に近い線膨張率を有するCrN層が、中間層として採用されることによって、これら中間層とcBN膜との間での線膨張差が抑制される。 That is, in the first invention, a chromium nitride layer, for example, a CrN layer is employed as the intermediate layer. The linear expansion coefficient of this CrN layer is 7.5 [× 10 −6 / ° C.], and the linear expansion coefficient of a TiN film as a conventional intermediate layer (= 9.4 [× 10 −6 / ° C.]). Compared to the linear expansion coefficient of the cBN film (= 6.0 [× 10 −6 / ° C.]). Thus, the CrN layer having a linear expansion coefficient close to the linear expansion coefficient of the cBN film is adopted as the intermediate layer, whereby the difference in linear expansion between the intermediate layer and the cBN film is suppressed.

なお、本第1発明において、中間層は、当該中間層本体としてのCrN層と母材との間に形成されたクロム(以下、Crと言う。)層を含むものであってもよい。即ち、Crは、上述した超硬合金や高速度鋼等の各種材料との密着性が良い、という性質を有する。従って、このような性質を有するCrを成分とする層が、中間層本体としてのCrN層と母材との間に形成されることで、これら両者間の密着性が向上する。つまり、Cr層は、いわゆる接着層として機能する。これと同様に、中間層本体としてのCrN層とcBN膜との間にも、当該接着層としてのCr層が形成されてもよい。   In the first invention, the intermediate layer may include a chromium (hereinafter referred to as Cr) layer formed between the CrN layer as the intermediate layer body and the base material. That is, Cr has the property of having good adhesion to various materials such as the above-mentioned cemented carbide and high speed steel. Therefore, the layer containing Cr having such properties as a component is formed between the CrN layer as the intermediate layer body and the base material, thereby improving the adhesion between them. That is, the Cr layer functions as a so-called adhesive layer. Similarly, a Cr layer as the adhesive layer may be formed between the CrN layer as the intermediate layer body and the cBN film.

さらに、このCr層が形成されることで、特に中間層本体としてのCrN層とcBN膜との間に当該Cr層が形成されることで、次のような利点もある。即ち、Cr層の線膨張率は、6.5[×10−6/℃]であり、中間層本体としてのCrN層の線膨張率(=7.5[×10−6/℃])に比べて、cBN膜の線膨張率(=6.0[×10−6/℃])にさらに近い。このようにcBN膜の線膨張率にさらに近い線膨張率を有するCr層が、中間層本体としてのCrN層と当該cBN膜との間に形成されることで、これら両者間での線膨張差に起因する歪(応力)が抑制される。つまり、Cr層は、いわゆる緩衝層としても機能する。 Furthermore, by forming this Cr layer, the Cr layer is formed between the CrN layer as the intermediate layer body and the cBN film, and the following advantages are also obtained. That is, the linear expansion coefficient of the Cr layer is 6.5 [× 10 −6 / ° C.], and the linear expansion coefficient of the CrN layer as the intermediate layer body (= 7.5 [× 10 −6 / ° C.]) Compared to the linear expansion coefficient of the cBN film (= 6.0 [× 10 −6 / ° C.]). Thus, the Cr layer having a linear expansion coefficient closer to the linear expansion coefficient of the cBN film is formed between the CrN layer as the intermediate layer body and the cBN film. Strain (stress) caused by is suppressed. That is, the Cr layer also functions as a so-called buffer layer.

そして、このようにCr層が形成されるときは、中間層本体として、CrN層に代えて、CrN(窒化ニクロム)層を採用することができる。即ち、CrN層の線膨張率は、9.4[×10−6/℃]であり、従来の中間層としてのTiN膜の線膨張率(=9.8[×10−6/℃])と等価である。従って、この線膨張率のみに注目すると、中間層本体としてCrN層が採用された場合には、従来と特段な差異はないように見受けられる。しかしながら、上述の如く緩衝層としても機能するCr層が形成されることで、従来に比べて一定の効果が得られること、つまりcBN膜の耐熱性を向上させ得ることが、期待される。このことは、後述するように、実験によっても確認された。 When the Cr layer is formed in this way, a Cr 2 N (nichrome nitride) layer can be adopted as the intermediate layer body instead of the CrN layer. That is, the linear expansion coefficient of the Cr 2 N layer is 9.4 [× 10 −6 / ° C.], and the linear expansion coefficient of the TiN film as a conventional intermediate layer (= 9.8 [× 10 −6 / ° C.). ]). Therefore, when attention is paid only to this linear expansion coefficient, when the Cr 2 N layer is adopted as the intermediate layer body, it seems that there is no particular difference from the conventional one. However, by forming the Cr layer that also functions as a buffer layer as described above, it is expected that a certain effect can be obtained as compared with the conventional case, that is, the heat resistance of the cBN film can be improved. This was confirmed by experiments as will be described later.

また、本第1発明において、母材は、超硬合金製であってもよい。即ち、超硬合金の線膨張率は、5.0[×10−6/℃]〜6.0[×10−6/℃]であり、cBN膜の線膨張率と略等しい。このようにcBN膜の線膨張率と略等しい線膨張率を有する超硬合金が母材とされることで、中間層とcBN膜との間のみならず、当該中間層と母材との間においても、線膨張差の抑制が図られる。 In the first invention, the base material may be made of cemented carbide. That is, the linear expansion coefficient of the cemented carbide is 5.0 [× 10 -6 /℃]~6.0[×10 -6 / ℃], approximately equal to the linear expansion coefficient of the cBN film. In this way, the cemented carbide having a linear expansion coefficient substantially equal to the linear expansion coefficient of the cBN film is used as a base material, so that not only between the intermediate layer and the cBN film but also between the intermediate layer and the base material. In this case, the linear expansion difference can be suppressed.

第2発明は、第1発明と同様の高硬度被膜を形成する方法に関する発明であり、即ち、母材上に中間層を形成する過程と、この中間層の上に高硬度被膜としてのcBN膜を形成する過程と、を具備する。そして、中間層として、窒化クロム層、特にCrN層、を形成すること、を特徴とする。   The second invention relates to a method for forming a high hardness film similar to the first invention, that is, a process of forming an intermediate layer on a base material, and a cBN film as a high hardness film on the intermediate layer. Forming a process. A chromium nitride layer, particularly a CrN layer, is formed as the intermediate layer.

上述したように、本発明によれば、従来の中間層としてのTiN膜の線膨張率に比べて、cBN膜の線膨張率に近い線膨張率を有するCrN層が、中間層として採用されることで、当該中間層とcBN膜との間での線膨張差が抑制される。従って、従来は、母材の温度が500[℃]以上になると、中間層とcBN膜との間での線膨張差によってcBN膜が剥離する、という問題があったが、本発明によれば、より高温の環境下でもcBN膜の剥離を防止することができる。つまり、従来よりもさらに高温に耐え得るcBN膜を実現することができる。   As described above, according to the present invention, a CrN layer having a linear expansion coefficient close to the linear expansion coefficient of the cBN film is adopted as the intermediate layer as compared with the linear expansion coefficient of the TiN film as the conventional intermediate layer. Thereby, the linear expansion difference between the said intermediate | middle layer and cBN film | membrane is suppressed. Therefore, conventionally, when the temperature of the base material is 500 [° C.] or higher, there is a problem that the cBN film is peeled off due to a difference in linear expansion between the intermediate layer and the cBN film. Further, it is possible to prevent the cBN film from peeling even in a higher temperature environment. That is, a cBN film that can withstand higher temperatures than conventional can be realized.

本発明の一実施形態に係る高硬度被膜の断面を概略的に示す図解図である。It is an illustration figure which shows roughly the cross section of the high-hardness film which concerns on one Embodiment of this invention. 図1の高硬度被膜の熱的性質を示す図解図である。It is an illustration figure which shows the thermal property of the high-hardness film | membrane of FIG. 同実施形態に係る別の高硬度被膜の断面を概略的に示す図解図である。It is an illustration figure which shows schematically the cross section of another high hardness film | membrane which concerns on the same embodiment. 図3の高硬度被膜の熱的性質を示す図解図である。It is an illustration figure which shows the thermal property of the high-hardness film | membrane of FIG. 同実施形態における実験結果を示す図解図である。It is an illustration figure which shows the experimental result in the same embodiment. 図5とは異なる実験結果を示す図解図である。It is an illustration figure which shows the experimental result different from FIG. 同実施形態に係る高硬度被膜を形成する際の成膜条件を説明するための図解図である。It is an illustration figure for demonstrating the film-forming conditions at the time of forming the high-hardness film concerning the embodiment. 図7とは異なる成膜条件を説明するための図解図である。FIG. 8 is an illustrative view for explaining film forming conditions different from those in FIG. 7. 従来の高硬度被膜の断面を概略的に示す図解図である。It is an illustration figure which shows the cross section of the conventional high hardness film | membrane roughly. 図9の高硬度被膜の熱的性質を示す図解図である。It is an illustration figure which shows the thermal property of the high-hardness film | membrane of FIG.

本発明の具体的な実施形態を説明する前に、従来のcBN膜を含む高硬度被膜について、図9および図10を参照して、より詳しく説明する。   Prior to describing specific embodiments of the present invention, a high-hardness film including a conventional cBN film will be described in more detail with reference to FIGS.

図9に示すように、従来の高硬度被膜は、母材10としての例えば超硬合金の上に形成された中間層100と、この中間層100の上に形成されたcBN膜50と、を具備する。このうち、中間層100は、母材10との密着性を向上させるための下層側接着層としてのTi層102と、当該中間層100の本体としてのTiN層104と、cBN膜50との密着性を向上させるための上層側接着層としてのTi層106と、から成る3層構造とされている。なお、2つのTi層102および106それぞれの膜厚は、極小であり、例えば20[nm]である。一方、TiN層104の膜厚は、母材10の表面の粗さを補うべく比較的に大きめとされており、例えば1[μm]〜2[μm]である。   As shown in FIG. 9, the conventional high-hardness film includes an intermediate layer 100 formed on, for example, a cemented carbide as the base material 10, and a cBN film 50 formed on the intermediate layer 100. It has. Among them, the intermediate layer 100 is an adhesion between the Ti layer 102 as the lower layer side adhesive layer for improving the adhesion with the base material 10, the TiN layer 104 as the main body of the intermediate layer 100, and the cBN film 50. It has a three-layer structure composed of a Ti layer 106 as an upper-layer adhesive layer for improving the properties. The thicknesses of the two Ti layers 102 and 106 are extremely small, for example, 20 [nm]. On the other hand, the thickness of the TiN layer 104 is relatively large to compensate for the roughness of the surface of the base material 10, and is, for example, 1 [μm] to 2 [μm].

cBN膜50は、中間層100(Ti層106)との密着性を向上させるための接着層としてのB層52と、当該cBN膜50の本体としてのcBN層54と、から成る。なお、図には示さないが、cBN層54の下層側部分は、B層52との融合性を得るべく、上層に向かうに従ってBに対するNの比率が漸増するアモルファスのBN層とされている。このBN層を含むcBN層54の膜厚は、母材10の耐摩耗性を向上させるのに必要かつ十分な大きさとされており、例えば1[μm]である。一方、B層52の膜厚は、極小であり、例えば10[nm]である。   The cBN film 50 includes a B layer 52 as an adhesive layer for improving adhesion to the intermediate layer 100 (Ti layer 106), and a cBN layer 54 as a main body of the cBN film 50. Although not shown in the drawing, the lower layer side portion of the cBN layer 54 is an amorphous BN layer in which the ratio of N to B gradually increases toward the upper layer in order to obtain fusion with the B layer 52. The film thickness of the cBN layer 54 including the BN layer is necessary and sufficient to improve the wear resistance of the base material 10 and is, for example, 1 [μm]. On the other hand, the film thickness of the B layer 52 is extremely small, for example, 10 [nm].

ここで、cBN膜50本体としてのcBN層54と、中間層100本体としてのTiN層104と、に注目する。具体的には、図10を参照して、cBN層54の線膨張率は、6.0[×10−6/℃]であり、TiN層104の線膨張率は、9.4[×10−6/℃]である。つまり、両者の差(=|9.4[×10−6/℃]−6.0[×10−6/℃]|)は、3.4[×10−6/℃]である。従って、例えば、室温が0[℃]であり、これらcBN層54とTiN層104とを含む母材10(部材)全体の温度が当該室温(=0[℃])から300[℃]まで変化する、と仮定すると、cBN層54とTiN層104との間で、10[mm]という単位長さ当たり10.2[μm](=3.8[×10−6/℃]×300[℃]×10[mm])の線膨張差が生じる。なお、この程度の線膨張差であれば、次に説明する膜破壊等の特段な問題は生じない。 Here, attention is focused on the cBN layer 54 as the main body of the cBN film 50 and the TiN layer 104 as the main body of the intermediate layer 100. Specifically, referring to FIG. 10, the linear expansion coefficient of cBN layer 54 is 6.0 [× 10 −6 / ° C.], and the linear expansion coefficient of TiN layer 104 is 9.4 [× 10 −6 / ° C.]. That is, both of the difference (= | 9.4 [× 10 -6 /℃]-6.0[×10 -6 / ℃] |) is a 3.4 [× 10 -6 / ℃] . Therefore, for example, the room temperature is 0 [° C.], and the temperature of the entire base material 10 (member) including the cBN layer 54 and the TiN layer 104 changes from the room temperature (= 0 [° C.]) to 300 [° C.]. Is assumed to be 10.2 [μm] per unit length of 10 [mm] between the cBN layer 54 and the TiN layer 104 (= 3.8 [× 10 −6 / ° C.] × 300 [° C.] ] × 10 [mm]). If the linear expansion difference is such a level, no particular problem such as film breakage described below will occur.

続いて、母材10全体の温度が500[℃]にまで変化する、と仮定すると、cBN層54とTiN層104との間で、単位長さ当たり17.0[μm](=3.4[×10−6/℃]×500[℃]×10[mm])の線膨張差が生じる。従って、母材10全体の温度がこの500[℃]を少し超えると、当該単位長さ当たりの線膨張差が上述した約20[μm]という言わば危険域レベルに達し、そうなると、cBN層54を含むcBN膜50と、TiN層104を含む中間層100と、の界面において、クラック等の膜破壊が生じ、ひいてはcBN膜50が剥離する。なお、母材10全体の温度が例えば800[℃]にまで変化すると、cBN層54とTiN層104との間の線膨張差は、27.2[μm](=3.4[×10−6/℃]×800[℃]×10[mm])と極大になり、cBN膜50が確実に剥離する。 Subsequently, assuming that the temperature of the entire base material 10 changes to 500 [° C.], 17.0 [μm] (= 3.4) per unit length between the cBN layer 54 and the TiN layer 104. [× 10 −6 / ° C.] × 500 [° C.] × 10 [mm]). Therefore, when the temperature of the whole base material 10 slightly exceeds 500 [° C.], the linear expansion difference per unit length reaches the above-mentioned danger level of about 20 [μm], and then the cBN layer 54 is formed. At the interface between the cBN film 50 including the TiN layer 104 and the intermediate layer 100 including the TiN layer 104, film breakage such as a crack occurs, and the cBN film 50 is peeled off. Incidentally, when the temperature of the entire base member 10 is changed to, for example, 800 [° C.], the linear expansion difference between the cBN layer 54 and the TiN layer 104, 27.2 [μm] (= 3.4 [× 10 - 6 / ° C.] × 800 [° C.] × 10 [mm]), and the cBN film 50 is reliably peeled off.

このことは、母材10とTiN層104を含む中間層100との間についても、同様である。即ち、母材10としての超硬合金の線膨張率は、5.0[×10−6/℃]〜6.0[×10−6/℃]であり(図10においては6.0[×10−6/℃]としている)、cBN層54の線膨張率と略等しい。従って、この母材10とTiN層104を含む中間層100との間の線膨張差によっても、上述した膜破壊が生じる恐れがあり、少なくとも当該膜破壊を助長させる恐れがある。 The same applies to the space between the base material 10 and the intermediate layer 100 including the TiN layer 104. That is, the coefficient of linear expansion of the cemented carbide as a base material 10 is 5.0 [× 10 -6 /℃]~6.0[×10 -6 / ℃] (6.0 in FIG. 10 X10 −6 / ° C.), which is substantially equal to the linear expansion coefficient of the cBN layer 54. Therefore, the above-described film breakage may occur due to the difference in linear expansion between the base material 10 and the intermediate layer 100 including the TiN layer 104, and at least the film breakage may be promoted.

これに対して、本実施形態の高硬度被膜は、図1に示すように、図9に示したのとは別の中間層30を有する。即ち、本実施形態における中間層30は、母材10との密着性を向上させるための下層側接着層としてのCr層32と、当該中間層30本体としてのCrN層34と、cBN膜50(B層52)との密着性を向上させるための上層側接着層としてのCr層36と、から成る3層構造とされている。なお、2つのCr層32および36それぞれの膜厚は、極小であり、例えば図9における2つのTi層102および106それぞれの膜厚と同じ20[nm]である。一方、CrN層34の膜厚は、母材10の表面の粗さを補うべく比較的に大きめとされており、例えば図9におけるTiN層104の膜厚と同じ1[μm]〜2[μm]である。これ以外は、図9に示した構成と同じであるので、その詳細な説明を省略する。   On the other hand, as shown in FIG. 1, the high-hardness film of this embodiment has an intermediate layer 30 different from that shown in FIG. That is, the intermediate layer 30 in this embodiment includes a Cr layer 32 as a lower-layer side adhesive layer for improving adhesion to the base material 10, a CrN layer 34 as the intermediate layer 30 body, and a cBN film 50 ( It has a three-layer structure comprising a Cr layer 36 as an upper adhesive layer for improving adhesion to the B layer 52). The film thickness of each of the two Cr layers 32 and 36 is extremely small, for example, 20 [nm] which is the same as the film thickness of each of the two Ti layers 102 and 106 in FIG. On the other hand, the film thickness of the CrN layer 34 is made relatively large so as to compensate for the roughness of the surface of the base material 10. For example, the film thickness is 1 [μm] to 2 [μm] which is the same as the film thickness of the TiN layer 104 in FIG. ]. Other than this, the configuration is the same as that shown in FIG.

ここで、中間層30本体としてのCrN層34の線膨張率は、図2に示すように、7.5[×10−6/℃]であり、上述したTiN層104の線膨張率(=9.4[×10−6/℃]に比べて、cBN層54の線膨張率(=6.0[×10−6/℃])に近い。言い換えれば、TiN層104の線膨張率とcBN層54の線膨張率との差が、3.4[×10−6/℃]であるのに対して、CrN層34の線膨張率と当該cBN層54の線膨張率との差(=|7.5[×10−6/℃]−6.0[×10−6/℃]|)は、1.5[×10−6/℃]と遙かに小さい。従って、例えば、室温が0[℃]であり、これらCrN層34とcBN層54とを含む母材10全体の温度が当該室温(=0[℃])から300[℃]まで変化する、と仮定すると、当該CrN層34とcBN層54との間の単位長さ当たりの線膨張差は、4.5[μm](=1.5[×10−6/℃]×300[℃]×10[mm])となり、同条件下での上述したTiN層104とcBN層54との間の線膨張差(=10.2[μm])よりも大きく抑制される。そして、この小さな線膨張差であれば、cBN層54を含むcBN膜50が剥離することは到底ない。 Here, the linear expansion coefficient of the CrN layer 34 as the intermediate layer 30 main body is 7.5 [× 10 −6 / ° C.] as shown in FIG. 2, and the linear expansion coefficient (= Compared to 9.4 [× 10 −6 / ° C.], it is closer to the linear expansion coefficient (= 6.0 [× 10 −6 / ° C.]) of the cBN layer 54. In other words, the linear expansion coefficient of the TiN layer 104 is The difference between the linear expansion coefficient of the cBN layer 54 is 3.4 [× 10 −6 / ° C.], whereas the difference between the linear expansion coefficient of the CrN layer 34 and the linear expansion coefficient of the cBN layer 54 ( = | 7.5 [× 10 -6 /℃]-6.0[×10 -6 / ℃] |.) is much smaller and 1.5 [× 10 -6 / ℃] Thus, for example, The room temperature is 0 [° C.], and the temperature of the entire base material 10 including the CrN layer 34 and the cBN layer 54 changes from the room temperature (= 0 [° C.]) to 300 [° C.]. Assuming that the difference in linear expansion per unit length between the CrN layer 34 and the cBN layer 54 is 4.5 [μm] (= 1.5 [× 10 −6 / ° C.] × 300 [° C.] × 10 [mm]), which is larger than the above-described linear expansion difference (= 10.2 [μm]) between the TiN layer 104 and the cBN layer 54 under the same conditions. If there is a difference, the cBN film 50 including the cBN layer 54 is unlikely to peel off.

次に、例えば、母材10全体の温度が500[℃]にまで変化する、と仮定する。すると、CrN層34とcBN層54との間の単位長さ当たりの線膨張差は、7.5[μm](=1.5[×10−6/℃]×500[℃]×10[mm]|)となり、同条件下でのTiN層104とcBN層54と間の線膨張差(=17.0[μm])よりも遙かに小さく、つまり上述した約20[μm]という危険域レベルよりも遙かに小さい。従って、この500[℃]という環境下においても、cBN膜50が剥離することはない。 Next, for example, it is assumed that the temperature of the entire base material 10 changes to 500 [° C.]. Then, the linear expansion difference per unit length between the CrN layer 34 and the cBN layer 54 is 7.5 [μm] (= 1.5 [× 10 −6 / ° C.] × 500 [° C.] × 10 [ mm] |), which is much smaller than the linear expansion difference (= 17.0 [μm]) between the TiN layer 104 and the cBN layer 54 under the same conditions, that is, the above-mentioned danger of about 20 [μm]. Much smaller than the regional level. Therefore, the cBN film 50 does not peel off even in the environment of 500 [° C.].

さらに、例えば、母材10全体の温度が800[℃]にまで変化する、と仮定する。この場合、CrN層34とcBN層54との間の線膨張差は、12.0[μm](=1.5[×10−6/℃]×800[℃]×10[mm]|)となり、依然として、上述の約20[μm]という危険域レベルよりも小さい。従って、この800[℃]という環境下においても、cBN膜50は剥離しない。 Further, for example, it is assumed that the temperature of the entire base material 10 changes to 800 [° C.]. In this case, the linear expansion difference between the CrN layer 34 and the cBN layer 54 is 12.0 [μm] (= 1.5 [× 10 −6 / ° C.] × 800 [° C.] × 10 [mm] |) Therefore, it is still smaller than the above-mentioned danger level of about 20 [μm]. Therefore, the cBN film 50 is not peeled even in the environment of 800 [° C.].

なお、母材10全体の温度が1300[℃]にまで変化すると、CrN層34とcBN層54との間の線膨張差が、19.5[μm](=1.5[×10−6/℃]×1300[℃]×10[mm]|)となり、約20[μm]という危険域レベル付近に達する。これによって初めて、つまり母材10全体の温度が1300[℃]にまで変化して初めて、cBN膜50が剥離する恐れが生じてくる。しかし、この1300[℃]という温度は、cBN膜50が変質し始める(常圧相に戻り始める)温度でもあり、言わばcBN膜50本来の許容上限温度である。従って、中間層30本体としてCrN層34が採用されるこの図1の構成によれば、母材10全体が高温になること(要するに熱応力)によるcBN膜50の剥離が確実に防止される。 When the temperature of the entire base material 10 is changed to 1300 [° C.], the linear expansion difference between the CrN layer 34 and the cBN layer 54 is 19.5 [μm] (= 1.5 [× 10 −6]. / ° C.] × 1300 [° C.] × 10 [mm] |), and reaches around the danger level of about 20 [μm]. As a result, the cBN film 50 may be peeled off only when the temperature of the entire base material 10 is changed to 1300 [° C.]. However, this temperature of 1300 [° C.] is also a temperature at which the cBN film 50 starts to change quality (begins to return to the normal pressure phase), that is, the allowable upper limit temperature inherent in the cBN film 50. Therefore, according to the configuration of FIG. 1 in which the CrN layer 34 is employed as the intermediate layer 30 main body, the cBN film 50 is reliably prevented from being peeled off due to the entire base material 10 becoming high temperature (in short, thermal stress).

このことは、母材10としての超硬合金と、CrN層34を含む中間層30と、の間においても、同様である。つまり、これら母材10と中間層30との間でも、当該母材10全体が高温になることによる膜破壊(中間層30の破壊)が確実に防止される。   The same applies to the cemented carbide as the base material 10 and the intermediate layer 30 including the CrN layer 34. That is, even between the base material 10 and the intermediate layer 30, film destruction (destruction of the intermediate layer 30) due to the entire base material 10 becoming a high temperature is surely prevented.

なお、本実施形態においては、中間層30本体としてのCrN層34に代えて、図3に示すように、当該CrN層34と同じ膜厚(=1[μm])のCrN層38が採用されてもよい。このCrN層38の線膨張率は、図4に示すように、9.4[×10−6/℃]であり、従来の中間層100本体としてのTiN層104の線膨張率(=9.4[×10−6/℃]と等価である。従って、この線膨張率のみに注目すると、中間層30本体としてCrN層38が採用されることによる特段のメリットはないように見受けられる。しかしながら、このCrN層38の上下に介在している接着層としての各Cr層32および36の線膨張率に注目すると、その値は、6.5[×10−6/℃]であり、中間層100本体としてのCrN層38の線膨張率(=9.4[×10−6/℃])よりも、また、図1の構成における中間層100本体としてのCrN層34の線膨張率(=7.5[×10−6/℃])よりも、cBN層54の線膨張率(=6.0[×10−6/℃])に近い。加えて、当該各Cr層32および36の線膨張率(=6.5[×10−6/℃])は、図9に示した従来の中間層100における接着層としての各Ti層102および106の線膨張率(=8.8[×10−6/℃])よりも小さい(図10参照)。このことから、図3に示す構成によれば、接着層としての各Cr層32および36が、CrN層38と母材10との間の線膨張差、ならびに、当該CrN層38とcBN層54との間の線膨張差、のそれぞれを緩和させる言わば緩衝層としても機能し、これによって、図9に示した従来の構成に比べて、一定の効果が得られること、つまりcBN膜50を含む母材10全体の耐熱性を向上させ得ることが、期待される。このことは、後述するように、実験によっても確認された。 In the present embodiment, instead of the CrN layer 34 as the intermediate layer 30 main body, as shown in FIG. 3, a Cr 2 N layer 38 having the same thickness (= 1 [μm]) as the CrN layer 34 is provided. It may be adopted. As shown in FIG. 4, the linear expansion coefficient of the Cr 2 N layer 38 is 9.4 [× 10 −6 / ° C.], and the linear expansion coefficient of the TiN layer 104 as the conventional intermediate layer 100 body (= 9.4 [× 10 −6 / ° C.] Therefore, when attention is paid only to this linear expansion coefficient, there is no particular merit by adopting the Cr 2 N layer 38 as the intermediate layer 30 main body. However, when attention is paid to the linear expansion coefficient of each of the Cr layers 32 and 36 as adhesive layers interposed above and below the Cr 2 N layer 38, the value is 6.5 [× 10 −6 / ° C. 1 and the coefficient of linear expansion (= 9.4 [× 10 −6 / ° C.]) of the Cr 2 N layer 38 as the intermediate layer 100 main body, and CrN as the intermediate layer 100 main body in the configuration of FIG. Than the linear expansion coefficient of the layer 34 (= 7.5 [× 10 −6 / ° C.]) , Close to the linear expansion coefficient (= 6.0 [× 10 −6 / ° C.]) of the cBN layer 54. In addition, the linear expansion coefficient of each of the Cr layers 32 and 36 (= 6.5 [× 10 −6 / [° C.]) is smaller than the linear expansion coefficient (= 8.8 [× 10 −6 / ° C.]) of the Ti layers 102 and 106 as the adhesive layer in the conventional intermediate layer 100 shown in FIG. For this reason, according to the configuration shown in FIG. 3, each of the Cr layers 32 and 36 as the adhesive layer has a difference in linear expansion between the Cr 2 N layer 38 and the base material 10, and the Cr 2 It also functions as a buffer layer that alleviates each of the linear expansion differences between the N layer 38 and the cBN layer 54, and as a result, a certain effect can be obtained compared to the conventional configuration shown in FIG. 9. That is, it is expected that the heat resistance of the entire base material 10 including the cBN film 50 can be improved. This was confirmed by experiments as will be described later.

以上のように、図9に示した従来の構成によれば、母材10全体の温度が500[℃]以上になると、cBN膜50が剥離する。これに対して、本実施形態によれば、より高温の環境に耐え得るcBN膜50を実現することができ、特に図1に示した構成によれば、母材10全体が高温になることによる当該cBN膜50の剥離を確実に防止することができる。このことは、母材10の最終形態である製品の性能を向上させるのに、極めて有効である。   As described above, according to the conventional configuration shown in FIG. 9, when the temperature of the entire base material 10 becomes 500 [° C.] or higher, the cBN film 50 is peeled off. On the other hand, according to the present embodiment, the cBN film 50 that can withstand a higher temperature environment can be realized. In particular, according to the configuration shown in FIG. The cBN film 50 can be reliably prevented from peeling off. This is extremely effective in improving the performance of the product which is the final form of the base material 10.

この効果を証明するために、このたび、次のような実験を行った。まず、母材10として、切削工具の1つであるエンドミル、詳しくは直径が6[mm]の超硬合金製2枚刃エンドミルを、用意する。そして、このエンドミルに対して、図1、図3および図9に示した構成をそれぞれ適用する。さらに、これらの構成が適用されたエンドミルをマシニングセンタに取り付け、被切削材としての機械構造用炭素鋼(S55C)を切削(側面ダウンカット)する。そして、切削距離に対するエンドミルの境界部摩耗幅(刃の切削部分と非切削部分との境界における当該刃の摩耗幅)を測定する。なお、切削速度は、565[m/min]であり、送りピッチは、0.05[mm/tooth]である。そして、切り込み寸法は、半径方向において0.1[mm]であり、軸方向において8.0[mm]である。この実験結果を、図5に示す。   In order to prove this effect, the following experiment was conducted. First, as the base material 10, an end mill which is one of cutting tools, more specifically, a cemented carbide two-blade end mill having a diameter of 6 mm is prepared. And the structure shown in FIG.1, FIG3 and FIG.9 is each applied with respect to this end mill. Further, an end mill to which these configurations are applied is attached to a machining center, and machine structural carbon steel (S55C) as a workpiece is cut (side down cut). Then, the wear width of the boundary portion of the end mill with respect to the cutting distance (the wear width of the blade at the boundary between the cutting portion and the non-cutting portion of the blade) is measured. The cutting speed is 565 [m / min], and the feed pitch is 0.05 [mm / tooth]. The incision dimension is 0.1 [mm] in the radial direction and 8.0 [mm] in the axial direction. The experimental results are shown in FIG.

この図5に示すように、図9の構成(中間層100本体がTiN層104である従来の構成)が適用されたエンドミルについては、切削距離が60[m]を超えた辺りで境界部摩耗幅が急激に増大すること、つまり寿命が尽きることが、確認された。これに対して、図1の構成(中間層30本体がCrN層34である本実施形態の構成)が適用されたエンドミルについては、切削距離が400[m]に至っても境界部摩耗幅の急激な増大が認められないこと、つまり寿命が尽きないことが、確認された。そして、図3の構成(中間層30本体がCrN層38である本実施形態の別の構成)が適用されたエンドミルについては、切削距離が200[m]を超えた辺りで寿命が尽きるものの、少なくとも図9の構成が適用されたエンドミルよりは明らかに長寿命であることが、確認された。このように、本実施形態によれば、特に図1の構成によれば、エンドミル等の切削工具を長寿命化するのに極めて有効であること、言い換えれば当該切削工具の性能をより向上させ得ることが、実証された。 As shown in FIG. 5, for the end mill to which the configuration of FIG. 9 (conventional configuration in which the intermediate layer 100 main body is the TiN layer 104) is applied, the wear of the boundary portion occurs when the cutting distance exceeds 60 [m]. It was confirmed that the width increased rapidly, that is, the lifetime was exhausted. On the other hand, for the end mill to which the configuration of FIG. 1 (the configuration of the present embodiment in which the intermediate layer 30 body is the CrN layer 34) is applied, even if the cutting distance reaches 400 [m], the boundary wear width is abrupt. It was confirmed that no significant increase was observed, that is, the lifetime was not exhausted. For the end mill to which the configuration of FIG. 3 (another configuration of the present embodiment in which the intermediate layer 30 main body is the Cr 2 N layer 38) is applied, the life ends when the cutting distance exceeds 200 [m]. However, it has been confirmed that the lifetime is clearly longer than that of the end mill to which at least the configuration of FIG. 9 is applied. Thus, according to this embodiment, particularly according to the configuration of FIG. 1, it is extremely effective for extending the life of a cutting tool such as an end mill, in other words, the performance of the cutting tool can be further improved. That was proved.

さらに、次のような別の実験をも行った。即ち、母材10として、成形金型の1つである打ち抜きプレス用の金型、詳しくは合金工具鋼(SKD11)製の金型、を用意する。そして、この金型に対して、図1および図9の構成をそれぞれ適用する。さらに、これらの構成が適用された金型によって、厚さ寸法が3[mm]の一般構造用圧延鋼(SS400)を加工材とする打ち抜きプレス加工を行う。そして、この打ち抜きプレス加工を確実に実施し得る回数、いわゆるショット数、を検証する。なお、比較対照用として、未処理の金型と、TiN膜のみ(厳密にはTi膜とTiN膜との2層構造)が形成された金型と、のそれぞれについても、同様の打ち抜きプレス加工を行う。その結果を、図6に示す。   In addition, another experiment was performed as follows. That is, as the base material 10, a die for punching press, which is one of molding dies, specifically, a die made of alloy tool steel (SKD11) is prepared. And the structure of FIG. 1 and FIG. 9 is each applied with respect to this metal mold | die. Furthermore, the stamping press process which uses the general structural rolled steel (SS400) whose thickness dimension is 3 [mm] with the metal mold | die to which these structures were applied is performed. Then, the number of times that this punching press process can be surely performed, that is, the so-called shot number, is verified. For comparison, the same stamping press process is also used for each of an untreated mold and a mold in which only a TiN film (strictly, a two-layer structure of a Ti film and a TiN film) is formed. I do. The result is shown in FIG.

この図6に示すように、図1の構成が適用された金型については、少なくとも50000回のショットが可能であり、また、その後も依然としてショット可能であることが、確認された。これに対して、図9の構成が適用された金型については、その約6割である30000回のショットで寿命が尽きる。そして、TiN膜のみが生成された金型については、さらに少ない10000回のショットで寿命が尽き、未処理の金型に至っては、僅か3000回のショットで寿命が尽きる。なお、図3の構成については、実験を行っていないが、少なくとも図9の構成が適用された金型よりも長寿命になるものと、推測される。このように、本実施形態によれば、打ち抜きプレス加工用の金型についても、その長寿命化を図るのに極めて有効であること、つまり当該金型の性能をより向上させ得ることが、実証された。   As shown in FIG. 6, it was confirmed that the mold to which the configuration of FIG. 1 was applied can be shot at least 50000 times and can still be shot after that. On the other hand, for the mold to which the configuration of FIG. 9 is applied, the life is exhausted after 30000 shots, which is about 60%. For a mold in which only the TiN film is generated, the life is exhausted by a further 10,000 shots, and for an unprocessed mold, the life is exhausted by only 3000 shots. In addition, although it did not experiment about the structure of FIG. 3, it is estimated that it will become a lifetime longer than the metal mold | die to which the structure of FIG. 9 was applied at least. As described above, according to the present embodiment, it is proved that the die for punching press processing is extremely effective for extending the service life, that is, the performance of the die can be further improved. It was done.

なお、本実施形態の高硬度被膜は、例えば上述の特許文献1に開示されたのと同様のイオンプレーティング法の成膜装置によって、形成することができる。この成膜装置の詳細については、当該特許文献1を参照すれば足りるので、ここでの説明を割愛する。   Note that the high-hardness film of the present embodiment can be formed by, for example, the same ion plating film forming apparatus as disclosed in Patent Document 1 described above. Regarding the details of the film forming apparatus, it is sufficient to refer to Patent Document 1, and thus the description thereof is omitted here.

また、中間層30として、図1の構成を採用するのか、それとも図3の構成を採用するのかは、当該中間層30を形成する際の成膜条件、例えば成膜レート、によって、適宜に選択される。具体的には、図7のX線解析結果(XRDデータ)に示すように、成膜レートが10[Å/s]であるときに、CrNのピークが見受けられる。これは即ち、当該成膜レートを10[Å/s]とすれば、図1におけるCrN層34を形成し得ることを、意味する。そして、成膜レートが80[Å/s]であるときに、CrNのピークが見受けられる。即ち、成膜レートを80[Å/s]とすれば、図3におけるCrN層38を形成することができる。さらに、成膜レートが160[Å/s]であるときに、Crのピークが見受けられる。つまり、成膜レートを160[Å/s]とすれば、図1および図3のそれぞれにおける各Cr層32または36を形成することができる。このように、成膜レートによって、中間層30の構成(組成)を適宜に制御することができる。なお、図7は、アノード電圧(イオン化電圧)が60[V]であり、アノード電流(イオン化電流)が10[A]であり、真空槽内の圧力が6.67×10−2[Pa](≒5×10−4[Torr])であるときのデータである。 Further, whether to adopt the configuration of FIG. 1 or the configuration of FIG. 3 as the intermediate layer 30 is appropriately selected depending on the film formation conditions for forming the intermediate layer 30, for example, the film formation rate. Is done. Specifically, as shown in the X-ray analysis result (XRD data) of FIG. 7, when the film formation rate is 10 [Å / s], a CrN peak is observed. This means that the CrN layer 34 in FIG. 1 can be formed if the deposition rate is 10 [Å / s]. When the film formation rate is 80 [Å / s], a Cr 2 N peak is observed. That is, if the film formation rate is 80 [Å / s], the Cr 2 N layer 38 in FIG. 3 can be formed. Further, when the film formation rate is 160 [Å / s], a Cr peak is observed. That is, if the film formation rate is 160 [Å / s], each Cr layer 32 or 36 in FIGS. 1 and 3 can be formed. Thus, the configuration (composition) of the intermediate layer 30 can be appropriately controlled by the film formation rate. In FIG. 7, the anode voltage (ionization voltage) is 60 [V], the anode current (ionization current) is 10 [A], and the pressure in the vacuum chamber is 6.67 × 10 −2 [Pa]. This is data when (≈5 × 10 −4 [Torr]).

さらに、中間層30の構成は、アノード電流によっても、適宜に制御することができる。具体的には、図8に示すように、当該アノード電流が10[A]であるときに、Crのピークが見受けられる。そして、アノード電流が20[A]であるときに、CrNのピークが見受けられる。つまり、成膜レートが同じであっても、アノード電流を適宜に変化させることによって、中間層30の構成を制御することができる。なお、図8は、成膜レートが160[Å/s]であり、アノード電圧が60[V]であり、真空槽内の圧力が6.67×10−2[Pa]であるときのデータである。また、この図8には示していないが、CrNのピークが見受けられるようにもすることができる。 Furthermore, the configuration of the intermediate layer 30 can be appropriately controlled by the anode current. Specifically, as shown in FIG. 8, when the anode current is 10 [A], a Cr peak is observed. When the anode current is 20 [A], a peak of Cr 2 N is observed. That is, even if the film formation rate is the same, the configuration of the intermediate layer 30 can be controlled by appropriately changing the anode current. FIG. 8 shows data when the film formation rate is 160 [Å / s], the anode voltage is 60 [V], and the pressure in the vacuum chamber is 6.67 × 10 −2 [Pa]. It is. Although not shown in FIG. 8, a peak of CrN can be seen.

以上の説明は、本発明を実現するための一例であり、本発明を限定するものではない。従って、例えば、cBN膜50に代えて、六方晶系のBN(hBN)膜、さらには当該六方晶系の中でも高圧相のウルツ鉱型のBN(wBN)等、他のBN膜を採用してもよい。また、中間層30本体として、CrNとCrNとの中間のアモルファス状のものを採用してもよい。 The above description is an example for realizing the present invention, and does not limit the present invention. Therefore, for example, instead of the cBN film 50, another BN film such as a hexagonal BN (hBN) film, or a high-pressure wurtzite BN (wBN) in the hexagonal system is employed. Also good. Further, as the intermediate layer 30 main body, an intermediate amorphous material between CrN and Cr 2 N may be adopted.

併せて、母材10については、超硬合金製に限らず、例えば高速度鋼製であってもよい。ただし、高速度鋼の線膨張率は、11.0[×10−6/℃]〜13.0[×10−6/℃]であり、cBN層54の線膨張率(=6.0[×10−6/℃])と大きく異なる。従って、母材10としては、当該高速度鋼よりも、cBN層54の線膨張率と略等価な線膨張率(=5.0[×10−6/℃]〜6.0[×10−6/℃])を有する高速度鋼の方が、好ましい。勿論、これ以外の材料を、母材10として採用してもよい。ただし、cBN層54の線膨張率に近いか、これに等しい線膨張率を有する材料が、当該母材10として好ましい。 In addition, the base material 10 is not limited to cemented carbide, but may be made of, for example, high speed steel. However, the linear expansion coefficient of the high-speed steel, 11.0 [× 10 -6 /℃]~13.0[×10 -6 / ℃] is the linear expansion coefficient of the cBN layer 54 (= 6.0 [ × 10 −6 / ° C.]). Therefore, the base member 10, than the high-speed steel, nearly equivalent coefficient of linear expansion and the coefficient of linear expansion of the cBN layer 54 (= 5.0 [× 10 -6 /℃]~6.0[×10 - 6 / ° C]) is preferred. Of course, other materials may be used as the base material 10. However, a material having a linear expansion coefficient close to or equal to the linear expansion coefficient of the cBN layer 54 is preferable as the base material 10.

10 母材
30 中間層
32 Cr層(下層側接着層)
34 CrN層
36 Cr層(上層側接着層)
50 cBN膜
52 B層
54 cBN層
10 Base material 30 Intermediate layer 32 Cr layer (Lower layer side adhesive layer)
34 CrN layer 36 Cr layer (upper layer adhesive layer)
50 cBN film 52 B layer 54 cBN layer

Claims (5)

母材上に形成された中間層と、該中間層の上に形成された窒化ホウ素膜と、を具備する高硬度被膜において、
上記中間層は窒化クロム層でありかつ上記窒化ホウ素膜との間にクロム層を含むこと、
を特徴とする、高硬度被膜。
In a high-hardness film comprising an intermediate layer formed on a base material, and a boron nitride film formed on the intermediate layer,
The intermediate layer is comprised of chromium layer between the chromium nitride layer der Li Kui said boron nitride layer,
A high-hardness film characterized by
上記窒化ホウ素膜は立方晶系または六方晶系である、
請求項1に記載の高硬度被膜。
The boron nitride film is cubic or hexagonal,
The high hardness film according to claim 1.
上記窒化クロム層はCrN型である、
請求項1または2に記載の高硬度被膜。
The chromium nitride layer is CrN type.
The high hardness film according to claim 1 or 2.
上記母材は超硬合金製である、
請求項1ないしのいずれかに記載の高硬度被膜。
The base material is made of cemented carbide,
The high-hardness film according to any one of claims 1 to 3 .
母材上に中間層を形成し、該中間層の上に高硬度被膜としての窒化ホウ素膜を形成する、高硬度被膜の形成方法において、
上記中間層として窒化クロム層を形成すると共に上記窒化ホウ素膜との間にクロム層を形成すること、
を特徴とする、高硬度被膜の形成方法。
In the method for forming a high hardness film, an intermediate layer is formed on a base material, and a boron nitride film as a high hardness film is formed on the intermediate layer.
Forming a chromium nitride layer as the intermediate layer and forming a chromium layer with the boron nitride film ;
A method for forming a high-hardness film.
JP2009028254A 2009-02-10 2009-02-10 High hardness coating and method for forming the same Active JP4931944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028254A JP4931944B2 (en) 2009-02-10 2009-02-10 High hardness coating and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028254A JP4931944B2 (en) 2009-02-10 2009-02-10 High hardness coating and method for forming the same

Publications (2)

Publication Number Publication Date
JP2010185095A JP2010185095A (en) 2010-08-26
JP4931944B2 true JP4931944B2 (en) 2012-05-16

Family

ID=42765926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028254A Active JP4931944B2 (en) 2009-02-10 2009-02-10 High hardness coating and method for forming the same

Country Status (1)

Country Link
JP (1) JP4931944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366348B2 (en) 2014-05-09 2018-08-01 Towa株式会社 Mold

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228962A (en) * 1994-02-21 1995-08-29 Kyocera Corp Hard layer-coated member
JPH07292456A (en) * 1994-04-22 1995-11-07 Nissin Electric Co Ltd Film coated substrate
JPH08120450A (en) * 1994-10-17 1996-05-14 Hitachi Ltd Ceramic-coated valve

Also Published As

Publication number Publication date
JP2010185095A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4704335B2 (en) Surface coated cutting tool
Vereschaka et al. Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions
JP5969473B2 (en) Cutting tool with multilayer coating
JP3877124B2 (en) Hard coating coated member
JP5176621B2 (en) Amorphous carbon coated tool
JP2005193376A (en) Coated tool with long service life
JP5852619B2 (en) Amorphous carbon-containing coating
JP5536143B2 (en) Diamond coating for cutting tools
JP4304170B2 (en) Hard coating
JP3963354B2 (en) Coated cutting tool
WO2013129320A1 (en) Covered rotary tool and manufacturing method therefor
JP4931944B2 (en) High hardness coating and method for forming the same
JP2010194629A (en) Diamond coat for cutting tool
JP3586217B2 (en) Wear-resistant film-coated tools
JP2007046103A (en) Hard film
JP6052502B2 (en) Surface coated cemented carbide cutting tool
JP2006026783A (en) Surface covering cutting tool
JP5975214B2 (en) Surface coated cutting tool
Li et al. Optimization of interlayer/CrWN bilayer films fabricated and monitored under Shewhart control
JP2007056324A (en) Hard film
Khan et al. Development of AlTiN coated carbide bandsaw for machining titanium-17 alloy
JP4394625B2 (en) Mold surface protection film
JPH11156992A (en) Composite wear-resistant hard film having solid lubricating properties and won-affinity, and article with film
US11389879B2 (en) Ultra soft cutting tool coatings and coating method
JP3699004B2 (en) Wear-resistant coated tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250