JP4931163B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP4931163B2
JP4931163B2 JP2001126337A JP2001126337A JP4931163B2 JP 4931163 B2 JP4931163 B2 JP 4931163B2 JP 2001126337 A JP2001126337 A JP 2001126337A JP 2001126337 A JP2001126337 A JP 2001126337A JP 4931163 B2 JP4931163 B2 JP 4931163B2
Authority
JP
Japan
Prior art keywords
microporous membrane
sheet
thickness
polyethylene
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001126337A
Other languages
Japanese (ja)
Other versions
JP2002321323A (en
Inventor
理行 安達
佳史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2001126337A priority Critical patent/JP4931163B2/en
Publication of JP2002321323A publication Critical patent/JP2002321323A/en
Application granted granted Critical
Publication of JP4931163B2 publication Critical patent/JP4931163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、高強度且つ安全性特性に優れたポリオレフィン製微多孔膜であり、非水電解液系電池用セパレーターとして有用であり、特に小型高容量のリチウムイオン2次電池用セパレーターとして有用である。
【0002】
【従来の技術】
リチウムイオン2次電池のような、非水溶媒系の電解液を使用した電池のセパレーターには従来よりポリエチレンやポリプロピレンといったポリオレフィン製の微多孔膜が使用されてきた。ポリオレフィン製のセパレーターは耐薬品性が高いことに加えて、130〜160℃の温度では溶融して孔を閉塞するシャットダウン機能を有するため、電池中で異常反応が生じて電池が高温になった場合にシャットダウンにより電池反応を停止させ、電池温度が異常に上昇するのを防ぐ安全性素子の役割も兼ね備えている。
【0003】
このシャットダウン機能の観点では、融点の低いポリエチレン製のセパレーターが有利であるが、高温での形状維持性を考慮した場合には、ポリプロピレン製のセパレーターが有利である。従って、シャットダウン特性と高温での形状維持特性を両立させる目的で、従来よりポリエチレンとポリプロピレンをブレンドしたり、ポリエチレン製の微多孔膜とポリプロピレン製の微多孔膜を積層するような技術が開示されてきた。
【0004】
一方で、近年電子機器の小型軽量化及び多機能化に伴い、電池の小型軽量化及び高容量化が加速し、セパレーターには安全性機能及び強度を維持しながらの薄膜化が求められるようになってきたが、従来の技術では薄膜化した場合にでも十分な安全性機能と強度を保つことが困難である。例えば、ポリエチレンとポリプロピレンのブレンドでは、非相溶性のポリマー同士のブレンドのため、機械強度や伸度の低下といった問題が生じ易く、薄膜化を考慮した場合不利である。加えて、特にポリプロピレンの割合が多いとシャットダウンが不完全になる危険性があり、薄膜化してポリマー量が減った場合や大孔径化した場合は、さらにその危険性が高くなることが考えられる。ポリエチレン製微多孔膜とポリプロピレン製微多孔膜を積層する技術においては、シャットダウン温度を低くするためには低融点のポリエチレンを使用する必要があり、強度的に不利である。
【0005】
即ち、低温シャットダウンと高強度化の両立が困難であり、薄膜化にとっては不利である。特開平9−241411号及び特開平10−316781号には、ポリエチレンとポリプロピレンをブレンドして作製したフィルムとポリプロピレンで作製したフィルムの積層物を延伸して微多孔膜を作製する技術が開示されているが、やはり低温シャットダウンと高強度化の両立が困難であり、薄膜化にとっては不利である。
【0006】
【発明が解決しようとする課題】
安全性機能及び膜強度に優れ、特に非水電解系電池用セパレーターに適した積層微多孔膜の提供。
【0007】
【課題を解決するための手段】
このような課題に鑑みて鋭意検討した結果、本発明者らはポリエチレンとポリプロピレンを必須成分とする微多孔膜と、ポリエチレン微多孔膜を積層し、さらに膜厚を特定範囲に調整することで、薄膜化しても十分な安全性機能と強度が得られることを知見した。即ち本発明は、下記の通り。
(1)ポリエチレンとポリプロピレンを必須成分とする微多孔膜A、ポリエチレン微多孔膜Bを積層一体化させ、膜厚が5〜20μmであるポリオレフィン製微多孔膜。
(2)微多孔膜Aを構成するポリエチレンが超高分子量ポリエチレンを含むことを特徴とする(1)記載のポリオレフィン製微多孔膜。
(3)微多孔膜Bを構成するポリエチレンが直線状低密度ポリエチレンを含むことを特徴とする(1)又は(2)記載のポリオレフィン製微多孔膜。
(4)シャットダウン温度と破膜温度との温度差が33℃以上であることを特徴とする(1)〜(3)のいずれか記載のポリオレフィン製微多孔膜。
)(1)〜(4)のいずれか記載のポリオレフィン製微多孔膜からなる非水電解液系電池用セパレーター。
【0008】
積層膜の少なくとも1枚をポリエチレン単体膜とし、シャットダウン機能を負わせることで、良好なシャットダウン特性が得られ、加えてポリエチレンとポリプロピレンのブレンド膜で高温での耐破膜特性が得られる。さらに、ポリエチレンとポリプロピレンのブレンド膜において、超高分子量ポリエチレンを使用すれば高い膜強度が得られるため、薄膜化した際の強度維持に有利である。且つ、ポリプロピレンがブレンドされていることで、溶融体の粘度が下がり、成形加工し易くなるとの利点もある。
【0009】
微多孔膜Aに関しては、ポリプロピレン含量は、破膜温度及び膜強度の観点から、3〜50wt%が好ましく、より好ましくは5〜20wt%である。
本発明の微多孔膜の安全性機能において、シャットダウン温度は、電池安全性の観点から140℃以下が好ましく、より好ましくは135℃以下である。破膜温度は、電池安全性の観点から150℃以上が好ましく、より好ましくは160℃以上である。
【0010】
本発明の微多孔膜の強度に関して、突刺強度は、電極活物質による破膜防止の観点から2.5N/25μm以上であることが好ましく、より好ましくは2.9N/25μm以上、さらに好ましくは3.9N/25μm以上である。
本発明の微多孔膜の他の物性に関しては、膜厚は5〜50μmが好ましく、さらに好ましくは5〜20μmである。機械強度及び電極間の絶縁の完全性の点から5μm以上、小型電池のセパレーターとしての適性から50μm以下が好ましい。気孔率は20〜70%が好ましく、さらに好ましくは30〜50%である。電池セパレーターとして使用した場合に電池内部の抵抗が高くなることを防止する点から20%以上、機械強度の点から70%以下が好ましい。透気度は50〜1000sec/100cc/25μmが好ましく、より好ましくは50〜500sec/100cc/25μm、さらに好ましくは50〜300sec/100cc/25μmである。機械強度の点で50sec/100cc/25μm以上、透過性能の点から1000sec/100cc/25μm以下が好ましい。
【0011】
さらに、より安全性特性に優れた微多孔膜であるためには、シャットダウン時に収縮して内部短絡を起こさないように横方向の収縮率や収縮応力が小さいことが好ましい。具体的には、シャットダウン温度以下での横方向の最大収縮率は50%以下であることが好ましく、より好ましくは40%以下、さらに好ましくは30%以下である。シャットダウン時の収縮で電極が露出し、短絡することを防止する観点から最大収縮率は50%以下が好ましい。さらに、収縮率が低いことに加えて収縮力が低ければ安全性機能にとってより好ましい。収縮力が低ければ、正極と負極からの圧着力で、収縮を防ぐことができる可能性がある。具体的には、シャットダウン温度以下での横方向の最大収縮応力は590kPa以下であることが好ましく、より好ましくは490kPa以下、さらに好ましくは390kPa以下である。
【0012】
本発明の微多孔膜の製造方法としては、例えば微多孔膜A及びBを別々に作製した後、カレンダーロール等を通して熱延伸しながら貼り合わせる方法や、多層ダイを使用して、共押出法によりダイスから出た時点で貼り合わせる方法等がある。積層形態は、積層後のカール防止を考慮すると、A/Bの二枚積層よりもA/B/A型或いはB/A/B型の3枚積層型が好ましい。
微多孔膜A及びBの作製法としては、湿式法又は乾式法があるが、超高分子量ポリエチレンの使用を考慮すると湿式法が好ましい。湿式法には、ポリオレフィン樹脂と有機液状物を先端にT−ダイを装着した2軸押出機にて溶押出機中で溶融混練し、T−ダイからシート状に押出し成形した後で有機液状物を抽出除去し多孔化する方法、及びポリオレフィン樹脂、有機液状物、無機フィラーを先端にT−ダイを装着した2軸押出機にて溶押出機中で溶融混練し、T−ダイからシート状に押出し成形した後で有機液状物及び無機フィラーを抽出除去し多孔化する方法がある。いずれの方法においても、多孔化する前か後又は多孔化の前後において縦方向又は横方向のどちらか一方或いは縦横両方向に延伸処理をしても良い。
【0013】
本発明にて使用されるポリエチレンの種類としては、密度が0.94g/ccを越えるような高密度ポリエチレン、密度が0.93〜0.94g/ccの範囲の中密度ポリエチレン、密度が0.93g/ccより低い低密度ポリエチレン、直鎖状低密度ポリエチレンが挙げられ、それらを単独で使用しても、或いは混合物として使用してもよい。
本発明にて使用されるポリプロピレンの種類としては、ホモポリマー及びエチレン成分と共重合させたコポリマーが挙げられ、それらを単独で使用しても、或いは混合物として使用してもよいが、ポリエチレンとの混合性を考慮すると、ホモポリマーよりもコポリマーの方が好ましい。コポリマーとしては、エチレンプロピレンランダムコポリマーやブロックコポリマーが挙げられる。さらに、膜強度や高温時の耐熱性を考慮するとメルトインデックスは1g/10min以下のものが好ましい。
【0014】
【発明の実施の形態】
以下、以上の発明内容を実施例にて更に詳細に具体的に説明するが、本発明の実施態様は、下記の実施例に限定されるものではない。
本発明のポリオレフィン製微多孔膜の諸特性は次の試験方法にて評価した。
1.膜厚(μm)
ダイヤルゲージ(尾崎製作所:PEAKOCK No.25)にて評価した。
2.透気度 (sec/100cc)
JIS P8117に準拠し、東洋精機製B型ガーレー式デンソメーターを用い、表線目盛り0〜100まで要する時間をストップウオッチで測定した。
3.最大収縮応力(Pa)
熱機械的分析装置(セイコー電子工業製TMA120)にて、
サンプル長(TD)×サンプル幅=10mm×3mm
初期荷重1.2g
昇温速度10℃/min
の条件にて測定。収縮応力曲線において最大収縮荷重(g)を求め、下記の(1)式より、最大収縮応力を算出した。
最大収縮応力={最大収縮荷重/(3×T)}×100×9.8×10000 (1)
T:サンプル厚み(μm)
【0015】
4.最大収縮率
ステンレスのフレーム(外形=60mm×60mm、内形=40mm×40mm)に縦方向の両端のみをクリップにてサンプルを固定。固定後のサンプルの大きさは縦方向×横方向=50mm×40mm。固定した状態で、所定温度のオーブン中に30分間放置後、横方向の最短部の長さを測定し、以下の(2)式にて収縮率を算出。
収縮率(%)={(加熱前の横方向の長さ(40mm)−加熱後の横方向の最短部の長さ)/加熱前の横方向の長さ}×100
5.気孔率(%)
Xcm×Ycmのサンプルを切り出し、下記(1)式により算出した。
気孔率={1−(10000×M/ρ)/(X×Y×T)}× 100 (1)
(1)式中、T:サンプル厚み(μm)、M:サンプル質量(g)
ρ:樹脂の密度(0.95g/cc)
6.突刺強度(N)
(株)カトーテック社製のハンディー圧縮試験器KES−G5型に、直径1mm、先端の極率半径0.5mmの針を装着し、温度23±2℃、針の移動速度0.2cm/secで突刺試験を行った。
【0016】
7.孔閉塞温度(℃)、破膜温度(℃)
孔閉塞温度:図1(A)〜(C)に孔閉塞温度の測定装置の概略図を示す。
図1(A)は測定装置の構成図である。1は微多孔膜であり、2A及び2Bは厚さ10μmのNi箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気LCRメーター AG4311)であり、Ni箔(2A、2B)と接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗測定装置4及び温度計6と接続されている。8はオーブンであり、微多孔膜を加熱する。
【0017】
さらに詳細に説明すると、微多孔膜1には規定の電解液が含浸されており、図1(B)に示すようにNi箔2A上にMDのみテフロンテープで止められた形で固定されている。Ni箔2Bは図1(C)に示すように15mm×10mmの部分を残してテフロンテープでマスキングされている。Ni箔2AとNi箔2Bを微多孔膜1を挟むような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のNi箔を挟み込む。2枚のガラス板は市販のクリップではさむことにより固定する。
【0018】
図1(A)に示した装置を用い、連続的に温度と電気抵抗を測定する。なお、温度は2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。
孔閉塞温度とは微多孔膜1の電気抵抗値が1000Ωに達する時の温度と定義する。
さらに温度が上昇し、孔閉塞した膜が破膜し、再度電気抵抗値が1000Ωに達する時の温度を破膜温度と定義する。
【0019】
なお、規定の電解液とは下記の通りである。
電解液:1 mol/リットルのLiBF4及び0.5wt%のリン酸トリオクチルを含む炭酸プロピレン/炭酸エチレン/γ−ブチルラクトン=25/25/50体積%の混合有機溶媒。
8.粘度平均分子量(Mv)
溶剤(デカリン)を用い、測定温度135℃にて極限粘度[η]を測定し、(1)式によりMvを算出した。
[η]=6.8×10-4Mv0.67 (1)
9.重量平均分子量
GPC測定(ゲルパーミエイションクロマトグラフィー)により求めた。

Figure 0004931163
10.メルトインデックス(MI)
ASTM D1238に準拠して測定した。
【0020】
参考例1
・微多孔膜Aの作製
重量平均分子量30万の高密度ポリエチレン(HDPE)38.8wt%、メルトインデックス(MI)1.0g/10minのポリプロピレン(PP)1.2wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ18μmの微多孔膜Aを作製した。
・微多孔膜Bの作製
HDPE45wt%、流動パラフィン55wt%を先端にT−ダイを装着した押出機で溶融混練した後押出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ18μmの微多孔膜Bを作製した。
【0021】
・積層微多孔膜の作製
A/B/Aの形態に3枚積層し、110℃に加熱された数本のロールを通しながら縦方向に3倍延伸し、その後122℃に加熱された数本のロールを通して熱処理を行い3枚積層した縦延伸膜を作製した。続いて、縦延伸膜を118℃に加熱されたテンターにて横方向に2倍延伸し、続いて同テンター内の128℃に加熱された領域にて熱処理しながら1.8倍まで強制的に緩和させて厚さ15μmのA/B/A型の3枚積層微多孔膜を作製した。
得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が低く、破膜温度が高く、かつ突刺強度が高い微多孔膜となっている。
【0022】
【実施例
・微多孔膜Aの作製
粘度平均分子量200万の超高分子量ポリエチレン(UHPE)24wt%、PP16wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ18μmの微多孔膜Aを作製した。
・微多孔膜Bの作製
HDPE31.5wt%、 MI0.8g/10minの直鎖状低密度ポリエチレン(LLDPE)13.5wt%、流動パラフィン55wt%を先端にT−ダイを装着した押出機で溶融混練した後押出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ16μmの微多孔膜Bを作製した。
【0023】
・積層微多孔膜の作製
A/B/Aの形態に3枚積層し、105℃に加熱された数本のロールを通しながら縦方向に2.5倍延伸し、その後120℃に加熱された数本のロールを通して熱処理を行い3枚積層した縦延伸膜を作製した。続いて、縦延伸膜を115℃に加熱されたテンターにて横方向に2倍延伸し、続いて同テンター内の125℃に加熱された領域にて熱処理しながら1.8倍まで強制的に緩和させて厚さ17μmのA/B/A型の3枚積層微多孔膜を作製した。
得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が低く、破膜温度が高く、かつ突刺強度が高い微多孔膜となっている。
【0024】
【実施例
・微多孔膜Aの作製
実施例記載の微多孔膜Aに同じ。
・微多孔膜Bの作製HDPE22.5wt%、 LLDPE22.5wt%、流動パラフィン55wt%を先端にT−ダイを装着した押出機で溶融混練した後押出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ16μmの微多孔膜Bを作製した。
・積層微多孔膜の作製
A/B/Aの形態に3枚積層し、102℃に加熱された数本のロールを通しながら縦方向に2.5倍延伸し、その後118℃に加熱された数本のロールを通して熱処理を行い3枚積層した縦延伸膜を作製した。続いて、縦延伸膜を115℃に加熱されたテンターにて横方向に2倍延伸し、続いて同テンター内の123℃に加熱された領域にて熱処理しながら1.8倍まで強制的に緩和させて厚さ17mのA/B/A型の3枚積層微多孔膜を作製した。得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が低く、破膜温度が高く、かつ突刺強度が高い微多孔膜となっている。
【0025】
【実施例
・微多孔膜Aの作製
UHPE24wt%、HDPE8wt%、PP8wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ18μmの微多孔膜Aを作製した。
・微多孔膜Bの作製
実施例記載の微多孔膜Bに同じ。
・積層微多孔膜の作製A/B/Aの形態に3枚積層し、105℃に加熱された数本のロールを通しながら縦方向に2.5倍延伸し、その後120℃に加熱された数本のロールを通して熱処理を行い3枚積層した縦延伸膜を作製した。続いて、縦延伸膜を115℃に加熱されたテンターにて横方向に2倍延伸し、続いて同テンター内の125℃に加熱された領域にて熱処理しながら1.8倍まで強制的に緩和させて厚さ17μmのA/B/A型の3枚積層微多孔膜を作製した。得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が低く、破膜温度が高く、かつ突刺強度が高い微多孔膜となっている。
【0026】
【実施例
・微多孔膜Aを作製する原料組成
UHPE24wt%、HDPE8wt%、PP8wt%、流動パラフィン60wt%。
・微多孔膜Bを作製する原料組成
HDPE31.5wt%、LLDPE13.5wt%、流動パラフィン55wt%。
・積層微多孔膜の作製
先端に3層共押出用T−ダイを装着した2台の押出機で各々A、B組成の原料を溶融混練した後押出して、厚さ1300μmのA/B/A型のシートを作製した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ16μmの微多孔膜を得た。得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が低く、破膜温度が高く、かつ突刺強度が高い微多孔膜となっている。
【0027】
【比較例1】
参考例1記載の微多孔膜Aの物性を表2及び表3に示す。シャットダウン温度が低く、破膜温度は高いが、突刺強度が低い微多孔膜となっている。
【0028】
【比較例2】
実施例記載の微多孔膜Aの物性を表2及び表3に示す。破膜温度、突刺強度は高いが、シャットダウン温度も高く、安全性機能上好ましくない微多孔膜となっている。
【0029】
【比較例3】
UHPE20wt%、HDPE10.8wt%、LLDPE8wt%、PP1.2wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ17μmの微多孔膜Aを作製した。
【0030】
得られた微多孔膜の物性を表1及び表2に示すが、シャットダウン温度が高く、突刺強度の低い微多孔膜となっている。
【0031】
【比較例4】
・ポリエチレン微多孔膜の作製
UHPE20wt%、HDPE10wt%、LLDPE10wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ17μmの微多孔膜を作製した。
・ポリプロピレン微多孔膜の作製
PP40wt%、流動パラフィン60wt%を先端にT−ダイを装着した押出機で溶融混練した後押し出して、厚さ1300μmのシートを作成した。このシートを縦横同時に延伸し、厚さ20μmのシートを作製した。このシートをメチルエチルケトン(MEK)中に浸漬し流動パラフィンを抽出除去した後で乾燥させて、厚さ17μmの微多孔膜を作製した。
【0032】
・ポリエチレン微多孔膜とポリプロピレン微多孔膜の積層
PP/PE/PPの形態に3枚積層し、108℃に加熱された数本のロールを通しながら縦方向に2.5倍延伸し、その後120℃に加熱された数本のロールを通して熱処理を行い3枚積層した縦延伸膜を作製した。続いて、縦延伸膜を115℃に加熱されたテンターにて横方向に2倍延伸し、続いて同テンター内の125℃に加熱された領域にて熱処理しながら1.8倍まで強制的に緩和させて厚さ18μmのPP/PE/PP型の3枚積層微多孔膜を作製した。
得られた微多孔膜の物性を表2及び表3に示すが、シャットダウン温度が高く、突刺強度も低い微多孔膜となっている。
実施例および比較例の微多孔膜の積層形態、ポリマー組成等を表1に示す。
【0033】
【表1】
Figure 0004931163
【0034】
【表2】
Figure 0004931163
【0035】
【表3】
Figure 0004931163
【0036】
【発明の効果】
本発明の積層微多孔膜は、安全性機能及び膜強度に優れ、とりわけ非水電解液系電池用セパレーターとして有用である。
【図面の簡単な説明】
【図1】孔閉塞温度を測定する装置の構成を示す全体概略図であり、(A)は孔閉塞温度を測定する装置の全体概略図、(B)は(A)のニッケル(Ni)箔(2A)面での断面図、(C)は(A)のNi箔(2B)面での断面図である。
【符号の説明】
1 :微多孔膜
2A、2B:Ni箔
3A、3B:ガラス板
4 :電気抵抗測定装置
5 :熱電対
6 :温度計
7 :データーコレクター
8 :オーブン[0001]
BACKGROUND OF THE INVENTION
The present invention is a polyolefin microporous membrane having high strength and excellent safety characteristics, and is useful as a separator for non-aqueous electrolyte batteries, and particularly useful as a separator for small-sized and high-capacity lithium ion secondary batteries. .
[0002]
[Prior art]
Conventionally, a microporous membrane made of polyolefin such as polyethylene or polypropylene has been used for a separator of a battery using a nonaqueous solvent electrolyte such as a lithium ion secondary battery. In addition to high chemical resistance, polyolefin separators have a shutdown function that melts and closes the pores at temperatures of 130 to 160 ° C, so that abnormal reactions occur in the battery and the battery becomes hot. It also serves as a safety element that stops the battery reaction by shutting down and prevents the battery temperature from rising abnormally.
[0003]
From the viewpoint of this shutdown function, a polyethylene separator having a low melting point is advantageous, but a polypropylene separator is advantageous in view of maintaining shape at high temperatures. Therefore, techniques for blending polyethylene and polypropylene or laminating a microporous membrane made of polyethylene and a microporous membrane made of polypropylene have been disclosed for the purpose of achieving both shutdown characteristics and shape maintenance characteristics at high temperatures. It was.
[0004]
On the other hand, with the recent reduction in size and weight and the increase in functionality of electronic devices, the reduction in size and weight and increase in capacity of batteries has accelerated, and separators are required to be made thinner while maintaining safety functions and strength. However, with the conventional technology, it is difficult to maintain sufficient safety function and strength even when the film thickness is reduced. For example, in a blend of polyethylene and polypropylene, incompatible polymers tend to cause problems such as reduction in mechanical strength and elongation, which is disadvantageous when considering thinning. In addition, when the proportion of polypropylene is large, there is a risk that shutdown may be incomplete, and when the amount of polymer is reduced by thinning or the pore size is increased, the risk may be further increased. In the technique of laminating a polyethylene microporous membrane and a polypropylene microporous membrane, it is necessary to use low melting point polyethylene to lower the shutdown temperature, which is disadvantageous in strength.
[0005]
That is, it is difficult to achieve both low temperature shutdown and high strength, which is disadvantageous for thinning. Japanese Patent Application Laid-Open Nos. 9-241411 and 10-316781 disclose a technique for producing a microporous film by stretching a laminate of a film made of polyethylene and polypropylene and a film made of polypropylene. However, it is difficult to achieve both low temperature shutdown and high strength, which is disadvantageous for thinning.
[0006]
[Problems to be solved by the invention]
Providing a laminated microporous membrane that is excellent in safety functions and membrane strength and that is particularly suitable for separators for non-aqueous electrolytic batteries.
[0007]
[Means for Solving the Problems]
As a result of diligent investigation in view of such problems, the present inventors laminated a microporous film having polyethylene and polypropylene as essential components and a polyethylene microporous film, and further adjusted the film thickness to a specific range, It has been found that sufficient safety function and strength can be obtained even if the film thickness is reduced. That is, the present invention is as follows.
(1) A polyolefin microporous membrane having a film thickness of 5 to 20 μm obtained by laminating and integrating a microporous membrane A and polyethylene microporous membrane B containing polyethylene and polypropylene as essential components.
(2) The polyolefin microporous membrane according to (1), wherein the polyethylene constituting the microporous membrane A contains ultrahigh molecular weight polyethylene.
(3) The polyolefin microporous membrane according to (1) or (2), wherein the polyethylene constituting the microporous membrane B contains linear low density polyethylene.
(4) The polyolefin microporous membrane according to any one of (1) to (3), wherein the temperature difference between the shutdown temperature and the membrane breaking temperature is 33 ° C. or more.
( 5 ) A separator for a non-aqueous electrolyte battery comprising the polyolefin microporous membrane according to any one of (1) to (4) .
[0008]
When at least one of the laminated films is made of a single polyethylene film and has a shutdown function, good shutdown characteristics can be obtained. In addition, a blend film of polyethylene and polypropylene can provide anti-breaking characteristics at high temperatures. Furthermore, in the blend film of polyethylene and polypropylene, if ultra high molecular weight polyethylene is used, a high film strength can be obtained, which is advantageous for maintaining the strength when the film is thinned. In addition, the blending of polypropylene also has the advantage that the viscosity of the melt decreases and the molding process becomes easy.
[0009]
Regarding the microporous membrane A, the polypropylene content is preferably 3 to 50 wt%, more preferably 5 to 20 wt%, from the viewpoint of the membrane breaking temperature and the membrane strength.
In the safety function of the microporous membrane of the present invention, the shutdown temperature is preferably 140 ° C. or lower, more preferably 135 ° C. or lower, from the viewpoint of battery safety. The membrane breaking temperature is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, from the viewpoint of battery safety.
[0010]
Regarding the strength of the microporous membrane of the present invention, the puncture strength is preferably 2.5 N / 25 μm or more, more preferably 2.9 N / 25 μm or more, and further preferably 3 from the viewpoint of prevention of film breakage by the electrode active material. .9 N / 25 μm or more.
Regarding other physical properties of the microporous membrane of the present invention, the film thickness is preferably 5 to 50 μm, more preferably 5 to 20 μm. 5 μm or more is preferable from the viewpoint of mechanical strength and integrity of insulation between electrodes, and 50 μm or less is preferable from the viewpoint of suitability as a separator for a small battery. The porosity is preferably 20 to 70%, more preferably 30 to 50%. When used as a battery separator, 20% or more is preferable from the viewpoint of preventing the resistance inside the battery from becoming high, and 70% or less is preferable from the viewpoint of mechanical strength. The air permeability is preferably 50 to 1000 sec / 100 cc / 25 μm, more preferably 50 to 500 sec / 100 cc / 25 μm, and still more preferably 50 to 300 sec / 100 cc / 25 μm. 50 sec / 100 cc / 25 μm or more is preferable in terms of mechanical strength, and 1000 sec / 100 cc / 25 μm or less is preferable in terms of transmission performance.
[0011]
Furthermore, in order to be a microporous membrane with more excellent safety characteristics, it is preferable that the shrinkage rate and shrinkage stress in the lateral direction are small so as not to shrink during shutdown and cause an internal short circuit. Specifically, the maximum horizontal shrinkage at the shutdown temperature or lower is preferably 50% or lower, more preferably 40% or lower, and further preferably 30% or lower. The maximum shrinkage is preferably 50% or less from the viewpoint of preventing the electrodes from being exposed and short-circuited by shrinkage during shutdown. Furthermore, it is more preferable for the safety function if the shrinkage force is low in addition to the low shrinkage rate. If the shrinkage force is low, there is a possibility that shrinkage can be prevented by the crimping force from the positive electrode and the negative electrode. Specifically, the maximum lateral shrinkage stress at or below the shutdown temperature is preferably 590 kPa or less, more preferably 490 kPa or less, and even more preferably 390 kPa or less.
[0012]
As a method for producing the microporous membrane of the present invention, for example, after microporous membranes A and B are separately produced, they are bonded together while being hot-drawn through a calender roll or the like, or by using a multilayer die and a coextrusion method. There is a method of pasting together at the time of exiting the die. In consideration of prevention of curling after lamination, the lamination form is preferably an A / B / A type or a B / A / B type three-sheet lamination type rather than an A / B two-layer lamination.
As a method for producing the microporous membranes A and B, there are a wet method and a dry method, but considering the use of ultrahigh molecular weight polyethylene, a wet method is preferable. In the wet method, a polyolefin resin and an organic liquid material are melt kneaded in a melt extruder with a twin screw extruder equipped with a T-die at the tip, and the organic liquid material is extruded from the T-die into a sheet shape. And a method of extracting and removing a porous material, and melt-kneading in a melt extruder in a twin-screw extruder equipped with a T-die at the tip of a polyolefin resin, an organic liquid, and an inorganic filler to form a sheet from the T-die There is a method of extracting and removing the organic liquid and inorganic filler after extrusion molding. In any method, stretching may be performed in either the longitudinal direction or the lateral direction, or in both the longitudinal and lateral directions, before or after the porous formation, or before and after the porous formation.
[0013]
The polyethylene used in the present invention includes a high density polyethylene having a density exceeding 0.94 g / cc, a medium density polyethylene having a density in the range of 0.93 to 0.94 g / cc, and a density of 0.00. Examples include low density polyethylene lower than 93 g / cc and linear low density polyethylene, which may be used alone or as a mixture.
The types of polypropylene used in the present invention include homopolymers and copolymers copolymerized with an ethylene component, which may be used alone or as a mixture. In consideration of the mixing property, a copolymer is preferable to a homopolymer. Examples of the copolymer include an ethylene propylene random copolymer and a block copolymer. Furthermore, in view of film strength and heat resistance at high temperatures, the melt index is preferably 1 g / 10 min or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although the content of the above invention is demonstrated in detail further in an Example, the embodiment of this invention is not limited to the following Example.
Various characteristics of the polyolefin microporous membrane of the present invention were evaluated by the following test methods.
1. Film thickness (μm)
Evaluation was performed using a dial gauge (Ozaki Seisakusho: PEAKOCK No. 25).
2. Air permeability (sec / 100cc)
In accordance with JIS P8117, a time required from a surface scale of 0 to 100 was measured with a stopwatch using a B type Gurley type densometer manufactured by Toyo Seiki.
3. Maximum shrinkage stress (Pa)
With a thermomechanical analyzer (Seiko Electronics Industry TMA120)
Sample length (TD) x sample width = 10 mm x 3 mm
Initial load 1.2g
Temperature increase rate 10 ℃ / min
Measured under the following conditions. The maximum shrinkage load (g) was obtained from the shrinkage stress curve, and the maximum shrinkage stress was calculated from the following equation (1).
Maximum shrinkage stress = {maximum shrinkage load / (3 x T)} x 100 x 9.8 x 10000 (1)
T: Sample thickness (μm)
[0015]
4). The sample is fixed with clips at both ends in the vertical direction on a stainless steel frame (outside = 60mm x 60mm, inner type = 40mm x 40mm). The size of the sample after fixing is vertical x horizontal = 50mm x 40mm. In a fixed state, after standing in an oven at a predetermined temperature for 30 minutes, the length of the shortest portion in the lateral direction is measured, and the shrinkage rate is calculated by the following equation (2).
Shrinkage rate (%) = {(length in the lateral direction before heating (40 mm) −length of the shortest lateral direction after heating) / length in the lateral direction before heating} × 100
5. Porosity (%)
A sample of Xcm × Ycm was cut out and calculated by the following equation (1).
Porosity = {1− (10000 × M / ρ) / (X × Y × T)} × 100 (1)
(1) In the formula, T: sample thickness (μm), M: sample mass (g)
ρ: Resin density (0.95 g / cc)
6). Puncture strength (N)
A handy compression tester KES-G5 manufactured by Kato Tech Co., Ltd. is equipped with a needle having a diameter of 1 mm and a tip radius of 0.5 mm, a temperature of 23 ± 2 ° C., and a needle moving speed of 0.2 cm / sec. A piercing test was conducted.
[0016]
7). Hole blocking temperature (℃), membrane breaking temperature (℃)
Hole closing temperature: FIGS. 1A to 1C are schematic diagrams of a hole closing temperature measuring apparatus.
FIG. 1A is a configuration diagram of a measuring apparatus. 1 is a microporous film, 2A and 2B are Ni foils having a thickness of 10 μm, and 3A and 3B are glass plates. 4 is an electrical resistance measuring device (Ando Electric LCR meter AG4311), which is connected to Ni foils (2A, 2B). A thermocouple 5 is connected to the thermometer 6. A data collector 7 is connected to the electrical resistance measuring device 4 and the thermometer 6. 8 is an oven that heats the microporous membrane.
[0017]
More specifically, the microporous membrane 1 is impregnated with a prescribed electrolytic solution, and as shown in FIG. 1B, only the MD is fixed on the Ni foil 2A in a form stopped with Teflon tape. . As shown in FIG. 1C, the Ni foil 2B is masked with Teflon tape leaving a 15 mm × 10 mm portion. The Ni foil 2A and the Ni foil 2B are overlapped so as to sandwich the microporous film 1, and two Ni foils are sandwiched by the glass plates 3A and 3B from both sides thereof. The two glass plates are fixed by sandwiching them with commercially available clips.
[0018]
Using the apparatus shown in FIG. 1A, temperature and electric resistance are continuously measured. The temperature is raised at a rate of 2 ° C./min, and the electrical resistance value is measured with an alternating current of 1 kHz.
The pore closing temperature is defined as the temperature at which the electrical resistance value of the microporous membrane 1 reaches 1000Ω.
Further, the temperature at which the temperature rises, the membrane clogged with pores breaks, and the electric resistance value reaches 1000Ω again is defined as the membrane breaking temperature.
[0019]
The prescribed electrolyte is as follows.
Electrolytic solution: Propylene carbonate / ethylene carbonate / γ-butyl lactone containing 1 mol / liter LiBF 4 and 0.5 wt% trioctyl phosphate = 25/25/50 vol% mixed organic solvent.
8). Viscosity average molecular weight (Mv)
Using a solvent (decalin), the intrinsic viscosity [η] was measured at a measurement temperature of 135 ° C., and Mv was calculated from the equation (1).
[Η] = 6.8 × 10 −4 Mv 0.67 (1)
9. The weight average molecular weight was determined by GPC measurement (gel permeation chromatography).
Figure 0004931163
10. Melt index (MI)
Measured according to ASTM D1238.
[0020]
[ Reference Example 1 ]
・ Preparation of microporous membrane A 38.8 wt% high density polyethylene (HDPE) with a weight average molecular weight of 300,000, 1.2 wt% polypropylene (PP) with a melt index (MI) of 1.0 g / 10 min, and 60 wt% liquid paraffin After melt-kneading with an extruder equipped with a T-die, the sheet was extruded to produce a sheet having a thickness of 1300 μm. This sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to produce a microporous membrane A having a thickness of 18 μm.
-Production of microporous membrane B 45PE% HDPE and 55wt% liquid paraffin were melt-kneaded by an extruder equipped with a T-die at the tip and then extruded to prepare a sheet having a thickness of 1300 [mu] m. This sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to produce a microporous membrane B having a thickness of 18 μm.
[0021]
-Production of laminated microporous membrane Three layers are laminated in the form of A / B / A, stretched three times in the longitudinal direction while passing through several rolls heated to 110 ° C, and then several heated to 122 ° C A longitudinally stretched film in which three sheets were laminated by heat treatment through the roll was prepared. Subsequently, the longitudinally stretched film is stretched twice in the transverse direction by a tenter heated to 118 ° C., and then forcibly up to 1.8 times while heat-treating in the region heated to 128 ° C. in the tenter. An A / B / A type three-layer laminated microporous film having a thickness of 15 μm was produced by relaxation.
The physical properties of the obtained microporous membrane are shown in Tables 2 and 3. The microporous membrane has a low shutdown temperature, a high membrane breaking temperature, and a high puncture strength.
[0022]
[Example 1 ]
-Preparation of microporous membrane A Ultra high molecular weight polyethylene (UHPE) having a viscosity average molecular weight of 2 million (UHPE) 24 wt%, PP 16 wt%, liquid paraffin 60 wt% was melt-kneaded with an extruder equipped with a T-die at the tip, and then extruded and thickened. A 1300 μm sheet was prepared. This sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to prepare a microporous membrane A having a thickness of 18 μm.
-Preparation of microporous membrane B Melt-kneading with an extruder equipped with a T-die at the tip of HDPE 31.5wt%, MI 0.8g / 10min linear low density polyethylene (LLDPE) 13.5wt%, liquid paraffin 55wt% And then extruded to prepare a sheet having a thickness of 1300 μm. This sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to prepare a microporous membrane B having a thickness of 16 μm.
[0023]
-Production of laminated microporous membrane Three layers were laminated in the form of A / B / A, stretched 2.5 times in the longitudinal direction while passing several rolls heated to 105 ° C, and then heated to 120 ° C Heat treatment was performed through several rolls to produce a longitudinally stretched film in which three sheets were laminated. Subsequently, the longitudinally stretched film is stretched twice in the transverse direction by a tenter heated to 115 ° C., and then forcibly up to 1.8 times while heat-treating in the region heated to 125 ° C. in the tenter. An A / B / A type three-layer laminated microporous film having a thickness of 17 μm was produced by relaxation.
The physical properties of the obtained microporous membrane are shown in Tables 2 and 3. The microporous membrane has a low shutdown temperature, a high membrane breaking temperature, and a high puncture strength.
[0024]
[Example 2 ]
Preparation of microporous membrane A Same as microporous membrane A described in Example 1 .
Production of microporous membrane B 22.5 wt% of HDPE, 22.5 wt% of LLDPE, and 55 wt% of liquid paraffin were melt-kneaded by an extruder equipped with a T-die at the tip and then extruded to prepare a sheet having a thickness of 1300 μm. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to prepare a microporous membrane B having a thickness of 16 μm.
-Production of laminated microporous membrane Three layers were laminated in the form of A / B / A, stretched 2.5 times in the longitudinal direction while passing several rolls heated to 102 ° C, and then heated to 118 ° C Heat treatment was performed through several rolls to produce a longitudinally stretched film in which three sheets were laminated. Subsequently, the longitudinally stretched film was stretched twice in the transverse direction by a tenter heated to 115 ° C., and then forcibly up to 1.8 times while heat-treating in the region heated to 123 ° C. in the tenter. The A / B / A type three-layer laminated microporous film having a thickness of 17 m was produced by relaxation. The physical properties of the obtained microporous membrane are shown in Tables 2 and 3. The microporous membrane has a low shutdown temperature, a high membrane breaking temperature, and a high puncture strength.
[0025]
[Example 3 ]
-Production of microporous membrane A UHPE 24 wt%, HDPE 8 wt%, PP 8 wt%, and liquid paraffin 60 wt% were melt-kneaded by an extruder equipped with a T-die at the tip and then extruded to prepare a sheet having a thickness of 1300 μm. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to produce a microporous membrane A having a thickness of 18 μm.
Preparation of microporous membrane B Same as microporous membrane B described in Example 1 .
-Production of laminated microporous membrane Three layers were laminated in the form of A / B / A, stretched 2.5 times in the longitudinal direction while passing several rolls heated to 105 ° C, and then heated to 120 ° C Heat treatment was performed through several rolls to produce a longitudinally stretched film in which three sheets were laminated. Subsequently, the longitudinally stretched film is stretched twice in the transverse direction by a tenter heated to 115 ° C., and then forcibly up to 1.8 times while heat-treating in the region heated to 125 ° C. in the tenter. An A / B / A type three-layer laminated microporous film having a thickness of 17 μm was produced by relaxation. The physical properties of the obtained microporous membrane are shown in Tables 2 and 3. The microporous membrane has a low shutdown temperature, a high membrane breaking temperature, and a high puncture strength.
[0026]
[Example 4 ]
-Raw material composition UHPE 24 wt%, HDPE 8 wt%, PP8 wt%, liquid paraffin 60 wt% for producing the microporous membrane A.
-Raw material composition HDPE 31.5 wt%, LLDPE 13.5 wt%, liquid paraffin 55 wt% for producing the microporous membrane B.
-Fabrication of laminated microporous film A / B / A with a thickness of 1300 μm was extruded after melt-kneading the raw materials of A and B compositions with two extruders each equipped with a three-layer coextrusion T-die at the tip. A mold sheet was prepared. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to obtain a microporous film having a thickness of 16 μm. The physical properties of the obtained microporous membrane are shown in Tables 2 and 3. The microporous membrane has a low shutdown temperature, a high membrane breaking temperature, and a high puncture strength.
[0027]
[Comparative Example 1]
Tables 2 and 3 show the physical properties of the microporous membrane A described in Reference Example 1 . The microporous membrane has a low shutdown temperature and a high membrane breaking temperature but a low puncture strength.
[0028]
[Comparative Example 2]
Table 2 and Table 3 show the physical properties of the microporous membrane A described in Example 1 . Although the film breaking temperature and the puncture strength are high, the shutdown temperature is also high, and the microporous film is not preferable in terms of safety function.
[0029]
[Comparative Example 3]
UHPE 20 wt%, HDPE 10.8 wt%, LLDPE 8 wt%, PP 1.2 wt%, and liquid paraffin 60 wt% were melt-kneaded by an extruder equipped with a T-die at the tip and extruded to prepare a sheet having a thickness of 1300 μm. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to produce a microporous membrane A having a thickness of 17 μm.
[0030]
The physical properties of the obtained microporous membrane are shown in Tables 1 and 2. The microporous membrane has a high shutdown temperature and low puncture strength.
[0031]
[Comparative Example 4]
-Production of polyethylene microporous membrane UHPE 20 wt%, HDPE 10 wt%, LLDPE 10 wt%, and liquid paraffin 60 wt% were melt-kneaded by an extruder equipped with a T-die at the tip and then extruded to prepare a sheet having a thickness of 1300 µm. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to prepare a microporous film having a thickness of 17 μm.
-Production of polypropylene microporous membrane PP 40 wt% and liquid paraffin 60 wt% were melt-kneaded by an extruder equipped with a T-die at the tip and then extruded to produce a sheet having a thickness of 1300 µm. The sheet was stretched simultaneously in the vertical and horizontal directions to produce a sheet having a thickness of 20 μm. This sheet was immersed in methyl ethyl ketone (MEK) to extract and remove liquid paraffin, and then dried to prepare a microporous film having a thickness of 17 μm.
[0032]
3 layers of polyethylene microporous membrane and polypropylene microporous membrane are laminated in the form of PP / PE / PP, stretched 2.5 times in the longitudinal direction while passing through several rolls heated to 108 ° C., then 120 Heat treatment was performed through several rolls heated to 0 ° C., and three longitudinally stretched films were produced. Subsequently, the longitudinally stretched film is stretched twice in the transverse direction by a tenter heated to 115 ° C., and then forcibly up to 1.8 times while heat-treating in the region heated to 125 ° C. in the tenter. A three-layer laminated microporous film of PP / PE / PP type having a thickness of 18 μm was produced by relaxation.
The physical properties of the obtained microporous membrane are shown in Tables 2 and 3, and the microporous membrane has a high shutdown temperature and low puncture strength.
Table 1 shows the laminated form, polymer composition, and the like of the microporous membranes of Examples and Comparative Examples.
[0033]
[Table 1]
Figure 0004931163
[0034]
[Table 2]
Figure 0004931163
[0035]
[Table 3]
Figure 0004931163
[0036]
【Effect of the invention】
The laminated microporous membrane of the present invention is excellent in safety function and membrane strength, and is particularly useful as a separator for non-aqueous electrolyte batteries.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram showing the configuration of an apparatus for measuring hole closing temperature, (A) is an overall schematic view of an apparatus for measuring hole closing temperature, and (B) is a nickel (Ni) foil of (A). Sectional drawing in (2A) plane, (C) is sectional drawing in Ni foil (2B) plane of (A).
[Explanation of symbols]
1: Microporous membrane 2A, 2B: Ni foil 3A, 3B: Glass plate 4: Electrical resistance measuring device 5: Thermocouple 6: Thermometer 7: Data collector 8: Oven

Claims (2)

超高分子量ポリエチレンとポリプロピレン、又は、超高分子量ポリエチレンと高密度ポリエチレンとポリプロピレンを必須成分とする微多孔膜A、少なくとも直線状低密度ポリエチレンを有するポリエチレン微多孔膜Bを積層一体化させてなり、膜厚が5〜20μmである、ポリオレフィン製微多孔膜。 Ultra-high molecular weight polyethylene and polypropylene, or a microporous membrane A for a ultra-high molecular weight polyethylene and high density polyethylene and polypropylene as essential components, will be stacked integrated microporous polyethylene membrane B having at least linear low-density polyethylene, film thickness Ru 5~20μm der, polyolefin microporous membrane. 請求項1記載のポリオレフィン製微多孔膜からなることを特徴とする非水電解液系電池用セパレーター。Separator for non-aqueous electrolyte system cell characterized by comprising a polyolefin microporous membrane according to claim 1 Symbol placement.
JP2001126337A 2001-04-24 2001-04-24 Polyolefin microporous membrane Expired - Lifetime JP4931163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001126337A JP4931163B2 (en) 2001-04-24 2001-04-24 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126337A JP4931163B2 (en) 2001-04-24 2001-04-24 Polyolefin microporous membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010225160A Division JP5629542B2 (en) 2010-10-04 2010-10-04 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2002321323A JP2002321323A (en) 2002-11-05
JP4931163B2 true JP4931163B2 (en) 2012-05-16

Family

ID=18975393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126337A Expired - Lifetime JP4931163B2 (en) 2001-04-24 2001-04-24 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP4931163B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303475A (en) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
CN1534821A (en) 2003-03-28 2004-10-06 ������������ʽ���� Non-aqueous electrolyte cell
US7618743B2 (en) 2003-04-04 2009-11-17 Asahi Kasei Chemicals Corporation Microporous polyolefin film
KR100789081B1 (en) * 2003-11-17 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary cell
US20080193833A1 (en) 2004-10-01 2008-08-14 Asahi Kasei Kabushiki Kaisha Polyolefin Microporous Membrane
US8758887B2 (en) * 2004-12-22 2014-06-24 Entegris, Inc. Multilayer porous membrane and process
US20090117453A1 (en) * 2005-06-24 2009-05-07 Tonen Chemical Corporation Multi-layer, microporous polyethylene membrane, and battery separator and battery using same
JP5202949B2 (en) * 2005-07-15 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous membrane and battery separator
WO2007023918A1 (en) 2005-08-25 2007-03-01 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
US8017263B2 (en) * 2006-01-24 2011-09-13 Sony Corporation Separator and battery
WO2007116672A1 (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corporation Polyolefin microporous film
JP5202816B2 (en) * 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same
JP4902455B2 (en) * 2006-08-01 2012-03-21 東レ東燃機能膜合同会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US7807287B2 (en) * 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
US7981536B2 (en) * 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
JP5450929B2 (en) * 2007-04-09 2014-03-26 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2008311220A (en) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc Laminated porous film, battery separator and battery
CN101687404B (en) 2007-06-06 2013-06-05 旭化成电子材料株式会社 Multilayer porous film
KR101448087B1 (en) * 2007-08-31 2014-10-07 도레이 배터리 세퍼레이터 필름 주식회사 Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
WO2009064296A1 (en) * 2007-11-14 2009-05-22 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator formed by such a membrane and battery comprising such a separator
US8012622B2 (en) 2007-11-14 2011-09-06 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous membrane, battery separator and battery
US8003204B2 (en) 2007-12-26 2011-08-23 Sk Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
JP5213768B2 (en) * 2008-04-02 2013-06-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
EP2262579A4 (en) 2008-04-08 2011-08-17 Sk Energy Co Ltd Microporous polyolefin composite film with a thermally stable porous layer at high temperature
KR101404451B1 (en) 2008-06-03 2014-06-10 에스케이이노베이션 주식회사 Microporous polyolefin multi layer film and preparing method thereof
CN103753922A (en) 2009-03-09 2014-04-30 旭化成电子材料株式会社 Polyolefin microporous membrane, laminated polyolefin microporous membrane, and manufacturing method of polyolefin microporous membrane
JP5722305B2 (en) * 2009-03-30 2015-05-20 東レバッテリーセパレータフィルム株式会社 Microporous membrane, battery separator film, battery and method for producing microporous membrane
KR101394622B1 (en) 2009-04-06 2014-05-20 에스케이이노베이션 주식회사 Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability
KR20100135369A (en) * 2009-06-17 2010-12-27 에스케이에너지 주식회사 Microporous polyethylene film with thermally stable hybrid-composite layers
KR101269207B1 (en) 2010-01-25 2013-05-31 에스케이이노베이션 주식회사 Porous multi layer film with improved thermal properties
US20110223485A1 (en) * 2010-03-15 2011-09-15 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
JP5629542B2 (en) * 2010-10-04 2014-11-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
CN102501419B (en) * 2011-11-25 2014-06-04 佛山市金辉高科光电材料有限公司 Polyolefin multilayer micro-porous membrane and preparation method thereof
KR102226140B1 (en) 2013-03-15 2021-03-11 셀가드 엘엘씨 Multilayer hybrid battery separators for lithium ion secondary batteries and methods of making same
KR102266028B1 (en) * 2013-05-31 2021-06-16 도레이 카부시키가이샤 Multilayer, microporous polyolefin membrane, and production method thereof
CN106463679B (en) * 2014-06-10 2019-04-19 东丽株式会社 Battery separator and its manufacturing method
JP6356000B2 (en) * 2014-07-22 2018-07-11 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
CN111212734B (en) * 2017-10-13 2023-04-25 旭化成株式会社 Polyolefin microporous membrane and lithium ion secondary battery using same
KR20200130347A (en) * 2018-03-02 2020-11-18 셀가드 엘엘씨 Microporous membrane, battery separator, and method for making and using the same
CN111801811B (en) 2018-06-22 2022-11-01 株式会社Lg新能源 Separator for electrochemical device and electrochemical device comprising the same
WO2023243804A1 (en) * 2022-06-14 2023-12-21 주식회사 엘지에너지솔루션 Electrochemical device polyolefin separator, and electrochemical device comprising same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305006B2 (en) * 1991-07-05 2002-07-22 旭化成株式会社 Battery separator using organic electrolyte and method for producing the same
JPH11158304A (en) * 1997-09-24 1999-06-15 Nitto Denko Corp Porous film, separator for battery by using the same, and battery
US6180280B1 (en) * 1998-03-12 2001-01-30 Celgard Inc. Trilayer battery separator
JPH11269290A (en) * 1998-03-20 1999-10-05 Tonen Kagaku Kk Polyoelfin fine porous membrane
JP4075259B2 (en) * 1999-05-26 2008-04-16 ソニー株式会社 Solid electrolyte secondary battery
JP4560852B2 (en) * 1999-07-13 2010-10-13 住友化学株式会社 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
WO2001016219A1 (en) * 1999-08-31 2001-03-08 Nitto Denko Corporation Microporous film

Also Published As

Publication number Publication date
JP2002321323A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP4931163B2 (en) Polyolefin microporous membrane
JP4780960B2 (en) Polyolefin microporous membrane and evaluation method thereof
JP4098401B2 (en) Microporous membrane for battery separator made of polyolefin
JP4540607B2 (en) Polyolefin microporous membrane
US7323273B1 (en) Shutdown separators with improved properties
TWI413657B (en) Polyolefin multi-layered micro-porous film, method of manufacturing the same, separator for battery and battery
KR101060380B1 (en) Polyolefin Microporous Membrane
JPH09219184A (en) Separator for battery
JP5629542B2 (en) Polyolefin microporous membrane
KR102264032B1 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
CN111684002B (en) Porous polyolefin film
JP4884008B2 (en) Polyethylene microporous membrane
US7323274B1 (en) Shutdown separators with improved properties
JP2012161936A (en) Method for producing laminated microporous film and battery separator
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP5942134B2 (en) Polyolefin microporous membrane
JP5235324B2 (en) Polyolefin microporous membrane
US7662518B1 (en) Shutdown separators with improved properties
JP2000204188A (en) Finely porous membrane of polyethylene
JP4804630B2 (en) Microporous membrane and lithium battery separator
JP2013028099A (en) Laminated microporous film and method for manufacturing the same, and cell separator
JP4136008B2 (en) Microporous membrane for non-aqueous solvent battery separator
JP2012057063A (en) Microporous film and its manufacturing method
JP6359368B2 (en) Laminated microporous film, method for producing the same, and battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4931163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term