JP4930708B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP4930708B2
JP4930708B2 JP2007059773A JP2007059773A JP4930708B2 JP 4930708 B2 JP4930708 B2 JP 4930708B2 JP 2007059773 A JP2007059773 A JP 2007059773A JP 2007059773 A JP2007059773 A JP 2007059773A JP 4930708 B2 JP4930708 B2 JP 4930708B2
Authority
JP
Japan
Prior art keywords
cur
oeg3
swnt
por
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007059773A
Other languages
Japanese (ja)
Other versions
JP2008226961A (en
Inventor
征治 新海
友久 藤澤
宗典 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2007059773A priority Critical patent/JP4930708B2/en
Publication of JP2008226961A publication Critical patent/JP2008226961A/en
Application granted granted Critical
Publication of JP4930708B2 publication Critical patent/JP4930708B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、天然素材を用いる新規な光電変換素子に関する。   The present invention relates to a novel photoelectric conversion element using a natural material.

石油をはじめとする天然資源の枯渇問題が懸念される現代において、無尽蔵かつクリーンなエネルギーの開発は大きな課題である。その中で特に注目されているエネルギーの一つに太陽エネルギーがある。その基盤となる光電変換システムに主に利用されているのは無機半導体であり、良く知られているものにシリコン系太陽電池(単結晶シリコン、多結晶シリコン、アモルファスシリコン)があるが、これらは、生産コストが依然割高なため、コスト低減を目指した精力的な開発が継続されている。   The development of inexhaustible and clean energy is a major issue in the present age when there are concerns about the depletion of natural resources such as oil. One of the energies that has received particular attention is solar energy. Inorganic semiconductors are mainly used for the photoelectric conversion system that forms the basis of these, and well-known ones include silicon solar cells (single crystal silicon, polycrystalline silicon, amorphous silicon). However, since production costs are still expensive, vigorous development aimed at reducing costs continues.

近年、新しいタイプの太陽電池として色素増感太陽電池が注目されている。それらは製造コストがシリコン系太陽電池に比べて格段に安く、光電変換効率も比較的高いため、低コストかつ高効率な太陽電池として期待されている。
また環境汚染や資源枯渇といった問題から、天然由来の物質を機能性材料の素材として見直す動きも同様に高まってきている。これらの背景から、天然素材に由来する光電変換素子を用いる光電変換システムの構築が望まれている。
In recent years, a dye-sensitized solar cell has attracted attention as a new type of solar cell. They are expected to be low-cost and high-efficiency solar cells because they are much cheaper to manufacture than silicon-based solar cells and have relatively high photoelectric conversion efficiency.
In addition, due to problems such as environmental pollution and resource depletion, the movement to review naturally derived substances as functional materials is also increasing. From these backgrounds, construction of a photoelectric conversion system using a photoelectric conversion element derived from a natural material is desired.

本発明は、天然素材を活用した、安価で効率のよい新規な光電変換素子を開発することにある。   An object of the present invention is to develop an inexpensive and efficient new photoelectric conversion element utilizing a natural material.

β-1,3-グルカンは溶媒の種類によってランダムコイルと3重螺旋間の可逆的な高次構造変化を伴い、ランダムコイルから3重螺旋への巻き戻り過程において、その螺旋内部にナノ電子材料向けに注目されている素材である単層カーボンナノチューブ(SWNT)を取り込むことができる(非特許文献1)。β-1,3-グルカンの中でも、最も単純な構造を有する化合物であるカードランは、安価かつ化学修飾が容易で(非特許文献2)、低コストの天然由来の機能性材料開発といった観点から非常に有用な素材であると考えられる。
M. Numata, M. Asai, K. Kaneko, A.-H.Bae, T. Hasegawa, K. Sakurai, S. Shinkai,J. Am. Chem. Soc., 127, 5875-5884 (2005). T. Hasegawa,M. Umeda, M. Numata, C. Li,A.-H. Bae, T. Fujisawa, S. Haraguchi,K. Sakurai, S. Shinkai,Carbohydr. Res., 341, 35-40(2006).
β-1,3-glucan is accompanied by a reversible higher-order structural change between the random coil and triple helix depending on the type of solvent. Single-walled carbon nanotubes (SWNT), a material that has been attracting attention, can be incorporated (Non-patent Document 1). Among β-1,3-glucans, curdlan, the compound with the simplest structure, is inexpensive and easy to modify chemically (Non-patent Document 2), from the viewpoint of developing low-cost functional materials derived from nature. It is considered to be a very useful material.
M. Numata, M. Asai, K. Kaneko, A.-H. Bae, T. Hasegawa, K. Sakurai, S. Shinkai, J. Am. Chem. Soc., 127, 5875-5884 (2005). T. Hasegawa, M. Umeda, M. Numata, C. Li, A.-H. Bae, T. Fujisawa, S. Haraguchi, K. Sakurai, S. Shinkai, Carbohydr. Res., 341, 35-40 ( 2006).

SWNTは電子受容体であると同時に高いキャリア輸送能を有しており、光電変換システムに利用価値の高い材料である。これまでにもPratoらによって色素/SWNT複合体を利用した効率の高い光電変換システムが報告されている(非特許文献3,4および5)。
G. M. A. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, M. Prato,J. Am. Chem. Soc., 127, 10051-10057 (2005). D. M. Guldi, G. M. A. Rahman, M. Prato,N. Jux, S. Qin, W. Ford, Angew.Chem. Int. Ed., 44, 2015-2018 (2005). D. M. Guldi, G. M. A. Rahman, F. Zerbetto, M. Prato, Acc. Chem. Res., 38, 871-878 (2005).
SWNT is not only an electron acceptor but also a high carrier transport ability, and is a highly useful material for photoelectric conversion systems. A highly efficient photoelectric conversion system using a dye / SWNT complex has been reported by Prato et al. (Non-Patent Documents 3, 4 and 5).
GMA Rahman, DM Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, M. Prato, J. Am. Chem. Soc., 127, 10051-10057 (2005). DM Guldi, GMA Rahman, M. Prato, N. Jux, S. Qin, W. Ford, Angew. Chem. Int. Ed., 44, 2015-2018 (2005). DM Guldi, GMA Rahman, F. Zerbetto, M. Prato, Acc. Chem. Res., 38, 871-878 (2005).

本発明は、如上の知見を基に研究を重ねた結果、天然多糖類の一種であるβ-1,3-グルカンをインターフェースに用い、光機能性部位としてのポルフィリンと、電子受容体である単層カーボンナノチューブ(SWNT)とを複合体化することに成功し本発明を導き出した。   As a result of repeated research based on the above knowledge, the present invention uses β-1,3-glucan, which is a kind of natural polysaccharide, as an interface, and a porphyrin as a photofunctional site and a single electron acceptor. The present invention was derived by successfully forming a composite with a single-walled carbon nanotube (SWNT).

かくして、本発明は、側鎖がポルフィリンで修飾されたβ-1,3-グルカンと単層カーボンナノチューブとの複合体から成る光電変換素子(光電変換素子材料)を提供するものである。   Thus, the present invention provides a photoelectric conversion element (photoelectric conversion element material) comprising a composite of β-1,3-glucan having a side chain modified with porphyrin and a single-walled carbon nanotube.

本発明に従えば、光機能性部位としてポルフィリンで(化学)修飾されたβ-1,3-グルカンにより単層カーボンナノチューブ(SWNT)が可溶化されたβ-1,3-グルカン/SWNT複合体から光電変換素子が構成される。β-1,3-グルカンとしては、シゾフィランのように側鎖に比較的多くのグルコース残基を有するものも使用可能であるが、安価で側鎖への化学修飾の容易な点からカードランを用いることが好ましい。カードランを用いる場合には、側鎖がポルフィリンで化学修飾されていることに加えて、側鎖に親水性部位(溶解性向上のための置換基)が結合されているものを用いる。そのような親水性部位は、特に限定されるものではないが、入手と合成が容易である等の理由からエチレングリコール部位が好適な例として挙げられる。図2には、側鎖がポルフィリンおよび3個のエチレングリコール単位を有する官能基で化学修飾されたカードランを合成するための反応スキームを示している(なお、以下、このようなポルフィリンとエチレングリコール部位で化学修飾されたカードランをCUR-Por-oeg3と略記する)。   According to the present invention, a β-1,3-glucan / SWNT complex in which single-walled carbon nanotubes (SWNT) are solubilized by β-1,3-glucan (chemically) modified with porphyrin as a photofunctional site A photoelectric conversion element is configured from the above. As β-1,3-glucan, those having a relatively large number of glucose residues in the side chain, such as schizophyllan, can be used, but curdlan can be used because it is inexpensive and easy to chemically modify the side chain. It is preferable to use it. When using curdlan, in addition to the side chain being chemically modified with porphyrin, a side chain having a hydrophilic moiety (substituent for improving solubility) is used. Such a hydrophilic site is not particularly limited, but an ethylene glycol site is a preferable example because it is easily available and synthesized. FIG. 2 shows a reaction scheme for synthesizing a curdlan having a side chain chemically modified with a functional group having a porphyrin and three ethylene glycol units (hereinafter, such porphyrin and ethylene glycol are synthesized). Curdlan chemically modified at the site is abbreviated as CUR-Por-oeg3).

本発明の光電変換素子を構成するポルフィリン修飾β-1,3-グルカン/SWNT複合体は、本発明者らが先に開示した手法に従って調製することができる(例えば、非特許文献1参照)。すなわち、ポルフィリン修飾β-1,3-グルカンとSWNTを極性溶媒(例えば、ジメチルスルホキシド:DMSO)中で混合し、必要に応じて超音波照射を行いながら水を添加すればよい。   The porphyrin-modified β-1,3-glucan / SWNT complex constituting the photoelectric conversion device of the present invention can be prepared according to the technique previously disclosed by the present inventors (see, for example, Non-Patent Document 1). That is, porphyrin-modified β-1,3-glucan and SWNT are mixed in a polar solvent (for example, dimethyl sulfoxide: DMSO), and water may be added while performing ultrasonic irradiation as necessary.

図1は、以上のようにして得られる本発明に従う複合体の例であるCUR-Por-oeg3/SWNTの模式図(上)とそれを光電変換素子として用いる光電変換システムの例のスキームを示すものである。CUR-Por-oeg3のポルフィリンが光で励起され、電子受容体であるSWNTへ電子を受け渡し、電荷分離状態が生じる。この状態から電極へ電子を取り出す。基底状態にあるポルフィリンには、バルク中の犠牲試薬(トリエタノールアミン)から新たに電子が供給される。このようなサイクルで光電流が流れる。   FIG. 1 shows a schematic diagram (top) of CUR-Por-oeg3 / SWNT, which is an example of a composite according to the present invention obtained as described above, and a scheme of an example of a photoelectric conversion system using the same as a photoelectric conversion element. Is. The porphyrin of CUR-Por-oeg3 is excited by light and transfers electrons to SWNT, which is an electron acceptor, resulting in a charge separation state. From this state, electrons are extracted to the electrode. Electrons are newly supplied to the porphyrin in the ground state from the sacrificial reagent (triethanolamine) in the bulk. Photocurrent flows in such a cycle.

このように、本発明の光電変換素子は、再生可能な資源である天然高分子材料を機能性材料の構成要素としており、資源涸渇問題の観点から有意義である。その中でもカードランはコストパフォーマンスに優れた素材であることからその利用価値は格段に高い。更に本発明におけるCUR-Por-oeg3は、SWNTと組み合わせることで光電変換能を有することと同時に、SWNTの規則正しい配向を達成しうる。コンポジットが規則正しく配向した薄膜は、コンポジットがランダムに集積した薄膜と比較して光の利用効率向上が期待され、光電変換システムに極めて有利な構造である可能性を持つ。
以下、本発明の特徴をさらに具体的に示すために、実施例を記す。
As described above, the photoelectric conversion element of the present invention uses a natural polymer material, which is a renewable resource, as a component of the functional material, and is significant from the viewpoint of a resource depletion problem. Among them, card run is a material with excellent cost performance, so its utility value is extremely high. Furthermore, CUR-Por-oeg3 in the present invention can achieve the regular orientation of SWNT while having photoelectric conversion ability when combined with SWNT. A thin film in which the composites are regularly oriented is expected to improve the light utilization efficiency as compared with a thin film in which the composites are randomly integrated, and may have a structure that is extremely advantageous for a photoelectric conversion system.
Examples are given below to illustrate the features of the present invention more specifically.

CUR-Por-oeg3の合成およびSWNTとの複合体の調製 図2Aおよび図2Bに示したスキームによりCUR-Por-oeg3を以下のように合成した。
<化合物1の合成>
ベンズアルデヒド、4-[(トリメチルシリル)エチニル]1.5g(7.41mmol)、4-ピリジンアルデヒド3.97g(37.1mmol, 5.0eq.)にプロピオン酸150mLを加え、遮光下80℃で1時間加熱攪拌した。ピロール2.98g(44.4mmol, 6.0eq.)を加え、11時間還流した。溶媒を減圧留去して、黒色タール状の残渣を少量のクロロホルムに溶解させ、シリカゲルカラムクロマトグラフィー (クロロホルム:メタノール=20:1)にて粗精製し、再度シリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=3:1)にて精製した。溶媒を減圧留去し、紫色粉末の目的物を得た(586.3mg, 11%)。MALDI-TOF-Mass calcd
for C46H35N7Si:713.9, obsd [M+H]+ : 715.0. 1H NMR(600MHz,
CDCl3, TMS, r.t.);δ(ppm)=9.06
(m-pyridyl, 6H), 8.89-8.83 (β-pyrrole, 8H), 8.16-8.14 (o-pyridyl,
m-phenyl, 8H), 7.89
(o-phenyl, 2 H), 0.48 (TMS, 9H)
Synthesis of CUR-Por-oeg3 and Preparation of Complex with SWNT CUR-Por-oeg3 was synthesized as follows according to the scheme shown in FIGS. 2A and 2B.
<Synthesis of Compound 1>
150 mL of propionic acid was added to 1.5 g (7.41 mmol) of benzaldehyde, 4-[(trimethylsilyl) ethynyl], and 3.97 g (37.1 mmol, 5.0 eq.) Of 4-pyridinealdehyde, and the mixture was heated and stirred at 80 ° C. for 1 hour under light shielding. 2.98 g (44.4 mmol, 6.0 eq.) Of pyrrole was added and refluxed for 11 hours. The solvent was distilled off under reduced pressure, and the black tar-like residue was dissolved in a small amount of chloroform, and roughly purified by silica gel column chromatography (chloroform: methanol = 20: 1), and again silica gel column chromatography (chloroform: ethyl acetate). = 3: 1). The solvent was distilled off under reduced pressure to obtain the desired product as a purple powder (586.3 mg, 11%). MALDI-TOF-Mass calcd
for C46H35N7Si: 713.9, obsd [M + H] + : 715.0. 1 H NMR (600 MHz,
CDCl 3 , TMS, rt); δ (ppm) = 9.06
(m-pyridyl, 6H), 8.89-8.83 (β-pyrrole, 8H), 8.16-8.14 (o-pyridyl,
m-phenyl, 8H), 7.89
(o-phenyl, 2 H), 0.48 (TMS, 9H)

<化合物2の合成>
化合物2 208mg (0.291mmol)、ヨウ化メチル1.24g (8.74mmol, 30eq.)に20 mLのDMFを加え、室温で72時間攪拌した。溶媒を減圧留去し、残渣をクロロホルムで数回洗浄し、紫色粉末の目的物を得た(331mg, 99%)。1H NMR(600MHz, DMSO-d6, TMS. r.t.);δ(ppm)=9.47(m-pyridyl,
6H), 9.16-9.02(β-pyrrole,
8H), 8.99(o-pyridyl, 6H), 8.23 (o-phenyl, 2H),
7.96(m-phenyl, 2H), 4.77(N-CH3, 9H), 0.34(TMS, 9H).
<Synthesis of Compound 2>
20 mL of DMF was added to 208 mg (0.291 mmol) of compound 2 and 1.24 g (8.74 mmol, 30 eq.) Of methyl iodide, and the mixture was stirred at room temperature for 72 hours. The solvent was distilled off under reduced pressure, and the residue was washed several times with chloroform to obtain the desired product as a purple powder (331 mg, 99%). 1 H NMR (600 MHz, DMSO-d6, TMS. Rt); δ (ppm) = 9.47 (m-pyridyl,
6H), 9.16-9.02 (β-pyrrole,
8H), 8.99 (o-pyridyl, 6H), 8.23 (o-phenyl, 2H),
7.96 (m-phenyl, 2H), 4.77 (N-CH 3 , 9H), 0.34 (TMS, 9H).

<化合物3の合成>
化合物3 331mg(0.29mmol)、酢酸亜鉛(II)533mg(2.9mmol, 10eq.)、炭酸カリウム100mg(0.72mmol, 2.5eq.)に50mLのメタノールを加え、室温にて24時間攪拌した。溶媒を減圧留去し、残渣を少量の蒸留水に溶解させ、過剰に加えた酢酸亜鉛を透析(MWCO:500, 3 water change)にて除去した。凍結乾燥により溶媒を留去し、緑色粉末の目的物を得た(236.2 mg, 73%)。1H NMR (600MHz, DMSO-d6, TMS. r.t.):δ(ppm)=9.43(m-pyridyl,
6H), 8.97(β-pyrrole,
4H), 8.87(o-pyridyl, β-pyrrol, 10H), 8.17(o-phenyl, 2 H), 7.94 (m-phenyl, 2H),
4.70(N-CH3, 9H), 4.49(Ph-CCH, 1H).
<Synthesis of Compound 3>
50 mL of methanol was added to 331 mg (0.29 mmol) of Compound 3, 533 mg (2.9 mmol, 10 eq.) Of zinc acetate (II), and 100 mg (0.72 mmol, 2.5 eq.) Of potassium carbonate, and the mixture was stirred at room temperature for 24 hours. The solvent was distilled off under reduced pressure, the residue was dissolved in a small amount of distilled water, and excess zinc acetate was removed by dialysis (MWCO: 500, 3 water change). The solvent was distilled off by lyophilization to obtain the desired product as a green powder (236.2 mg, 73%). 1 H NMR (600 MHz, DMSO-d6, TMS. Rt): δ (ppm) = 9.43 (m-pyridyl,
6H), 8.97 (β-pyrrole,
4H), 8.87 (o-pyridyl, β-pyrrol, 10H), 8.17 (o-phenyl, 2 H), 7.94 (m-phenyl, 2H),
4.70 (N-CH 3 , 9H), 4.49 (Ph-CCH, 1H).

<化合物4の合成>
トリエチレングリコールモノメチルエーテル2.00g
(12.1mmol)を3mLのTHFに溶解させ、アルゴン雰囲気下、氷浴で0℃に冷却したt-ブトキシカリウム1.56g (13.9mmol, 1.2eq.)のTHF(25mL)懸濁液に加えた。50mLのTHFに溶解させたプロパルギルブロミド1.82mL(24.2mmol, 2.0 eq.)を加え、反応系を徐々に室温に戻しながら18時間攪拌した。反応混合物を75mLの飽和食塩水:蒸留水=3:1 (v/v)で希釈し、50mLの酢酸エチルによる抽出を3回行った。有機層を40mLの飽和食塩水:蒸留水=1:1(v/v)で1回、65mLの飽和食塩水で1回洗浄し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン:酢酸エチル=1:1(v/v))にて精製し、淡黄色オイル状の目的物を得た(1.23g, 50%)。1H NMR;δ=4.33 (CH3-O-CH 2-CH2-,
2H), 3.70-3.64 (CH3-O-CH2-CH 2-O-CH2-CH 2-O-CH 2-CH 2-O,
10H), 3.55(HCC-CH 2-O, 2H), 3.38 (CH3, 3H), 2.42 (CCH, 1H)
<Synthesis of Compound 4>
2.00 g of triethylene glycol monomethyl ether
(12.1 mmol) was dissolved in 3 mL of THF and added to a suspension of 1.56 g (13.9 mmol, 1.2 eq.) Of t-butoxypotassium (25 mL) cooled to 0 ° C. in an ice bath under an argon atmosphere. Propargyl bromide (1.82 mL, 24.2 mmol, 2.0 eq.) Dissolved in 50 mL of THF was added, and the reaction system was stirred for 18 hours while gradually returning to room temperature. The reaction mixture was diluted with 75 mL of saturated saline: distilled water = 3: 1 (v / v), and extracted with 50 mL of ethyl acetate three times. The organic layer was washed once with 40 mL of saturated saline: distilled water = 1: 1 (v / v) and once with 65 mL of saturated saline, and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, hexane: ethyl acetate = 1: 1 (v / v)) to obtain the desired product as a pale yellow oil (1.23 g, 50% ). 1 H NMR; δ = 4.33 (CH 3 —OC H 2 —CH 2 —,
2H), 3.70-3.64 (CH 3 -O-CH 2 -C H 2 -O-CH 2 -C H 2 -OC H 2 -C H 2 -O,
10H), 3.55 (HCC-C H 2 -O, 2H), 3.38 (CH 3 , 3H), 2.42 (CCH, 1H)

<CUR-Por-oeg3の合成>
CUR-N3
(50mg, 0.26mmol (monomer unit))をDMSO 3mlに溶解させ、室温で2時間攪拌して完全に溶解させた。水0.3ml、3-アミノ-1-プロパノール0.3ml、ヨウ化銅(II)(3.4 mg, 5mol%)、アスコルビン酸(13.3mg, 25mol%)、化合物3、化合物4の混合溶液を加え、室温で18時間攪拌した。蒸留水で透析を行った後(MWCO: 8,000, 3 water change)凍結乾燥により溶媒を留去し、緑色固体として目的物を得た(113.8 mg、73%)FTIR (powder, cm-1):3352, 2872, 1638, 1460, 1350, 1075, 796, 552; Anal. Calcd. for C232H336N44O72I6Zn2:C, 48.15;H, 5.80;N, 9.39;Found:C, 49.2; H, 5.40; N, 10.1 %
<Synthesis of CUR-Por-oeg3>
CUR-N 3
(50 mg, 0.26 mmol (monomer unit)) was dissolved in 3 ml of DMSO and stirred at room temperature for 2 hours to completely dissolve. Add a mixed solution of 0.3 ml of water, 0.3 ml of 3-amino-1-propanol, copper (II) iodide (3.4 mg, 5 mol%), ascorbic acid (13.3 mg, 25 mol%), compound 3 and compound 4 at room temperature. For 18 hours. After dialysis with distilled water (MWCO: 8,000, 3 water change), the solvent was distilled off by lyophilization to obtain the target product as a green solid (113.8 mg, 73%) FTIR (powder, cm -1 ): .. 3352, 2872, 1638, 1460, 1350, 1075, 796, 552; Anal Calcd for C 232 H 336 N 44 O 72 I 6 Zn 2: C, 48.15; H, 5.80; N, 9.39; Found: C, 49.2; H, 5.40; N, 10.1%

以上のようにして合成したCur-Por-oeg3
0.3mgを、SWNT 0.35mgとともにDMSO 500μLに分散させた。この溶液に超音波照射を行いながら蒸留水1500μLを徐々に加えていった。各成分の組成比を表1に示す。調製したサンプルを蒸留水で十分に洗浄した透析膜(MWCO:3,500)に移して透析操作を行い、溶媒を完全に水に置換した。続いて、遠心分離操作(12,000rpm×60min)によりバンドル化の度合いが高いCUR-Por-oeg3/SWNT複合体を沈殿させ、上澄みを回収した。この遠心分離操作を2回行い、CUR-Por-oeg3/
SWNT複合体水溶液を得た。
Cur-Por-oeg3 synthesized as above
0.3 mg was dispersed in 500 μL of DMSO together with 0.35 mg of SWNT. While performing ultrasonic irradiation on this solution, 1500 μL of distilled water was gradually added. Table 1 shows the composition ratio of each component. The prepared sample was transferred to a dialysis membrane (MWCO: 3,500) thoroughly washed with distilled water, and dialysis was performed to completely replace the solvent with water. Subsequently, the CUR-Por-oeg3 / SWNT complex having a high degree of bundling was precipitated by centrifugation (12,000 rpm × 60 min), and the supernatant was collected. Perform this centrifugation twice, and CUR-Por-oeg3 /
An aqueous SWNT complex solution was obtained.

CUR-Por-oeg3/SWNT複合体の吸収スペクトル、蛍光スペクトルを測定した。図3(左)に吸収スペクトルの結果を、同(右)に蛍光スペクトルの結果を示す。吸収スペクトルよりSWNTに由来する吸収及びポルフィリンに由来する吸収が確認された。また蛍光スペクトル測定の結果ポルフィリン由来の蛍光の消光が見られ、ポルフィリンからSWNTへの電子移動が起こっている可能性が示唆された。   The absorption spectrum and fluorescence spectrum of the CUR-Por-oeg3 / SWNT complex were measured. Fig. 3 (left) shows the result of the absorption spectrum, and Fig. 3 (right) shows the result of the fluorescence spectrum. From the absorption spectrum, absorption derived from SWNT and absorption derived from porphyrin were confirmed. As a result of the fluorescence spectrum measurement, the quenching of the porphyrin-derived fluorescence was observed, suggesting the possibility of electron transfer from the porphyrin to SWNT.

CUR-Por-oeg3/SWNTのモルフォロジー
1. AFM 観察 調製したCUR-Por-oeg3/SWNT複合体水溶液を2倍希釈した。この水溶液2μLをマイカ基盤にキャスト、スピンコーティング後真空乾燥した。図4にCUR-Por-oeg3/SWNTのAFM像を、(左)高さ像、(右) phase像、スケールは2μm×2μmで示した。一部SWNTがバンドル化しているような箇所が見られるものの、SWNTの多くはその高さが1nm前後であり、ほぼ孤立分散している。更に、バックグラウンドにはフリーのCUR-Por-oeg3が殆ど見られなかった。このことから、SWNTとCUR-Por-oeg3は表1の仕込み比においてほぼ過不足なく複合化しているということが示された。
CUR-Por-oeg3 / SWNT morphology 1. AFM observation The prepared CUR-Por-oeg3 / SWNT complex aqueous solution was diluted 2-fold. 2 μL of this aqueous solution was cast on a mica substrate, spin-coated and then vacuum dried. FIG. 4 shows an AFM image of CUR-Por-oeg3 / SWNT (left) height image, (right) phase image, and the scale is 2 μm × 2 μm. Although some parts of SWNT are bundled, many SWNTs are around 1nm in height and are almost isolated and dispersed. Furthermore, almost no free CUR-Por-oeg3 was seen in the background. From this, it was shown that SWNT and CUR-Por-oeg3 were almost completely combined in the charging ratios in Table 1.

2. TEM 観察 調製したCUR-Por-oeg3/SWNT複合体水溶液を2倍希釈した。この水溶液10μLを穴あきTEMグリッドにキャスト後真空乾燥した。ファイバー(図5、左)や規則性のある会合体(図5、右)を示唆するモアレ縞が確認された。モアレ縞の見られる右図のような会合体中においては、SWNTが規則的に配列している可能性が高く、特に注目に値する。 2. TEM observation The prepared CUR-Por-oeg3 / SWNT complex aqueous solution was diluted 2-fold. 10 μL of this aqueous solution was cast on a perforated TEM grid and then vacuum-dried. Moire fringes suggesting fibers (Fig. 5, left) and regular aggregates (Fig. 5, right) were confirmed. It is particularly noteworthy that SWNTs are likely to be regularly arranged in the aggregate as shown on the right, where moiré fringes can be seen.

3. 偏光顕微鏡観察 調製したCUR-Por-oeg3/SWNT複合体水溶液をガラス基盤上にキャストし、真空乾燥した。図6(左)にCUR-Por-oeg3/SWNTの光学顕微鏡像、同(右)に左図と同領域を直交偏光板挿入後観察した像を示す。スケールは100μmである。数μm程度の会合体が至る所に見られ、偏光顕微鏡観察の結果、これらの会合体が複屈折性を示すことが示唆された。この結果は、TEM観察で見られたモアレ縞を支持するデータ、すなわち観察される会合体が規則正しい構造を有していることを強く支持している。 3. Observation with polarizing microscope The prepared CUR-Por-oeg3 / SWNT composite aqueous solution was cast on a glass substrate and dried in vacuum. FIG. 6 (left) shows an optical microscope image of CUR-Por-oeg3 / SWNT, and FIG. 6 (right) shows an image observed in the same area as in the left figure after inserting an orthogonal polarizing plate. The scale is 100 μm. Aggregates of about several μm were found everywhere, and as a result of observation under a polarizing microscope, it was suggested that these aggregates exhibited birefringence. This result strongly supports the data supporting the moire fringes observed in TEM observation, that is, the observed aggregate has a regular structure.

4. CUR-Por-oeg3/SWNTのラマンスペクトル測定 上記偏光顕微鏡観察で見られた会合体にSWNT が含まれているか調べるために、ラマンスペクトル測定を行った(レーザーラマン分光光度計NRS-2000型、励起波長:514 nm)。図7よりSWNTのG-band及びD-bandに帰属されるピークが確認された。この結果より、偏光顕微鏡で見られた規則性の高い会合体にSWNTが含まれていることが明らかとなり、SWNTの規則的な配列が強く示唆された。 4. Measurement of Raman spectrum of CUR-Por-oeg3 / SWNT In order to investigate whether SWNT is contained in the aggregates observed in the above polarizing microscope, Raman spectrum measurement was performed (Laser Raman spectrophotometer NRS-2000 model). Excitation wavelength: 514 nm). From FIG. 7, peaks attributed to SWNT G-band and D-band were confirmed. From this result, it was clarified that SWNT was contained in the highly ordered aggregates observed in the polarization microscope, and the regular arrangement of SWNTs was strongly suggested.

CUR-Por-oeg3/SWNTを用いた光電変換
1. CUR-Por-oeg3/SWNT 修飾ITO電極の作成 親水処理を施したITO基盤にCUR-Por-oeg3/SWNT複合体をキャスト、真空乾燥してCUR-Por-oeg3/SWNT複合体修飾ITO電極を作成した。実際の操作を以下に示す。
・ITO基盤の親水化処理
ITO基盤をエタノールで20分間超音波洗浄した後、濃硫酸に20分間浸した。その後解放系
で沸騰した過酸化水素水:アンモニア水=2:1に20分間浸した。蒸留水に2分間浸して洗浄した。この操作を2回繰り返した後、蒸留水で基盤を洗浄した。
・CUR-Por-oeg3/SWNT修飾ITO電極の作成
上記操作に従って親水処理を行ったITO基盤にCUR-Por-oeg3/SWNT複合体水溶液をキャストし、真空乾燥した。
Photoelectric conversion using CUR-Por-oeg3 / SWNT 1. Preparation of modified CUR-Por-oeg3 / SWNT modified ITO electrode CUR-Por-oeg3 / SWNT composite is cast on a hydrophilic ITO base and vacuum dried. CUR-Por-oeg3 / SWNT complex modified ITO electrode was prepared. The actual operation is shown below.
・ ITO-based hydrophilic treatment
The ITO substrate was ultrasonically washed with ethanol for 20 minutes and then immersed in concentrated sulfuric acid for 20 minutes. Then, it was immersed in hydrogen peroxide water: ammonia water = 2: 1 boiled in an open system for 20 minutes. Washed by immersing in distilled water for 2 minutes. After repeating this operation twice, the base was washed with distilled water.
-Preparation of CUR-Por-oeg3 / SWNT modified ITO electrode A CUR-Por-oeg3 / SWNT composite aqueous solution was cast on an ITO substrate that had been subjected to a hydrophilic treatment according to the above operation, and dried in a vacuum.

2. 光電流測定
溶媒: MeCN、[テトラエチルアンモニウム過塩素酸塩]=0.1M、[トリエタノールアミン]=0.05M、照射光の波長:440nm(0.154 mW/cm2)、電極電位:0.0V vs Ag/AgClの条件で測定した。図8のアクションスペクトルからポルフィリンに由来する光電流が発生していることが明らかとなった。また、光電変換効率を以下のようにして求めた。
2. Photocurrent measuring solvent: MeCN, [tetraethylammonium perchlorate] = 0.1M, [triethanolamine] = 0.05M, wavelength of irradiation light: 440 nm (0.154 mW / cm 2 ), electrode potential: 0.0 V vs. The measurement was performed under the conditions of Ag / AgCl. From the action spectrum of FIG. 8, it was revealed that a photocurrent derived from porphyrin was generated. Moreover, the photoelectric conversion efficiency was calculated | required as follows.

1)光電流の電子数の導出
光電流測定の結果、440nmの光照射時において流れた光電流は3.2 nA/cm2であった。これをクーロン量1.60×10-19で割ると、光電流の電子数 = (3.2×10-9)/(1.60×10-19) =
2.0×1010が得られる。
1) Derivation of the number of electrons of photocurrent As a result of photocurrent measurement, the photocurrent that flowed at the time of light irradiation at 440 nm was 3.2 nA / cm 2 . Dividing this by 1.60 × 10 -19 Coulomb, the number of photocurrent electrons = (3.2 × 10 -9 ) / (1.60 × 10 -19 ) =
2.0 × 10 10 is obtained.

2)吸収された光子数の導出
入射された光子数は、光量(0.154mW/cm2)を光子1つ当たりのエネルギーで割った値となる。440nmの光の場合、光子1つ当たりのエネルギーは、E=hc/λより(6.626×10-34)×(2.998×108)÷(440×10-9)=4.515×10-19 J)となる。吸収された光の割合は、1-10-Absで求められる。CUR-Por-oeg3/SWNT複合体修飾ITO電極の吸収スペクトルを図9に示す。これより電極に含まれるポルフィリン部位のみの、440nmにおける吸光度を求めるとその値は0.0228であるので、吸収された光の割合は1-100.0228=0.0511となる。
以上より、吸収された光子数=(0.154×10-3)÷(4.515×10-19)×0.0511=1.743×1013
となる。
2) Derivation of the number of absorbed photons The number of incident photons is a value obtained by dividing the amount of light (0.154 mW / cm 2 ) by the energy per photon. In the case of 440 nm light, the energy per photon is (6.626 × 10 −34 ) × (2.998 × 10 8 ) ÷ (440 × 10 −9 ) = 4.515 × 10 −19 J) from E = hc / λ It becomes. The proportion of absorbed light is determined by 1-10 -Abs . FIG. 9 shows the absorption spectrum of the CUR-Por-oeg3 / SWNT complex modified ITO electrode. From this, the absorbance at 440 nm of only the porphyrin moiety contained in the electrode is 0.0228, so the ratio of absorbed light is 1-10 0.0228 = 0.0511.
From the above, the number of absorbed photons = (0.154 x 10 -3 ) ÷ (4.515 x 10 -19 ) x 0.0511 = 1.743 x 10 13
It becomes.

3)量子収率の導出
上記の結果より、量子収率=(2.0×1010)/(1.743×1013)=0.0011
0.11%という光電変換効率が得られた。
3) Derivation of quantum yield From the above results, quantum yield = (2.0 × 10 10 ) / (1.743 × 10 13 ) = 0.0001
A photoelectric conversion efficiency of 0.11% was obtained.

〔比較例1〕
CUR-Por-oeg3、CUR-oeg3/SWNTを用いた参照実験
Cur-Por-oeg3のみ、およびポルフィリンを含まないCUR-oeg3/SWNT複合体をそれぞれ用いて参照実験を行った。測定条件は、溶媒:MeCN、[テトラエチルアンモニウム過塩素酸塩]=0.1M、[トリエタノールアミン]=0.05M、照射光の波長:440nm(0.154mW/cm2)、電極電位:0.0V vs Ag/AgClである。図10にCUR-Por-oeg3、及びCUR-oeg3/SWNT複合体修飾ITO電極の光電流On-Offサイクルを示す。また、図11にCUR-Por-oeg3、及びCUR-oeg3/SWNT複合体修飾ITO電極の吸収スペクトルを示す。これらの結果を元にして、CUR-Por-oeg3/SWNT複合体修飾ITO電極の光電変換効率の計算法と同様の手順で、CUR-Por-oeg3、及びCUR-oeg3/SWNT複合体修飾ITO電極の光電変換効率を算出した。その結果を表2に示す。これより、SWNTとポルフィリンが組み合わさって始めて効率の良い光電変換が達成できることが示された。
[Comparative Example 1]
Reference experiments using CUR-Por-oeg3 and CUR-oeg3 / SWNT
Reference experiments were carried out using only Cur-Por-oeg3 and CUR-oeg3 / SWNT complex without porphyrin. Measurement conditions are solvent: MeCN, [tetraethylammonium perchlorate] = 0.1M, [triethanolamine] = 0.05M, wavelength of irradiation light: 440 nm (0.154 mW / cm 2 ), electrode potential: 0.0 V vs Ag / AgCl. FIG. 10 shows the photocurrent On-Off cycle of the ITO electrode modified with CUR-Por-oeg3 and CUR-oeg3 / SWNT complex. Further, FIG. 11 shows absorption spectra of CUR-Por-oeg3 and CUR-oeg3 / SWNT complex-modified ITO electrodes. Based on these results, the CUR-Por-oeg3 and CUR-oeg3 / SWNT composite modified ITO electrodes were processed in the same procedure as the photoelectric conversion efficiency calculation method for CUR-Por-oeg3 / SWNT composite modified ITO electrodes. The photoelectric conversion efficiency was calculated. The results are shown in Table 2. This shows that efficient photoelectric conversion can be achieved only when SWNT and porphyrin are combined.

本発明は安価で、環境にやさしい光電変換システムの開発に有用である。   The present invention is useful for developing an inexpensive and environmentally friendly photoelectric conversion system.

CUR-Por-oeg3/SWNT複合体の模式図とそれを用いた光電変換システムのスキームを示す。A schematic diagram of CUR-Por-oeg3 / SWNT composite and a scheme of a photoelectric conversion system using the same are shown. CUR-Por-oeg3の合成スキームを示す(実施例1)。A synthesis scheme of CUR-Por-oeg3 is shown (Example 1). CUR-Por-oeg3を示す(実施例1)。CUR-Por-oeg3 is shown (Example 1). (左図) CUR-Por-oeg3/SWNT複合体及びCUR-oeg3/SWNT複合体の近赤外スペクトル測定結果(右図) CUR-Por-oeg3及びCUR-Por-oeg3/SWNT複合体の蛍光スペクトル測定結果を示す:溶媒:重水(CUR-Por-oeg3/SWNT)、光路長:0.10cm、測定温度:室温、蛍光スペクトルの励起波長:440nm(実施例1)。(Left) Near-infrared spectrum measurement results of CUR-Por-oeg3 / SWNT complex and CUR-oeg3 / SWNT complex (right) Fluorescence spectrum of CUR-Por-oeg3 and CUR-Por-oeg3 / SWNT complex The measurement results are shown: Solvent: heavy water (CUR-Por-oeg3 / SWNT), optical path length: 0.10 cm, measurement temperature: room temperature, excitation wavelength of fluorescence spectrum: 440 nm (Example 1). CUR-Por-oeg3/SWNTのAFM像。(左) 高さ像、(右) phase像。スケールを示す:2μm×2μm(実施例2)。AFM image of CUR-Por-oeg3 / SWNT. (Left) Height image, (Right) Phase image. Scale is shown: 2 μm × 2 μm (Example 2). いずれもCUR-Por-oeg3/SWNTのTEM像(実施例2)。Both are TEM images of CUR-Por-oeg3 / SWNT (Example 2). (左) CUR-Por-oeg3/SWNTの光学顕微鏡像、(右) 左図と同領域を直交偏光板挿入後観察した像を示す:Scale bar:100μm(実施例2)(Left) Optical microscope image of CUR-Por-oeg3 / SWNT, (Right) Shown the same area as the left figure, observed after insertion of orthogonal polarizing plate: Scale bar: 100 μm (Example 2) CUR-Por-oeg3/SWNT複合体(偏光顕微鏡観察領域)のラマンスペクトル測定結果を示す(実施例2)。The Raman spectrum measurement result of a CUR-Por-oeg3 / SWNT composite (polarization microscope observation region) is shown (Example 2). CUR-Por-oeg3/SWNTのアクションスペクトル(挿入図)と、光電流のOn-Offサイクルを示す(実施例3)。An action spectrum (inset) of CUR-Por-oeg3 / SWNT and an on-off cycle of photocurrent are shown (Example 3). CUR-Por-oeg3/SWNT修飾ITO電極の吸収スペクトル(ベースラインとしてITO のみの吸収を差し引いてある)を示す(実施例3)。An absorption spectrum of a CUR-Por-oeg3 / SWNT modified ITO electrode (absorption of only ITO as a baseline is subtracted) is shown (Example 3). (左) CUR-Por-oeg3修飾ITO電極、(右) CUR-oeg3/SWNT修飾ITO電極の光電流On-Offサイクルを示す(比較例1)。The photocurrent On-Off cycle of (left) CUR-Por-oeg3 modified ITO electrode and (right) CUR-oeg3 / SWNT modified ITO electrode is shown (Comparative Example 1). (左) CUR-Por-oeg3修飾ITO電極、(右) CUR-oeg3/SWNT修飾ITO電極の吸収スペクトル(ベースラインとしてITOのみの吸収を差し引き済)を示す(比較例1)。(Left) Absorption spectra of CUR-Por-oeg3 modified ITO electrode, (Right) CUR-oeg3 / SWNT modified ITO electrode (absorption of only ITO as a baseline is subtracted) (Comparative Example 1).

Claims (3)

側鎖がポルフィリンで修飾されたβ-1,3-グルカンと単層カーボンナノチューブとの複合体から成ることを特徴とする光電変換素子。   A photoelectric conversion element comprising a composite of β-1,3-glucan having a side chain modified with porphyrin and a single-walled carbon nanotube. β-1,3-グルカンがカードランであり、側鎖に親水性部位が結合されていることを特徴とする請求項1の光電変換素子。   The photoelectric conversion element according to claim 1, wherein β-1,3-glucan is curdlan, and a hydrophilic site is bonded to a side chain. 親水性部位としてエチレングリコール部位が結合されていることを特徴とする請求項2の光電変換素子。
The photoelectric conversion element according to claim 2, wherein an ethylene glycol moiety is bonded as a hydrophilic moiety.
JP2007059773A 2007-03-09 2007-03-09 Photoelectric conversion element Expired - Fee Related JP4930708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059773A JP4930708B2 (en) 2007-03-09 2007-03-09 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059773A JP4930708B2 (en) 2007-03-09 2007-03-09 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2008226961A JP2008226961A (en) 2008-09-25
JP4930708B2 true JP4930708B2 (en) 2012-05-16

Family

ID=39845265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059773A Expired - Fee Related JP4930708B2 (en) 2007-03-09 2007-03-09 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4930708B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313900A4 (en) * 2000-08-24 2011-12-07 Univ Rice William M Polymer-wrapped single wall carbon nanotubes
JP2002194003A (en) * 2000-12-27 2002-07-10 Hiroshi Takimoto Oligomer material
FR2849437B1 (en) * 2002-12-30 2005-03-25 Nanoledge CARBON NANOTUBES
JP4387151B2 (en) * 2003-09-30 2009-12-16 独立行政法人科学技術振興機構 Method for solubilizing carbon nanotubes using β-1,3-glucan
JP2006063307A (en) * 2004-07-27 2006-03-09 Ezaki Glico Co Ltd Carbon nanotube-containing solution, film, and fiber
JP2006248973A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Fibrous porphyrin assembly with polysaccharide used as one-dimensional host

Also Published As

Publication number Publication date
JP2008226961A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Yang et al. Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application
Wang et al. Photoactive graphene sheets prepared by “click” chemistry
Ehli et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids
Iqbal et al. Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes
Hasobe et al. Supramolecular photovoltaic cells based on composite molecular Nanoclusters: dendritic porphyrin and C60, porphyrin dimer and C60, and Porphyrin− C60 dyad
Llanes-Pallas et al. Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes
Hill et al. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices
Engtrakul et al. Protonation of Carbon Single-Walled Nanotubes Studied Using 13C and 1H− 13C Cross Polarization Nuclear Magnetic Resonance and Raman Spectroscopies
Miletić et al. Covalently functionalized SWCNTs as tailored p-type dopants for perovskite solar cells
Fang et al. Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications
Şenocak et al. Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials
Chu et al. Fast drying boosted performance improvement of low-temperature paintable carbon-based perovskite solar cell
WO2004059783A1 (en) Dye sensitization photoelectric converter and process for fabricating the same
Rouhani et al. Investigation of the effect of rGO/TiO2 on photovoltaic performance of DSSCs devices
Chang et al. Pyrenebutyrate-functionalized graphene/poly (3-octyl-thiophene) nanocomposites based photoelectrochemical cell
JP2009179629A (en) Ruthenium complex
CN106986788A (en) A kind of azobenzene graphene oxide composite material and preparation method and application
Arai et al. Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds: photoinduced electron transfer in polar solvent
WO2011003280A1 (en) Organic dyes and preparation method thereof and dye-sensitized solar cells
JP2007063364A (en) New donor acceptor connection-based derivative
Patel et al. Hand-print method for preparation of large area and binder free electrodes for photodetection and electrocatalytic hydrogen evolution
Gu et al. E-carbon antenna-assembled TiO2 nanotubes for sensitization of photocatalytic reaction exemplified by enhanced oxidation of nitrobenzene
Liu et al. Heterostructured Perylene Diimide (PDI) Supramolecular Nanorods with SnO2 Quantum Dots for Enhanced Visible‐Light Photocatalytic Activity and Stability
Rajakumar et al. Pyreno-chalcone dendrimers as an additive in the redox couple of dye-sensitized solar cells
Yu et al. Engineering DA polymer polarity in heterostructure photocatalyst for improved interfacial charge transfer efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4930708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees