JP4930020B2 - Infrared gas analyzer - Google Patents

Infrared gas analyzer Download PDF

Info

Publication number
JP4930020B2
JP4930020B2 JP2006328886A JP2006328886A JP4930020B2 JP 4930020 B2 JP4930020 B2 JP 4930020B2 JP 2006328886 A JP2006328886 A JP 2006328886A JP 2006328886 A JP2006328886 A JP 2006328886A JP 4930020 B2 JP4930020 B2 JP 4930020B2
Authority
JP
Japan
Prior art keywords
infrared light
light source
optical system
infrared
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006328886A
Other languages
Japanese (ja)
Other versions
JP2008145106A (en
Inventor
茂 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2006328886A priority Critical patent/JP4930020B2/en
Publication of JP2008145106A publication Critical patent/JP2008145106A/en
Application granted granted Critical
Publication of JP4930020B2 publication Critical patent/JP4930020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、測定対象ガスにおける赤外光の吸収特性を利用して、試料ガス中の測定対象成分濃度を検出する赤外線ガス分析計に関するものである。   The present invention relates to an infrared gas analyzer that detects the concentration of a measurement target component in a sample gas by using the absorption characteristic of infrared light in the measurement target gas.

図5は従来の赤外線ガス分析計の一例を示す構成図である。11、12は熱応答性に優れた赤外線光源で、第1の赤外線光源11は試料セル13に第1の赤外光を照射する。また、第2の赤外線光源12は検出器14におけるバランス側室142に第2の赤外光を照射する。ここで、フローセンサ143は、試料セル13を介して入射する第1の赤外光を受ける試料側室141とバランス側室142とを結ぶガス流通路に配置されている。したがって、検出器14は試料セル13を通過した第1の赤外光と、第2の赤外線光源12から直接入射する第2の赤外光との差を検出することになる。なお、第1および第2の赤外線光源11、12には、応答特性の揃った赤外線光源が使用される。   FIG. 5 is a block diagram showing an example of a conventional infrared gas analyzer. Reference numerals 11 and 12 denote infrared light sources having excellent thermal responsiveness. The first infrared light source 11 irradiates the sample cell 13 with the first infrared light. The second infrared light source 12 irradiates the balance side chamber 142 of the detector 14 with the second infrared light. Here, the flow sensor 143 is disposed in a gas flow path that connects the sample side chamber 141 that receives the first infrared light incident through the sample cell 13 and the balance side chamber 142. Therefore, the detector 14 detects the difference between the first infrared light that has passed through the sample cell 13 and the second infrared light that is directly incident from the second infrared light source 12. Note that infrared light sources with uniform response characteristics are used for the first and second infrared light sources 11 and 12.

15は光源駆動信号を発生して、第1および第2の赤外線光源11、12を同期的に駆動する光源駆動制御部、16は、検出器14(フローセンサ143)からの出力信号を受け、試料ガス中の測定対象成分濃度に応じた測定出力を発生する測定制御部である。   A light source drive control unit 15 generates a light source drive signal and drives the first and second infrared light sources 11 and 12 synchronously, and 16 receives an output signal from the detector 14 (flow sensor 143), It is a measurement control unit that generates a measurement output according to the concentration of the measurement target component in the sample gas.

光源駆動制御部15は、例えば、一定周期の矩形波よりなる駆動電圧を第1および第2の赤外線光源11、12に印加し、第1および第2の赤外線光源11、12を同期的に直接オンオフさせる。したがって、第1および第2の赤外線光源11、12が点灯した時には、検出器14の各室間には第1の赤外光と第2の赤外光との差に応じた差圧が発生し、第1および第2の赤外線光源11、12が消灯した時には、差圧が発生せず、フローセンサ143からは試料ガスにおける測定対象成分濃度に応じた出力が発生される。
測定制御部16は、第1および第2の赤外線光源11、12の駆動信号(同期信号)を利用して、フローセンサ143の出力を同期整流し、試料ガス中の測定対象成分濃度に応じた測定出力を発生する。
The light source drive control unit 15 applies, for example, a drive voltage composed of a rectangular wave with a fixed period to the first and second infrared light sources 11 and 12 and directly and synchronously directs the first and second infrared light sources 11 and 12. Turn on and off. Therefore, when the first and second infrared light sources 11 and 12 are turned on, a differential pressure corresponding to the difference between the first infrared light and the second infrared light is generated between the chambers of the detector 14. When the first and second infrared light sources 11 and 12 are turned off, no differential pressure is generated, and the flow sensor 143 generates an output corresponding to the concentration of the measurement target component in the sample gas.
The measurement control unit 16 uses the drive signals (synchronization signals) of the first and second infrared light sources 11 and 12 to synchronously rectify the output of the flow sensor 143 according to the concentration of the measurement target component in the sample gas. Generate measurement output.

特開2006−125858号公報JP 2006-125858 A

しかしながら、図5に示したような光学系に矩形波の駆動電圧の印加によりオンオフ動作を行うと、赤外線光源11、12のピーク消費電力が大きくなる、大電力を投入するので赤外線光源の寿命が短くなる、オンオフ時に急激に消費電力が変化するので大きな電気的ノイズが発生する、などの問題が発生してしまう。   However, when the on / off operation is performed by applying a rectangular wave drive voltage to the optical system as shown in FIG. Problems such as shortening and a large electrical noise due to a sudden change in power consumption during on / off will occur.

図6は赤外線光源の駆動電圧、抵抗値および消費電力の関係を示す図である。(a)は赤外線光源11と12に印加する駆動電圧、(b)は赤外線光源11と12の抵抗値、(c)は赤外線光源11と12の消費電力を示している。横軸は時間であり、時刻t1〜t2、時刻t3〜t4の期間は赤外線光源のオン期間である。
熱応答性に優れ高速のオンオフ動作が可能な赤外線光源の点灯消灯を、(a)に示すような矩形波の駆動電圧の印加により行うと、駆動電圧の立ち上がり時(時刻t1、t3)に大きな電力消費が起こる。
FIG. 6 is a diagram showing the relationship between the driving voltage, resistance value, and power consumption of the infrared light source. (A) is the drive voltage applied to the infrared light sources 11 and 12, (b) is the resistance value of the infrared light sources 11 and 12, and (c) is the power consumption of the infrared light sources 11 and 12. The horizontal axis is time, and the period from time t1 to t2 and time t3 to t4 is the on period of the infrared light source.
When turning on / off an infrared light source having excellent thermal response and capable of high-speed on / off operation by applying a rectangular wave driving voltage as shown in (a), it is large at the rising of the driving voltage (time t1, t3). Electricity consumption occurs.

消費電力が大きいと、そのピーク値をカバーできるように電力設備も大規模で高コストなものとなってしまう。また、ピーク消費電力が大きいと赤外線光源の素子に負担がかかり、素子の定格内であっても素子の寿命が短くなってしまう。さらに、時刻t1、t3では急激に消費電力が変化するため、大きな電気的ノイズが発生してしまう。   When the power consumption is large, the power equipment becomes large and expensive so that the peak value can be covered. In addition, when the peak power consumption is large, a load is applied to the element of the infrared light source, and the life of the element is shortened even within the rating of the element. Furthermore, since the power consumption changes abruptly at times t1 and t3, a large electrical noise is generated.

また、分析作業の効率を上げるため1台の赤外線ガス分析計に図5のような光学系を複数設ける場合がある。各光学系における駆動タイミングによっては消費電力のピーク同士が重なり、これらの問題がさらに顕著となってしまう。   Further, in order to increase the efficiency of analysis work, a plurality of optical systems as shown in FIG. 5 may be provided in one infrared gas analyzer. Depending on the drive timing in each optical system, the peaks of power consumption overlap, and these problems become more prominent.

図7は光学系を2つ有する赤外線ガス分析計の一例を示す構成図であり、図5の赤外線ガス分析計の光学系と同じものを、第1の光学系(1)および第2の光学系(2)として設けたものである。第1の光学系(1)と第2の光学系(2)にそれぞれ一定周期の矩形波の駆動電圧を印加してオンオフ動作を繰り返す場合に、各光学系における赤外線光源の発光タイミングを考慮しなければ、各光学系の消費電力のピークが重なってしまう可能性がある。   FIG. 7 is a block diagram showing an example of an infrared gas analyzer having two optical systems. The same optical system as the infrared gas analyzer shown in FIG. 5 is used as the first optical system (1) and the second optical system. This is provided as the system (2). When the on / off operation is repeated by applying a rectangular wave drive voltage to the first optical system (1) and the second optical system (2), the emission timing of the infrared light source in each optical system is taken into consideration. Otherwise, the power consumption peaks of the optical systems may overlap.

図8は光学系を2つ有する赤外線ガス分析計の消費電力変化の一例を示す図である。(a)は第1の光学系の消費電力W1、(b)は第2の光学系の消費電力W2、(c)は第1および第2の光学系の消費電力の和を示している。
時刻t1〜t2、時刻t3〜t4の期間は第1および第2の光学系の赤外線光源をオンしている期間である。時刻t1、t3において消費電力W1と消費電力W2のピークが重なり、第1および第2の光学系の消費電力の和は各光学系におけるピーク消費電力の2倍になっている。ピーク値が高くなれば、前述の電力設備や素子寿命等の問題がさらに顕著になってしまう。
FIG. 8 is a diagram showing an example of a change in power consumption of an infrared gas analyzer having two optical systems. (A) shows the power consumption W1 of the first optical system, (b) shows the power consumption W2 of the second optical system, and (c) shows the sum of the power consumption of the first and second optical systems.
The period from time t1 to t2 and time t3 to t4 is a period during which the infrared light sources of the first and second optical systems are turned on. At times t1 and t3, the peaks of the power consumption W1 and the power consumption W2 overlap, and the sum of the power consumption of the first and second optical systems is twice the peak power consumption of each optical system. If the peak value becomes high, the above-mentioned problems such as the power equipment and element lifetime become more remarkable.

本発明は、上記のような従来装置の欠点をなくし、赤外線光源のピーク消費電力を抑え、赤外線光源の寿命を延ばすとともに、赤外線光源の点滅により生じる電気的ノイズを低減することができる赤外線ガス分析計を実現することを目的としたものである。   The present invention eliminates the drawbacks of the conventional apparatus as described above, suppresses the peak power consumption of the infrared light source, extends the life of the infrared light source, and reduces the electrical noise caused by the flashing of the infrared light source. The purpose is to realize the total.

請求項では、試料ガスが流通する試料セルを有し、この試料セルを通過した赤外光における吸収量の変化を利用して、試料ガス中の測定対象成分濃度を検出する赤外線ガス分析計において、
駆動電圧の印加により赤外光を点消灯する赤外線光源と、この赤外線光源から出射され前記試料セルを通過した赤外光と前記試料セルを通過しない赤外光との差を検出する検出器とを備えた第1の光学系と、
この第1の光学系と等しい応答特性を有する第2の光学系と、
前記第1および第2の光学系における赤外線光源を、光学系ごとに異なる位相で駆動する光源駆動位相制御部と、
を具備したことを特徴とする。
In claim 1 , the infrared gas analyzer has a sample cell through which the sample gas flows, and detects the concentration of the component to be measured in the sample gas by using the change in the amount of absorption in infrared light that has passed through the sample cell. In
An infrared light source that turns off infrared light by applying a drive voltage; and a detector that detects a difference between infrared light emitted from the infrared light source and passing through the sample cell and infrared light not passing through the sample cell; A first optical system comprising:
A second optical system having a response characteristic equal to that of the first optical system;
A light source driving phase control unit for driving the infrared light sources in the first and second optical systems with different phases for each optical system;
It is characterized by comprising.

請求項では、試料ガスが流通する試料セルを有し、この試料セルを通過した赤外光における吸収量の変化を利用して、試料ガス中の測定対象成分濃度を検出する赤外線ガス分析計において、
駆動電圧の印加により赤外光を点消灯する赤外線光源と、この赤外線光源から出射され前記試料セルを通過した赤外光と前記試料セルを通過しない赤外光との差を検出する検出器とを備えた第1の光学系と、
この第1の光学系と等しい応答特性を有する第2の光学系と、
前記第1および第2の光学系における赤外線光源を、光学系ごとに異なる位相で駆動する光源駆動位相制御部と、
前記第1および第2の光学系における赤外線光源に前記駆動電圧を出力する光源駆動波形制御部とを備え、
前記光源駆動波形制御部は、前記赤外線の点灯消灯の切り替えの際に駆動電圧を一定の傾斜をもって変化させることを特徴とする。
The infrared gas analyzer according to claim 2 , which has a sample cell in which the sample gas flows, and detects the concentration of the component to be measured in the sample gas by utilizing the change in the amount of absorption in infrared light that has passed through the sample cell. In
An infrared light source that turns off infrared light by applying a drive voltage; and a detector that detects a difference between infrared light emitted from the infrared light source and passing through the sample cell and infrared light not passing through the sample cell; A first optical system comprising:
A second optical system having a response characteristic equal to that of the first optical system;
A light source driving phase control unit for driving the infrared light sources in the first and second optical systems with different phases for each optical system;
A light source drive waveform controller that outputs the drive voltage to an infrared light source in the first and second optical systems;
The light source drive waveform control unit is characterized in that the drive voltage is changed with a certain inclination when the infrared light is switched on and off.

請求項では、請求項またはに記載の赤外線ガス分析計において、前記光源駆動制御部は、前記第1および第2の光学系を逆位相で駆動することを特徴とする。
A third aspect of the present invention is the infrared gas analyzer according to the first or second aspect , wherein the light source drive control unit drives the first and second optical systems in opposite phases.

請求項1によれば、第1と第2の光学系を有する場合に、第1と第2の光学系における赤外線光源の駆動タイミングの位相が異なるため、各光学系の消費電力のピークが重ならない。そのため、第1および第2の光学系全体のピーク消費電力を低減することができ、赤外線ガス分析計全体としての電力設備の簡素化や電気的ノイズ低減を図ることができる。
According to claim 1, in the case having first and second optical system, since the phase of the drive timing of the infrared source is different in the first and second optical systems, the peak power consumption of each optical system is heavy Don't be. Therefore, the peak power consumption of the entire first and second optical systems can be reduced, and simplification of power equipment and reduction of electrical noise as the entire infrared gas analyzer can be achieved.

請求項によれば、第1と第2の光学系を有する場合に、各光学系において赤外線のオンオフ切り替え時の赤外線光源の駆動電圧をランプ状に変化させるため、赤外線光源のピーク消費電力を抑え、赤外線光源の素子の寿命を延ばすとともに、赤外線光源から生じる電気的ノイズを低減することができる。さらに、第1と第2の光学系における赤外線光源の駆動タイミングの位相が異なるため、各光学系の消費電力のピークが重ならない。そのため、第1および第2の光学系全体のピーク消費電力を低減することができ、赤外線ガス分析計全体としての電力設備の簡素化や電気的ノイズ低減を図ることができる。
According to claim 2 , in the case where the first and second optical systems are provided, the peak power consumption of the infrared light source is reduced in order to change the drive voltage of the infrared light source at the time of infrared on / off switching in each optical system in a lamp shape. It is possible to suppress, extend the life of the element of the infrared light source, and reduce electrical noise generated from the infrared light source. Furthermore, since the phases of the drive timings of the infrared light sources in the first and second optical systems are different, the power consumption peaks of the optical systems do not overlap. Therefore, the peak power consumption of the entire first and second optical systems can be reduced, and simplification of power equipment and reduction of electrical noise as the entire infrared gas analyzer can be achieved.

請求項によれば、第1と第2の赤外線光源を逆位相で駆動するため、消費電力がピークとなるタイミングが最も重なりにくくなり、光学系全体のピーク消費電力の低減にさらに効果的である。

According to the third aspect , since the first and second infrared light sources are driven in opposite phases, the timing at which the power consumption peaks reaches the least overlap, which is more effective in reducing the peak power consumption of the entire optical system. is there.

以下、図面を用いて本発明の赤外線ガス分析計を説明する。   Hereinafter, the infrared gas analyzer of the present invention will be described with reference to the drawings.

図1は、本発明の赤外線ガス分析計の一実施例を示す構成図である。本実施例の赤外線ガス分析計は光学系が2つある場合を示したものであり、第1の光学系(1)と第2の光学系(2)、測定制御部16,26は図7の従来例と同様である。   FIG. 1 is a block diagram showing an embodiment of an infrared gas analyzer of the present invention. The infrared gas analyzer of this embodiment shows a case where there are two optical systems. The first optical system (1) and the second optical system (2), and the measurement control units 16 and 26 are shown in FIG. This is the same as the conventional example.

3は光源駆動制御部であり、光源駆動位相制御部31、光源駆動波形制御部32,33から構成される。光源駆動位相制御部31は、第1の光学系(1)および第2の光学系(2)の赤外線光源の点滅タイミングの制御を行う。   Reference numeral 3 denotes a light source drive control unit, which includes a light source drive phase control unit 31 and light source drive waveform control units 32 and 33. The light source drive phase control unit 31 controls the blinking timing of the infrared light sources of the first optical system (1) and the second optical system (2).

光源駆動位相制御部31は、第1の光学系(1)と第2の光学系(2)を異なるタイミングで駆動する。すなわち、それぞれの光学系の赤外線光源の点滅が異なる位相となるように各赤外線光源の駆動タイミングを制御する。   The light source drive phase control unit 31 drives the first optical system (1) and the second optical system (2) at different timings. That is, the drive timing of each infrared light source is controlled so that the blinking of the infrared light source of each optical system has a different phase.

図2は第1および第2の光学系の消費電力変化を示す図であり、第1と第2の光学系の駆動タイミングを逆位相(180°)とした例である。(a)は第1の光学系の消費電力W1、(b)は第2の光学系の消費電力W2、(c)は第1および第2の光学系の消費電力の和を示している。
時刻t1〜t2、時刻t3〜t4の期間は第1の光学系(1)の赤外線光源をオンしている期間であり、時刻t2〜t3の期間は第2の光学系(2)の赤外線光源をオンしている期間である。
FIG. 2 is a diagram showing changes in power consumption of the first and second optical systems, and is an example in which the drive timings of the first and second optical systems are in reverse phase (180 °). (A) shows the power consumption W1 of the first optical system, (b) shows the power consumption W2 of the second optical system, and (c) shows the sum of the power consumption of the first and second optical systems.
The period from time t1 to t2 and time t3 to t4 is a period during which the infrared light source of the first optical system (1) is turned on, and the period from time t2 to t3 is the infrared light source of the second optical system (2). Is the period during which

消費電力W1は時刻t1、t3でピークとなり、消費電力W2は時刻t2、t4においてピークとなる。第1の光学系(1)と第2の光学系(2)は逆位相で駆動されるため、消費電力W1がピークとなるタイミングと、消費電力W2がピークとなるタイミングは重ならない。したがって、消費電力W1とW2のピーク同士が重なるのを回避でき、第1および第2の光学系全体のピーク消費電力を低減することができる。   The power consumption W1 peaks at times t1 and t3, and the power consumption W2 peaks at times t2 and t4. Since the first optical system (1) and the second optical system (2) are driven in opposite phases, the timing when the power consumption W1 peaks and the timing when the power consumption W2 peaks do not overlap. Therefore, it is possible to avoid the peaks of the power consumptions W1 and W2 from overlapping each other, and the peak power consumption of the entire first and second optical systems can be reduced.

図1に戻り、光源駆動波形制御部32は第1の光学系(1)の赤外線光源11,12に印加する駆動電圧の波形制御を行う。光源駆動位相制御部31で各光学系を駆動する位相をずらすだけでなく、駆動電圧の波形制御によってもピーク消費電力を低減する効果を得ることができる。   Returning to FIG. 1, the light source drive waveform controller 32 controls the waveform of the drive voltage applied to the infrared light sources 11 and 12 of the first optical system (1). In addition to shifting the phase at which each optical system is driven by the light source drive phase control unit 31, an effect of reducing peak power consumption can be obtained by controlling the waveform of the drive voltage.

図3は赤外線光源の駆動電圧、抵抗値および消費電力の関係を示す図である。(a)は赤外線光源11と12に印加する駆動電圧、(b)は赤外線光源11と12の抵抗値、(c)は赤外線光源11と12の消費電力を示している。横軸は時間であり、時刻t1〜t2、時刻t3〜t4の期間は赤外線光源11,12のオン期間である。   FIG. 3 is a diagram showing the relationship between the drive voltage, resistance value, and power consumption of the infrared light source. (A) is the drive voltage applied to the infrared light sources 11 and 12, (b) is the resistance value of the infrared light sources 11 and 12, and (c) is the power consumption of the infrared light sources 11 and 12. The horizontal axis is time, and the period from time t1 to t2 and time t3 to t4 is the ON period of the infrared light sources 11 and 12.

光源駆動波形制御部32では、図に示すように、赤外線光源11,12の駆動電圧の立ち上がり(時刻t1、t3)をランプ状に変化させる。駆動電圧の立ち上がりをランプ状とすると、矩形波の駆動電圧を印加した場合に比べて消費電力の立ち上がりが緩やかになる。これにより第1の光学系(1)のピーク消費電力を低減することができる。
同様に、光源駆動波形制御部33では第2の光学系(2)の赤外線光源21,22に印加する駆動電圧の波形制御を行い、第2の光学系(2)のピーク消費電力を低減する。
As shown in the drawing, the light source drive waveform control unit 32 changes the rise (time t1, t3) of the drive voltage of the infrared light sources 11 and 12 in a ramp shape. If the rising edge of the driving voltage is ramp-shaped, the rising edge of the power consumption becomes gradual as compared with the case where a rectangular wave driving voltage is applied. Thereby, the peak power consumption of the first optical system (1) can be reduced.
Similarly, the light source drive waveform controller 33 controls the waveform of the drive voltage applied to the infrared light sources 21 and 22 of the second optical system (2) to reduce the peak power consumption of the second optical system (2). .

図4は第1および第2の光学系の消費電力変化を示す図であり、第1と第2の光学系の駆動タイミングを逆位相(180°)とするとともに、各光学系の赤外線光源の駆動電圧の立ち上がりをランプ状に変化させた例である。(a)は第1の光学系の消費電力W1、(b)は第2の光学系の消費電力W2、(c)は第1および第2の光学系の消費電力の和を示している。   FIG. 4 is a diagram showing changes in power consumption of the first and second optical systems. The drive timings of the first and second optical systems are opposite in phase (180 °), and the infrared light source of each optical system is This is an example in which the rise of the drive voltage is changed in a ramp shape. (A) shows the power consumption W1 of the first optical system, (b) shows the power consumption W2 of the second optical system, and (c) shows the sum of the power consumption of the first and second optical systems.

時刻t1〜t2、時刻t3〜t4の期間は第1の光学系(1)の赤外線光源をオンしている期間であり、時刻t2〜t3の期間は第2の光学系(2)の赤外線光源をオンしている期間である。
第1の光学系(1)と第2の光学系(2)は逆位相で駆動されるため、消費電力W1がピークとなるタイミングと、消費電力W2がピークとなるタイミングは重ならない。さらに、各光学系の赤外線光源の駆動電圧の立ち上がりがランプ状となるため、矩形波の駆動電圧を印加した場合に比べてピーク消費電力が低減される。これにより、光学系全体としてのピーク消費電力を大幅に低減することができる。
The period from time t1 to t2 and time t3 to t4 is a period during which the infrared light source of the first optical system (1) is turned on, and the period from time t2 to t3 is the infrared light source of the second optical system (2). Is the period during which
Since the first optical system (1) and the second optical system (2) are driven in opposite phases, the timing when the power consumption W1 peaks and the timing when the power consumption W2 peaks do not overlap. Furthermore, since the rising of the driving voltage of the infrared light source of each optical system is in a ramp shape, the peak power consumption is reduced as compared with the case where a rectangular wave driving voltage is applied. Thereby, the peak power consumption of the entire optical system can be greatly reduced.

ピーク消費電力を低減することによって、赤外線光源の電源容量を抑え、保護回路等の電力設備が小規模で済み、赤外線ガス分析計のコストダウンにつながる。さらに、ピーク消費電力の低減によって赤外線光源の寿命を延ばすことができ、また、電流の急変により生じる電気的ノイズも低減することができる。   By reducing the peak power consumption, the power supply capacity of the infrared light source can be reduced, the power equipment such as a protection circuit can be made small, and the cost of the infrared gas analyzer can be reduced. Furthermore, the lifetime of the infrared light source can be extended by reducing the peak power consumption, and electrical noise caused by a sudden change in current can also be reduced.

また、本実施例では、光源駆動波形制御部32,33において、赤外線光源のオン時(駆動電圧の立ち上がり時)にのみ駆動電圧をランプ状に変化させたが、赤外線光源のオフ時(駆動電圧の立ち下り時)も同様に駆動電圧をランプ状に変化させてよい。赤外線光源のオフ時も駆動電圧をランプ状に変化させれば、オフ時の消費電力の急変が小さくなり、電気的ノイズの発生量を低減することができる。なお、赤外線光源に印加する駆動電圧の波形は図3(a)に示すランプ形状に限らず、これに類似する波形であってもよい。   In this embodiment, the light source drive waveform control units 32 and 33 change the drive voltage in a ramp shape only when the infrared light source is on (when the drive voltage rises), but when the infrared light source is off (drive voltage). Similarly, the drive voltage may be changed in a ramp shape at the time of the fall. If the drive voltage is changed in a lamp shape even when the infrared light source is turned off, the sudden change in power consumption at the time of turning off becomes small, and the amount of electrical noise generated can be reduced. The waveform of the drive voltage applied to the infrared light source is not limited to the lamp shape shown in FIG. 3A, and may be a waveform similar to this.

また、本実施例の赤外線ガス分析計は第1と第2の2つの光学系を有しているが、より多くの光学系を設ける場合には、光源駆動位相制御部において各光学系の数に応じてそれぞれの光学系の駆動タイミングが重ならないようにする。たとえば、光学系が3つ存在する場合には1/3ずつ、光学系が4つ存在する場合には1/4ずつ各光学系の位相をずらして駆動する。   Further, the infrared gas analyzer of the present embodiment has the first and second optical systems. However, when more optical systems are provided, the number of each optical system in the light source drive phase control unit Accordingly, the drive timings of the respective optical systems should not overlap. For example, when there are three optical systems, the phase of each optical system is shifted by one third, and when there are four optical systems, the phase of each optical system is shifted.

また、本実施例では光源駆動の位相制御と波形制御の両方を行ったが、いずれか一方のみでもピーク消費電力の低減を図ることができ、赤外線光源の寿命を延ばしたり電気的ノイズを低減することが可能である。   In this embodiment, both the phase control and the waveform control for driving the light source are performed. However, it is possible to reduce the peak power consumption by only one of them, thereby extending the life of the infrared light source and reducing the electrical noise. It is possible.

図1は本発明の赤外線ガス分析計の一実施例を示す構成図。FIG. 1 is a block diagram showing an embodiment of an infrared gas analyzer of the present invention. 図2は第1および第2の光学系の消費電力変化を示す図。FIG. 2 is a diagram showing a change in power consumption of the first and second optical systems. 図3は赤外線光源の駆動電圧、抵抗値および消費電力の関係を示す図。FIG. 3 is a diagram showing the relationship between the driving voltage, resistance value, and power consumption of the infrared light source. 図4は第1および第2の光学系の消費電力変化を示す図。FIG. 4 is a diagram showing a change in power consumption of the first and second optical systems. 図5は従来の赤外線ガス分析計の一例を示す構成図。FIG. 5 is a block diagram showing an example of a conventional infrared gas analyzer. 図6は赤外線光源の駆動電圧、抵抗値および消費電力の関係を示す図。FIG. 6 is a diagram showing the relationship between the drive voltage, resistance value, and power consumption of the infrared light source. 図7は光学系を2つ有する赤外線ガス分析計の一例を示す構成図。FIG. 7 is a configuration diagram showing an example of an infrared gas analyzer having two optical systems. 図8は光学系を2つ有する赤外線ガス分析計の消費電力変化の一例を示す図。FIG. 8 is a diagram illustrating an example of a change in power consumption of an infrared gas analyzer having two optical systems.

符号の説明Explanation of symbols

1 第1の光学系
2 第2の光学系
11,21 第1の赤外線光源
12,22 第2の赤外線光源
13,23 試料セル
14,24 検出器
141,241 試料側室
142,242 バランス側室
143,243 フローセンサ
16,26 測定制御部
3 光源駆動制御部
31 光源駆動位相制御部
32,33 光源駆動波形制御部
DESCRIPTION OF SYMBOLS 1 1st optical system 2 2nd optical system 11,21 1st infrared light source 12,22 2nd infrared light source 13,23 Sample cell 14,24 Detector 141,241 Sample side chamber 142,242 Balance side chamber 143 243 Flow sensor 16, 26 Measurement control unit 3 Light source drive control unit 31 Light source drive phase control unit 32, 33 Light source drive waveform control unit

Claims (3)

試料ガスが流通する試料セルを有し、この試料セルを通過した赤外光における吸収量の変化を利用して、試料ガス中の測定対象成分濃度を検出する赤外線ガス分析計において、
駆動電圧の印加により赤外光を点消灯する赤外線光源と、この赤外線光源から出射され前記試料セルを通過した赤外光と前記試料セルを通過しない赤外光との差を検出する検出器とを備えた第1の光学系と、
この第1の光学系と等しい応答特性を有する第2の光学系と、
前記第1および第2の光学系における赤外線光源を、光学系ごとに異なる位相で駆動する光源駆動位相制御部と、
を具備したことを特徴とする赤外線ガス分析計。
In an infrared gas analyzer that has a sample cell in which a sample gas circulates and detects the concentration of a component to be measured in the sample gas by using a change in the amount of absorption in infrared light that has passed through the sample cell.
An infrared light source that turns off infrared light by applying a drive voltage; and a detector that detects a difference between infrared light emitted from the infrared light source and passing through the sample cell and infrared light not passing through the sample cell; A first optical system comprising:
A second optical system having a response characteristic equal to that of the first optical system;
A light source driving phase control unit for driving the infrared light sources in the first and second optical systems with different phases for each optical system;
An infrared gas analyzer characterized by comprising:
試料ガスが流通する試料セルを有し、この試料セルを通過した赤外光における吸収量の変化を利用して、試料ガス中の測定対象成分濃度を検出する赤外線ガス分析計において、
駆動電圧の印加により赤外光を点消灯する赤外線光源と、この赤外線光源から出射され前記試料セルを通過した赤外光と前記試料セルを通過しない赤外光との差を検出する検出器とを備えた第1の光学系と、
この第1の光学系と等しい応答特性を有する第2の光学系と、
前記第1および第2の光学系における赤外線光源を、光学系ごとに異なる位相で駆動する光源駆動位相制御部と、
前記第1および第2の光学系における赤外線光源に前記駆動電圧を出力する光源駆動波形制御部とを備え、
前記光源駆動波形制御部は、前記赤外線の点灯消灯の切り替えの際に駆動電圧を一定の傾斜をもって変化させることを特徴とする赤外線ガス分析計。
In an infrared gas analyzer that has a sample cell in which a sample gas circulates and detects the concentration of a component to be measured in the sample gas by using a change in the amount of absorption in infrared light that has passed through the sample cell.
An infrared light source that turns off infrared light by applying a drive voltage; and a detector that detects a difference between infrared light emitted from the infrared light source and passing through the sample cell and infrared light not passing through the sample cell; A first optical system comprising:
A second optical system having a response characteristic equal to that of the first optical system;
A light source driving phase control unit for driving the infrared light sources in the first and second optical systems with different phases for each optical system;
A light source drive waveform controller that outputs the drive voltage to an infrared light source in the first and second optical systems;
The light source drive waveform control unit changes the drive voltage with a certain inclination when switching the infrared light on and off.
前記光源駆動制御部は、前記第1および第2の光学系を逆位相で駆動することを特徴とする請求項またはに記載の赤外線ガス分析計。 The light source drive control unit, the infrared gas analyzer according to claim 1 or 2, characterized in that for driving the first and second optical systems in antiphase.
JP2006328886A 2006-12-06 2006-12-06 Infrared gas analyzer Expired - Fee Related JP4930020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328886A JP4930020B2 (en) 2006-12-06 2006-12-06 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328886A JP4930020B2 (en) 2006-12-06 2006-12-06 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JP2008145106A JP2008145106A (en) 2008-06-26
JP4930020B2 true JP4930020B2 (en) 2012-05-09

Family

ID=39605474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328886A Expired - Fee Related JP4930020B2 (en) 2006-12-06 2006-12-06 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP4930020B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588757B1 (en) * 2018-06-21 2020-08-19 E+E Elektronik Ges.M.B.H. Electronic assembly, optical gas sensor comprising such an electronic assembly and method for controlling the power of a radiation source by means of an electronic assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339698A (en) * 1997-06-09 1998-12-22 Itachibori Seisakusho Kk Infrared-type gas detector
JP4411599B2 (en) * 2004-10-26 2010-02-10 横河電機株式会社 Infrared gas analyzer and infrared gas analysis method

Also Published As

Publication number Publication date
JP2008145106A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5417869B2 (en) Power supply
TW200715699A (en) Motor drive device and electric equipment using the same
US8461793B2 (en) Motor load control apparatus
JP2006042598A5 (en)
JP2007080819A (en) Display device and its controlling method
JP4715340B2 (en) Thermoelectric generator
JP2007306696A (en) Inverter apparatus
JP2008130907A (en) Driving device of light source lighting
JP4784491B2 (en) Motor drive device
JP5538078B2 (en) LED power supply
JP4930020B2 (en) Infrared gas analyzer
JP2014078421A (en) Light emitting diode activation device an illuminating device using the light emitting diode activation device
JP2007236095A (en) Power supply for led and light irradiation apparatus
JP2008047494A (en) Dimming control method, dimming control device and lighting system
JP6049357B2 (en) LED driving device and lighting apparatus
JP2006034047A (en) Power supply unit
JP6408646B2 (en) Lighting device
JP5545082B2 (en) Lamp drive device
JP2009009818A (en) Led lighting control device, and led lighting device
JP5107544B2 (en) Fluorescent display tube drive circuit
JP4793122B2 (en) Discharge lamp lighting device and image display device
JP5829490B2 (en) LED driving method and LED driving circuit
JP2011188549A (en) Power unit, and method of controlling the same
WO2008050282A1 (en) Method and device for measuring a flux of a selected individual lightsource among a plurality of lightsources
JP2009005492A (en) Semiconductor device and dc/dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees