JP4928689B2 - Lipid vesicle and method for producing lipid vesicle - Google Patents

Lipid vesicle and method for producing lipid vesicle Download PDF

Info

Publication number
JP4928689B2
JP4928689B2 JP2001266659A JP2001266659A JP4928689B2 JP 4928689 B2 JP4928689 B2 JP 4928689B2 JP 2001266659 A JP2001266659 A JP 2001266659A JP 2001266659 A JP2001266659 A JP 2001266659A JP 4928689 B2 JP4928689 B2 JP 4928689B2
Authority
JP
Japan
Prior art keywords
lipid
vesicles
lipid vesicle
vesicle
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001266659A
Other languages
Japanese (ja)
Other versions
JP2003073258A (en
Inventor
敬一 加藤
則夫 小稲
卓也 菅原
Original Assignee
敬一 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敬一 加藤 filed Critical 敬一 加藤
Priority to JP2001266659A priority Critical patent/JP4928689B2/en
Priority to PCT/JP2002/006312 priority patent/WO2003000291A1/en
Publication of JP2003073258A publication Critical patent/JP2003073258A/en
Application granted granted Critical
Publication of JP4928689B2 publication Critical patent/JP4928689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、癌治療や遺伝子治療のためのDDS(脂質分子膜からなる閉鎖小胞体)における、薬物キャリアとして有用な脂質ベシクルおよび脂質ベシクルの製法に関するものである。
【0002】
【従来の技術】
DDSに使用される非ウィルス性キャリアとしては、脂質膜成分の50%以上(現実的にはほぼ全て)が天然リン脂質よりなるリポソームであり、これらは逆相蒸発法あるいは超音波照射法などによって調製されている。しかしながらこれらのリポソームは、▲1▼リポソーム内部への物質包括率が小さい、▲2▼リポソームの内水相容積が小さいため、遺伝子などのマクロ分子を包括させ難い、▲3▼リポソームの安定性が悪い、▲4▼高価である、などの問題があった。
【0003】
これに対し、ソルビタンエステルで人工脂質膜を構成したベシクルの製法も提案されており、安定性にすぐれしかも安価なキャリアーとして期待されている。ところで癌治療等で化学療法を行う場合に、薬剤が標的となる患部の細胞以外の正常細胞をも傷つけてしまうという副作用の問題がある。たとえば、抗癌剤を使用する場合には副作用が伴う場合があり、副作用を軽減するよう抗癌剤の投与量を抑えれば癌細胞に十分に作用することはできない。さらに、体内にはマクロファージのような食細胞があり、キャリアーとしてリポソームやベシクルを投与しても患部に達して作用する前に食細胞に貪食(捕捉・分解)されてしまうという問題がある。
【0004】
【発明が解決しようとする課題】
本発明の目的とするところは、食細胞に捕捉されにくく、効果的な化学治療ができるDDSにおけるキャリアーとして有効な脂質ベシクルおよびその製法を提供することにある。さらに、キャリアーとしての脂質ベシクルに目標である細胞に対する標的指向性(ミサイル機能)を付与することも目的とする。
【0005】
【課題を解決するための手段】
本発明における脂質ベシクルの製法は、▲1▼ベシクルを二段階乳化法によって調製する際に、一次乳化の攪拌を超音波照射攪拌によって行う、▲2▼脂質ベシクル成分を予め溶解させたヘキサンに水を加え、処理液を冷却しながら超音波照射攪拌する、▲3▼ベシクルの主成分として人工脂質のソルビタンエステルを使用する、という一次乳化工程と、▲4▼二次乳化剤としてのソルビタンエステル・エチレンオキシド付加物にPEG脂質を加えて二次乳化を行う工程とを含むものである。この製法により、粒径が1μm未満(多くの場合100nm程度又はそれ以下)のいわゆるナノサイズであり外部に極めて親水性の高いPEG脂質を有する脂質ベシクルが得られるが、このPEG脂質の親水性により体内の食細胞による貪食を回避することができる(ステルス機能)。そして、PEG脂質として脂質誘導体を持つPEG脂質を使用することにより高いステルス機能が得られる。また、一次乳化工程において処理液にさらにIAOEを混入するとともに、二次乳化工程の後に、可溶性プロテインAを混入する工程と、抗IgM抗体を添加する工程を含むようにすることにより、脂質ベシクルの表面に抗IgM抗体を結合させ、患部の標的細胞への指向性をもたせることができる。
【0006】
また、本発明の脂質ベシクルは、ソルビタンエステルで構成される膜と、当該膜に付着した脂質誘導体を持つPEG脂質と、プロテインAと結合した抗体と、前記プロテインAを結合させる脂質アンカーとしてイソチオシアン酸オクタデシルエステル(IAOE)を有することを特徴とするものであり、PEG脂質の親水性によるステルス機能と抗体による標的細胞への指向性を有するものである。
【0007】
【発明の実施の形態】
本発明の二段階乳化法によるナノサイズ脂質ベシクルの基本的な製法は、以下のとおりである。
ベシクルの主成分となるソルビタンオレイン酸モノエステル(商品名「スパン80」和光純薬製)と、予めヘキサン中に溶解させたレシチンとコレステロールを、ホモミキサーによって攪拌しながら少しずつ水を滴下し、超音波ホモジナイザーを用いて超音波照射を繰り返し(一次乳化工程)前記W/O型エマルションを得る。このW/O型エマルションをフラスコに入れ減圧下でヘキサンを除去し、このようにして調製されたW/L型エマルション中に、ソルビタンオレイン酸モノエステルのエチレンオキシド付加物(商品名「ツィーン80」和光純薬製)と脂質誘導体を持つPEG脂質(商品名「SUNBRIGHT DSPE−20HCN」日本油脂株式会社製)の水溶液を攪拌混合したのち(2次乳化工程)、遠心分離すれば良い。粒径が1μm程度のマイクロサイズ脂質ベシクルを調製する場合は、一次乳化工程において超音波照射の代わりにホモミキサーによって攪拌すればよい。
【0008】
【実施例1】
図1は本実施例の一次乳化の工程を示す断面図である。試験管、ビーカ等の内容器1にベシクルの主成分となるソルビタンオレイン酸モノエステル(商品名「スパン80」和光純薬製)およびレシチンとコレステロールを入れ、n−ヘキサン(4ml)に溶解させる。この溶液をホモミキサー(15,000rpm)で30秒間攪拌する。ベシクル内の包括物質を所定の濃度に調製した内水相となる水溶液3(0.3ml)を少しずつ滴下しながら1分間ホモミキサーによって攪拌しながら、その後、超音波ホモジナイザー4を用いて超音波照射を行う。この超音波照射は、15秒行って15秒休むというサイクルを3回繰り返した。内容器1の外側に外容器5を設け、内容器1と外容器5の間に氷水6を入れて処理液2を冷却することにより、超音波照射による処理液2の温度上昇を抑え、処理液2中のn−ヘキサンが発火することを防止している。このようにして得られたW/O型エマルションをナスフラスコに入れ、ロータリーエバポレーターで減圧させて28℃でn−ヘキサンを除去する。そして、ナスフラスコの側面についた物質を割り箸等で作ったヘラで削り落とす。このようにして得たW/L型エマルション中に、ソルビタンオレイン酸モノエステルのエチレンオキシド付加物水溶液(商品名「ツィーン80」和光純薬製)とPEG脂質(商品名「SUNBRIGHT DSPE−20HCN」日本油脂株式会社製)を入れ、ホモミキサー(3000rpm)を用いて攪拌したのち、遠心分離を行ってナノサイズ脂質ベシクルを調製した。
以上、ナノサイズベシクルの調製を例に説明したが、一次乳化の際に超音波照射を行わずホモミキサーのみで撹拌することにより、上記製法はマイクロサイズベシクルの調製にも適用することができる。
【0009】
上述の通り、ベシクルの主成分であるソルビタンオレイン酸モノエステルとして市販の製品である商品名「スパン80」を使用した。ソルビタンオレイン酸モノエステルは1本の脂肪酸の鎖を持つ構造であるが、市販されている製品には2本又はそれ以上の鎖を持つ不純物が含まれている。そして、この不純物を含む製品を用いる方が純粋なソルビタンオレイン酸モノエステルを用いるよりも良好にベシクルを生成できることがわかった。
【0010】
また、本例の製法において加えるPEG脂質のスパン80に対する最適な比率も明らかになった。この結果を図2および図3に示す。図2はマイクロサイズベシクルの場合であり、図3はナノサイズベシクルの場合である。横軸にはスパン80に対するPEG脂質のモル%である。一方、縦軸はベシクルの生成率であり、ベシクルの一次乳化調製時に滴下した水溶液に含ませておいた蛍光物質カルボキシフルオレセイン(CF)の濃度と最終的に生成したベシクルの内層水超に中に取り込まれたCFの濃度の比率で示した数値である。これより、スパン80に対してPEG脂質が2mol%程度のときが生成率が高く、最適値であることがわかる。
【0011】
また本例の製法によって生成したPEG脂質ベシクルとPEGを含まないベシクルを生理的食塩水中に30日おいて安定性を比較した。マイクロサイズベシクル、ナノサイズベシクルともにPEG脂質ベシクルの方が安定性が高いことが確認された。
【0012】
以上、表面にPEG脂質を持つ親水性の高い脂質ベシクルの製法について述べた。本例の製法によって生成したPEG脂質ベシクルを食細胞の一種であるマクロファージのU937細胞と接触させたところ、PEG脂質を含まないベシクルに比べてU937細胞に貪食されにくいことが観察され、食細胞からの回避機能(ステルス機能)を備えることが確認された。マイクロサイズベシクル、ナノサイズベシクルともにステルス機能が得られたが、マイクロサイズベシクルにおいて特にPEG脂質よるステルス機能向上の効果が高い。また、接触させたU937細胞の死滅はPEG脂質ベシクルの場合の方がPEG脂質を含まないベシクルより少なく、毒性が低いことも観察された。
【0013】
【実施例2】
本実施例において、ステルス機能を有するPEG脂質ベシクルに抗体を固定化して標的指向性を付与する製法について説明する。本例の製法も実施例1の製法を基本とするが、さらに抗体を固定するために、プロテインAを固定化する脂質アンカーであるIAOEと抗体を姿勢制御するためのプロテインAおよび抗体を添加する作業が加わる。
【0014】
ベシクル調製に際して、脂質アンカーであるイソチオシアン酸オクタデシルエステル(IAOE)が必要となるが、その合成方法について説明する。なお、IAOEの化学式はCH(CH17NCSである。▲1▼1−アミノオクダデカン(1-aminooctadecane)4.3gを250mlのジエチルエーテル(Et2O)に溶解する(これをA液とする)。▲2▼1,3−ジシクロヘキシルカルボジイミド(DCC)3.4gを200mlのEt2Oに溶かし、氷と塩で−10℃に冷却して二硫化炭素(CS)を8ml加える(これをB液とする)。▲3▼A液をB液にゆっくり加えていく。▲4▼常温で5時間静置し、析出したチオ尿素を濾去する。▲5▼濾液を温めながらエバポレーターにかけてEt2Oを取り除く。▲6▼エバポレーターによる減圧の途中で析出するチオ尿素は、さらに濾過して取り除く。▲7▼Et2Oがなくなるとオイル状のIAOEが得られ、放置すると結晶化する。▲8▼エタノールで再結晶し精製する。なお、反応式は以下の通りである。
CS+DCC+CH(CH17NH→CH(CH17NCS+(C11NH)CS
【0015】
次に、抗体を固定したベシクルの調製について説明する。なお、ここではナノサイズベシクルの調製を例に説明するが、一次乳化の際に超音波照射を行わずホモミキサーのみで撹拌することにより、マイクロサイズベシクルの調製にも適用できる。▲1▼ベシクルの主成分となるスパン80(43.7mg)に脂質アンカーであるIAOE(7.5mg:全脂質量に対し10w%)を混入し、レシチン(0.865mg)、コレステロール(1.73mg)を添加して、試験管を用いてn−ヘキサン(2ml)に溶解し、これをホモミキサーで30秒撹拌した後、撹拌しながら包括物質を所定の濃度に調製した水溶液を0.3ml/minの滴下速度で1分間滴下する。▲2▼試験管を氷水で冷却しながら、超音波照射を15秒照射・15秒停止のサイクルで3回行う。▲3▼このようにして得られたW/O型エマルションをナスフラスコに入れ、ロータリーエバポレーターで減圧させて28℃でn−ヘキサンを除去する。そして、ナスフラスコの側面についた物質を割り箸等で作ったヘラで削り落とす。▲4▼得られたW/L型エマルション中に、ツィーン80(21mg)とPEG脂質「SUNBRIGHT DSPE−20HCN」(5.75mg、すなわちツィーン80とIAOEの合計量に対し2mol%)を入れ、ホモミキサーを用いて攪拌する。▲5▼得られたベシクル溶液に可溶性プロテインA(50ml)を混入し、冷蔵庫に入れて1日保管する。▲6▼翌日、得られた液をマグネチックスターラーで撹拌する。▲7▼ベシクル溶液を超遠心分離して上澄み液を取り除き、残った液の最も濁度の濃い部分をゲル濾過する。▲8▼この溶液に抗ヒトIgM抗体を調製した溶液を添加し、ゆっくり撹拌する。▲9▼再び超遠心分離とゲル濾過を行い抗体を固定化したPEG脂質ベシクルを得る。
【0016】
本実施例の製法により調製されたベシクルにおいて、抗体は抗原結合点と反対側の部位(Fc部)でプロテインAと結合し、このプロテインAは脂質アンカーであるIAOEによってPEG脂質ベシクル表面に強固に固定化されている。従来の抗体固定化法ではPEG脂質でコーティングされた脂質ベシクルの表面に抗体を姿勢制御して固定化することは困難であるが、本例の製法に拠れば抗体の抗原と結合するFabフラグメントを外向きにして姿勢制御した形で固定化できる。また、PEG脂質とプロテインAはそれだけでも両者の親水性親和力によって結合性がよく、プロテインAによる姿勢制御をPEG脂質ベシクルに適用することは極めて有効である。
【0017】
本実施例の製法を用いてマイクロサイズベシクルおよびナノサイズベシクルを調製し、癌細胞との接触を行った。使用した細胞は肺癌患者由来のリンパ腫とリンパ球とをかけ合わせたハイブリドーマであるHB4C5細胞である。HB4C5細胞は抗ヒトIgM抗体に対する抗原であるIgM抗体をその細胞表面に産生する。脂質ベシクルはその内水中にDNA−PIが含まれるよう調製されており、接触後にDNA−PIの作用によって発生する蛍光を観測することにより、脂質ベシクル内の包括物質DNA−PIがHB4C5細胞中に取り込まれたか否かを判定できるようにしてある。その結果、本製法により抗体を固定化したベシクルを接触させた場合にはPIの蛍光がHB4C5細胞中に見らた。一方、比較として抗体を持たないベシクルを接触させた場合には、PIの蛍光が見られなかった。これらのことより、本製法によるベシクルは標的指向性を有することが確認できた。また、マイクロサイズベシクルでもナノサイズベシクルでも同様に標的指向性が確認され、ステルス機能と標的指向性の両方を同時に備える脂質ベシクルの実現に成功した。
【0018】
【発明の効果】
本発明の脂質ベシクルの製法は、食細胞による補足を回避できるステルス機能を実現できるという効果がある。生成されたPEG脂質ベシクルは安定性にすぐれ、毒性が低い。さらに、本発明の脂質ベシクルの製法によりPEG脂質ベシクルに抗体を姿勢制御して固定し、ステルス機能と標的指向性の両方を同時に備える脂質ベシクルの実現ができる。本発明の脂質ベシクルに抗癌剤や遺伝子を内包させてDDSのキャリアーとして使用することにより、副作用が少なく効果の高い治療に資することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施例における一次乳化を示す断面図である。
【図2】マイクロサイズベシクルの調製における全脂質に占めるPEG脂質の割合とベシクルの生成率の関係を示すグラフである。
【図3】ナノサイズベシクルの調製における全脂質に占めるPEG脂質の割合とベシクルの生成率の関係を示すグラフである。
【符号の説明】
1.内容器
2.処理液
3.水(又は水溶液)
4.超音波ホモジナイザー
5.外容器
6.氷水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lipid vesicle useful as a drug carrier and a method for producing a lipid vesicle in DDS (closed endoplasmic reticulum comprising lipid molecular membranes) for cancer therapy and gene therapy.
[0002]
[Prior art]
Non-viral carriers used in DDS are liposomes in which more than 50% (practically all) of lipid membrane components are made of natural phospholipids, and these can be obtained by reverse-phase evaporation or ultrasonic irradiation. Has been prepared. However, these liposomes are: (1) the inclusion rate of the substance inside the liposome is small, (2) the volume of the internal aqueous phase of the liposome is small, and it is difficult to entrap macromolecules such as genes, and (3) the stability of the liposome There were problems such as bad and (4) expensive.
[0003]
On the other hand, a method for producing a vesicle comprising an artificial lipid membrane made of sorbitan ester has also been proposed, and is expected as a carrier having excellent stability and low cost. By the way, when performing chemotherapy for cancer treatment or the like, there is a problem of a side effect that normal cells other than the cells in the affected area targeted by the drug are also damaged. For example, when an anticancer agent is used, there may be side effects, and if the dose of the anticancer agent is suppressed so as to reduce the side effects, it cannot sufficiently act on cancer cells. Furthermore, there are phagocytic cells such as macrophages in the body, and even if liposomes or vesicles are administered as carriers, there is a problem that they are phagocytosed (captured / decomposed) by phagocytes before reaching the affected area and acting.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a lipid vesicle effective as a carrier in DDS, which is difficult to be captured by phagocytic cells and can be effectively treated, and a method for producing the same. Furthermore, it aims at providing the target directivity (missile function) with respect to the cell which is a target to the lipid vesicle as a carrier.
[0005]
[Means for Solving the Problems]
The method for producing lipid vesicles in the present invention is as follows: (1) when preparing vesicles by a two-stage emulsification method, stirring of primary emulsification is carried out by ultrasonic irradiation stirring; (2) water in hexane in which lipid vesicle components have been previously dissolved; , Irradiating ultrasonically while cooling the treatment liquid, (3) primary emulsification step of using artificial lipid sorbitan ester as the main component of vesicle, and (4) sorbitan ester / ethylene oxide as secondary emulsifier. And a step of performing secondary emulsification by adding PEG lipid to the adduct. By this production method, a lipid vesicle having a PEG lipid having a particle size of less than 1 μm (often about 100 nm or less) and having a very hydrophilic PEG lipid on the outside is obtained. It is possible to avoid phagocytosis by phagocytic cells in the body (stealth function). A high stealth function can be obtained by using a PEG lipid having a lipid derivative as the PEG lipid. In addition, IAOE is further mixed in the treatment liquid in the primary emulsification step, and after the secondary emulsification step, a step of mixing soluble protein A and a step of adding an anti-IgM antibody are included, thereby An anti-IgM antibody can be bound to the surface to give directionality to the target cell in the affected area.
[0006]
The lipid vesicle according to the present invention includes a membrane composed of sorbitan ester, a PEG lipid having a lipid derivative attached to the membrane, an antibody bound to protein A, and isothiocyanic acid as a lipid anchor for binding the protein A. It has octadecyl ester (IAOE), and has stealth function due to hydrophilicity of PEG lipid and directivity to target cells by antibody.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The basic method for producing nanosized lipid vesicles by the two-stage emulsification method of the present invention is as follows.
Sorbitan oleic acid monoester (trade name “Span 80” manufactured by Wako Pure Chemical Industries, Ltd.), which is the main component of vesicles, and lecithin and cholesterol previously dissolved in hexane are added dropwise little by little while stirring with a homomixer. Ultrasonic irradiation is repeated using an ultrasonic homogenizer (primary emulsification step) to obtain the W / O type emulsion. The W / O type emulsion was placed in a flask, hexane was removed under reduced pressure, and the sorbitan oleic acid monoester ethylene oxide adduct (trade name “Tween 80”) was added to the W / L type emulsion thus prepared. An aqueous solution of PEG lipid (trade name “SUNBRIGHT DSPE-20HCN” manufactured by Nippon Oil & Fats Co., Ltd.) having a lipid derivative and a lipid derivative is stirred and mixed (secondary emulsification step) and then centrifuged. When preparing a micro size lipid vesicle having a particle size of about 1 μm, it may be stirred by a homomixer instead of ultrasonic irradiation in the primary emulsification step.
[0008]
[Example 1]
FIG. 1 is a cross-sectional view showing the primary emulsification step of this example. A sorbitan oleic acid monoester (trade name “Span 80” manufactured by Wako Pure Chemical Industries, Ltd.), which is the main component of the vesicle, and lecithin and cholesterol are placed in an inner container 1 such as a test tube or a beaker and dissolved in n-hexane (4 ml). This solution is stirred for 30 seconds with a homomixer (15,000 rpm). The aqueous solution 3 (0.3 ml), which is the inner aqueous phase prepared by adjusting the inclusion substance in the vesicle to a predetermined concentration, is added dropwise little by little while stirring with a homomixer for 1 minute, and then ultrasonication is performed using the ultrasonic homogenizer 4. Irradiate. This ultrasonic irradiation was repeated three times for 15 seconds and resting for 15 seconds. An outer container 5 is provided outside the inner container 1, ice water 6 is placed between the inner container 1 and the outer container 5, and the processing liquid 2 is cooled, thereby suppressing an increase in temperature of the processing liquid 2 due to ultrasonic irradiation. The n-hexane in the liquid 2 is prevented from igniting. The W / O type emulsion thus obtained is put into an eggplant flask and reduced in pressure with a rotary evaporator to remove n-hexane at 28 ° C. Then, scrape off the material on the side of the eggplant flask with a spatula made of chopsticks. In the W / L emulsion thus obtained, an aqueous solution of an ethylene oxide adduct of sorbitan oleic acid monoester (trade name “Tween 80” manufactured by Wako Pure Chemical Industries, Ltd.) and PEG lipid (trade name “SUNBRIGHT DSPE-20HCN”, Nippon Oil & Fats. Co., Ltd.) was added and stirred using a homomixer (3000 rpm), followed by centrifugation to prepare nano-sized lipid vesicles.
As described above, the preparation of nano-sized vesicles has been described as an example. However, the above-described production method can be applied to the preparation of micro-sized vesicles by stirring only with a homomixer without performing ultrasonic irradiation during primary emulsification.
[0009]
As described above, the trade name “Span 80”, which is a commercially available product, was used as the sorbitan oleic acid monoester that is the main component of the vesicle. Sorbitan oleic acid monoester has a structure with one fatty acid chain, but commercially available products contain impurities with two or more chains. It was also found that the use of a product containing this impurity can produce vesicles better than the use of pure sorbitan oleic acid monoester.
[0010]
Further, the optimum ratio of PEG lipid added to the span 80 in the production method of this example was also clarified. The results are shown in FIGS. FIG. 2 shows a case of a micro size vesicle, and FIG. 3 shows a case of a nano size vesicle. The horizontal axis represents the mol% of PEG lipid relative to span 80. On the other hand, the vertical axis represents the generation rate of vesicles, and the concentration of the fluorescent substance carboxyfluorescein (CF) contained in the aqueous solution dropped during the primary emulsification preparation of the vesicles and the inner water of the finally generated vesicles exceeded It is a numerical value represented by the ratio of the concentration of the incorporated CF. From this, it can be seen that when the PEG lipid is about 2 mol% with respect to the span 80, the production rate is high and is an optimum value.
[0011]
In addition, the stability of PEG lipid vesicles produced by the production method of this example and vesicles not containing PEG were compared in 30 days in physiological saline. It was confirmed that PEG lipid vesicles are more stable for both micro-sized and nano-sized vesicles.
[0012]
The method for producing a highly hydrophilic lipid vesicle having PEG lipid on the surface has been described above. When PEG lipid vesicles produced by the production method of this example were brought into contact with U937 cells of macrophages which are a kind of phagocytic cells, it was observed that they were less phagocytosed by U937 cells than vesicles not containing PEG lipids. It was confirmed that it has an avoidance function (stealth function). The stealth function was obtained for both the micro-size vesicle and the nano-size vesicle, but the effect of improving the stealth function by the PEG lipid is particularly high in the micro-size vesicle. It was also observed that the contacted U937 cells killed less with PEG lipid vesicles than vesicles without PEG lipids.
[0013]
[Example 2]
In this example, a method for immobilizing an antibody on a PEG lipid vesicle having a stealth function and imparting target directivity will be described. The production method of this example is also based on the production method of Example 1, but in order to further immobilize the antibody, IAOE, which is a lipid anchor for immobilizing protein A, and protein A and antibody for posture control of the antibody are added. Work is added.
[0014]
In preparing vesicles, isothiocyanic acid octadecyl ester (IAOE), which is a lipid anchor, is required. The synthesis method will be described. The chemical formula of IAOE is CH 3 (CH 2 ) 17 NCS. (1) Dissolve 4.3 g of 1-aminooctadecane in 250 ml of diethyl ether (Et 2 O) (this is referred to as “solution A”). (2) 3.4 g of 1,3-dicyclohexylcarbodiimide (DCC) is dissolved in 200 ml of Et 2 O, cooled to −10 ° C. with ice and salt, and 8 ml of carbon disulfide (CS 2 ) is added (this is liquid B) And). (3) Slowly add solution A to solution B. (4) Allow to stand at room temperature for 5 hours, and filter the precipitated thiourea. (5) Remove Et 2 O by evaporating while warming the filtrate. (6) Thiourea precipitated during the pressure reduction by the evaporator is further filtered and removed. (7) Oil-like IAOE is obtained when Et 2 O is eliminated, and crystallizes when left to stand. (8) Recrystallize with ethanol and purify. The reaction formula is as follows.
CS 2 + DCC + CH 3 (CH 2 ) 17 NH 2 → CH 3 (CH 2 ) 17 NCS + (C 6 H 11 NH) 2 CS
[0015]
Next, preparation of vesicles with immobilized antibodies will be described. Here, the preparation of nano-sized vesicles will be described as an example, but it can also be applied to the preparation of micro-sized vesicles by stirring only with a homomixer without performing ultrasonic irradiation during primary emulsification. (1) Span 80 (43.7 mg), which is the main component of the vesicle, is mixed with IAOE as a lipid anchor (7.5 mg: 10 w% with respect to the total amount of lipid), lecithin (0.865 mg), cholesterol (1. 73 mg) and dissolved in n-hexane (2 ml) using a test tube. After stirring for 30 seconds with a homomixer, 0.3 ml of an aqueous solution prepared by adjusting the inclusion substance to a predetermined concentration while stirring. Drop for 1 minute at a drop rate of / min. (2) While cooling the test tube with ice water, ultrasonic irradiation is performed three times in a cycle of irradiation for 15 seconds and stopping for 15 seconds. (3) The W / O type emulsion thus obtained is put into an eggplant flask and reduced in pressure with a rotary evaporator to remove n-hexane at 28 ° C. Then, scrape off the material on the side of the eggplant flask with a spatula made of chopsticks. (4) Tween 80 (21 mg) and PEG lipid “SUNBRIGHT DSPE-20HCN” (5.75 mg, that is, 2 mol% with respect to the total amount of Tween 80 and IAOE) are put into the obtained W / L emulsion. Stir using a mixer. {Circle around (5)} Soluble protein A (50 ml) is mixed in the obtained vesicle solution, and stored in a refrigerator for one day. {Circle around (6)} On the next day, the obtained liquid is stirred with a magnetic stirrer. (7) Ultracentrifugation of the vesicle solution to remove the supernatant, and gel filtration is performed on the most turbid portion of the remaining liquid. (8) Add the solution prepared with anti-human IgM antibody to this solution and stir slowly. (9) Ultracentrifugation and gel filtration are performed again to obtain a PEG lipid vesicle on which the antibody is immobilized.
[0016]
In the vesicle prepared by the production method of this example, the antibody binds to protein A at the site opposite to the antigen binding point (Fc part), and this protein A is firmly attached to the surface of the PEG lipid vesicle by IAOE as a lipid anchor. It is fixed. In the conventional antibody immobilization method, it is difficult to immobilize an antibody on the surface of a lipid vesicle coated with PEG lipid by controlling the posture. However, according to the production method of this example, a Fab fragment that binds to the antigen of the antibody is used. It can be fixed in an outward-oriented posture. In addition, PEG lipid and protein A alone have good binding properties due to their hydrophilic affinity, and it is extremely effective to apply posture control by protein A to PEG lipid vesicles.
[0017]
Microsize vesicles and nanosize vesicles were prepared using the production method of this example and contacted with cancer cells. The cells used were HB4C5 cells, which are hybridomas obtained by combining lymphoma derived from lung cancer patients and lymphocytes. HB4C5 cells produce IgM antibodies, which are antigens against anti-human IgM antibodies, on the cell surface. Lipid vesicles are prepared so that DNA-PI is contained in the inner water, and by observing fluorescence generated by the action of DNA-PI after contact, the inclusion substance DNA-PI in lipid vesicles is incorporated into HB4C5 cells. It can be determined whether or not it has been taken in. As a result, PI fluorescence was observed in HB4C5 cells when vesicles on which an antibody was immobilized by this production method were contacted. On the other hand, when a vesicle having no antibody was contacted as a comparison, no PI fluorescence was observed. From these facts, it was confirmed that the vesicles produced by this production method had target directivity. In addition, target directivity was confirmed in both micro-sized and nano-sized vesicles, and lipid vesicles having both stealth function and target directivity were successfully realized.
[0018]
【Effect of the invention】
The method for producing a lipid vesicle of the present invention has an effect that a stealth function capable of avoiding supplementation by phagocytic cells can be realized. The PEG lipid vesicles produced have excellent stability and low toxicity. Furthermore, the lipid vesicle having both stealth function and target directivity can be realized by controlling the posture of the antibody on the PEG lipid vesicle and immobilizing the antibody to the PEG lipid vesicle by the method for producing a lipid vesicle of the present invention. By incorporating an anticancer agent or gene in the lipid vesicle of the present invention and using it as a carrier for DDS, it can contribute to highly effective treatment with few side effects.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing primary emulsification in a first embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the proportion of PEG lipid in the total lipid and the production rate of vesicles in the preparation of micro-sized vesicles.
FIG. 3 is a graph showing the relationship between the proportion of PEG lipid in the total lipid and the production rate of vesicles in the preparation of nano-sized vesicles.
[Explanation of symbols]
1. Inner container 2. 2. Treatment liquid Water (or aqueous solution)
4). 4. Ultrasonic homogenizer Outer container 6. ice water

Claims (4)

一次乳化剤としてのソルビタンエステルを溶解した溶媒に水を加えて処理液とし、この処理液をホモミキサーによって攪拌した後に冷却しながら超音波照射を照射・停止のサイクルを繰り返しながら行って乳化させる一次乳化工程と、前記処理が行われた処理液から溶媒を留去し、これに二次乳化剤としてソルビタンエステルのエチレンオキシド付加物とPEG脂質を配合して乳化させる二次乳化工程を含むことを特徴とする粒径が1.0μm未満の脂質ベシクルの製造方法。Primary emulsification in which water is added to a solvent in which sorbitan ester as a primary emulsifier is dissolved to form a treatment liquid, and this treatment liquid is stirred by a homomixer and then emulsified by repeating a cycle of irradiation / stopping while irradiating ultrasonic waves while cooling. And a secondary emulsification step in which the solvent is distilled off from the treatment liquid in which the treatment has been performed, and a sorbitan ester ethylene oxide adduct and a PEG lipid are mixed and emulsified as a secondary emulsifier. A method for producing a lipid vesicle having a particle size of less than 1.0 μm. 前記ソルビタンエステルとしてソルビタンオレイン酸モノエステルを、前記溶媒としてヘキサンを用いる請求項1に記載の脂質ベシクルの製造方法。The method for producing a lipid vesicle according to claim 1, wherein sorbitan oleic acid monoester is used as the sorbitan ester and hexane is used as the solvent. ソルビタンオレイン酸モノエステルに対して2mol%のPEG脂質を加えることを特徴とする請求項1又は請求項2に記載の脂質ベシクルの製造方法。The method for producing a lipid vesicle according to claim 1 or 2, wherein 2 mol% of PEG lipid is added to sorbitan oleic acid monoester. 一次乳化工程において処理液にさらにイソチオシアン酸オクタデシルエステル(IAOE)を混入するとともに、二次乳化工程の後に、可溶性プロテインAを混入する工程と、抗IgM抗体を添加する工程を含むことを特徴とする請求項1乃至請求項3に記載の脂質ベシクルの製造方法。In the primary emulsification step, the treatment liquid further includes isothiocyanic acid octadecyl ester (IAOE), and after the secondary emulsification step, a step of mixing soluble protein A and a step of adding an anti-IgM antibody are included. The manufacturing method of the lipid vesicle of Claims 1 thru | or 3.
JP2001266659A 2001-06-22 2001-09-04 Lipid vesicle and method for producing lipid vesicle Expired - Fee Related JP4928689B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001266659A JP4928689B2 (en) 2001-09-04 2001-09-04 Lipid vesicle and method for producing lipid vesicle
PCT/JP2002/006312 WO2003000291A1 (en) 2001-06-22 2002-06-24 Lipid vesicles, process for producing lipid vesicles and method of immobilizing gene on lipid vesicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266659A JP4928689B2 (en) 2001-09-04 2001-09-04 Lipid vesicle and method for producing lipid vesicle

Publications (2)

Publication Number Publication Date
JP2003073258A JP2003073258A (en) 2003-03-12
JP4928689B2 true JP4928689B2 (en) 2012-05-09

Family

ID=19092913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266659A Expired - Fee Related JP4928689B2 (en) 2001-06-22 2001-09-04 Lipid vesicle and method for producing lipid vesicle

Country Status (1)

Country Link
JP (1) JP4928689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094022B2 (en) * 2009-02-26 2017-03-22 敬一 加藤 Gene transfer vector and preparation method thereof
US20220221450A1 (en) 2019-05-29 2022-07-14 Fps Inc. Temperature-responsive fluorescent particles for detection of biomolecules

Also Published As

Publication number Publication date
JP2003073258A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
AU654120B2 (en) Solid tumor treatment method and composition
CA2722183C (en) Nanostructures suitable for sequestering cholesterol and other molecules
EP0004223A1 (en) Process for the preparation of lipidic capsules containing a biologically active compound, products obtained by this process as well as their utilisation
JP5463549B2 (en) Liposomes for ultrasound therapy and liposomes for promoting ultrasound therapy
Kushnazarova et al. Niosomes modified with cationic surfactants to increase the bioavailability and stability of indomethacin
CN109983013A (en) Meloxicam zinc complexes particle multivesicular liposome preparation and preparation method thereof
CN113384712A (en) Co-loaded liposome based on simultaneous killing of tumor cells and CAFs and preparation method thereof
Bapolisi et al. Simultaneous liposomal encapsulation of antibiotics and proteins: Co-loading and characterization of rifampicin and Human Serum Albumin in soy-liposomes
JP6772282B2 (en) New nano-preparation of anti-cancer drug and its manufacturing method
JP4928689B2 (en) Lipid vesicle and method for producing lipid vesicle
JP6238366B2 (en) Lipid membrane structure encapsulating bacterial cell component dispersible in nonpolar solvent and method for producing the same
JP2003001097A (en) Method of making nanosize lipid vesicle
JP5916743B2 (en) Hemoglobin-containing liposome and method for producing the same
JP3759759B2 (en) Liposomes and drug carriers
JPH03218309A (en) Adsorption-suppressing agent for protein to surface of liposome
JP2010260828A (en) Liposome, method for producing liposome and medicinal composition
JP3620059B2 (en) Reactive endoplasmic reticulum, forming agent and functional substance-immobilized endoplasmic reticulum
RU2516893C1 (en) Liposomal composition and method for production thereof
WO2008026781A1 (en) Reverse targeting lipid vesicle
JP3525516B2 (en) Reactive endoplasmic reticulum, endoplasmic reticulum modifier, and production method
JPH07165770A (en) Phospholipid derivative
JPH0558879A (en) Carcinostatic agent-containing liposome pharmaceutical
JP3341487B2 (en) Reactive endoplasmic reticulum, endoplasmic reticulum modifier and production method
JP3956402B2 (en) Amphotericin B carrier
Stadnichenko et al. Standardization of extrusion parameters during liposomal oxaliplatin creation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees