JP4927263B2 - Impact analysis method and design method for resin molded products - Google Patents

Impact analysis method and design method for resin molded products Download PDF

Info

Publication number
JP4927263B2
JP4927263B2 JP2001098768A JP2001098768A JP4927263B2 JP 4927263 B2 JP4927263 B2 JP 4927263B2 JP 2001098768 A JP2001098768 A JP 2001098768A JP 2001098768 A JP2001098768 A JP 2001098768A JP 4927263 B2 JP4927263 B2 JP 4927263B2
Authority
JP
Japan
Prior art keywords
impact
resin molded
molded product
fracture
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001098768A
Other languages
Japanese (ja)
Other versions
JP2002296164A (en
Inventor
知生 広田
芳晃 東川
誠 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001098768A priority Critical patent/JP4927263B2/en
Publication of JP2002296164A publication Critical patent/JP2002296164A/en
Application granted granted Critical
Publication of JP4927263B2 publication Critical patent/JP4927263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、樹脂成形品の衝撃負荷時の変形挙動を予測するために用いる衝撃解析方法及び樹脂成形品の設計方法に関する。
【0002】
【従来の技術】
例えば、乗用車の乗員に対する安全性を向上させるために、車体の様々な部位に衝撃吸収や補強を目的とした樹脂成形品が配置されている。このような部材は、収容空間の容積や形状、あるいは重量等の条件内において要求される性能を発揮する必要がある。このような成形品の設計を省力化するために、素材の物性値をコンピュータに入力して、荷重や衝撃が負荷された時の挙動をシミュレーションにより予測することが行われている。素材の物性値は、例えば、同一素材について作成した試験片を用いて測定している。
【0003】
このような手法を用いることにより、実地に成形して試験をする手間を省き、構造の最適化を容易に行なうことができる。従って、構造部品の開発の期間の短縮とコストの低減が実現できる。
【0004】
【発明が解決しようとする課題】
例えば、ピラーガーニッシュやダッシュボード表面の被覆材のような自動車用の内装部品は、事故の時に人体に直接に接触し、自らが変形・破壊等することによって人体に負荷される衝撃をできる限り軽減する役割を担っている。米国の連邦自動車安全基準(FMVSS)では、事故の際に人体の頭部が受ける損傷の程度を示す目安として、HIC(d)(頭部傷害値)を定義し、この値が所定値以下になるべきことを定めている。HIC(d)を実際に求めるには、人体の頭部を模したフリーモーションヘッドフォーム(FMH)の中に加速度センサを設置し、所定の速度で内装部品に衝突させる実地試験を行い、センサから出力されたデータを所定の方法で処理する。
【0005】
内装部品の開発を行うに当たっても、このような実地試験の代わりにコンピュータを用いた衝撃解析方法を活用するのが望ましい。しかしながら、このような自動車用の内装部品は、リブ構造のような複雑な形状を有し、さらに、衝突時の衝撃エネルギーを吸収する為大きく変形し、時として部分的な破壊に至る。一方、樹脂材料は金属材料と異なり、粘弾性特性を有するため、物性値は歪速度に大きな影響を受ける。したがって、このような複雑な変形過程の衝撃解析を精度よく実現する適切な物性値を設定することが難しかった。
【0006】
この発明は、上記課題に鑑み、例えば自動車用の内装部品のような樹脂成形品の衝撃特性を精度良く予測することができる衝撃解析方法及び設計方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明は、上記課題を解決するためになされたものであって、樹脂材料の機械的特性を示す物性値を設定し、任意の形状の樹脂成形品の衝撃特性を評価する樹脂成形品の衝撃解析方法であって、前記設定される物性値のうち、破壊判定値については、所定形状の樹脂成形品を用いた実地の衝撃試験結果と、この所定形状の樹脂成形品について破壊判定値をパラメータとして行った衝撃解析から得られた衝撃特性評価結果とを比較して、当該実地の衝撃試験結果における変形挙動と当該衝撃特性評価結果における変形挙動とが一致する場合の破壊判定値を衝撃解析の物性値として設定し、任意の形状の樹脂成形品の衝撃特性を評価することを特徴とする樹脂成形品の衝撃解析方法である。
【0008】
これにより、破壊判定値について正確な実測値を得ることが難しい場合でも、所定形状の樹脂成形品について破壊判定値をパラメータとして変化させて衝撃特性の評価を行い、これを実地試験結果と比較することによって、正確な破壊判定値を得ることができる。なお、「一致」とは、完全に一致する場合だけでなく、許容範囲内である、あるいは両者の誤差が最小である等の概念を含む。つまり、事前に必要な誤差の許容範囲が経験的に又は実験的に分かっている場合はその範囲内にあるか否かを判定し、許容範囲が不明な場合や、得られた誤差の最小値が許容範囲を超える場合には、得られた誤差が最小値となる場合を一致すると判定する。この場合、複数の破壊判定値について衝撃特性評価を行うことになる。例えば、パラメータとして仮に決めた破壊判定値を基点として、適当なピッチで値を振って評価を行う。衝撃特性の評価結果と実地試験結果との比較は、例えば人間がグラフを対比させて行うこともできるが、後述するようにコンピュータ処理することもできる。このようにして得られた破壊判定値を衝撃解析の物性値として設定することにより、同じ材料で作られた任意の形状の樹脂成形品の衝撃特性を精度よく評価することができる。
【0009】
前記設定される物性値のうち、降伏応力については、樹脂材料が粘弾性を有するため、歪み速度依存性を設定するのが望ましい。樹脂成形品の大きな特徴だからである。例えば、降伏応力の歪み速度依存性は、高速引張試験の結果から回帰したモデル式を用いて設定する。
【0010】
前記破壊判定値として破断塑性歪み又は破断歪みを用いるのが望ましい。例えば、自動車の内装部品として用いる樹脂成形品は一般に延性的に破断するので、破断塑性歪み又は破断歪みが破断を適切に示す判定値となる。
【0011】
前記所定形状の樹脂成形品はリブ構造体であるのが望ましい。この構造は、衝突時に大きく変形し、部分的な破断に至るため、適切な破壊判定値を得ることができるからである。
【0012】
前記破壊判定値の決定においては、実地の衝撃試験結果と衝撃解析から得られた衝撃特性評価結果における変形挙動を示す曲線の誤差を最適化手法によって最小化することが望ましい。これにより、人間による手作業を廃して効率化、高精度化を図ることができる。
【0013】
前記最適化手法は、応答曲面法、焼き鈍し法、遺伝的アルゴリズム、ニューラルネットワーク法のうちの1つ又は2以上を組み合わせて用いるようにしてもよい。前記変形挙動を示す曲線は、時間−荷重曲線、時間−加速度曲線、変位−荷重曲線、変位−加速度曲線のいずれかであることが望ましい。いずれも状況に応じて適宜に選択が可能である。
【0014】
この発明の他の態様は、樹脂成形品に所定の衝撃特性を付与する樹脂成形品の設計方法であって、請求項1ないし7のいずれかに記載の樹脂成形品の衝撃解析方法を用いて前記所定の衝撃特性を達成したかを判断し、達成されていない場合は形状修正を行い、再度前記衝撃解析方法を用いて前記所定の衝撃特性を達成したかを判断し、以下、この工程を前記所定の衝撃特性が達成されるまで行うことを特徴とする樹脂成形品の設計方法である。
【0015】
【発明の実施の形態】
以下、図面を参照しつつ発明の好適な実施の形態を説明する。図1は、この発明の1つの実施の形態の衝撃解析方法の工程を示すフロー図である。まず、ステップ1において用いる樹脂材料の物性値を測定する。この物性値には、弾性率、降伏応力、ポアソン比、密度が含まれる。降伏応力については高速引張試験を実施することによって得ることができる。
【0016】
図2は、例えば自動車用内装部品に用いる樹脂材料の高速引張試験の結果を模式的に示すもので、降伏応力には歪み速度依存性が顕著に見られ、一般に歪み速度が大きいほど降伏応力も大きくなる。従って、降伏応力を歪み速度をパラメータとして表す必要が有る。この実施の形態では、一般的に知られたCowper-Symonds式を用いており、これによれば降伏応力は、
【数1】

Figure 0004927263
と表され、複数の歪み速度で引張試験を行うことにより、この材料における上式の各定数が定められる。この引張試験においては、ASTMD1822に記載のTYPE Lの試験片を用いるのが望ましい。また、歪み速度としては、1.0×101〜1.0×103の範囲が望ましい。なお、ここでは式を用いたが、降伏応力を歪み速度に対応する数値として与えるテーブル定義としてもよい。
【0017】
次に、ステップ2において、所定形状のモデル成形品を作成し、実地で衝撃試験を行うとともに、ステップ3において、同一モデルについてステップ1で得た物性値とパラメータとして仮に決めた破断塑性歪みと所定の解析手法を用いて同一の衝撃試験について再現解析を行う。この実施の形態では、衝撃試験として、図3に示すように、HIC(d)を求める試験を行う。すなわち、人間の頭部に似せたフリーモーションヘッドフォーム(FMH)10を、樹脂成形品12に規定の速度で衝突させる。ここで用いる樹脂成形品12の形状については、特に条件は無いが、設計しようとする成形品とある程度の類似性があることが好ましい。ここでは、平板の裏面に格子状の補強リブが設置された構成を用いている。
【0018】
次に、ステップ4において、ステップ2及び3で得た2つの評価結果における変形挙動を比較する。具体的には、変形挙動は、時間−荷重曲線、時間−加速度曲線、変位−荷重曲線、変位−加速度曲線等として得られるので、実地試験と再現解析のそれぞれの曲線を所定の方法で比較して、両者の一致度を調べる。
【0019】
両者の一致度を調べる方法として、例えば、人間の目視判定も1つの方法であるが、熟練度によって差がでる、定量的でない、等の不具合が有る。ここでは、2つの曲線の差の二乗の平均値が所定の許容値以下となる場合を一致すると判定するようにした。これにより、精度を向上させることができる。
【0020】
両者が一致しない場合には、ステップ5において破断塑性歪みの値を修正して設定し、ステップ3に戻って再度再現解析を行う。修正の方法は、例えば、パラメータである破断塑性歪みを所定のピッチだけプラス又はマイナス方向に移動する修正を行う。その結果を再度実地試験の結果と比較し、以下、同様の工程を両者が一致するまで繰り返し行う。例えば、誤差が拡大する場合には、客方向へ移動したり、ピッチを細かくするなどの方法を採る。
【0021】
結果を比較する作業や破断塑性歪みの修正作業については、手作業で行うのも1つの方法であるが、作業に膨大な工数が掛かる、繰り返し回数が制限されるため、一致判定の許容値の精度を低く設定せざるを得ない等の不具合が生じる。そこで、このような結果を比較する作業や破断塑性歪みの修正作業等を、所定の最適化手法や比較判定プログラムを用いてコンピュータに自動的に実施させ、両者を一致させることが望ましい。これにより、作業に必要な工数を減らし、作業を迅速化し、精度を向上させることができる。最適化手法としては、応答曲面法、焼き鈍し法、遺伝的アルゴリズム、ニューラルネットワーク法等が挙げられる。ここでは応答曲面法を用いた。
【0022】
両者が一致すると判断された場合には、その時の破断塑性歪みをその樹脂素材の物性値として採用し、これと再現解析に用いたと同じ解析手法を用いて、個々のニーズに応じた成形品の設計を行う。すなわち、何らかの方法で部品形状を設計し(ステップ6)、それを上記手法で解析し(ステップ7)、得られた評価結果が要求性能を達成したかどうかを判断し(ステップ8)、達成されていない場合は形状修正を行い(ステップ9)、再度ステップ7に戻って解析を行い、以下、この工程を性能が達成されるまで行う。
【0023】
(実施例)
素材として、住友化学工業株式会社製耐衝撃性ポリプロピレン、住友ノーブレン(商品名)WP712Fを用いて、図3に示すような所定の形状の成形品を成形し、また所定の形状モデルを作成して、実地の衝撃試験と再現解析を行った。実地試験の結果は図4の時間−加速度曲線に細い実線で示してある。事前の材料物性測定試験により、弾性率、降伏応力等の物性値が以下のように求められた。
・弾性率:863MPa
・降伏応力:19.6MPa
・ポアソン比:0.4
・密度:900kg/m
・Cowper-Symonds式のパラメータ:C=2.80 s-1, P=9.87
【0024】
再現解析はこれらの値と以下の手法を用いて行った。
・使用ソフト
LS-DYNA version 940(Livermore Software Technology Corporation製)
・解析手法
空間の離散化:有限要素法
時間積分:中心差分に基づく陽解法
・樹脂成形品の固定条件
フリーモーションヘッドフォームの反対側に剛体壁を定義(実地試験では鉄製バリアに固定)
・材料モデル: LS-DYNA物性タイプ24
【0025】
次に、再現解析の結果を図1に示す手法を用いて実地試験結果と比較し、誤差が最小である場合を選択し、図4に太い実線で示した。また、誤差が最小である場合を手作業で選んだ場合の結果を図4に太い破線で示した。それぞれの場合の破断塑性歪みと誤差を表1に示した。手作業で行った場合の方は、膨大な手間と時間を要している。
【表1】
Figure 0004927263
【0026】
次に、同じ樹脂素材の別の形状のモデルを作成し、実地試験と再現解析を行った。再現解析は、同じ解析手法と、上記で得られた破断塑性歪みの値とを用いている。実地試験結果を図5において細い実線で、また、再現解析結果を同図において太い実線で示した。この場合の誤差は10.1であり、得られた破断塑性歪みの値が正しいことが実証された。
【0027】
【発明の効果】
以上説明したように、この発明によれば、複雑な形状を有するような樹脂成形品の衝撃特性を精度良く評価ことができ、実地に成形して試験をする手間を省いて構造の最適化を容易に行ない、構造部品の開発の期間の短縮とコストの低減を実現することができる。
【図面の簡単な説明】
【図1】本発明の衝撃解析手法の1例を示すフロー図である。
【図2】樹脂素材の引張試験の結果を模式的に示すグラフである。
【図3】衝撃試験の解析方法を模式的に示す図である。
【図4】衝撃試験における変形挙動を示すグラフである。
【図5】この発明の効果を確認するための試験結果を示すグラフである。
【符号の説明】
10 フリーモーションヘッドフォーム
12 樹脂成形品[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impact analysis method and a resin molded product design method used for predicting the deformation behavior of a resin molded product under an impact load.
[0002]
[Prior art]
For example, in order to improve safety for passengers of passenger cars, resin molded products for the purpose of shock absorption and reinforcement are arranged at various parts of the vehicle body. Such a member needs to exhibit the performance requested | required within conditions, such as the volume of a storage space, a shape, or a weight. In order to save the design of such a molded product, a physical property value of a material is input to a computer, and a behavior when a load or an impact is applied is predicted by simulation. The physical property value of the material is measured using, for example, a test piece prepared for the same material.
[0003]
By using such a method, it is possible to easily optimize the structure without the need for molding and testing in practice. Therefore, it is possible to reduce the development period and cost of the structural parts.
[0004]
[Problems to be solved by the invention]
For example, automotive interior parts such as pillar garnishes and dashboard surface coverings reduce the impact on the human body as much as possible by directly contacting the human body at the time of an accident and deforming or destroying itself. Have a role to play. The US Federal Motor Vehicle Safety Standard (FMVSS) defines HIC (d) (head injury value) as a guideline indicating the degree of damage to the human head in the event of an accident. It stipulates what should be done. To actually determine HIC (d), an acceleration sensor is installed in a free motion headform (FMH) that simulates the human head, and a field test is performed to collide with interior parts at a predetermined speed. The output data is processed by a predetermined method.
[0005]
Even when developing interior parts, it is desirable to use a shock analysis method using a computer instead of such a field test. However, such interior parts for automobiles have a complicated shape such as a rib structure, and are greatly deformed to absorb impact energy at the time of collision, sometimes leading to partial destruction. On the other hand, since the resin material has viscoelastic properties unlike the metal material, the physical property value is greatly influenced by the strain rate. Therefore, it has been difficult to set appropriate physical property values that can accurately realize the impact analysis of such a complex deformation process.
[0006]
In view of the above problems, an object of the present invention is to provide an impact analysis method and a design method capable of accurately predicting impact characteristics of a resin molded product such as an automobile interior part.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and sets the physical property values indicating the mechanical characteristics of the resin material, and evaluates the impact characteristics of the resin molded product of any shape. In the analysis method, among the set physical property values, for the fracture determination value, the actual impact test result using a resin molded product having a predetermined shape, and the fracture determination value for the resin molded product having the predetermined shape are parameters. by comparing the impact properties evaluation results obtained from an impact analysis was performed with the destruction determination value when the deformation behavior of the deformation behavior and the impact properties evaluation results of the impact test results of the field to match the impact analysis It is an impact analysis method for a resin molded product characterized in that it is set as a physical property value and the impact characteristics of a resin molded product of an arbitrary shape are evaluated .
[0008]
As a result, even when it is difficult to obtain an accurate actual measurement value for the fracture judgment value, the impact judgment is evaluated by changing the fracture judgment value as a parameter for a resin molded product having a predetermined shape, and this is compared with the actual test result. Thus, an accurate destruction determination value can be obtained. Note that “matching” includes not only the case of complete matching but also the concept of being within an allowable range or having the smallest error between the two. In other words, if the allowable range of required error is empirically or experimentally known, determine whether it is within that range, and if the allowable range is unknown, or if the minimum value of the error obtained When the value exceeds the allowable range, the case where the obtained error is the minimum value is determined to match. In this case, impact characteristic evaluation is performed for a plurality of fracture determination values. For example, the evaluation is performed by changing the value at an appropriate pitch with the destruction determination value temporarily determined as a parameter as a base point. The comparison between the evaluation result of the impact characteristic and the actual test result can be performed, for example, by comparing a graph by a human, but can also be processed by a computer as will be described later. By setting the fracture determination value obtained in this way as a physical property value for impact analysis, it is possible to accurately evaluate the impact characteristics of a resin molded product having an arbitrary shape made of the same material.
[0009]
Among the set physical property values, regarding the yield stress, since the resin material has viscoelasticity, it is desirable to set the strain rate dependency. This is because it is a major feature of resin molded products. For example, the strain rate dependence of the yield stress is set using a model equation regressed from the result of the high-speed tensile test.
[0010]
It is desirable to use fracture plastic strain or fracture strain as the fracture determination value. For example, since a resin molded product used as an interior part of an automobile generally breaks in a ductile manner, the fracture plastic strain or the fracture strain is a determination value that appropriately indicates fracture.
[0011]
The resin molded product having the predetermined shape is preferably a rib structure. This is because this structure is greatly deformed at the time of collision and leads to partial fracture, so that an appropriate fracture judgment value can be obtained.
[0012]
In the determination of the fracture determination value, it is desirable to minimize the error of the curve indicating the deformation behavior in the actual impact test result and the impact characteristic evaluation result obtained from the impact analysis by an optimization method. As a result, manual work by humans can be eliminated, and efficiency and accuracy can be improved.
[0013]
As the optimization method, one or more of response surface method, annealing method, genetic algorithm, and neural network method may be used. The curve indicating the deformation behavior is preferably one of a time-load curve, a time-acceleration curve, a displacement-load curve, and a displacement-acceleration curve. Any of them can be appropriately selected according to the situation.
[0014]
According to another aspect of the present invention, there is provided a resin molded product design method for imparting predetermined impact characteristics to a resin molded product, wherein the resin molded product impact analysis method according to any one of claims 1 to 7 is used. It is determined whether or not the predetermined impact characteristics have been achieved.If not, the shape is corrected, and it is determined again whether the predetermined impact characteristics have been achieved using the impact analysis method. The method for designing a resin molded product is performed until the predetermined impact characteristic is achieved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing the steps of an impact analysis method according to one embodiment of the present invention. First, the physical property value of the resin material used in Step 1 is measured. These physical property values include elastic modulus, yield stress, Poisson's ratio, and density. The yield stress can be obtained by performing a high-speed tensile test.
[0016]
FIG. 2 schematically shows the result of a high-speed tensile test of a resin material used for, for example, an automobile interior part. Yield stress has a remarkable strain rate dependency. Generally, the yield stress increases as the strain rate increases. growing. Therefore, it is necessary to express the yield stress using the strain rate as a parameter. In this embodiment, the commonly known Cowper-Symonds equation is used, and according to this, the yield stress is
[Expression 1]
Figure 0004927263
By performing a tensile test at a plurality of strain rates, each constant of the above formula in this material is determined. In this tensile test, it is desirable to use a TYPE L test piece described in ASTM D1822. Further, the strain rate is preferably in the range of 1.0 × 10 1 to 1.0 × 10 3 . Although an expression is used here, it may be a table definition that gives the yield stress as a numerical value corresponding to the strain rate.
[0017]
Next, in step 2, a model molded product having a predetermined shape is prepared, and an impact test is performed on the ground. In step 3, the physical property value obtained in step 1 for the same model and the rupture plastic strain temporarily determined as a parameter and the predetermined Using the analysis method described above, reproducibility analysis is performed for the same impact test. In this embodiment, as an impact test, a test for obtaining HIC (d) is performed as shown in FIG. That is, a free motion head foam (FMH) 10 that resembles a human head is caused to collide with the resin molded product 12 at a specified speed. The shape of the resin molded product 12 used here is not particularly limited, but preferably has a certain degree of similarity with the molded product to be designed. Here, a configuration in which grid-like reinforcing ribs are installed on the back surface of the flat plate is used.
[0018]
Next, in step 4, the deformation behaviors in the two evaluation results obtained in steps 2 and 3 are compared. Specifically, the deformation behavior is obtained as a time-load curve, a time-acceleration curve, a displacement-load curve, a displacement-acceleration curve, etc., so that the actual test and reproduction analysis curves are compared by a predetermined method. Then, the degree of coincidence between the two is examined.
[0019]
As a method for examining the degree of coincidence between the two, for example, human visual judgment is one method, but there are problems such as differences in skill level and non-quantitative results. Here, the case where the average value of the squares of the differences between the two curves is equal to or less than a predetermined allowable value is determined to be coincident. Thereby, accuracy can be improved.
[0020]
If they do not match, the value of the fracture plastic strain is corrected and set in step 5, and the process returns to step 3 to perform the reproduction analysis again. As a correction method, for example, a correction is performed in which a fracture plastic strain as a parameter is moved in a plus or minus direction by a predetermined pitch. The result is compared with the result of the field test again, and the same process is repeated until the two match. For example, when the error increases, a method such as moving in the customer direction or making the pitch finer is employed.
[0021]
As for the work of comparing the results and the work of correcting the fracture plastic strain, it is one method that is performed manually. However, since the work takes a lot of man-hours and the number of repetitions is limited, the allowable value of the coincidence determination Problems such as having to set the accuracy low occur. Therefore, it is desirable to have the computer automatically perform such operations of comparing the results and correcting the fracture plastic strain by using a predetermined optimization method or a comparison determination program so that the two match. Thereby, man-hours required for work can be reduced, work can be speeded up, and accuracy can be improved. Examples of the optimization method include a response surface method, an annealing method, a genetic algorithm, and a neural network method. Here, the response surface method was used.
[0022]
If it is determined that the two match, the fracture plastic strain at that time is adopted as the physical property value of the resin material, and this and the same analysis method used for the reproducibility analysis are used. Do the design. That is, a part shape is designed by some method (step 6), it is analyzed by the above method (step 7), and it is determined whether the obtained evaluation result has achieved the required performance (step 8). If not, shape correction is performed (step 9), the process returns to step 7 for analysis, and this process is performed until performance is achieved.
[0023]
(Example)
Using the impact-resistant polypropylene manufactured by Sumitomo Chemical Co., Ltd. and Sumitomo Nobrene (trade name) WP712F as a material, a molded product having a predetermined shape as shown in FIG. 3 is formed, and a predetermined shape model is created. The impact test and the reproduction analysis were conducted. The result of the field test is shown by a thin solid line in the time-acceleration curve of FIG. Physical property values such as elastic modulus and yield stress were determined as follows by a prior material property measurement test.
-Elastic modulus: 863 MPa
-Yield stress: 19.6 MPa
・ Poisson's ratio: 0.4
・ Density: 900kg / m 3
・ Cowper-Symonds equation parameters: C = 2.80 s -1 , P = 9.87
[0024]
Reproduction analysis was performed using these values and the following method.
・ Software used
LS-DYNA version 940 (manufactured by Livermore Software Technology Corporation)
-Discretization of analysis method space: Finite element method Time integration: Explicit method based on center difference-Fixed condition of resin molded product Define rigid wall on the opposite side of free motion headform (fixed to iron barrier in field test)
・ Material model: LS-DYNA physical property type 24
[0025]
Next, the result of the reproduction analysis was compared with the result of the field test using the method shown in FIG. 1, the case where the error was the smallest was selected, and the thick solid line is shown in FIG. In addition, the result of manually selecting the case where the error is minimum is shown by a thick broken line in FIG. Table 1 shows the fracture plastic strain and error in each case. Those who do it manually require a great deal of time and effort.
[Table 1]
Figure 0004927263
[0026]
Next, another shape model of the same resin material was created, and field tests and reproducibility analysis were performed. The reproduction analysis uses the same analysis method and the value of the fracture plastic strain obtained above. The actual test result is shown by a thin solid line in FIG. 5, and the reproduction analysis result is shown by a thick solid line in FIG. The error in this case was 10.1, demonstrating that the value of the fracture plastic strain obtained was correct.
[0027]
【Effect of the invention】
As described above, according to the present invention, the impact characteristics of a resin molded product having a complicated shape can be evaluated with high accuracy, and the structure can be optimized without the need for molding and testing in practice. It is easy to achieve, and it is possible to reduce the development period and cost of the structural parts.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of an impact analysis method of the present invention.
FIG. 2 is a graph schematically showing the results of a tensile test of a resin material.
FIG. 3 is a diagram schematically showing an analysis method of an impact test.
FIG. 4 is a graph showing deformation behavior in an impact test.
FIG. 5 is a graph showing test results for confirming the effects of the present invention.
[Explanation of symbols]
10 Free motion head foam 12 Plastic molded product

Claims (8)

樹脂材料の機械的特性を示す物性値を設定し、任意の形状の樹脂成形品の衝撃特性を評価する樹脂成形品の衝撃解析方法であって、
前記設定される物性値のうち、破壊判定値については、所定形状の樹脂成形品を用いた実地の衝撃試験結果と、この所定形状の樹脂成形品について破壊判定値をパラメータとして行った衝撃解析から得られた衝撃特性評価結果とを比較して、当該実地の衝撃試験結果における変形挙動と当該衝撃特性評価結果における変形挙動とが一致する場合の破壊判定値を衝撃解析の物性値として設定し、任意の形状の樹脂成形品の衝撃特性を評価することを特徴とする樹脂成形品の衝撃解析方法。
An impact analysis method for a resin molded product that sets physical properties indicating the mechanical properties of a resin material and evaluates the impact characteristics of a resin molded product of an arbitrary shape,
Among the set physical property values, for the fracture determination value, from an actual impact test result using a resin molded product having a predetermined shape, and an impact analysis performed using the fracture determination value as a parameter for the resin molded product having the predetermined shape. Comparing the obtained impact property evaluation results, setting the fracture determination value when the deformation behavior in the actual impact test result and the deformation behavior in the impact property evaluation result match as the physical property value of the impact analysis, A method for analyzing an impact of a resin molded product, comprising evaluating an impact characteristic of a resin molded product having an arbitrary shape .
前記設定される物性値のうち、降伏応力については歪み速度依存性を設定することを特徴とする請求項1に記載の樹脂成形品の衝撃解析方法。  The impact analysis method for a resin molded product according to claim 1, wherein among the set physical property values, the strain rate dependency is set for the yield stress. 前記破壊判定値は破断塑性歪み又は破断歪みであることを特徴とする請求項1又は2に記載の樹脂成形品の衝撃解析方法。  The impact analysis method for a resin molded product according to claim 1 or 2, wherein the fracture determination value is a fracture plastic strain or a fracture strain. 前記所定形状の樹脂成形品はリブ構造体であることを特徴とする請求項1ないし3のいずれかに記載の樹脂成形品の衝撃解析方法。  4. The resin molded product impact analysis method according to claim 1, wherein the resin molded product having a predetermined shape is a rib structure. 破壊判定値の決定において、実地の衝撃試験結果と衝撃解析から得られた衝撃特性評価結果における変形挙動を示す曲線の誤差を最適化手法によって最小化することを特徴とする請求項1ないし4のいずれかに記載の樹脂成形品の衝撃解析方法。5. The method according to claim 1, wherein in determining the fracture judgment value, an error in a curve indicating a deformation behavior in an actual impact test result and an impact characteristic evaluation result obtained from impact analysis is minimized by an optimization method. The impact analysis method of the resin molded product in any one. 前記最適化手法は、応答曲面法、焼き鈍し法、遺伝的アルゴリズム、ニューラルネットワーク法のうちの1つ又は2以上を組み合わせて用いることを特徴とする請求項5に記載の樹脂成形品の衝撃解析方法。  6. The method for analyzing an impact of a resin molded product according to claim 5, wherein the optimization method uses one or more of a response surface method, an annealing method, a genetic algorithm, and a neural network method. . 前記変形挙動を示す曲線は、時間−荷重曲線、時間−加速度曲線、変位−荷重曲線、変位−加速度曲線のいずれかであることを特徴とする請求項5又は6に記載の樹脂成形品の衝撃解析方法。  The impact of the resin molded product according to claim 5 or 6, wherein the curve indicating the deformation behavior is any one of a time-load curve, a time-acceleration curve, a displacement-load curve, and a displacement-acceleration curve. analysis method. 樹脂成形品に所定の衝撃特性を付与する樹脂成形品の設計方法であって、
請求項1ないし7のいずれかに記載の樹脂成形品の衝撃解析方法を用いて前記所定の衝撃特性を達成したかを判断し、達成されていない場合は形状修正を行い、再度前記衝撃解析方法を用いて前記所定の衝撃特性を達成したかを判断し、以下、この工程を前記所定の衝撃特性が達成されるまで行うことを特徴とする樹脂成形品の設計方法。
A resin molded product design method for imparting predetermined impact characteristics to a resin molded product,
It is judged whether the said predetermined impact characteristic was achieved using the impact analysis method of the resin molded product in any one of Claim 1 thru | or 7, if not achieved, shape correction will be performed, and the said impact analysis method will be performed again A method for designing a resin molded product, characterized in that it is determined whether the predetermined impact characteristics have been achieved, and the process is performed until the predetermined impact characteristics are achieved.
JP2001098768A 2001-03-30 2001-03-30 Impact analysis method and design method for resin molded products Expired - Fee Related JP4927263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001098768A JP4927263B2 (en) 2001-03-30 2001-03-30 Impact analysis method and design method for resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001098768A JP4927263B2 (en) 2001-03-30 2001-03-30 Impact analysis method and design method for resin molded products

Publications (2)

Publication Number Publication Date
JP2002296164A JP2002296164A (en) 2002-10-09
JP4927263B2 true JP4927263B2 (en) 2012-05-09

Family

ID=18952388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001098768A Expired - Fee Related JP4927263B2 (en) 2001-03-30 2001-03-30 Impact analysis method and design method for resin molded products

Country Status (1)

Country Link
JP (1) JP4927263B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005367A (en) * 2002-04-10 2004-01-08 Sumitomo Chem Co Ltd Design method for resin product
JP2005169909A (en) * 2003-12-12 2005-06-30 Fujitsu Ten Ltd Impact analysis method for resin molding
JP4703453B2 (en) * 2005-03-30 2011-06-15 住友化学株式会社 Impact analysis method
JP4659600B2 (en) * 2005-11-21 2011-03-30 社団法人 日本公園施設業協会 Impact measuring device
JP5210100B2 (en) * 2008-09-17 2013-06-12 ポリプラスチックス株式会社 Impact fracture prediction method
JP5226592B2 (en) * 2009-04-10 2013-07-03 ポリプラスチックス株式会社 Limit load prediction method for resin molded parts with stress concentration
JP2011226940A (en) * 2010-04-21 2011-11-10 Ube Ind Ltd Evaluation method for impact property of tube, producing method for tube, and tube with excellent impact toughness
US8515714B2 (en) * 2010-06-02 2013-08-20 Livermore Software Technology Corp. Curve matching for parameter identification
KR101144112B1 (en) 2010-07-20 2012-05-24 전남대학교산학협력단 Prediction Method of Acrylonitrile Butadiene Styrene Materials for Impact Resistance
CN118032484A (en) * 2024-02-23 2024-05-14 重庆交通大学 Anchoring device and method suitable for ultra-high performance concrete axial-pull performance test

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3090757B2 (en) * 1992-02-14 2000-09-25 鐘淵化学工業株式会社 Method for analyzing three-dimensional structure of synthetic resin foam
JPH11102382A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Simulation method for designing structure, computer-readable recording medium where program for implementing same method is recorded, and simulation device for designing structure
JP3979480B2 (en) * 1998-08-07 2007-09-19 住友化学株式会社 Bumper reinforcement member
JP2001051977A (en) * 1999-08-10 2001-02-23 Kanto Auto Works Ltd Numerically optimized structure analysis system

Also Published As

Publication number Publication date
JP2002296164A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP4927263B2 (en) Impact analysis method and design method for resin molded products
EP1674848A1 (en) Method of simulating rolling tire
US7158922B2 (en) System and method for prediction of panel performance under localized loading conditions
CN106934117A (en) Automobile instrument panel assembly optimization method
CN102867075A (en) Acceleration frequency response analysis-based body floor optimal design method
Hollowell et al. NHTSA’s Vehicle Aggressivity and Compatibility Research Program’
JP4386294B2 (en) Food Dent Performance Evaluation Method
CN113155474A (en) Automobile collision energy absorption test method, device, equipment and storage medium
JP4733850B2 (en) Steel product design method, recording medium, and program
CN112765788B (en) Plastic part collision fracture simulation analysis method and automobile instrument panel assembly structure optimization method
JP3914798B2 (en) Impact analysis method
CN114379474B (en) Design method of vehicle door trim
Yang et al. Recent development in Multidisciplinary design optimization of vehicle structures
Santos et al. Reliability-based design of automotive interior trimming for occupant safety: a case study
Tamer et al. Gissmo Failure Modelling for Crashworthiness Analysis Using Different Test Specimens
CN115292982A (en) Multidisciplinary optimization design method for front swing arm of automobile
Deb et al. Vehicle front impact safety design using a hybrid methodology
Hong et al. An optimum design methodology development using a statistical technique for vehicle occupant safety
Salih A novel design of lower vehicle arm based on optimization technique
CN116842631A (en) Truck stress analysis method, equipment, storage medium and device
Narwani et al. Optimization of passenger airbags using occupant simulation
TP et al. FMVSS Head Crash Target Point Bp2 FEA Simulation Using B Pillar Trim
CN116861556A (en) Method, device, equipment and medium for identifying cause of large residual vibration of vehicle
Petrus et al. Simulation and Analysis on Vehicle Frontal Crash of Multi Types Material towards Road Divider
Abdollahi et al. The Simulation of Car Impact at Different Speeds by Abaqus and ANSYS Software, Study the Results, and Development of an Appropriate Analytical Relationship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees