JP4925653B2 - Method for producing liquefied fuel gas composition - Google Patents

Method for producing liquefied fuel gas composition Download PDF

Info

Publication number
JP4925653B2
JP4925653B2 JP2005347278A JP2005347278A JP4925653B2 JP 4925653 B2 JP4925653 B2 JP 4925653B2 JP 2005347278 A JP2005347278 A JP 2005347278A JP 2005347278 A JP2005347278 A JP 2005347278A JP 4925653 B2 JP4925653 B2 JP 4925653B2
Authority
JP
Japan
Prior art keywords
alumina
mol
silica
fuel gas
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005347278A
Other languages
Japanese (ja)
Other versions
JP2007153940A (en
Inventor
学 渡邊
正典 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2005347278A priority Critical patent/JP4925653B2/en
Priority to CNA2006800449993A priority patent/CN101341232A/en
Priority to KR1020087013041A priority patent/KR20080071580A/en
Priority to PCT/JP2006/324306 priority patent/WO2007064019A1/en
Publication of JP2007153940A publication Critical patent/JP2007153940A/en
Application granted granted Critical
Publication of JP4925653B2 publication Critical patent/JP4925653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は液化燃料ガス組成物に関し、特に動植物油脂および動物油脂由来成分を含有した炭化水素留分を原料油として、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触させることにより得られる炭化水素を含む液化燃料ガス組成物に関するものである。   The present invention relates to a liquefied fuel gas composition, and in particular, a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats and oils as a raw material oil, and at least one metal selected from Groups 6A and 8 of the periodic table; The present invention relates to a liquefied fuel gas composition containing a hydrocarbon obtained by contacting a hydrocracking catalyst containing an inorganic oxide having acid properties with hydrogen under pressure.

近年、大気汚染状況の悪化に伴い自動車の排気ガスに対する規制が強化されており、軽油を燃料とするディーゼル車、ことにディーゼルトラック車の使用が制限される状況が起きてきている。これに対応するためディーゼル車の排気ガス浄化システムの開発が行なわれているが、より排出ガスがクリーンな低公害車への代替も検討されており、液化石油ガス(LPG)を燃料とするトラックなどがディーゼルトラック車の代替として期待されている。さらに、タクシーではLPGがその主たる燃料として過去40年近くにわたり使用されている実績がある。(例えば、非特許文献1参照。)。また、自動車用液化石油ガス(オートガス)の品質に関しても、排気ガスの更なる低減を目指して検討された例はあるが(例えば、特許文献1参照。)、二酸化炭素低減について検討された例はない。
わが国で使用されるLPGは、その約1/4を国内生産により、約3/4を輸入によりまかなわれている。昨今、輸入LPG供給源の多様化を図るため輸入先を広げる試みなども行なわれており、また国内生産分も製油所にて原油蒸留時に分離されるもの以外に各種石油精製プラントや石油化学工場のプラントなどからの副生物などより得られるものもあり、LPGの品質に関し必ずしも従来と同一とはいえない状況になりつつある。
しかしながらそれらはいずれも化石燃料由来のものに限定されていた。
特開平10−121070号公報 「LPガス・データ必携(LPガス・データ必携編集委員会編)」,産報,科学技術庁資源局監修,1964年,p.166
In recent years, with the worsening air pollution situation, regulations on automobile exhaust gas have been strengthened, and there has been a situation where the use of diesel vehicles using diesel fuel, especially diesel trucks, is restricted. In response to this, exhaust gas purification systems for diesel vehicles are being developed, but alternatives to low-emission vehicles with cleaner emissions are also being considered, and trucks that use liquefied petroleum gas (LPG) as fuel. Are expected to replace diesel trucks. Furthermore, in taxis, LPG has been used for nearly 40 years as its main fuel. (For example, refer nonpatent literature 1.). In addition, regarding the quality of liquefied petroleum gas (auto gas) for automobiles, there are examples studied for further reduction of exhaust gas (for example, see Patent Document 1), but examples for studying carbon dioxide reduction. There is no.
About one-quarter of the LPG used in Japan is domestically produced, and about three-quarters is imported. In recent years, attempts have been made to expand import destinations in order to diversify import LPG supply sources, and various oil refineries and petrochemical plants in addition to those that are separated at the refinery during crude oil distillation. Some of these can be obtained from by-products from other plants, and the quality of LPG is not necessarily the same as before.
However, they were all limited to those derived from fossil fuels.
Japanese Patent Laid-Open No. 10-121070 “LP Gas Data Essentials (LP Gas Data Essentials Editorial Committee)”, supervised by the Industrial Bulletin, Science and Technology Agency Resource Bureau, 1964, p. 166

排出ガスの低減と同時に地球温暖化問題にも対応するため、二酸化炭素削減に効果的な燃料性状が求められており、その解決手段の1つとして再生可能エネルギーであるバイオマス由来燃料を代替燃料として用いることが検討されている。現在は、バイオエタノールやETBE、バイオディーゼルなど、従来の化石燃料であるガソリンや軽油に直接混合し、代替できる燃料が検討されている。しかしながら従来の液化石油ガスに直接混合して用いる事のできるバイオマス由来液化燃料ガス組成物に関する検討例、知見は存在していない。   In order to cope with global warming issues as well as reducing emissions, there is a need for fuel properties that are effective in reducing carbon dioxide. As one of the solutions, biomass-derived fuel, which is renewable energy, can be used as an alternative fuel. Use is under consideration. Currently, fuels such as bioethanol, ETBE, and biodiesel that can be mixed directly with gasoline and light oil, which are conventional fossil fuels, are being investigated. However, there are no study examples and knowledge regarding biomass-derived liquefied fuel gas compositions that can be directly mixed with conventional liquefied petroleum gas.

本発明者らは、前記課題について鋭意研究を重ねた結果、動植物油脂および動物油脂由来成分を含有した炭化水素留分を原料油として、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触させることにより得られる炭化水素を用いた液化燃料ガス組成物を見出し、本発明を完成するに至ったものである。   As a result of intensive studies on the above problems, the present inventors have used hydrocarbon fractions containing components derived from animal and vegetable oils and animal fats as feedstocks, and at least one selected from Groups 6A and 8 of the periodic table. The inventors have found a liquefied fuel gas composition using hydrocarbons obtained by contacting under pressure of hydrogen with a hydrocracking catalyst containing an inorganic oxide having at least two kinds of metals and acid properties, and have completed the present invention. It is a thing.

すなわち、本発明は、動植物油脂および/または動物油脂由来成分を含有した炭化水素留分からなる原料油を、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびアルミナと、シリカ、チタニア、ジルコニアおよびボリアから選ばれる少なくとも1種類以上を含む複合酸化物を含有する水素化前処理触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させた後に、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびシリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナおよびシリカ−チタニア−アルミナから選ばれる無機酸化物を含有する水素化分解触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させ水素化分解処理することにより、硫黄分含有量10質量ppm以下、炭素数3の炭化水素が1.0モル%以上99.0モル%以下、炭素数4の炭化水素が1.0モル%以上99.0モル%以下である炭化水素を得、この炭化水素を1容量%以上含有する液化燃料ガス組成物を得ることを特徴とする液化燃料ガス組成物の製造方法に関する。 That is, the metal present invention, a feedstock comprising a hydrocarbon fraction containing animal or vegetable fats and / or dynamic plant oils derived components are selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W And a hydrogenation pretreatment catalyst containing a composite oxide containing at least one selected from silica, titania, zirconia and boria, a hydrogen pressure of 5 to 20 MPa, a liquid space velocity (LHSV) of 0. Metals selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W, and silica-alumina, boria after contacting at 1-2 to 2 h -1 , hydrogen / oil ratio of 300-1500 NL / L -Alumina, zirconia-alumina, titania-zirconia-alumina, silica-boria-alumina, silica-zirconia-alumina and Rica - titania - hydride containing an inorganic oxide selected from alumina cracking catalyst and hydrogen under pressure in the hydrogen pressure 5 to 20 mPa, liquid hourly space velocity (LHSV) 0.1~2.2h -1, a hydrogen / oil ratio of 300 By hydrocracking by contacting at 1500 NL / L , the sulfur content is 10 mass ppm or less, the hydrocarbon having 3 carbon atoms is 1.0 mol% or more and 99.0 mol% or less, and the hydrocarbon having 4 carbon atoms. method of manufacturing but give the hydrocarbon is less than 99.0 mol% 1.0 mol%, the liquefied fuel gas composition, characterized in that to obtain a liquefied fuel gas composition containing the hydrocarbon 1 vol% About.

また本発明は、動植物油脂および/または動物油脂由来成分を含有した炭化水素留分と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比率で混合した混合油からなる原料油を、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびアルミナと、シリカ、チタニア、ジルコニアおよびボリアから選ばれる少なくとも1種類以上を含む複合酸化物を含有する水素化前処理触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させた後に、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびシリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナおよびシリカ−チタニア−アルミナから選ばれる酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させ水素化分解処理することにより、硫黄分含有量10質量ppm以下、炭素数3の炭化水素が1.0モル%以上99.0モル%以下、炭素数4の炭化水素が1.0モル%以上99.0モル%以下である炭化水素を得、この炭化水素を1容量%以上含有する液化燃料ガス組成物を得ることを特徴とする液化燃料ガス組成物の製造方法に関する。 The present invention is a mixed oil obtained by mixing petroleum hydrocarbon fractions having a kerosene fraction purified from a hydrocarbon fraction and crude oil containing animal or vegetable fats and / or dynamic plant oils derived components in any ratio A composite oxide containing a metal oil selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W, and at least one selected from silica, titania, zirconia and boria After contact with a hydrogenation pretreatment catalyst containing hydrogen under hydrogen pressure at a hydrogen pressure of 5 to 20 MPa, a liquid space velocity (LHSV) of 0.1 to 2.2 h −1 , and a hydrogen / oil ratio of 300 to 1500 NL / L, Metals selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W and silica-alumina, boria-alumina, zirconia-alumina, titania-zil Near - alumina, silica - boria - alumina, silica - zirconia - alumina and silica - titania - hydrocracking catalyst containing an inorganic oxide having acid properties selected from alumina and under hydrogen pressure in the hydrogen pressure 5 to 20 mPa, liquid Hydrocarbon cracking by contacting with a space velocity (LHSV) of 0.1 to 2.2 h −1 and a hydrogen / oil ratio of 300 to 1500 NL / L, and a hydrocarbon having a sulfur content of 10 mass ppm or less and a carbon number of 3 Of 1.0 mol% or more and 99.0 mol% or less, and a hydrocarbon having 4 carbon atoms of 1.0 mol% or more and 99.0 mol% or less, and containing 1% by volume or more of this hydrocarbon The present invention relates to a method for producing a liquefied fuel gas composition characterized by obtaining a liquefied fuel gas composition.

以下、本発明について詳述する。
本発明は、動植物油脂および/または動物油脂由来成分を含有した炭化水素留分を原料油として用いるものである。
また本発明は、動植物油脂および/または動物油脂由来成分を含有した炭化水素留分とを任意の比率で混合した混合油を原料油として用いるものである。
Hereinafter, the present invention will be described in detail.
The present invention uses a hydrocarbon fraction containing a component derived from animal and vegetable oils and / or animal fats as a raw material oil.
Moreover, this invention uses the mixed oil which mixed the hydrocarbon fraction containing the component derived from animal and vegetable fats and / or animal fats and fats in arbitrary ratios as raw material oil.

本発明における動植物油脂および動植物油脂由来成分とは、天然もしくは人工的に生産、製造される動植物油脂および動植物油脂由来成分を示している。動物油脂および動物油の原料としては、牛脂、牛乳脂質(バター)、豚脂、羊脂、鯨油、魚油、肝油等が挙げられ、植物油脂および植物油原料としては、ココヤシ、パームヤシ、オリーブ、べにばな、菜種(菜の花)、米ぬか、ひまわり、綿実、とうもろこし、大豆、ごま、アマニ等の種子部及びその他の部分が挙げられるが、これ以外の油脂、油であっても使用に問題はない。これらの原料油に関してはその状態が固体、液体であることは問わないが、取り扱いの容易さおよび二酸化炭素吸収能や生産性の高さから植物油脂、植物油を原料とする方が好ましい。また、本発明においては、これらの動物油、植物油を民生用、産業用、食用等で使用した廃油も雑物等の除去工程を加えた後に原料とすることができる。   The animal and vegetable oils and fats and components derived from animal and vegetable oils and fats in the present invention refer to animal and vegetable oils and fats and components derived from animal and vegetable oils and fats that are produced or manufactured naturally or artificially. Examples of animal fats and animal oil materials include beef tallow, milk lipid (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, and the like. Examples include rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, and other parts of the linseed, but other fats and oils can be used without problems. These raw oils may be solid or liquid, but it is preferable to use vegetable oils and vegetable oils as raw materials because of ease of handling, high carbon dioxide absorption capacity and high productivity. Moreover, in this invention, the waste oil which used these animal oils and vegetable oils for consumer use, industrial use, food use etc. can also be used as a raw material after adding the removal process of miscellaneous matters.

これらの原料中に含有されるグリセライド化合物の脂肪酸部分の代表的な組成としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる。自然界の物質におけるこれら脂肪酸の炭化水素部は一般に直鎖であることが多いが、本発明において本発明で規定する性状を満たす限りで、側鎖を有する構造、すなわち異性体であっても使用することができる。また、不飽和脂肪酸における分子中の不飽和結合の位置も、本発明において本発明で規定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、化学合成によって任意の位置に設定されたものも使用することができる。
上述の原料油(動植物油脂および動植物油脂由来成分)はこれらの脂肪酸を1種または複数種有しており、原料によってその有する脂肪酸類は異なっている。例えば、ココヤシ油はラウリン酸、ミリスチン酸等の飽和脂肪酸を比較的多く有しているが、大豆油はオレイン酸、リノール酸等の不飽和脂肪酸を多く有している。
As a typical composition of the fatty acid portion of the glyceride compound contained in these raw materials, butyric acid (C 3 H 7 COOH), which is a fatty acid having no unsaturated bond in the molecular structure called saturated fatty acid, caproic acid ( C 5 H 11 COOH), caprylic acid (C 7 H 15 COOH), capric acid (C 9 H 19 COOH), lauric acid (C 11 H 23 COOH), myristic acid (C 13 H 27 COOH), palmitic acid ( C 15 H 31 COOH), stearic acid (C 17 H 35 COOH), and oleic acid (C 17 H 33 COOH), which is an unsaturated fatty acid having one or more unsaturated bonds, linoleic acid (C 17 H 31 COOH) ), linolenic acid (C 17 H 29 COOH), ricinoleic acid (C 17 H 32 (OH) COOH) Hitoshigakyo It is. The hydrocarbon part of these fatty acids in natural substances is generally linear, but it is used in the present invention even if it has a structure having a side chain, that is, an isomer, as long as the properties defined in the present invention are satisfied. be able to. Further, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally found in nature as long as the properties defined in the present invention are satisfied in the present invention. The set one can also be used.
The above-mentioned raw material oils (animal and vegetable oils and fats and components derived from animal and vegetable oils and fats) have one or more of these fatty acids, and the fatty acids they have differ depending on the raw materials. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.

動植物油脂および/または動物油脂由来成分を含有した炭化水素留分に、任意の比率で混合して用いる原油等から精製された灯油留分を有する石油系炭化水素留分とは、一般的な石油精製工程で得られる留分を用いることができ、例えば、常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範囲に相当する留分や水素化脱硫装置、水素化分解装置、残油直接脱硫装置、流動接触分解装置などから得られる、相当する沸点範囲の留分を単独で混合していてもよく、複数の装置からの相当する留分を混合していてもよい。該石油系炭化水素留分は少なくとも沸点300℃以上の留分を含んでいることが望ましく、沸点700℃より重質な留分を含んでいないことがより望ましい。該石油系炭化水素留分が300℃以上の留分を含んでいない場合、過度の分解によって十分な液収率が得られない恐れがあり、700℃より重質な留分を含む場合、重質成分によって触媒上での炭素質形成が促進されることによって活性点を被覆し、活性低下に繋がる恐れがある。なお、本明細書における沸点範囲とは、JIS K 2254「蒸留試験方法」またはASTM−D86に記載の方法に準拠して測定される値である。   Petroleum hydrocarbon fractions having kerosene fractions refined from crude oil or the like used by mixing them in any proportion with hydrocarbon fractions containing components derived from animal and vegetable fats and / or animal fats The fraction obtained in the refining process can be used. For example, the fraction corresponding to a predetermined boiling range obtained from an atmospheric distillation apparatus or a vacuum distillation apparatus, hydrodesulfurization apparatus, hydrocracking apparatus, residual oil direct desulfurization A fraction having a corresponding boiling range obtained from an apparatus, a fluid catalytic cracking apparatus, or the like may be mixed alone, or corresponding fractions from a plurality of apparatuses may be mixed. The petroleum hydrocarbon fraction desirably contains at least a fraction having a boiling point of 300 ° C or higher, and more desirably does not contain a fraction heavier than a boiling point of 700 ° C. If the petroleum hydrocarbon fraction does not contain a fraction at 300 ° C. or higher, there is a risk that sufficient liquid yield may not be obtained due to excessive decomposition. If a fraction heavier than 700 ° C. is contained, The formation of carbonaceous matter on the catalyst is promoted by the quality component, which may cover the active sites and lead to a decrease in activity. In addition, the boiling point range in this specification is a value measured based on the method described in JIS K 2254 “Distillation test method” or ASTM-D86.

動植物油脂および/または動物油脂由来成分を含有した炭化水素留分からなる原料油、または動植物油脂および/または動物油脂由来成分を含有した炭化水素留分と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比率で混合した混合油を原料油は、次に周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触させる。   Petroleum having a kerosene fraction refined from a raw material oil comprising a hydrocarbon fraction containing a component derived from animal or vegetable oils and / or animal fats or a hydrocarbon fraction containing a component derived from animal or vegetable oils and / or animal fats and oils The mixed oil in which the system hydrocarbon fraction is mixed at an arbitrary ratio, then the feedstock oil contains at least one metal selected from Groups 6A and 8 of the periodic table and an inorganic oxide having acid properties Contacting with a hydrocracking catalyst under hydrogen pressure.

水素化分解触媒としては、周期律表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から二種類以上の金属を含有している。例えばCo−Mo,Ni−Mo,Ni−Co−Mo,Ni−Wが挙げられ、望ましくはNi−Mo、Ni−Co−Mo,Ni−Wが選ばれる。水素化分解に際しては水素化前処理触媒と同様にこれらの金属を硫化物の状態に転換して使用する。   The hydrocracking catalyst contains at least one kind of metal selected from Group 6A and Group 8 metals of the periodic table, and preferably contains two or more kinds of metals from Groups 6A and 8 . For example, Co-Mo, Ni-Mo, Ni-Co-Mo, and Ni-W are mentioned, and Ni-Mo, Ni-Co-Mo, and Ni-W are desirably selected. In hydrocracking, these metals are used after being converted to a sulfide state in the same manner as the pretreatment catalyst for hydrogenation.

水素化分解触媒の担体としては、酸性質を有する無機酸化物が採用されるが、シリカ、アルミナ、ボリア、ジルコニア、マグネシア、ゼオライトのうち少なくとも二種類を含有していることが望ましい。例えば、シリカ−アルミナ、チタニア−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−チタニア−アルミナ、シリカ−チタニア−ジルコニア−アルミナが望ましく、シリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナ、シリカ−チタニア−アルミナがより望ましく、シリカ−アルミナ、シリカ−ジルコニア−アルミナがさらにより望ましい。これらの複合酸化物にゼオライトを含有されていることがもっとも望ましい。アルミナが含まれる場合、アルミナと他の成分との比率は担体に対して任意の割合を取りうるが、アルミナの含有量が担体重量の96重量%以下であることが望ましく、90重量%以下であることがより望ましい。アルミナ含有量が96重量%を越える場合には、十分な酸性質が得られず所定の水素化分解活性を発揮することが難しい傾向にある。   As the carrier of the hydrocracking catalyst, an inorganic oxide having an acid property is adopted, but it is desirable to contain at least two of silica, alumina, boria, zirconia, magnesia and zeolite. For example, silica-alumina, titania-alumina, boria-alumina, zirconia-alumina, titania-zirconia-alumina, silica-boria-alumina, silica-zirconia-alumina, silica-titania-alumina, silica-titania-zirconia-alumina Desirably, silica-alumina, boria-alumina, zirconia-alumina, titania-zirconia-alumina, silica-boria-alumina, silica-zirconia-alumina, silica-titania-alumina are more desirable, silica-alumina, silica-zirconia-alumina Is even more desirable. Most preferably, these composite oxides contain zeolite. When alumina is contained, the ratio of alumina to other components can be any ratio with respect to the support, but the content of alumina is preferably 96% by weight or less of the support weight, and 90% by weight or less. More desirable. When the alumina content exceeds 96% by weight, sufficient acid properties cannot be obtained and it tends to be difficult to exhibit a predetermined hydrocracking activity.

水素化分解触媒に用いられるゼオライトの結晶骨格を構成する成分としては、シリカのほかアルミナ、チタニア、ボリア、ガリウムなどがあるが、シリカとアルミナを含むゼオライト、すなわちアルミノシリケートが望ましい。ゼオライトの結晶構造には多くの種類が報告されているが、たとえばフォージャサイト型、ベータ型、モルデナイト型、ペンタシル型などがある。本発明においては、十分な水素化分解活性を発揮するという点でフォージャサイト型、ベータ型、ペンタシル型がより望ましく、特にフォージャサイト型、ベータ型がさらにより望ましい。これらのゼオライトは、合成開始時の原材料の量論比に応じてアルミナ含有量を調整したもの、あるいは所定の水熱処理および/または酸処理を施したものを用いることができる。このうち、水熱処理および/または酸処理により超安定化した超安定化Y型がもっとも望ましい。この超安定化Y型はゼオライト本来の20Å以下のミクロ細孔と呼ばれる微細細孔構造に加え、20〜100Åの範囲に新たな細孔が形成されており油脂成分の酸素分を転換するために良好な反応場を提供しているものと推察され、該細孔直径を有する細孔の容積は0.03ml/g以上が望ましく、0.04ml/gがより望ましい。なお、ここでいう細孔容積は、一般的には水銀圧入法によって求めることができる。水熱処理条件としては公知の条件を用いることができる。超安定化Y型の物性としては、シリカ/アルミナのモル比率として10〜120が好ましく、15〜70がより好ましく、20〜50がさらにより好ましい。シリカ/アルミナのモル比率が120よりも高い場合酸性質が低く、十分な水素化分解活性を発揮できない恐れがある。また、シリカ/アルミナのモル比率が10より低い場合には酸性質が強すぎ、コーク生成反応を促進することにより急激な活性低下を招く恐れがある。ゼオライトの含有量は担体重量に対して2〜80重量%が望ましく、4〜75重量%がより望ましい。ゼオライト含有量が前記下限値に満たない場合には水素化分解活性を発揮できない恐れがあり、ゼオライト含有量が前記上限値を超える場合には酸性質が強すぎ、コーク生成反応を促進する恐れがある。   In addition to silica, there are alumina, titania, boria, gallium, and the like as components constituting the zeolite crystal skeleton used in the hydrocracking catalyst. Zeolite containing silica and alumina, that is, aluminosilicate is preferable. Many types of crystal structures of zeolite have been reported, and examples thereof include faujasite type, beta type, mordenite type, and pentasil type. In the present invention, the faujasite type, the beta type, and the pentasil type are more preferable, and the faujasite type and the beta type are even more preferable in that sufficient hydrocracking activity is exhibited. As these zeolites, those having an alumina content adjusted according to the stoichiometric ratio of raw materials at the start of synthesis, or those subjected to a predetermined hydrothermal treatment and / or acid treatment can be used. Of these, the super-stabilized Y type that is super-stabilized by hydrothermal treatment and / or acid treatment is most desirable. This ultra-stabilized Y type has a fine pore structure called micropores of 20 cm or less, which is the original size of zeolite, and new pores are formed in the range of 20 to 100 cm to convert the oxygen content of the fat and oil component. It is presumed to provide a good reaction field, and the volume of the pores having the pore diameter is preferably 0.03 ml / g or more, more preferably 0.04 ml / g. The pore volume here can be generally determined by a mercury intrusion method. Known conditions can be used as the hydrothermal treatment conditions. As the physical property of the ultra-stabilized Y-type, the silica / alumina molar ratio is preferably 10 to 120, more preferably 15 to 70, and still more preferably 20 to 50. When the silica / alumina molar ratio is higher than 120, the acidity is low, and sufficient hydrocracking activity may not be exhibited. On the other hand, when the silica / alumina molar ratio is lower than 10, the acidity is too strong, and the coke generation reaction may be promoted to cause a rapid decrease in activity. The content of zeolite is preferably 2 to 80% by weight, more preferably 4 to 75% by weight, based on the weight of the carrier. If the zeolite content is less than the lower limit, the hydrocracking activity may not be exhibited, and if the zeolite content exceeds the upper limit, the acidity is too strong and the coke formation reaction may be accelerated. is there.

本発明では、原料油を水素加圧下で接触処理するに際しては、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属を含有する水素化前処理触媒と水素加圧下で接触させた後に、前記水素化分解触媒と水素加圧下で接触させることが好ましい。   In the present invention, when the feedstock is subjected to contact treatment under hydrogen pressure, it is contacted with hydrogenation pretreatment catalyst containing at least one metal selected from Groups 6A and 8 of the periodic table under hydrogen pressure. Then, it is preferable to contact the hydrocracking catalyst under hydrogen pressure.

水素化前処理触媒の活性金属としては、周期律表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から選択される二種類以上の金属を含有している。例えばCo−Mo,Ni−Mo,Ni−Co−Mo,Ni−Wが挙げられ、水素化前処理に際しては、これらの金属を硫化物の状態に転換して使用する。   The active metal of the pretreatment catalyst for hydrogenation contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, preferably two or more selected from Group 6A and Group 8 Contains metals. For example, Co-Mo, Ni-Mo, Ni-Co-Mo, and Ni-W can be mentioned. In the pretreatment for hydrogenation, these metals are converted into sulfides and used.

水素化前処理触媒の担体としては多孔性の無機酸化物が用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、チタニア、ジルコニア、ボリアなどが挙げられる。望ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物である。また、このほかの成分として、リンを含んでいてもよい。アルミナ以外の成分の合計含有量は1〜20重量%であることが好ましく、2〜15重量%含有していることがより望ましい。含有量が1重量%に満たない場合、十分な触媒表面積を得ることが出来ず、活性が低くなる恐れがあり、含有量が20重量%を超える場合、担体の酸性質が上昇し、コーク生成による活性低下を招く恐れがある。リンを担体構成成分として含む場合には、その含有量は、酸化物換算で1〜5重量%であることが望ましく、2〜3.5重量%がさらに望ましい。   A porous inorganic oxide is used as the support for the hydrogenation pretreatment catalyst. Generally, it is a porous inorganic oxide containing alumina, and examples of other carrier constituents include silica, titania, zirconia, and boria. Desirably, it is a complex oxide containing at least one selected from alumina and other constituent components. Moreover, phosphorus may be included as another component. The total content of components other than alumina is preferably 1 to 20% by weight, and more preferably 2 to 15% by weight. If the content is less than 1% by weight, a sufficient catalyst surface area cannot be obtained and the activity may be lowered. If the content exceeds 20% by weight, the acidity of the support will increase and coke formation will occur. May cause a decrease in activity. When phosphorus is included as a carrier constituent, the content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.

アルミナ以外の担体構成成分である、シリカ、チタニア、ジルコニア、ボリアの前駆体となる原料は特に限定されず、一般的なケイ素、チタン、ジルコニウム、ボロンを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。   There are no particular limitations on the raw materials that are precursors of silica, titania, zirconia, and boria, which are carrier constituents other than alumina, and general solutions containing silicon, titanium, zirconium, and boron can be used. For example, silicic acid, water glass and silica sol for silicon, titanium sulfate, titanium tetrachloride and various alkoxide salts for titanium, zirconium sulfate and various alkoxide salts for zirconium, and boric acid for boron, etc. it can. As phosphorus, phosphoric acid or an alkali metal salt of phosphoric acid can be used.

これらのアルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体表面積の増加や、活性金属となんらかの相互作用を生じることにより、活性に影響を及ぼしていることが考えられる。   It is desirable that the raw materials for the carrier constituents other than alumina be added in any step prior to the firing of the carrier. For example, it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing these components, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder. Although it may be added to the step of adding and kneading, a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable. Although the mechanism of the effect of these carrier constituents other than alumina has not been elucidated, it is thought that they form a complex oxide state with aluminum, which increases the surface area of the carrier and some interaction with the active metal. It is considered that the activity is affected by producing the action.

活性金属の含有量は、例えば、WとMoの合計担持量は、望ましくは酸化物換算で触媒重量に対して12〜35重量%、より望ましくは15〜30重量%である。WとMoの合計担持量が前記下限値に満たない場合、活性点数の減少により活性が低下する可能性があり、前記上限値を超える場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。また、CoとNiの合計担持量は、望ましくは酸化物換算で触媒重量に対して1.5〜10重量%、より望ましくは2〜8重量%である。コバルトとニッケルの合計担持量が1.5重量%未満の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、10重量%より多い場合には、金属が効果的に分散せず、同様に活性を招く可能性がある。   As for the content of the active metal, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide. If the total supported amount of W and Mo is less than the lower limit, the activity may decrease due to the decrease in the number of active points. If the upper limit is exceeded, the metal is not effectively dispersed, and similarly It may cause a decrease in activity. The total supported amount of Co and Ni is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of cobalt and nickel is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced. If more than 10% by weight, the metal is effective. In the same manner, there is a possibility of causing activity.

水素加圧下における接触反応条件としては、水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h−1、水素/油比300〜1500NL/Lといった条件で行われることが望ましく、水素圧力6.5〜18MPa、液空間速度0.2〜2.0h−1、水素/油比300〜1500NL/Lといった条件がより望ましく、水素圧力8〜15MPa、液空間速度0.3〜1.5h−1、水素/油比350〜1000NL/Lといった条件がさらにより望ましい。 The catalytic reaction conditions under hydrogen pressure are preferably carried out under conditions such as a hydrogen pressure of 5 to 20 MPa, a liquid space velocity (LHSV) of 0.1 to 2.2 h −1 , and a hydrogen / oil ratio of 300 to 1500 NL / L. The conditions such as hydrogen pressure 6.5-18 MPa, liquid space velocity 0.2-2.0 h −1 , hydrogen / oil ratio 300-1500 NL / L are more desirable, hydrogen pressure 8-15 MPa, liquid space velocity 0.3-1 Even more desirable are conditions such as 0.5 h −1 , hydrogen / oil ratio 350-1000 NL / L.

水素加圧下での接触処理により、硫黄分含有量10質量ppm以下、炭素数3の炭化水素が1.0モル%以上99.0モル%以下、炭素数4の炭化水素が1.0モル%以上99.0モル%以下である炭化水素が得られる。
本発明の液化燃料ガス組成物はかかる炭化水素を含有するものであり、その含有割合は少なくとも1.0容量%以上であり、好ましくは20.0容量%以上、さらに好ましくは98.0容量%以上である。
By contact treatment under hydrogen pressure, the sulfur content is 10 mass ppm or less, the hydrocarbon having 3 carbon atoms is 1.0 mol% or more and 99.0 mol% or less, and the hydrocarbon having 4 carbon atoms is 1.0 mol%. A hydrocarbon having a content of 99.0 mol% or less is obtained.
The liquefied fuel gas composition of the present invention contains such hydrocarbon, and its content is at least 1.0% by volume, preferably 20.0% by volume, more preferably 98.0% by volume. That's it.

本発明の液化燃料ガス組成物は、主成分として炭素数3の炭化水素であるプロパン混合物と炭素数4の炭化水素であるブタン混合物とからなる。両者の割合は使用地域、季節により任意に規定できる。プロパン混合物は主にプロパンおよびプロピレンよりなり、ブタン混合物は主にブタンおよびブチレンよりなる。本発明の液化燃料ガス組成物の組成はこれら以外に少量のエタン混合物、ブタジエン、ペンタンなどを含有することができる。エタン混合物はエタンおよびエチレンよりなり、液化燃料ガス組成物中におけるエタン混合物の含有量は5モル%以下であることが好ましい。また液化燃料ガス組成物中におけるブタジエンの含有量は0.5モル%以下であることが好ましく、ペンタンの含有量は2モル%以下であることが好ましい。   The liquefied fuel gas composition of the present invention comprises a propane mixture, which is a hydrocarbon having 3 carbon atoms, and a butane mixture, which is a hydrocarbon having 4 carbon atoms, as main components. The ratio of both can be defined arbitrarily according to the region of use and the season. The propane mixture mainly consists of propane and propylene, and the butane mixture mainly consists of butane and butylene. In addition to these, the liquefied fuel gas composition of the present invention can contain a small amount of ethane mixture, butadiene, pentane and the like. The ethane mixture is composed of ethane and ethylene, and the content of the ethane mixture in the liquefied fuel gas composition is preferably 5 mol% or less. Further, the butadiene content in the liquefied fuel gas composition is preferably 0.5 mol% or less, and the pentane content is preferably 2 mol% or less.

本発明の液化燃料ガス組成物は、105℃残渣分が10質量ppm以下であることが好ましい。105℃残渣分は、デポジット生成速度およびドレン抜き出し頻度を減少させることができる観点から5質量ppm以下であることがより好ましく、2質量ppm以下であることが特に好ましい。
なお、ここでいう105℃残渣分とは、ASTM D2158に定める方法に準拠して測定される値であるが、初期サンプル量をASTM法記載の100mLから4Lに変更し、設定温度を38℃からさらに75℃、105℃と順に変えてゆき、最終的には105℃にて残った残渣の重量を秤量することにより測定される値のことをいう。この際、各温度での保持時間はASTM法記載の5分ではなくその温度での蒸発がほぼ認められなくなるまでの十分な時間をとるものとする。
In the liquefied fuel gas composition of the present invention, the residue at 105 ° C. is preferably 10 mass ppm or less. The residue at 105 ° C. is more preferably 5 mass ppm or less, and particularly preferably 2 mass ppm or less from the viewpoint of reducing the deposit generation rate and the drain drawing frequency.
In addition, although 105 degreeC residue here is a value measured based on the method prescribed | regulated to ASTMD2158, the initial sample amount is changed from 100 mL of ASTM method description to 4L, and setting temperature is from 38 degreeC. Further, it is a value measured by measuring the weight of the residue remaining at 105 ° C. in the order of 75 ° C. and 105 ° C. At this time, the holding time at each temperature is not 5 minutes as described in the ASTM method, but a sufficient time is taken until almost no evaporation at that temperature is recognized.

本発明の液化燃料ガス組成物は、105℃残渣分のpHが6以上であることが好ましい。105℃残渣分のpHが6未満であると、ベーパライザー内部のデポジット生成が増加する恐れがある。一方、燃料ラインとベーパライザーの腐食防止の点でpHは8以下であることが好ましい。より好ましくはpHが6〜7であり、さらに好ましくはpHが7である。
なお、ここでいう105℃残渣分のpHとは、上述の105℃残渣分の測定方法で得られた105℃残渣分に残渣分の1000倍量の蒸留水(残渣分が1mg以下の場合は1mLの蒸留水)を加え攪拌した後、水相部分のpHをpH試験紙により測定することによって得られる値のことをいう。
In the liquefied fuel gas composition of the present invention, the pH of the residue at 105 ° C. is preferably 6 or more. If the pH of the residue at 105 ° C. is less than 6, deposit formation inside the vaporizer may increase. On the other hand, the pH is preferably 8 or less from the viewpoint of preventing corrosion of the fuel line and the vaporizer. More preferably, pH is 6-7, More preferably, pH is 7.
Here, the pH of the 105 ° C. residue is the same as that of the 105 ° C. residue obtained by the method for measuring a 105 ° C. residue described above, but 1000 times the amount of distilled water (if the residue is 1 mg or less). 1 mL of distilled water) is added and stirred, and then the value obtained by measuring the pH of the aqueous phase with a pH test paper.

本発明の液化燃料ガス組成物の硫黄分は、燃料ラインの腐食防止と排気ガス中への硫黄酸化物排出防止の点から液化燃料ガス全量基準で0.02質量%以下であることが好ましく、0.015質量%以下であることがより好ましく、0.005質量%以下であることがさらに好ましく、0.001質量%以下であることが最も好ましい。
なお、ここでいう硫黄分とは、JIS K 2240「液化石油ガス(LPガス)−硫黄分試験方法」により測定される値を意味する。
The sulfur content of the liquefied fuel gas composition of the present invention is preferably 0.02% by mass or less based on the total amount of the liquefied fuel gas from the viewpoint of preventing corrosion of the fuel line and preventing sulfur oxide emission into the exhaust gas, More preferably, it is 0.015 mass% or less, More preferably, it is 0.005 mass% or less, Most preferably, it is 0.001 mass% or less.
In addition, the sulfur content here means a value measured by JIS K 2240 “Liquefied petroleum gas (LP gas) -sulfur content test method”.

本発明の液化燃料ガス組成物の40℃における蒸気圧は、低温時始動性確保の点から0.28MPa以上であることが好ましく、0.38MPa以上がより好ましい。一方、取り扱い上の安全性の点から1.55MPa以下であることが好ましく、1.25MPa以下がより好ましく、0.52MPa以下が最も好ましい。
なお、ここでいう40℃における蒸気圧とは、JIS K 2240「液化石油ガス(LPガス)−蒸気圧試験方法」により測定される値を意味する。
The vapor pressure at 40 ° C. of the liquefied fuel gas composition of the present invention is preferably 0.28 MPa or more, and more preferably 0.38 MPa or more from the viewpoint of securing startability at low temperatures. On the other hand, from the viewpoint of safety in handling, it is preferably 1.55 MPa or less, more preferably 1.25 MPa or less, and most preferably 0.52 MPa or less.
Here, the vapor pressure at 40 ° C. means a value measured according to JIS K 2240 “Liquefied petroleum gas (LP gas) —vapor pressure test method”.

本発明の液化燃料ガス組成物の15℃における密度は、燃費向上の点から0.500g/cm以上であることが好ましく、一方、重質分の混入を防止する点から0.620g/cm以下であることが好ましく、0.600g/cm以下がより好ましい。
なお、ここでいう15℃における密度とは、JIS K 2240「液化石油ガス(LPG)−密度試験方法」により測定される値を意味する。
The density at 15 ° C. of the liquefied fuel gas composition of the present invention is preferably 0.500 g / cm 3 or more from the viewpoint of improving fuel efficiency, and 0.620 g / cm from the viewpoint of preventing heavy components from being mixed. 3 or less is preferable, and 0.600 g / cm 3 or less is more preferable.
Here, the density at 15 ° C. means a value measured by JIS K 2240 “Liquefied petroleum gas (LPG) —density test method”.

本発明の液化燃料ガス組成物の銅板腐食は、燃料配管の腐食防止の点から1以下であることが好ましく、1aがより好ましい。
なお、ここでいう銅板腐食とは、JIS K 2240「液化石油ガス(LPガス)−銅板腐食試験方法」により測定される値を意味する。
The copper plate corrosion of the liquefied fuel gas composition of the present invention is preferably 1 or less, more preferably 1a, from the viewpoint of preventing corrosion of fuel piping.
In addition, copper plate corrosion here means the value measured by JISK2240 "liquefied petroleum gas (LP gas)-copper plate corrosion test method".

本発明の液化燃料ガス組成物は自動車用燃料として好適に使用することができる。   The liquefied fuel gas composition of the present invention can be suitably used as an automobile fuel.

本発明の液化燃料ガス組成物は、動植物油脂および動物油脂由来成分を含有した炭化水素留分を原料油として、周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触させることにより得られる炭化水素を用いることにより、排出ガスを低減し、かつCO排出量を低減することができる。 The liquefied fuel gas composition of the present invention comprises at least one metal and acid selected from Groups 6A and 8 of the periodic table using a hydrocarbon fraction containing components derived from animal and plant oils and animal fats as raw material oil. By using a hydrocarbon obtained by contacting a hydrocracking catalyst containing an inorganic oxide having properties under hydrogen pressure, exhaust gas can be reduced and CO 2 emission can be reduced.

以下に実施例により本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1〜2および比較例1]
動植物油脂および/または動物油脂由来成分を含有した炭化水素留分からなる原料油を周期律表第6A族および第8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触させることにより得られる炭化水素を用いて、実施例1および2の液化燃料ガス組成物を調製した。一方、製油所より生産されるブタン、プロパンおよび輸入ブタン、輸入プロパンを用いて、比較例1の液化燃料ガス組成物を調製した。実施例、比較例に用いた各液化燃料ガス組成物の性状を表1に示す。これらの液化燃料ガス組成物について、排出ガス試験を行い、排出ガス評価を下記の方法により実施し、その結果を表2に記した。またこれら実施例および比較例の排出COのライフサイクルアセスメント(LCA)を実施し、排出されるCOを計算して表2に併記した。
(a)性状測定
[Examples 1 and 2 and Comparative Example 1]
A raw material oil comprising a hydrocarbon fraction containing a component derived from animal and vegetable fats and / or animal fats and fats contains at least one metal selected from Groups 6A and 8 of the periodic table and an inorganic oxide having acid properties. The liquefied fuel gas compositions of Examples 1 and 2 were prepared using hydrocarbons obtained by contacting a hydrocracking catalyst with hydrogen under pressure. On the other hand, a liquefied fuel gas composition of Comparative Example 1 was prepared using butane, propane, imported butane, and imported propane produced from a refinery. Table 1 shows the properties of each liquefied fuel gas composition used in Examples and Comparative Examples. These liquefied fuel gas compositions were subjected to an exhaust gas test, and an exhaust gas evaluation was performed by the following method. The results are shown in Table 2. In addition, the life cycle assessment (LCA) of the exhausted CO 2 of these examples and comparative examples was performed, and the exhausted CO 2 was calculated and shown in Table 2.
(A) Property measurement

各液化燃料ガス組成物の性状は以下の方法により測定した。
プロパン、ブタン等の組成分析は、JIS K 2240「液化石油ガス(LPガス)−組成分析方法(ガスクロマトグラフ法)」により測定される値である。
105℃残渣分は、ASTM D2158に定める方法に準拠し、初期サンプル量をASTM法記載の100mLから4Lに変更し、設定温度をASTM法記載の38℃からさらに75℃、105℃と順に変えてゆき、最終的には105℃にて残った残渣の重量を秤量することにより測定される値である。
105℃残渣分のpHは、上記105℃残渣分の測定方法にて得られた105℃残渣分に残渣分の1000倍量の蒸留水(残渣分が1mg以下の場合は1mLの蒸留水)を加え攪拌した後、水相部分のpHをpH試験紙(東洋濾紙社製pH試験紙)により測定することによって得られる値である。
硫黄分含有量は、JIS K 2240「液化石油ガス(LPガス)−硫黄分試験方法」により測定される値である。
40℃における蒸気圧は、JIS K 2240「液化石油ガス(LPガス)−蒸気圧試験方法」により測定される値である。
15℃における密度は、JIS K 2240「液化石油ガス(LPG)−密度試験方法」により測定される値である。
銅板腐食は、JIS K 2240「液化石油ガス(LPガス)−銅板腐食試験方法」により測定される値である。
The properties of each liquefied fuel gas composition were measured by the following method.
The composition analysis of propane, butane, etc. is a value measured by JIS K 2240 “Liquefied petroleum gas (LP gas) -composition analysis method (gas chromatographic method)”.
For the 105 ° C residue, the initial sample amount was changed from 100 mL described in the ASTM method to 4 L in accordance with the method specified in ASTM D2158, and the set temperature was changed in order from 38 ° C described in the ASTM method to 75 ° C and 105 ° C in this order. Finally, it is a value measured by weighing the residue remaining at 105 ° C.
The pH of the 105 ° C. residue is obtained by adding 1000 times the amount of distilled water (if the residue is 1 mg or less, 1 mL of distilled water) to the 105 ° C. residue obtained by the above 105 ° C. residue measurement method. After the addition and stirring, the pH is obtained by measuring the pH of the aqueous phase with a pH test paper (pH test paper manufactured by Toyo Roshi Kaisha, Ltd.).
The sulfur content is a value measured by JIS K 2240 “Liquefied petroleum gas (LP gas) -sulfur content test method”.
The vapor pressure at 40 ° C. is a value measured according to JIS K 2240 “Liquefied petroleum gas (LP gas) —vapor pressure test method”.
The density at 15 ° C. is a value measured by JIS K 2240 “Liquefied Petroleum Gas (LPG) —Density Test Method”.
The copper plate corrosion is a value measured by JIS K 2240 “Liquefied petroleum gas (LP gas) -copper plate corrosion test method”.

Figure 0004925653
Figure 0004925653

(b)排出ガス評価
下記試験車両を用いて、10・15モードによる排出ガス測定を行った。排ガス試験およびCO排出量LCAの評価結果を表2に記した。
(試験車両)
エンジン:直列4気筒
排気量:1998cc
燃料供給方式:電子制御式キャブレター
ミッション:オートマチックトランスミッション
(B) Exhaust gas evaluation Exhaust gas was measured in the 10.15 mode using the following test vehicle. The evaluation results of the exhaust gas test and the CO 2 emission amount LCA are shown in Table 2.
(Test vehicle)
Engine: Inline 4-cylinder Displacement: 1998cc
Fuel supply system: Electronically controlled carburetor Mission: Automatic transmission

Figure 0004925653
Figure 0004925653

表2に示すとおり、本発明の液化燃料ガス組成物は、従来のLPG燃料に比べ排出ガス成分(THC,CO,NOx)を低減できることがわかる。
さらにこれら実施例および比較例の排出COのライフサイクルアセスメント(LCA)を実施し、排出されるCOを計算した。本実施例では燃焼時に生じるCOについてバイオマス由来分はゼロカウントとなるため大幅なCO削減を達成することができた。
As shown in Table 2, it can be seen that the liquefied fuel gas composition of the present invention can reduce exhaust gas components (THC, CO, NOx) compared to conventional LPG fuel.
Further, a life cycle assessment (LCA) of the exhausted CO 2 of these examples and comparative examples was performed, and the emitted CO 2 was calculated. In this example, the biomass-derived component of CO 2 generated during combustion becomes zero count, so that a significant CO 2 reduction can be achieved.

Claims (5)

動植物油脂および/または動物油脂由来成分を含有した炭化水素留分からなる原料油を、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびアルミナと、シリカ、チタニア、ジルコニアおよびボリアから選ばれる少なくとも1種類以上を含む複合酸化物を含有する水素化前処理触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させた後に、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびシリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナおよびシリカ−チタニア−アルミナから選ばれる無機酸化物を含有する水素化分解触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させ水素化分解処理することにより、硫黄分含有量10質量ppm以下、炭素数3の炭化水素が1.0モル%以上99.0モル%以下、炭素数4の炭化水素が1.0モル%以上99.0モル%以下である炭化水素を得、この炭化水素を1容量%以上含有する液化燃料ガス組成物を得ることを特徴とする液化燃料ガス組成物の製造方法The feedstock comprising a hydrocarbon fraction containing animal or vegetable fats and / or dynamic plant oils derived components, Co-Mo, Ni-Mo , and metal and alumina is selected from Ni-Co-Mo and Ni-W, silica, titania, zirconia and hydrogenated containing composite oxide comprising at least one or more selected from boria pretreatment catalyst and the hydrogen pressure 5~20MPa under hydrogen pressure, liquid hourly space velocity (LHSV) 0.1~2.2h - 1. Metal and silica-alumina, boria-alumina, zirconia-alumina selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W after contacting at a hydrogen / oil ratio of 300-1500 NL / L , Titania-zirconia-alumina, silica-boria-alumina, silica-zirconia-alumina and silica-titania-a Hydrocracking catalyst and hydrogen pressure 5~20MPa under hydrogen pressure containing an inorganic oxide selected from Mina, liquid hourly space velocity (LHSV) 0.1~2.2h -1, a hydrogen / oil ratio 300~1500NL / L The hydrocracking treatment is carried out at a hydrogen content of 10 mass ppm or less, the hydrocarbon having 3 carbon atoms is 1.0 mol% to 99.0 mol%, and the hydrocarbon having 4 carbon atoms is 1.0 mol%. A method for producing a liquefied fuel gas composition, comprising obtaining a hydrocarbon having a mol% of 9 mol% or less and obtaining a liquefied fuel gas composition containing 1 vol% or more of this hydrocarbon . 動植物油脂および/または動物油脂由来成分を含有した炭化水素留分と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比率で混合した混合油からなる原料油を、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびアルミナと、シリカ、チタニア、ジルコニアおよびボリアから選ばれる少なくとも1種類以上を含む複合酸化物を含有する水素化前処理触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させた後に、Co−Mo、Ni−Mo、Ni−Co−MoおよびNi−Wから選ばれる金属およびシリカ−アルミナ、ボリア−アルミナ、ジルコニア−アルミナ、チタニア−ジルコニア−アルミナ、シリカ−ボリア−アルミナ、シリカ−ジルコニア−アルミナおよびシリカ−チタニア−アルミナから選ばれる酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で水素圧力5〜20MPa、液空間速度(LHSV)0.1〜2.2h −1 、水素/油比300〜1500NL/Lで接触させ水素化分解処理することにより、硫黄分含有量10質量ppm以下、炭素数3の炭化水素が1.0モル%以上99.0モル%以下、炭素数4の炭化水素が1.0モル%以上99.0モル%以下である炭化水素を得、この炭化水素を1容量%以上含有する液化燃料ガス組成物を得ることを特徴とする液化燃料ガス組成物の製造方法The feedstock consisting of animal and vegetable fats and / or dynamic plant oils derived component hydrocarbon fraction containing a mixed oil obtained by mixing a petroleum hydrocarbon fraction in any ratio with kerosene fraction purified from crude oil Hydrogenation containing a composite oxide containing a metal selected from Co-Mo, Ni-Mo, Ni-Co-Mo and Ni-W and alumina, and at least one selected from silica, titania, zirconia and boria After contacting the pretreatment catalyst under hydrogen pressure with a hydrogen pressure of 5 to 20 MPa, a liquid space velocity (LHSV) of 0.1 to 2.2 h −1 , and a hydrogen / oil ratio of 300 to 1500 NL / L, Co—Mo, Ni -Metals selected from Mo, Ni-Co-Mo and Ni-W and silica-alumina, boria-alumina, zirconia-alumina, titania-zirconia-aluminum Silica - boria - alumina, silica - zirconia - alumina and silica - titania - hydride containing inorganic oxides having acid nature selected from alumina cracking catalyst and hydrogen under pressure in the hydrogen pressure 5 to 20 mPa, a liquid hourly space velocity ( LHSV) 0.1 to 2.2 h −1 , hydrogen / oil ratio 300 to 1500 NL / L, and hydrocracking to make the sulfur content 10 mass ppm or less and carbon number 3 hydrocarbons 1. A liquefied fuel gas containing 0 mol% or more and 99.0 mol% or less of hydrocarbons having 4 or more carbon atoms of 1.0 mol% or more and 99.0 mol% or less and containing 1% by volume or more of the hydrocarbons. A method for producing a liquefied fuel gas composition, comprising obtaining the composition. 製造された液化燃料ガス組成物中のエタンおよびエチレンからなるエタン混合物の含有量が5モル%以下、ブタジエンの含有量が0.5モル%以下、ペンタンの含有量が2モル%以下であることを特徴とする請求項1または2に記載の液化燃料ガス組成物の製造方法。 The content of the ethane mixture consisting of ethane and ethylene in the produced liquefied fuel gas composition is 5 mol% or less, the butadiene content is 0.5 mol% or less, and the pentane content is 2 mol% or less. A process for producing a liquefied fuel gas composition according to claim 1 or 2. 製造された液化燃料ガス組成物の105℃残渣分が10質量ppm以下であり、かつ105℃残渣分のpHが6以上8以下であることを特徴とする請求項1〜のいずれかに記載の液化燃料ガス組成物の製造方法According to any one of claims 1 to 3, characterized in that 105 ° C. remaining渣分of liquefied fuel gas composition produced is not more than 10 mass ppm, and the pH of 105 ° C. residual渣分is 6 to 8 A method for producing a liquefied fuel gas composition. 請求項1〜4のいずれかに記載の方法で製造することを特徴とする自動車用燃料に使用される液化燃料ガス組成物の製造方法 Method for producing a liquefied fuel gas compositions used in automotive fuel, characterized in that to produce the method according to any one of claims 1 to 4.
JP2005347278A 2005-11-30 2005-11-30 Method for producing liquefied fuel gas composition Expired - Fee Related JP4925653B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005347278A JP4925653B2 (en) 2005-11-30 2005-11-30 Method for producing liquefied fuel gas composition
CNA2006800449993A CN101341232A (en) 2005-11-30 2006-11-29 Liquefied fuel gas composition
KR1020087013041A KR20080071580A (en) 2005-11-30 2006-11-29 Liquefied fuel gas composition
PCT/JP2006/324306 WO2007064019A1 (en) 2005-11-30 2006-11-29 Liquefied fuel gas composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347278A JP4925653B2 (en) 2005-11-30 2005-11-30 Method for producing liquefied fuel gas composition

Publications (2)

Publication Number Publication Date
JP2007153940A JP2007153940A (en) 2007-06-21
JP4925653B2 true JP4925653B2 (en) 2012-05-09

Family

ID=38092349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347278A Expired - Fee Related JP4925653B2 (en) 2005-11-30 2005-11-30 Method for producing liquefied fuel gas composition

Country Status (4)

Country Link
JP (1) JP4925653B2 (en)
KR (1) KR20080071580A (en)
CN (1) CN101341232A (en)
WO (1) WO2007064019A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
CN102057019B (en) 2008-04-06 2014-07-02 环球油品公司 Fuel and fuel blending components from biomass derived pyrolysis oil
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
WO2011037901A2 (en) * 2009-09-25 2011-03-31 Exxonmobil Research And Engineering Company Fuel production from feedstock containing triglyceride and/or fatty acid alkyl ester
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US8816144B2 (en) * 2012-10-04 2014-08-26 Gas Technology Institute Direct production of fractionated and upgraded hydrocarbon fuels from biomass

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3924583C1 (en) * 1989-07-25 1990-11-08 Hans 7432 Bad Urach De Schur
JPH08283748A (en) * 1994-12-13 1996-10-29 Shell Internatl Res Maatschappij Bv Method of converting hydrocarbon

Also Published As

Publication number Publication date
KR20080071580A (en) 2008-08-04
WO2007064019A1 (en) 2007-06-07
CN101341232A (en) 2009-01-07
JP2007153940A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4925653B2 (en) Method for producing liquefied fuel gas composition
Sonthalia et al. Hydroprocessed vegetable oil as a fuel for transportation sector: A review
JP4878824B2 (en) Manufacturing method of environmentally low load type fuel and environmentally low load type fuel
WO2007064015A1 (en) Gas oil composition
JP5142588B2 (en) Method for producing gasoline composition
WO2009020055A1 (en) Gas oil composition
JP5072008B2 (en) Method for producing light oil composition
JP5121137B2 (en) Light oil composition
WO2008117856A1 (en) Gas oil composition
JP5117089B2 (en) Method for producing light oil composition
JP5137335B2 (en) Method for producing gasoline composition
JP5072005B2 (en) Method for producing unleaded gasoline composition
CN101473016A (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
KR101525269B1 (en) Light oil composition
JP5072010B2 (en) Light oil composition
WO2007142013A1 (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
WO2007132938A1 (en) Gas-oil composition
JP5072007B2 (en) Method for producing light oil composition
JP5121138B2 (en) Light oil composition
JP5288742B2 (en) Method for producing light oil composition
JP4847116B2 (en) A method for producing a liquefied fuel gas composition.
JP5072004B2 (en) Method for producing unleaded gasoline composition
JP5288741B2 (en) Method for producing light oil composition
JP5072006B2 (en) Method for producing light oil composition
WO2009020056A1 (en) Gas oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees