JP4925078B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4925078B2
JP4925078B2 JP2004006895A JP2004006895A JP4925078B2 JP 4925078 B2 JP4925078 B2 JP 4925078B2 JP 2004006895 A JP2004006895 A JP 2004006895A JP 2004006895 A JP2004006895 A JP 2004006895A JP 4925078 B2 JP4925078 B2 JP 4925078B2
Authority
JP
Japan
Prior art keywords
cooling water
manifold
path
fuel cell
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004006895A
Other languages
Japanese (ja)
Other versions
JP2005203189A (en
Inventor
光雄 唐金
博和 井崎
陽 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Celltech Co Ltd
Original Assignee
Eneos Celltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Celltech Co Ltd filed Critical Eneos Celltech Co Ltd
Priority to JP2004006895A priority Critical patent/JP4925078B2/en
Publication of JP2005203189A publication Critical patent/JP2005203189A/en
Application granted granted Critical
Publication of JP4925078B2 publication Critical patent/JP4925078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子形燃料電池に関し、特に燃料電池本体に供給する冷却水の一部を分流すると共に冷却水中に含まれている空気等のガスを排出するようにした固体高分子形燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell, and in particular, a polymer electrolyte fuel in which a part of cooling water supplied to a fuel cell main body is diverted and gas such as air contained in the cooling water is discharged. It relates to batteries.

固体高分子形燃料電池は、公知の如く固体高分子電解質膜の両面にアノード(燃料極)とカソード(空気極)とを設け、これらの両側にガス流路を設けたセパレータを配設して電池セルを構成し、アノードに接合するセパレータのガス流路には燃料ガス(通常は、水素を主体とした改質ガス)を流通させると共に、カソードに接合するセパレータには酸化剤ガス(通常は、空気)を流通させ、前記固体高分子電解質膜を介して化学反応を起こし、これにより起電力を生成するものである。又、所要の起電力を得るために、前記電池セルを単位して多数積層し、その両端部に端板を添えてロッド等で適圧に締め付け一体化することにより燃料電池本体(スタック)が構成される。   As is well known, a polymer electrolyte fuel cell is provided with an anode (fuel electrode) and a cathode (air electrode) on both sides of a solid polymer electrolyte membrane, and a separator provided with a gas channel on both sides thereof. A fuel cell (usually a reformed gas mainly composed of hydrogen) is circulated through the gas flow path of the separator that forms the battery cell and is joined to the anode, and an oxidant gas (usually a separator gas that is joined mainly to the cathode). , Air) is circulated to cause a chemical reaction through the solid polymer electrolyte membrane, thereby generating an electromotive force. Further, in order to obtain a required electromotive force, a large number of the battery cells are stacked in units, and end plates are attached to both ends of the battery cells, and the fuel cell main body (stack) is integrated by tightening to an appropriate pressure with a rod or the like. Composed.

上記固体高分子燃料電池は、前記化学反応が発熱反応であるため燃料電池本体に冷却水を供給して冷やし、最適な運転温度(約80℃)に保持するようにしている。このため、燃料電池本体内に冷却水を流通させる複数の冷却水プレートを介在させ、或は前記いずれかのセパレータの背面側に冷却水流路を設け、且つこれらに冷却水を配分して供給するための供給用マニホールドと、流通後の冷却水を合流して外部に排出するための排出用マニホールドとを設けて冷却水流通経路を形成してある。   In the solid polymer fuel cell, since the chemical reaction is an exothermic reaction, cooling water is supplied to the fuel cell main body to cool the fuel cell main body so as to maintain an optimum operating temperature (about 80 ° C.). Therefore, a plurality of cooling water plates for circulating the cooling water in the fuel cell main body are interposed, or a cooling water flow path is provided on the back side of any one of the separators, and the cooling water is distributed and supplied to these. A cooling water flow path is formed by providing a supply manifold for discharging and a discharge manifold for joining the discharged cooling water and discharging it to the outside.

上記燃料電池本体に供給する冷却水は、通常冷却水タンクからポンプで汲み上げ、この汲み上げた冷却水を前記供給用マニホールドに供給して燃料電池本体を冷却し、冷却後に前記排出用マニホールドから排出した冷却水を冷却水タンクに戻すようにしている。しかしながら、起動時又は停止時等に冷却水流通経路内に空気が混入し、或は冷却水中に微細なガス気泡が含まれていることがあり、このように冷却水に空気やガスが存在していると燃料電池本体への冷却水の供給が阻害され、冷却水供給不足又は分配不均一が生じて電池内部の温度分布が大きくなり、その結果燃料電池本体の発電性能を低下させるという問題があった。   The cooling water supplied to the fuel cell main body is usually pumped up from a cooling water tank, and the pumped cooling water is supplied to the supply manifold to cool the fuel cell main body. After cooling, the cooling water is discharged from the discharge manifold. The cooling water is returned to the cooling water tank. However, air may be mixed in the cooling water flow path at the time of starting or stopping, or fine gas bubbles may be included in the cooling water, and thus air or gas exists in the cooling water. If this occurs, the supply of cooling water to the fuel cell body will be hindered, resulting in a shortage of cooling water supply or uneven distribution, resulting in a large temperature distribution inside the battery, resulting in a decrease in power generation performance of the fuel cell body. there were.

このような問題を解消するための手段として、従来例えば特許文献1のように燃料電池本体に供給する冷却水流通経路に空気排出手段(気水分離)を数箇所設け、冷却水中に空気等のガスが含まれていても空気排出手段により気水分離することで、燃料電池本体に空気等のガスが流入しないようにした技術が知られている。
特開2003−123805号公報
As means for solving such problems, conventionally, several air discharge means (air / water separation) are provided in the cooling water circulation path to be supplied to the fuel cell main body as in, for example, Patent Document 1, and air or the like is provided in the cooling water. A technique is known in which gas such as air is prevented from flowing into a fuel cell body by separating air and water with an air discharge means even if gas is contained.
JP 2003-123805 A

しかしながら、上記従来技術では空気排出手段でのガス抜き効率を向上させるために配管径を大きくしなければならず、又空気排出手段が複数必要となって設置スペースを多く必要とすることから燃料電池システムの大型化を招いてしまう。又、ガス抜きを制御する水位検出センサ等を設置しているため、冷却水流通経路の複雑化やコストアップを引き起こすことになる。更に、従来の固体高分子形燃料電池においては、冷却水を燃料電池本体に供給して最適な運転温度に保持するものの、特に燃料電池本体の両端部は外気に近いため他の部分よりも温度が低下し、両端部近傍に位置する電池セルの発電性能が低下する問題があった。   However, in the above prior art, the pipe diameter must be increased in order to improve the gas venting efficiency in the air discharge means, and a plurality of air discharge means are required, so that a large installation space is required. This will increase the size of the system. Further, since a water level detection sensor or the like for controlling the venting is installed, the cooling water flow path becomes complicated and the cost increases. Furthermore, in the conventional polymer electrolyte fuel cell, although cooling water is supplied to the fuel cell main body and kept at the optimum operating temperature, both ends of the fuel cell main body are close to the outside air, so the temperature is higher than other parts. There is a problem that the power generation performance of the battery cells located near both ends is lowered.

本発明は、このような従来技術の諸問題を解決するためになされ、空気排出手段、配管径の大きな冷却水回路、及び水位検出センサ等を必要とせずに燃料電池システムの大型化を抑制でき、燃料電池本体に供給する冷却水の一部を分流して冷却水中に含まれている空気等のガスを排出する共に、燃料電池本体の両端部に冷却水を供給して温度低下を抑えるようにした固体高分子形燃料電池を提供することを目的とする。   The present invention has been made to solve such problems of the prior art, and can suppress an increase in the size of the fuel cell system without requiring an air discharge means, a cooling water circuit having a large pipe diameter, a water level detection sensor, or the like. In addition, a part of the cooling water supplied to the fuel cell main body is diverted to discharge gas such as air contained in the cooling water, and the cooling water is supplied to both ends of the fuel cell main body to suppress the temperature drop. An object of the present invention is to provide a solid polymer fuel cell.

上記の目的を達成するための本発明の手段として、請求項1は、単位電池セルを面接合状態に多数積層し、上部に前記積層方向に貫通して設けられた冷却水供給口(第1マニホールド)と、上部に設けられ前記冷却水供給口(第1マニホールド)を流通する冷却水のうち大部分が流入する冷却水供給口(第2マニホールド)と、上部から下部にかけて設けられ前記冷却水供給口(第2マニホールド)からの冷却水が前記各単位セル中を上から下方向に流れる水流路と、下部に設けられ前記水流路からの冷却水が流れる冷却水排水口(第3マニホールド)と、下部に設けられ前記冷却水排水口(第3マニホールド)からの冷却水が流れる冷却水排水口(第4マニホールド)とを有する燃料電池本体を備え、
前記燃料電池本体よりも上側に冷却水供給路を備え、
前記冷却水供給口(第1マニホールド)の入口とは反対側の奥端部にて接続されて前記燃料電池本体より上方に延設され前記冷却水供給口(第1マニホールド)を流通する冷却水のうちの一部が分流する分流経路と、前記分流経路で分流された前記冷却水が二股に分岐する分岐路とを備え、
前記冷却水排水口(第4マニホールド)及び前記分岐路からの冷却水が流入する冷却水排出路を介して冷却水を冷却水タンクに戻すとともに、前記冷却水を冷却水タンクから前記冷却水供給路に向けて送り出すように構成した冷却水循環経路を備え、
前記冷却水供給路から供給される冷却水の流通方向に沿い前記冷却水供給口(第1マニホールド)の前記奥端部に向けて徐々に上向き傾斜した仕切板を、前記冷却水供給口(第1マニホールド)の内部に設け、
前記分流経路は、前記冷却水排出路より小径の細管で構成して前記冷却水排出路よりも圧力損失を大きく構成し、
分流経路で分流した分岐路の冷却水を燃料電池本体の両端部に供給して温度低下を抑えるように構成した固体高分子形燃料電池を特徴とする。
As a means of the present invention for achieving the above object, the present invention provides a cooling water supply port (firstly provided) in which a large number of unit battery cells are stacked in a surface-bonded state and provided in the upper part so as to penetrate in the stacking direction. Manifold), a cooling water supply port (second manifold) into which most of the cooling water flowing through the cooling water supply port (first manifold) flows, and the cooling water provided from the top to the bottom. A water flow path in which the cooling water from the supply port (second manifold) flows from the top to the bottom in each unit cell, and a cooling water drain port (third manifold) provided in the lower part and through which the cooling water from the water flow path flows And a fuel cell main body having a cooling water drain port (fourth manifold) provided at a lower portion and through which cooling water from the cooling water drain port (third manifold) flows,
A cooling water supply path is provided above the fuel cell main body,
Cooling water that is connected at the back end opposite to the inlet of the cooling water supply port (first manifold), extends upward from the fuel cell body, and flows through the cooling water supply port (first manifold). A diversion path in which a part of the diversion path is diverted, and a branch path where the cooling water diverted in the diversion path is bifurcated.
The cooling water is returned to the cooling water tank through the cooling water drain port (fourth manifold) and the cooling water discharge passage through which the cooling water from the branch passage flows, and the cooling water is supplied from the cooling water tank to the cooling water. A cooling water circulation path configured to send out toward the road,
A partition plate that is gradually inclined upward toward the back end portion of the cooling water supply port (first manifold) along the flow direction of the cooling water supplied from the cooling water supply channel is provided with the cooling water supply port (first 1 manifold),
The diversion path is configured by a narrow pipe having a smaller diameter than the cooling water discharge path, and is configured to have a larger pressure loss than the cooling water discharge path,
It is characterized by a polymer electrolyte fuel cell configured to supply cooling water of a branch path branched in a diversion path to both ends of the fuel cell main body to suppress a temperature drop.

上記請求項1の発明によれば、燃料電池本体に設けられた冷却水供給口から冷却水の一部を分流する分流経路を設けているため、この分流経路を利用して冷却水の一部を分流することにより冷却水中に含まれている空気等のガスを排出することができる。   According to the first aspect of the present invention, since the diversion path for diverting a part of the cooling water from the cooling water supply port provided in the fuel cell main body is provided, a part of the cooling water is utilized using the diversion path. The gas such as air contained in the cooling water can be discharged by dividing the gas.

また、上記請求項1の発明によれば、前記分流経路は冷却水循環経路より圧力損失が大きく形成されているため、燃料電池本体の冷却水供給口に供給される冷却水の大部分は冷却水プレートに流通し、冷却水の一部のみを分流経路に分流させることができる。   According to the first aspect of the present invention, since the pressure distribution in the diversion path is larger than that in the cooling water circulation path, most of the cooling water supplied to the cooling water supply port of the fuel cell main body is cooling water. It distribute | circulates to a plate and can divert only a part of cooling water to a diversion path.

また、上記請求項1の発明によれば、前記分流経路の入口端部は、前記冷却水供給口の上方領域に設けられているため、冷却水供給口の上方領域に溜まりやすい空気等のガスを効率良く排出することができる。   According to the first aspect of the present invention, since the inlet end portion of the diversion path is provided in an upper region of the cooling water supply port, a gas such as air that easily collects in the upper region of the cooling water supply port. Can be discharged efficiently.

また、上記請求項1の発明によれば、前記冷却水供給口に、冷却水流通方向に沿って徐々に上向きに傾斜した仕切板を設け、冷却水供給口の奥端部に分流経路を位置させているため、冷却水供給口の奥端部に空気等のガスを一層溜まり易くして効率良く排出することができる。   According to the first aspect of the present invention, the cooling water supply port is provided with the partition plate that is gradually inclined upward along the cooling water flow direction, and the flow dividing path is located at the back end of the cooling water supply port. Therefore, gas such as air can be more easily collected at the back end of the cooling water supply port, and can be efficiently discharged.

上記請求項1の発明によれば、前記分流経路を二股に分岐させ、一方の分岐路に分岐した冷却水は燃料電池スタックの一方の端板に流通させ、他方の分岐路に分岐した冷却水は燃料電池スタックの他方の端板に流通させるため、冷却水の持つ熱により燃料電池本体の両端部を温めることができ、これにより端部に位置する電池セルの温度低下を抑えることができる。   According to the first aspect of the present invention, the cooling water branched into the two branch paths, the cooling water branched into one branch path is circulated through one end plate of the fuel cell stack, and the cooling water branched into the other branch path Is circulated through the other end plate of the fuel cell stack, so that both ends of the fuel cell main body can be warmed by the heat of the cooling water, thereby suppressing the temperature drop of the battery cells located at the end.

次に、本発明に係る固体高分子形燃料電池の実施形態を添付図面に基づいて説明する。
添付図面中、図1は本発明に係る固体高分子形燃料電池の基本的原理を説明するための参考例1を示す概略構成図である。図2はその参考例1に係る燃料電池本体の概略斜視図である。図3はその参考例1に係る燃料電池本体の冷却水流路を示す概略縦断側面図である。図4はその参考例1に係る燃料電池本体の冷却水流路などを示す概略縦断正面図である。図5は本発明に係る固体高分子形燃料電池の実施形態を示す概略構成図である。図6は本発明に係る固体高分子形燃料電池の変形例を示す概略構成図である。
Next, an embodiment of a polymer electrolyte fuel cell according to the present invention will be described with reference to the accompanying drawings.
In the accompanying drawings, FIG. 1 is a schematic configuration diagram showing a reference example 1 for explaining the basic principle of a polymer electrolyte fuel cell according to the present invention. FIG. 2 is a schematic perspective view of a fuel cell main body according to the first reference example . FIG. 3 is a schematic longitudinal sectional side view showing the cooling water flow path of the fuel cell main body according to Reference Example 1. FIG. FIG. 4 is a schematic longitudinal sectional front view showing a cooling water flow path and the like of the fuel cell main body according to Reference Example 1 . FIG. 5 is a schematic configuration diagram showing an embodiment of a polymer electrolyte fuel cell according to the present invention. FIG. 6 is a schematic configuration diagram showing a modification of the polymer electrolyte fuel cell according to the present invention.

参考例1]
図1において、1は燃料電池本体であり、その構成要素の一部であるアノード2及びカソード3とその間に位置する冷却水プレート4とが模式的に示されている。燃料電池本体1は、従来と同様に実際は図3に略図で示すように固体高分子電解質膜5の両面にアノード2とカソード3を設け、これらの両側にガス流路(図略)を設けたセパレータ6、7を配設して単位電池セル8を構成し、この単位電池セル8を面接合状態に多数積層し、両端に端板9、10を添えてロッド(図略)等により締め付け一体化することによりスタックとして構成される。
[ Reference Example 1]
In FIG. 1, reference numeral 1 denotes a fuel cell main body, schematically showing an anode 2 and a cathode 3 which are part of the constituent elements, and a cooling water plate 4 positioned therebetween. The fuel cell main body 1 is actually provided with an anode 2 and a cathode 3 on both sides of a solid polymer electrolyte membrane 5 as shown schematically in FIG. Separators 6 and 7 are arranged to form unit battery cells 8, a large number of unit battery cells 8 are stacked in a surface-bonded state, end plates 9 and 10 are attached to both ends, and tightened with a rod (not shown) or the like. It is configured as a stack.

上記燃料電池本体1において、アノード2に接合するセパレータ6のガス流路には燃料ガス(通常は、水素を主体とした改質ガス)を流通させると共に、カソード3に接合するセパレータ7のガス流路には酸化剤ガス(通常は、空気)を流通させ、固体高分子電解質膜5を介して化学反応を生じさせることにより発電する。   In the fuel cell body 1, fuel gas (usually a reformed gas mainly composed of hydrogen) is circulated through the gas flow path of the separator 6 joined to the anode 2, and the gas flow of the separator 7 joined to the cathode 3. Electricity is generated by causing an oxidant gas (usually air) to flow through the path and causing a chemical reaction through the solid polymer electrolyte membrane 5.

前記冷却水プレート4は、単位電池セル8の間に複数枚組み込まれるのが通常であるが、セパレータ6又はセパレータ7の背面側に水流路を形成して冷却水プレート4に代えて構成する場合もある。冷却水プレート4への冷却水の供給は、例えば図2及び図3のように燃料電池本体1の上部に積層方向に貫通して設けられている冷却水供給口11(以下、第1マニホールドと称する)と、この第1マニホールド11に連通して冷却水プレート4の上部に設けられる凹部状の冷却水供給口4a(以下、第2マニホールドと称する)と、この第2マニホールド4aに連通して冷却水プレート4の上下方向に並設される凹溝状の水流路4bとを介して行われる。即ち、冷却水タンク14の冷却水は、ポンプ15の作動により熱交換器19を通って水温調整されてから第1マニホールド11の入口11a(図3)に供給され、この第1マニホールド11内を流れながら各冷却水プレート4の第2マニホールド4a(図2)内に配分され、この第2マニホールド4aから各水流路4bに供給される。   Usually, a plurality of the cooling water plates 4 are incorporated between the unit battery cells 8, but a case where the cooling water plate 4 is configured by forming a water flow path on the back side of the separator 6 or the separator 7. There is also. The cooling water is supplied to the cooling water plate 4 as shown in FIGS. 2 and 3, for example, in the cooling water supply port 11 (hereinafter referred to as the first manifold) provided in the upper part of the fuel cell main body 1 in the stacking direction. And a recessed cooling water supply port 4a (hereinafter referred to as a second manifold) provided in the upper portion of the cooling water plate 4 in communication with the first manifold 11 and in communication with the second manifold 4a. This is performed via a groove-shaped water flow path 4b arranged in parallel in the vertical direction of the cooling water plate 4. That is, the cooling water in the cooling water tank 14 is supplied to the inlet 11 a (FIG. 3) of the first manifold 11 after the water temperature is adjusted through the heat exchanger 19 by the operation of the pump 15. While flowing, it is distributed in the second manifold 4a (FIG. 2) of each cooling water plate 4, and is supplied from the second manifold 4a to each water flow path 4b.

冷却水プレート4を重力方向に流下した冷却水は、図2のように各水流路4bに連通して冷却水プレート4の下部に設けられている凹部状の冷却水排出口4c(以下、第3マニホールドと称する)に排出され、この第3マニホールド4cに連通して前記燃料電池本体1の下部に積層方向に貫通して設けられている冷却水排出口12(以下、第4マニホールドと称する)に流入し、各冷却水プレート4から排出される冷却水が合流して第4マニホールド12の出口12a(図3)から外部に排出される。   The cooling water that has flowed down the cooling water plate 4 in the direction of gravity communicates with each of the water flow paths 4b as shown in FIG. The cooling water discharge port 12 (hereinafter referred to as the fourth manifold) provided in the lower portion of the fuel cell main body 1 and penetrating in the stacking direction is communicated with the third manifold 4c. Then, the cooling water discharged from each cooling water plate 4 joins and is discharged to the outside from the outlet 12a (FIG. 3) of the fourth manifold 12.

本発明では、この参考例1のように、燃料電池本体1に供給される冷却水の一部を分流するための分流経路を、燃料電池本体1より高い位置に設ける。例えば図3に示す分流経路13は、第1マニホールド11の奥端部即ち入口11aとは反対側の端部(端板10により閉塞されている)の上方領域に接続させて燃料電池本体1より上方に延設してある。この分流経路13は、冷却水循環経路16特に冷却水供給路16aより圧力損失を大きくするために、例えば冷却水供給路16aの管より小径の細管等から構成されている。冷却水が供給される第1マニホールド11の奥端部の上方領域は、冷却水中に含まれている空気等のガスが溜まり易い箇所であり、そこに分流経路13を接続することで冷却水の一部を吸い込んで分流すると同時に、溜まっている空気等のガスを吸い込んで排出することができる。この時、第1マニホールド11に供給される冷却水の大部分を前記各冷却水プレート4の第2マニホールド4aに流通させ、冷却水の一部(5%程度)のみを分流経路13に分流させるために、上記のように分流経路13の圧力損失を大きく設定してある。 In the present invention, as in the first reference example, a diversion path for diverting a part of the cooling water supplied to the fuel cell main body 1 is provided at a position higher than the fuel cell main body 1. For example, the diversion path 13 shown in FIG. 3 is connected to the upper end of the first manifold 11, that is, the upper end of the first manifold 11 opposite to the inlet 11 a (closed by the end plate 10). It extends upward. In order to increase the pressure loss more than the cooling water circulation path 16, particularly the cooling water supply path 16 a, the diversion path 13 is composed of, for example, a narrow pipe having a smaller diameter than the pipe of the cooling water supply path 16 a. The upper region of the back end portion of the first manifold 11 to which the cooling water is supplied is a place where gas such as air contained in the cooling water is easily collected, and the cooling water is connected by connecting the diversion path 13 therewith. A part of the air can be sucked and diverted, and at the same time, gas such as accumulated air can be sucked and discharged. At this time, most of the cooling water supplied to the first manifold 11 is circulated to the second manifold 4a of each cooling water plate 4 and only a part (about 5%) of the cooling water is diverted to the diversion path 13. Therefore, as described above, the pressure loss of the diversion path 13 is set large.

又、図3に示すように、第1マニホールド11の内部に冷却水流通方向に沿って徐々に上向き傾斜した仕切板20を設けておくと、この仕切板20によって第1マニホールド11の奥端部の上方領域に空気等のガスが一層溜まり易くなる。これにより、冷却水中に含まれている空気等のガスを効率良く排出することができる。   Further, as shown in FIG. 3, when a partition plate 20 that is gradually inclined upward along the coolant flow direction is provided inside the first manifold 11, the rear end portion of the first manifold 11 is provided by the partition plate 20. It becomes easier for gas such as air to accumulate in the upper region of. Thereby, gas, such as air contained in cooling water, can be discharged efficiently.

上記分流経路13は、図1に模式的に示すように途中で二股に分岐させて一方の分岐路13aは前記第4マニホールド12の出口12a近傍に接続し、他方の分岐路13bは冷却水循環経路16の冷却水排出路16bに接続してある。これらの分岐路13a、13bは、らせん管を用いて全長が直管の場合より長く形成することで圧力損失を増大させてある。尚、この場合分流経路13は二股に分岐させずに1本のらせん管で実施することも可能である。   As shown schematically in FIG. 1, the branch path 13 is bifurcated in the middle, one branch path 13a is connected to the vicinity of the outlet 12a of the fourth manifold 12, and the other branch path 13b is a cooling water circulation path. It is connected to 16 cooling water discharge paths 16b. These branch passages 13a and 13b are made longer by using a spiral pipe than in the case of a straight pipe, thereby increasing the pressure loss. In this case, the diversion path 13 can be implemented by one spiral pipe without branching into two branches.

分流経路13は、前記のように燃料電池本体1における第1マニホールド11の奥端部に接続する場合に限定されず、例えば図4に示すように冷却水プレート4における第2マニホールド4aに接続するようにしてもよい。第2マニホールド4aに分流経路13を設ける場合においても、第2マニホールド4aの奥端部即ち第1マニホールド11とは反対側の端部の上方領域に接続させて燃料電池本体1より上方に延設する。この分流経路13は、冷却水循環経路16特に冷却水供給路16aより圧力損失を大きくするために、例えば冷却水供給路16aの管より小径の細管等から構成する。第1マニホールド11から冷
却水が供給される第2マニホールド4aの奥端部の上方領域は、冷却水中に混入している空気等のガスが溜まり易い箇所であり、そこに分流経路13を接続することで冷却水の一部を吸い込んで分流すると同時に、溜まっている空気等のガスを吸い込んで排出することができる。この時、第2マニホールド4aに供給される冷却水の大部分を前記冷却水プレート4の水流路4bに流通させ、冷却水の一部(5%程度)のみを分流経路13に分流させるために、上記のように分流経路13の圧力損失を大きく設定してある。又、第2マニホールド4aの内部に冷却水流通方向(この場合は冷却水流入方向)に沿って上向きに傾斜した仕切板21を設けておくと、この仕切板21によって第2マニホールド4aの奥端部の上方領域に空気等のガスが一層溜まり易くなる。これにより、冷却水中に含まれている空気等のガスを効率良く排出することができる。分流経路13を第2マニホールド4aに接続する場合には、各冷却水プレート4にそれぞれ設けることになるから、それらの分流経路13を途中で合流させる合流手段(図略)が必要となる。
The diversion path 13 is not limited to the case where it is connected to the back end portion of the first manifold 11 in the fuel cell main body 1 as described above. For example, as shown in FIG. 4, the diversion path 13 is connected to the second manifold 4a in the cooling water plate 4. You may do it. Even when the flow dividing path 13 is provided in the second manifold 4a, the second manifold 4a is connected to the upper end of the rear end of the second manifold 4a, that is, the end opposite to the first manifold 11, and extends upward from the fuel cell body 1. To do. In order to increase pressure loss more than the cooling water circulation path 16, particularly the cooling water supply path 16a, the diversion path 13 is constituted by, for example, a narrow tube having a smaller diameter than the pipe of the cooling water supply path 16a. The upper region of the back end portion of the second manifold 4a to which the cooling water is supplied from the first manifold 11 is a place where gas such as air mixed in the cooling water is easily collected, and the flow dividing path 13 is connected thereto. In this way, a part of the cooling water can be sucked and diverted, and at the same time, gas such as accumulated air can be sucked and discharged. At this time, in order to distribute most of the cooling water supplied to the second manifold 4 a to the water flow path 4 b of the cooling water plate 4 and to divert only a part (about 5%) of the cooling water to the diversion path 13. As described above, the pressure loss of the diversion path 13 is set large. Further, if a partition plate 21 inclined upward along the coolant flow direction (in this case, the coolant inflow direction) is provided inside the second manifold 4a, the rear end of the second manifold 4a is provided by the partition plate 21. Gas such as air is more easily collected in the upper region of the section. Thereby, gas, such as air contained in cooling water, can be discharged efficiently. When the diversion path 13 is connected to the second manifold 4a, each cooling water plate 4 is provided with a merging means (not shown) for merging the diversion paths 13 on the way.

実施形態]
図5は、本発明に係る固体高分子形燃料電池の実施形態を示すもので、上記の参考例1と同じ構成部材は同一の符号を付けてそれらの詳しい説明は省略する。本実施形態では、分流経路13により分流した冷却水を、燃料電池本体1における両側の端板9、10に流通させることにより、燃料電池本体1の両端部に位置する単位電池セルの温度低下を抑えるようにしたものである。
[ Embodiment]
Figure 5 shows an embodiment of a polymer electrolyte fuel cell according to the present invention, the above reference example 1 and the same components are omitted and the detailed description thereof given the same reference numerals. In the present embodiment, the cooling water diverted through the diversion path 13 is circulated through the end plates 9 and 10 on both sides of the fuel cell main body 1, thereby reducing the temperature drop of the unit battery cells located at both ends of the fuel cell main body 1. It is something to be suppressed.

図5において、前記分流経路13を分岐した一方の分岐路13aは燃料電池本体1における一方の端板9に冷却水を供給して流通させると共に、前記第4マニホールド12の出口12a近傍に接続し、他方の分岐路13bは燃料電池本体1における他方の端板10に冷却水を供給して流通させると共に、冷却水循環経路16の冷却水排出路16bに接続してある。端板9、10にはそれぞれ冷却水を流通するための複数の孔状水流路(図略)を内部に並列させて設けるか、又は内面側に凹溝状水流路(図略)を並列させて設け、且つ上部には各水流路の入口に連通する供給口(図略)を設け、下部には各水流路の出口に連通する排出口(図略)を設ける。   In FIG. 5, one branch path 13 a branched from the diversion path 13 supplies and circulates cooling water to one end plate 9 in the fuel cell main body 1 and is connected to the vicinity of the outlet 12 a of the fourth manifold 12. The other branch path 13b supplies and circulates cooling water to the other end plate 10 of the fuel cell main body 1 and is connected to the cooling water discharge path 16b of the cooling water circulation path 16. The end plates 9 and 10 are each provided with a plurality of perforated water flow paths (not shown) for circulating cooling water in parallel with each other, or recessed groove water flow paths (not shown) are arranged in parallel on the inner surface side. The upper part is provided with a supply port (not shown) communicating with the inlet of each water channel, and the lower part is provided with a discharge port (not shown) communicating with the outlet of each water channel.

燃料電池本体1の第4マニホールド12から排出される冷却水は、燃料電池本体1の適正な運転温度(約80℃)に近い温度となっており、この冷却水が冷却水循環経路16の冷却水排出路16bを経て冷却水タンク14に戻る。冷却水タンク14内の冷却水は徐々に昇温し、この昇温冷却水がポンプ15の作動により熱交換器19を通って温度調整され、冷却水循環経路16の冷却水供給路16aを経て燃料電池本体1の第1マニホールド11に供給される。第1マニホールド11に供給される冷却水は、各冷却水プレート4の第2マニホールド4aから水流路4bを流通し、隣接するセパレータ6又はセパレータ7と熱交換する。これにより、燃料電池本体1の内部は冷やされて適正な運転温度(約80℃)に保持され、第4マニホールド12から排出される冷却水は温められて約80℃になる。   The cooling water discharged from the fourth manifold 12 of the fuel cell main body 1 has a temperature close to an appropriate operating temperature (about 80 ° C.) of the fuel cell main body 1, and this cooling water is the cooling water in the cooling water circulation path 16. It returns to the cooling water tank 14 through the discharge path 16b. The temperature of the cooling water in the cooling water tank 14 gradually rises, and the temperature of the temperature rising cooling water is adjusted through the heat exchanger 19 by the operation of the pump 15, and the fuel passes through the cooling water supply path 16 a of the cooling water circulation path 16. It is supplied to the first manifold 11 of the battery body 1. The cooling water supplied to the first manifold 11 flows from the second manifold 4 a of each cooling water plate 4 through the water flow path 4 b and exchanges heat with the adjacent separator 6 or separator 7. Thereby, the inside of the fuel cell main body 1 is cooled and maintained at an appropriate operating temperature (about 80 ° C.), and the cooling water discharged from the fourth manifold 12 is warmed to about 80 ° C.

分流経路13は、前記のように第1マニホールド11に供給される冷却水の一部を分流し、同時に冷却水中に含まれている空気等のガスを排出することができる。そして、分流経路13から分岐路13a、13bにそれぞれ流入した冷却水は、前記のように燃料電池本体1の両端に位置する端板9、10に供給されて流通するため、これらの端板9、10を温めることができる。これにより、端板9、10に隣接する単位電池セルの温度低下を抑えてほぼ適正温度80℃に保持することが可能となり、端部に位置する単位電池セルでの発電性能の低下を抑えることができる。   The diversion path 13 can divert part of the cooling water supplied to the first manifold 11 as described above, and at the same time, discharge gas such as air contained in the cooling water. Then, the cooling water flowing into the branch paths 13a and 13b from the branch path 13 is supplied to the end plates 9 and 10 located at both ends of the fuel cell main body 1 as described above, so that these end plates 9 10 can be warmed. As a result, the temperature drop of the unit battery cells adjacent to the end plates 9 and 10 can be suppressed and maintained at an appropriate temperature of 80 ° C., and the deterioration of the power generation performance in the unit battery cell located at the end can be suppressed. Can do.

前記実施形態では、分流経路13を二股に分岐させた例で説明したが、前記第1マニホールド11に第1の分流経路(図略)を、第2マニホールド4aに第2の分流経路(図略)をそれぞれ設けて2つの分流経路を併用する構成にしてもよい。前記第2実施形態では、燃料電池本体1の端板9、10に分流経路13による冷却水をほぼ均一に供給することが望ましく、このため分流経路13を二股に分岐させる構成とするのが好ましい。   In the above embodiment, the diversion path 13 is bifurcated. However, the first diversion path (not shown) is provided in the first manifold 11, and the second diversion path (not shown) in the second manifold 4a. ) May be provided, and two shunt paths may be used in combination. In the second embodiment, it is desirable to supply the coolant through the diversion path 13 almost uniformly to the end plates 9 and 10 of the fuel cell main body 1, and therefore, the diversion path 13 is preferably bifurcated. .

参考例2]
図6は、本発明に係る固体高分子形燃料電池の変形例(以下、これを「参考例2」とよぶ)を示すもので、参考例1又は上記実施形態と同じ構成部材は同一の符号を付けてそれらの詳しい説明は省略する。本参考例2では、分流経路13により分流した冷却水を空気加湿器17に流通させて、燃料電池本体1に供給する酸化剤ガス(空気)を加湿するようにしたものである。
[ Reference Example 2]
FIG. 6 shows a modification of the polymer electrolyte fuel cell according to the present invention (hereinafter referred to as “Reference Example 2”) , and the same components as those in Reference Example 1 or the above embodiment are denoted by the same reference numerals. A detailed description thereof will be omitted. In the present reference example , the cooling water divided by the diversion path 13 is circulated through the air humidifier 17 to humidify the oxidant gas (air) supplied to the fuel cell main body 1.

図6において、17は内部に水分透過膜(図略)が配置された空気加湿器であり、外部から取り込んだ空気を加湿して空気流通経路18の空気供給路18aにより燃料電池本体1のカソード3に供給し、このカソード3で発電反応に使われなかった残余の未反応空気は空気排出路18bにより空気加湿器17に戻され、この空気加湿器17から外部に排出される。空気加湿器17内では、外部から取り込んだ空気が流通する領域と、空気排出路18bから戻される未反応空気が流通する領域とは前記水分透過膜により仕切られている。   In FIG. 6, reference numeral 17 denotes an air humidifier in which a moisture permeable membrane (not shown) is disposed. The air humidifier humidifies the air taken in from the outside and the cathode of the fuel cell main body 1 by the air supply path 18 a of the air circulation path 18. 3 and the remaining unreacted air that has not been used for the power generation reaction at the cathode 3 is returned to the air humidifier 17 by the air discharge path 18b and is discharged from the air humidifier 17 to the outside. In the air humidifier 17, the region through which air taken in from outside flows and the region through which unreacted air returned from the air discharge path 18b flows are partitioned by the moisture permeable membrane.

分流経路13の分岐路13a、13bは、それぞれ前記空気流通経路18の空気排出路18bに接続されている。尚、分流経路13を二股に分岐させずに1本のらせん管で実施することも可能である。   The branch paths 13a and 13b of the diversion path 13 are connected to the air discharge path 18b of the air circulation path 18, respectively. In addition, it is also possible to implement with one spiral pipe without branching the diversion path 13 into two branches.

分流経路13は、燃料電池本体1の第1マニホールド11に供給される冷却水の一部を分流し、同時に冷却水中に含まれている空気等のガスを排出することができる。そして、分流経路13から分岐路13a、13bにそれぞれ流入した冷却水は、前記空気流通経路18の空気排出路18c内に供給されるため、燃料電池本体1のカソード3から排出されて空気排出路18b内を流れる未反応空気と混合する。この気液混合状態の未反応空気は、前記空気加湿器17内を流通するが、その時水分透過膜により水分が吸収される。   The diversion path 13 can divert part of the cooling water supplied to the first manifold 11 of the fuel cell main body 1 and simultaneously discharge a gas such as air contained in the cooling water. The cooling water that has flowed into the branch paths 13a and 13b from the branch path 13 is supplied into the air discharge path 18c of the air circulation path 18, and is thus discharged from the cathode 3 of the fuel cell main body 1 to the air discharge path. Mix with unreacted air flowing in 18b. The unreacted air in the gas-liquid mixed state flows through the air humidifier 17, and at that time, moisture is absorbed by the moisture permeable membrane.

この水分透過膜により仕切られている他方の領域内は、外部から取り込んだ空気が流通するため、水分透過膜から蒸発する水分によって空気が加湿される。即ち、水分透過膜を挟んで接する前記気液混合状態の未反応空気と、外部から取り込んだ空気との間で水分交換が行われる。空気加湿器17で加湿された空気は、前記空気供給路18aから燃料電池本体1のカソード3に酸化剤ガスとして供給され、除湿された未反応空気は空気加湿器17から外部に排出される。これにより、従来使用していた加湿用のバブリング手段等が不要になる。   Since the air taken in from the outside flows through the other region partitioned by the moisture permeable membrane, the air is humidified by the moisture evaporated from the moisture permeable membrane. That is, moisture exchange is performed between the unreacted air in the gas-liquid mixed state that is in contact with the moisture permeable membrane and the air taken from the outside. The air humidified by the air humidifier 17 is supplied as an oxidant gas from the air supply path 18a to the cathode 3 of the fuel cell body 1, and the dehumidified unreacted air is discharged from the air humidifier 17 to the outside. Thereby, the bubbling means for humidification etc. which were conventionally used become unnecessary.

前記実施形態及び前記変形例では、分流経路13を二股に分岐させた例で説明したが、前記第1マニホールド11に第1の分流経路(図略)を、第2マニホールド4aに第2の分流経路(図略)をそれぞれ設けて2つの分流経路を併用する構成にしてもよい。前記実施形態では、燃料電池本体1の端板9、10に分流経路13による冷却水をほぼ均一に供給することが望ましく、このため分流経路13を二股に分岐させる構成とするのが好ましい。 In the embodiment and the modification described above, an example in which the diversion path 13 is bifurcated has been described. However, the first diversion path (not shown) is provided in the first manifold 11, and the second diversion flow is provided in the second manifold 4a. A path (not shown) may be provided, and two shunt paths may be used in combination. In the above-described embodiment , it is desirable to supply the cooling water by the diversion path 13 almost uniformly to the end plates 9 and 10 of the fuel cell main body 1, and therefore, the diversion path 13 is preferably bifurcated.

本発明に係る固体高分子形燃料電池は、定置型の燃料電池発電システムや熱電併給のコージェネレーションシステム、その他の装置や機器等に発電手段として組み込んで適用することができる。   The polymer electrolyte fuel cell according to the present invention can be applied by being incorporated as a power generation means in a stationary fuel cell power generation system, a cogeneration system co-generation with heat and power, or other devices and devices.

本発明に係る固体高分子形燃料電池の基本的原理を説明するための参考例1を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing a reference example 1 for explaining a basic principle of a polymer electrolyte fuel cell according to the present invention. その参考例1に係る燃料電池本体の概略斜視図である。 2 is a schematic perspective view of a fuel cell main body according to Reference Example 1. FIG. その参考例1に係る燃料電池本体の冷却水流路を示す概略縦断側面図である。 It is a schematic longitudinal cross-sectional side view which shows the cooling water flow path of the fuel cell main body which concerns on the reference example 1. FIG. その参考例1に係る燃料電池本体の実施形態を示す概略縦断正面図である。 It is a schematic longitudinal cross-sectional front view which shows embodiment of the fuel cell main body which concerns on the reference example 1. FIG. 本発明に係る固体高分子形燃料電池の実施形態を示す概略構成図である。1 is a schematic configuration diagram showing an embodiment of a polymer electrolyte fuel cell according to the present invention. 本発明に係る固体高分子形燃料電池の変形例である参考例2を示す概略構成図である。 It is a schematic block diagram which shows the reference example 2 which is a modification of the polymer electrolyte fuel cell which concerns on this invention.

1 燃料電池本体
2 アノード
3 カソード
4 冷却水プレート
4a 冷却水供給口(第2マニホールド)
4b 水流路
4c 冷却水排出口(第3マニホールド)
5 固体高分子電解質膜
6、7 セパレータ
8 単位電池セル
9、10 端板
11 冷却水供給口(第1マニホールド)
11a 仕切板
12 冷却水排出口(第4マニホールド)
13 分流経路
13a、13b 分岐路
14 冷却水タンク
15 ポンプ
16 冷却水循環経路
16a 冷却水供給路
16b 冷却水排出路
17 空気加湿器
18 空気流通経路
18a 空気供給路
18b 空気排出路
19 熱交換器
20、21 仕切板
1 Fuel Cell Body 2 Anode 3 Cathode 4 Cooling Water Plate 4a Cooling Water Supply Port (Second Manifold)
4b Water channel 4c Cooling water outlet (third manifold)
5 Solid polymer electrolyte membrane 6, 7 Separator 8 Unit battery cell 9, 10 End plate 11 Cooling water supply port (first manifold)
11a Partition plate 12 Cooling water outlet (fourth manifold)
13 Branch path 13a, 13b Branch path 14 Cooling water tank 15 Pump 16 Cooling water circulation path 16a Cooling water supply path 16b Cooling water discharge path 17 Air humidifier 18 Air distribution path 18a Air supply path 18b Air discharge path 19 Heat exchanger 20, 21 Partition plate

Claims (1)

単位電池セルを面接合状態に多数積層し、上部に前記積層方向に貫通して設けられた冷却水供給口(第1マニホールド)と、上部に設けられ前記冷却水供給口(第1マニホールド)を流通する冷却水のうち大部分が流入する冷却水供給口(第2マニホールド)と、上部から下部にかけて設けられ前記冷却水供給口(第2マニホールド)からの冷却水が前記各単位セル中を上から下方向に流れる水流路と、下部に設けられ前記水流路からの冷却水が流れる冷却水排水口(第3マニホールド)と、下部に設けられ前記冷却水排水口(第3マニホールド)からの冷却水が流れる冷却水排水口(第4マニホールド)とを有する燃料電池本体を備え、
前記燃料電池本体よりも上側に冷却水供給路を備え、
前記冷却水供給口(第1マニホールド)の入口とは反対側の奥端部にて接続されて前記燃料電池本体より上方に延設され前記冷却水供給口(第1マニホールド)を流通する冷却水のうちの一部が分流する分流経路と、前記分流経路で分流された前記冷却水が二股に分岐する分岐路とを備え、
前記冷却水排水口(第4マニホールド)及び前記分岐路からの冷却水が流入する冷却水排出路を介して冷却水を冷却水タンクに戻すとともに、前記冷却水を冷却水タンクから前記冷却水供給路に向けて送り出すように構成した冷却水循環経路を備え、
前記冷却水供給路から供給される冷却水の流通方向に沿い前記冷却水供給口(第1マニホールド)の前記奥端部に向けて徐々に上向き傾斜した仕切板を、前記冷却水供給口(第1マニホールド)の内部に設け、
前記分流経路は、前記冷却水排出路より小径の細管で構成して前記冷却水排出路よりも圧力損失を大きく構成し、
分流経路で分流した分岐路の冷却水を燃料電池本体の両端部に供給して温度低下を抑えるように構成した
ことを特徴とする固体高分子形燃料電池。
A large number of unit battery cells are stacked in a surface-bonded state, and a cooling water supply port (first manifold) provided penetrating in the stacking direction in the upper part and the cooling water supply port (first manifold) provided in the upper part are provided. A cooling water supply port (second manifold) into which most of the circulating cooling water flows and a cooling water from the cooling water supply port (second manifold) provided from the upper part to the lower part passes through each unit cell. From the cooling water drain port (third manifold) provided in the lower part and the cooling water drain port (third manifold) provided in the lower part. A fuel cell body having a cooling water drainage port (fourth manifold) through which water flows;
A cooling water supply path is provided above the fuel cell main body,
Cooling water that is connected at the back end opposite to the inlet of the cooling water supply port (first manifold), extends upward from the fuel cell body, and flows through the cooling water supply port (first manifold). A diversion path in which a part of the diversion path is diverted, and a branch path where the cooling water diverted in the diversion path is bifurcated.
The cooling water is returned to the cooling water tank through the cooling water drain port (fourth manifold) and the cooling water discharge passage through which the cooling water from the branch passage flows, and the cooling water is supplied from the cooling water tank to the cooling water. A cooling water circulation path configured to send out toward the road,
A partition plate that is gradually inclined upward toward the back end portion of the cooling water supply port (first manifold) along the flow direction of the cooling water supplied from the cooling water supply channel is provided with the cooling water supply port (first 1 manifold),
The diversion path is configured by a narrow pipe having a smaller diameter than the cooling water discharge path, and is configured to have a larger pressure loss than the cooling water discharge path,
A polymer electrolyte fuel cell, characterized in that it is configured to supply a cooling water of a branch path branched in a diversion path to both ends of the fuel cell main body to suppress a temperature drop.
JP2004006895A 2004-01-14 2004-01-14 Polymer electrolyte fuel cell Expired - Fee Related JP4925078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006895A JP4925078B2 (en) 2004-01-14 2004-01-14 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006895A JP4925078B2 (en) 2004-01-14 2004-01-14 Polymer electrolyte fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011062707A Division JP5366999B2 (en) 2011-03-22 2011-03-22 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2005203189A JP2005203189A (en) 2005-07-28
JP4925078B2 true JP4925078B2 (en) 2012-04-25

Family

ID=34820732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006895A Expired - Fee Related JP4925078B2 (en) 2004-01-14 2004-01-14 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4925078B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562593B2 (en) * 2009-06-04 2014-07-30 本田技研工業株式会社 Fuel cell stack
JP5366999B2 (en) * 2011-03-22 2013-12-11 Jx日鉱日石エネルギー株式会社 Fuel cell system
KR101342663B1 (en) 2012-01-09 2013-12-16 지에스칼텍스 주식회사 Method of controlling cooling water for stack of fuel cell system and fuel cell system using the same
CN114899444B (en) * 2022-04-15 2023-05-16 广东机电职业技术学院 Automatic separation and cooling system for recycling fuel cell cooling liquid and electrolyzed water

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144452A (en) * 1991-11-18 1993-06-11 Toshiba Corp Fuel cell power generating system
JPH0668889A (en) * 1992-08-20 1994-03-11 Fuji Electric Co Ltd Cooling system of reformed gas for fuel battery
JP3461909B2 (en) * 1994-04-28 2003-10-27 株式会社東芝 Fuel cell surplus steam condensation type steam separator
JP3519840B2 (en) * 1995-11-15 2004-04-19 三洋電機株式会社 Polymer electrolyte fuel cell
JPH09266007A (en) * 1996-03-28 1997-10-07 Toshiba Corp Fuel cell
JPH11111311A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Solid polymer type fuel cell
JPH11204123A (en) * 1998-01-19 1999-07-30 Mitsubishi Electric Corp Water treating apparatus for fuel cell power generating facilities
JP4318771B2 (en) * 1998-11-06 2009-08-26 本田技研工業株式会社 Fuel cell stack
JP2001068141A (en) * 1999-08-30 2001-03-16 Aisin Seiki Co Ltd Fuel cell
US6428916B1 (en) * 1999-12-20 2002-08-06 Utc Fuel Cells, Llc Coolant treatment system for a direct antifreeze cooled fuel cell assembly
JP4967199B2 (en) * 2001-05-15 2012-07-04 トヨタ自動車株式会社 Fuel cell piping structure
JP4043218B2 (en) * 2001-11-09 2008-02-06 三洋電機株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2005203189A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4753599B2 (en) Fuel cell
JP4623795B2 (en) Fuel cell stack
US9882230B2 (en) Fuel cell stack
WO2003041204A1 (en) Combination of fuel cell and water electrolyzer with bidirectional heat exchange
JP2008103241A (en) Fuel cell
US6566002B2 (en) Polymer electrolyte fuel cell
JP2004327089A (en) Fuel cell stack
JP5395521B2 (en) Fuel cell stack
JP4925078B2 (en) Polymer electrolyte fuel cell
JPWO2011155286A1 (en) Fuel cell operating method and fuel cell system
JP2010129482A (en) Fuel cell separator, fuel cell stack, and fuel cell system
JP5366999B2 (en) Fuel cell system
JP2003077495A (en) Fuel cell
US8647786B2 (en) Fuel cell system
JP3673252B2 (en) Fuel cell stack
JP2006228507A (en) Fuel cell
EP1422775A1 (en) Fuel cell with separator plates having comb-shaped gas passages
JP5474318B2 (en) Fuel cell stack
JP2014120321A (en) Fuel cell stack
JP4617661B2 (en) Fuel cell stack
JP4992180B2 (en) Fuel cell separator
JP5474606B2 (en) Automotive fuel cell stack
JP2008186672A (en) Fuel cell
JP5430318B2 (en) Fuel cell stack
CN116613366B (en) Cathode interface plate assembly with anode bypass and fuel cell stack including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees