JP4924933B2 - 加速度を検出するセンサを校正する方法および加速度計測方法 - Google Patents

加速度を検出するセンサを校正する方法および加速度計測方法 Download PDF

Info

Publication number
JP4924933B2
JP4924933B2 JP2006511901A JP2006511901A JP4924933B2 JP 4924933 B2 JP4924933 B2 JP 4924933B2 JP 2006511901 A JP2006511901 A JP 2006511901A JP 2006511901 A JP2006511901 A JP 2006511901A JP 4924933 B2 JP4924933 B2 JP 4924933B2
Authority
JP
Japan
Prior art keywords
axis
sensor
acceleration
sensitivity
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006511901A
Other languages
English (en)
Other versions
JPWO2005095998A1 (ja
Inventor
章 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006511901A priority Critical patent/JP4924933B2/ja
Publication of JPWO2005095998A1 publication Critical patent/JPWO2005095998A1/ja
Application granted granted Critical
Publication of JP4924933B2 publication Critical patent/JP4924933B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、加速度を検出するセンサを校正する方法および加速度計測方法に関するものであり、本発明の属する技術の分野は、運動の計測が必要不可欠な分野、たとえば車両衝突安全、自動車サスペンション制御、ロボット、輸送機器、原子力発電関連諸機器、船舶、宇宙航空機器、情報機器、人体の振動に対する応答の計測、環境振動において、加速度を計測する分野である。ここで言う加速度は、並進加速度のみならず角加速度、角速度も含んでいる。多軸のセンサの場合には、並進加速度および角加速度を同時に検出する多軸センサは単に○軸加速度センサと呼ばれるのに対して、並進加速度と角速度を同時に検出する多軸センサは、○軸運動センサと呼ばれる場合がある(○は軸の数を意味する)。
加速度を検出するセンサとしては、加速度センサおよび慣性センサなどが知られており、本発明では、ジャイロ機能、角加速度測定機能を含む半導体加速度計をも対象とする。以下、特に断らない限りは、加速度を検出するセンサとして、加速度計/加速度センサという文言を用いて説明する。
図1は、現状広く行われている加速度計/加速度センサの校正方法を示している。国際規格でいうと、ISO16063-11, ISO5347 part1に記述されている方法である。図2は、ISO5347 Part11に記述されている横感度を計測する方法である。
図1Aに示す方法は、シングルエンドの一軸加速度センサ(加速度計)1を並進運動を発生する一軸振動台2のテーブル2a(このテーブル2aは本体2bに対して図中の両方向矢印の方向に振動する)に取り付け、一軸振動台2の運動の方向と一軸加速度センサ1の感度軸を一致させて、取り付けたテーブルの運動をレーザ干渉計(不図示)で測定し、レーザ干渉計で測定した結果と、加速度センサ1の出力とを比較して校正する方法である。これは一次校正法として機能する。なお、シングルエンド加速度計とは、取り付け面が一つしかない加速度計を言う。ダブルエンド加速度計とは、取り付け面が2つあり、バックツ−バック結合できる校正用加速度計を表す。
図1Bに示す方法は、ダブルエンドの一軸加速度センサ(加速度計)3を一軸振動台2のテーブルに取り付け、一軸振動台の運動の方向と一軸加速度センサ3の感度軸を一致させて、取り付けたテーブルの運動をレーザ干渉計で測定し、レーザ干渉計で測定した結果と、加速度センサ3の出力とを比較して校正する方法である。これも、一次校正法として機能する。
図1Cに示す方法は、図1Bの方法で校正されたダブルエンドの参照加速度センサ3の感度軸と校正対象の加速度センサ1の感度軸を一致させて直列に結合し、振動台の運動方向の軸と一致させて運動させて、参照加速度計3と校正対象の加速度計1の出力とを比較して校正する方法である。これは、二次校正法として機能する。
図1Dに示す方法は、図1Aに示されている方法に対応した角加速度検出用の加速度センサの一次校正法である。25は振動角加速度を発生する一軸振動台であり、円板状のテーブル25aは本体25bに対して図中の両方向矢印の方向に回転振動する。角加速度検出用の加速度センサ(角加速度センサ)26は、振動角加速度を発生する一軸振動台25のテーブル25aに、中心軸(この中心軸は感度軸と一致する)がテーブル25aの中心に位置し且つテーブル25aと垂直になるように取り付ける。テーブル25aは、その側面に光学回折格子が形成されている。テーブル25aの振動角加速度を計測するためのレーザ干渉計からのレーザ光がテーブル25aの周縁の光学回折格子に水平に照射される。テーブル25aを回転振動させることによって、角加速度センサ26に感度軸周りに振動角加速度を印加し、テーブル25aの光学回折格子に照射するレーザ光の反射光の変化によって検出される振動角加速度と、校正対象角加速度センサ26の出力信号とを比較することによって、一次校正が実施される。現在ISOで作成されつつある規格に記述されている方法であり、この方法によって参照角加速度センサが校正されるので、図1Cに示す方法と同様に、参照角加速度センサと校正対象の角加速度センサを同軸にして振動角加速度を発生する一軸振動台上に設置することにより、同様の二次校正として機能させることが可能になる。現状では、振動角加速度用の参照加速度センサは存在しないことである。その理由は、規格が完成していないし、振動角加速度用の参照加速度センサとして機能することが実験的に立証された製品が存在しないからである。
図2に示すISO5347-11:1993 Methods for the calibration of vibration and shock pick-ups - Part 11: Testing of transverse vibration sensitivityに記載の横感度の求めかたを説明する。
並進加速度を検出する加速度センサ1の感度軸に垂直な平面内で振動加速度Asinωt(図中、矢印4で示す)を加える。求めた感度を、主軸感度で正規化して求めるのが、横感度である。ISO規格によると、θ(加速度センサ1の感度軸に垂直な平面内で加速度センサ1の基準位置に付けたマーキング5と振動加速度4の方向との間の角度)を変化させて横感度を求め、最大値が得られたときの横感度の値とそのときの角度θma と、最小値が得られたときの横感度の値とそのときの角度θminとを報告するように、定めている。要するに、ISO5347-11:1993 Methods for the calibration of vibration and shock pick-ups - Part 11: Testing of transverse vibration sensitivityでは、横感度パラメータの個数は1個である。
上述した図1に示す方法における問題点は次の通りである。まず、問題なのは、ISO2041 Vibration and shock terminologyに記述されているように、加速度計/加速度センサは加速度を計測するデバイスであり、初等物理学が教えるとおり、また同規格にも書かれているように、加速度はベクトル量である。これに対し、図1に示す方法は、ベクトルでの校正でないことは、明かである。その理由は、ベクトルとは大きさと方向を持つ量であるのに対して、図1に示す方法では方向の情報を最初から加速度センサに与えているからである。にもかかわらず、国際度量衡局が行った並進振動加速度を用いた国際比較においても図1に示す方法がもちいられ、4桁目、5桁目にやっと違いが出るほどの高精度であるとの結果になったが、これが加速度計/加速度センサの計測精度を保証するものと、一般的に理解されていることである。これは明らかに誤りである。しかし、我が国においてすら、『工業的には振動計測と加速度計測は殆ど同じである』との見解が公に示される通り、混乱を増幅こそすれ、正しい理解を産業界に求めるどころの騒ぎではない、という状況が続いている。
加速度を計測するということは、加速度という物理量がベクトルである以上は、大きさと方向を計測することでなければならない。その理由は、加速度計はISO2041 vibration and shock - vocabulary が述べるように、加速度を計測するデバイスだからである。したがって、図2に示す手法では、パラメータの個数が1個であるので、大きさと方向を計測することはできない。
そこで本発明の目的は以上のような問題を並進振動加速度に関しても振動角加速度に関しても解消したベクトルとしての加速度を検出するセンサを校正する方法および加速度計測方法を提供することにある。
本発明の一態様は、並進加速度を検出する少なくとも1つのセンサを、治具を介して振動台上に固定し、前記振動台によって前記センサ並進加速度、または回転振動を印加し、前記印加によって得られた前記センサの出力値と、前記印加時に前記センサから独立した計測装置によって計測して得られた前記センサへの入力加速度の計測値とに基づいて、前記センサを校正する方法であって、前記振動台は、一軸の振動方向に並進加速度を印加し、または前記一軸を回転軸とする回転振動を印加し、前記センサへの入力加速度を定義する空間の座標系の座標軸の1つを前記振動方向と一致させた状態で、前記一軸の振動方向に並進加速度を印加した場合に前記一軸の振動方向と前記センサの出力軸とが一致するときの出力の前記計測して得られた入力に対する比を主軸感度とし、前記一軸の振動方向に対する前記主軸感度軸以外の出力の前記計測して得られた入力に対する比を横感度としたとき、前記並進加速度の印加と前記回転振動の印加を実行して、前記センサの感度マトリックスの要素の1つである主軸感度または横感度を計測し、前記振動台に固定する面を変えて前記治具を前記振動台に固定することにより、前記座標軸のすべてについて前記印加を実行して、前記感度マトリックスに含まれる各々の要素を求めることを特徴とする。
また、回転角速度または回転角加速度を検出する少なくとも1つのセンサを、治具を介して振動台上に固定し、前記振動台によって前記センサに回転振動、または並進加速度を印加し、前記印加によって得られた前記センサの出力値と、前記印加時に前記センサから独立した計測装置によって計測して得られた前記センサへの入力加速度の計測値とに基づいて、前記センサを校正する方法であって、前記振動台は、一軸の振動方向に並進加速度を印加し、または前記一軸を回転軸とする回転振動を印加し、前記センサへの入力加速度を定義する空間の座標系の座標軸の1つを前記振動方向と一致させた状態で、前記一軸を回転軸とする回転振動を印加した場合に、前記一軸の振動方向と前記センサの出力軸とが一致するときの出力の前記計測して得られた入力に対する比を主軸感度とし、前記一軸の振動方向に対する前記主軸感度軸以外の出力の前記計測して得られた入力に対する比を横感度としたとき、前記回転振動の印加と前記並進加速度の印加を実行して、前記センサの感度マトリックスの要素の1つである主軸感度または横感度を計測し、前記振動台に固定する面を変えて前記治具を前記振動台に固定することにより、前記座標軸のすべてについて前記印加を実行して、前記感度マトリックスに含まれる各々の要素を求めることを特徴とする。
さらに、前記振動方向に並進運動を発生する振動台によって算出された主軸感度または横感度と、前記一軸を回転軸とする回転振動運動を発生する振動台によって算出された主軸感度または横感度とを、それぞれ前記センサの感度マトリックスの要素とすることができる。
ここで、前記センサが前記治具に固定されたとき、当該センサのケーシングが、少なくとも2個以上の前記座標軸に垂直な面を有することとすることができる。このとき、前記計測装置は、前記センサの前記面にレーザを照射するレーザ干渉計を含むことができる。
さらに、前記センサが前記治具に固定されたとき、当該センサのケーシングを、前記回転軸を含む面上かまたは当該回転軸と平行な面上に形成された照射面を有することとすることができ、このとき、前記計測装置は、前記センサの前記照射面の二箇所にレーザを照射するレーザ干渉計を含むこととすることができる。
さらに、前記センサが前記治具に固定されたとき、当該センサのケーシングを、前記センサの回転軸回りの回折格子を有することとすることができ、このとき、前記計測装置は、前記センサの前記照射面の二箇所にレーザを照射するレーザ干渉計を含むこととすることができる。
横感度に関してまとめると、一軸振動台の発生する振動が並進運動であっても回転運動であっても、前記冶具を用いて校正対象の加速度センサが検出する運動の方向を振動台が発生する運動の方向と垂直に設定することによって、振動台による運動の印加方向座標軸と当該加速度センサの出力信号に対応する入力加速度の座標軸の間の横感度を決めることができる。例えば、前記冶具によって、加速度センサのZ軸方向を一軸振動台の運動の方向とし、加速度センサの注目する出力信号をX軸入力加速度信号に対応させれば、前記外部測定装置によってZ軸の運動加速度を計測することにより、Z軸入力−X軸出力の横感度を求めることができる。このとき、X軸入力信号が本来の設計上並進運動に対して感度を持つのか回転運動に対して感度を持つのかには無関係に、Z軸方向に並進運動もしくはZ軸周りに回転運動を印加して良い。仮に、Z軸周りに振動角加速度を印加したとして、X軸が本来は並進振動加速度を検出するように設計されているとすると、想定外の回転運動にどの程度影響されるのか、を表す横感度が求まることになる。
さらに、加速度を検出するN(N:2以上の整数)個のセンサを組み合わせて加速度のN個の成分を計測する加速度計測方法であって、前記いずれかの態様により求めた感度マトリックスから逆マトリックスを算出し、前記N個のセンサの各々の出力に対応する成分からなるベクトルに、前記逆マトリックスを乗算することによって、加速度を計測することができる。
さらに、少なくとも2軸の加速度を検出するセンサによって加速度を計測する加速度計測方法であって、前記いずれかの態様により求めた感度マトリックスから逆マトリックスを算出し、前記センサの各々の軸の出力に対応する成分からなるベクトルに、前記逆マトリックスを乗算することによって、加速度を計測することができる。
なお、本発明においては、感度マトリックスを以下の通りに定義した。
まず、加速度をベクトルとして計測するためには、加速度センサの数学的定義を考える必要がある。
図3は、加速度センサの機能の数学的定義を説明する図である。図3に示すように、加速度計/加速度センサの数学的機能は、実運動空間にあるベクトルである加速度の集合(ベクトル空間)を、電気信号が表す加速度の集合(ベクトル空間)に射影することである。べクトル空間をベクトル空間に射影するのは、線形性を仮定する限りは、数学的にはマトリックスであるから、物理的に変換の割合を表す感度はマトリックスにならねばならない。したがって、感度を表すマトリックスの全ての成分を求めることによって加速度を検出するセンサを正しく校正することができることになる。
ベクトル空間で重要になるのが次元である。次元とは、空間に存在する一次独立なベクトルの個数の最大値である。一般論としては、実運動のベクトル空間の次元と、電気信号が表す加速度信号のベクトル空間の次元が等しいとは限らない。振動台を用いた校正とは、実運動のベクトル空間の代わりに、当該振動台が生成するベクトル空間を用いて校正対象である加速度センサの感度を決定する作業に他ならない。従って、実運動のベクトル空間の次元より振動台が生成するベクトル空間の次元を大きく設定することは、物理的に意味を持つ。例えば、XYZの三次元並進加速度を検出するように設計されている加速度センサを、XYZの三次元並進およびX軸周り、Y軸周り、Z軸周りの六次元ベクトル空間で定義することは、想定外である角加速度が並進加速度の検出に及ぼす誤差を見積もるという意味があるのである。本発明は、この場合にも対応する。
実運動のベクトル空間の次元あるいは加速度センサの軸の数と振動台が生成するベクトル空間の次元が等しい場合には、感度を表すマトリックスは正方行列になる。振動台が生成するベクトル空間の次元が軸数よりも大きい場合には、感度マトリックスは、正方行列にはならない。正方行列にならない形式で感度マトリックスを求めることは、計測対象であるベクトル空間の次元の確からしさに関連し、最終的には計測の不確かさの見積もりには影響するので、意味のあることである。計測対象の質に深く係わる問題である。以下では、実運動ベクトル空間の次元と加速度センサの軸数が等しい場合のマトリックス感度について述べる。
(加速度センサが一軸の場合)
加速度センサが一軸の場合には、加速度センサの出力軸は1つで振動台が生成するベクトル空間の次元を3次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(1)式では、出力軸を、X軸としており、Sxxは、X軸入力(すなわち、加速度の方向がX軸方向であることを意味する。以下同様)に対するX軸出力(すなわち、加速度センサの出力を意味する。以下同様)の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、Sxzは、Z軸入力に対するX軸出力の割合を表すので横感度である。
(加速度センサが二軸の場合)
加速度センサが二軸の場合には、加速度センサの出力軸は2つで振動台が生成するベクトル空間の次元を3次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(2)式では、出力軸を、第1の軸はX軸と第2の軸はY軸としている。第1の軸に関して、Sxxは、X軸入力に対するX軸出力の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、SxzはZ軸入力に対するX軸出力の割合を表すので横感度である。第2の軸に関して、Syxは、X軸入力に対するY軸出力の割合を表すので横感度であるのに対して、SyyはY軸入力に対するY軸出力の割合を表すので主軸感度、SyzはZ軸入力に対するY軸出力の割合を表すので横感度である。
(加速度センサが三軸の場合)
加速度センサが三軸の場合には、加速度センサの出力軸は3つで振動台が生成するベクトル空間の次元を3次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(3)式では、出力軸を、第1の軸はX軸,第2の軸はY軸と第3の軸はZ軸としている。第1の軸に関して、Sxxは、X軸入力に対するX軸出力の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、SxzはZ軸入力に対するX軸出力の割合を表すので横感度である。第2の軸に関して、Syxは、X軸入力に対するY軸出力の割合を表すので横感度であるのに対して、SyyはY軸入力に対するY軸出力の割合を表すので主軸感度、SyzはZ軸入力に対するY軸出力の割合を表すので横感度である。第3の軸に関して、SzxはX軸入力に対するZ軸出力の割合を表すので横感度であり、SzyはY軸入力に対するZ軸出力の割合を表すので横感度であるのに対して、SzzはZ軸入力に対するZ軸出力の割合を表すので、主軸感度である。
(加速度センサが四軸の場合)
加速度センサが四軸の場合には、加速度センサの出力軸は4つで振動台が生成するベクトル空間の次元を4次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(4)式では、出力軸を、第1の軸はX軸、第2の軸はY軸、第3の軸はZ軸、第4の軸はp軸としている。第1の軸に関して、Sxxは、X軸入力に対するX軸出力の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、SxzはZ軸入力に対するX軸出力の割合を表すので横感度、Sxpはp軸入力に対するX軸出力の割合を表すので横感度である。第2の軸に関して、Syxは、X軸入力に対するY軸出力の割合を表すので横感度であるのに対して、SyyはY軸入力に対するY軸出力の割合を表すので主軸感度、SyzはZ軸入力に対するY軸出力の割合を表すので横感度、Sypはp軸入力に対するY軸出力の割合を表すので横感度である。第3の軸に関して、SzxはX軸入力に対するZ軸出力の割合を表すので横感度であり、SzyはY軸入力に対するZ軸出力の割合を表すので横感度であるのに対して、SzzはZ軸入力に対するZ軸出力の割合を表すので主軸感度、Szpはp軸入力に対するZ軸出力の割合を表すので横感度である。第4の軸に関して、SpxはX軸入力に対するp軸出力の割合を表すので横感度、SpyはY軸入力に対するp軸出力の割合を表すので横感度、SpzはZ軸入力に対するp軸出力の割合を表すので横感度、Sppはp軸入力に対するp軸出力の割合を表すので主軸感度である。
(加速度センサが五軸の場合)
加速度センサが五軸の場合には、加速度センサの出力軸は5つで振動台が生成するベクトル空間の次元を5次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(5)式では、出力軸を、第1の軸はX軸、第2の軸はY軸、第3の軸はZ軸、第4の軸はp軸、第5の軸はq軸としている。第1の軸に関して、Sxxは、X軸入力に対するX軸出力の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、SxzはZ軸入力に対するX軸出力の割合を表すので横感度、Sxpはp軸入力に対するX軸出力の割合を表すので横感度、Sxqはq軸入力に対するX軸出力の割合を表すので横感度である。第2の軸に関して、Syxは、X軸入力に対するY軸出力の割合を表すので横感度であるのに対して、SyyはY軸入力に対するY軸出力の割合を表すので主軸感度、SyzはZ軸入力に対するY軸出力の割合を表すので横感度、Sypはp軸入力に対するY軸出力の割合を表すので横感度、Syqはq軸入力に対するY軸出力の割合を表すので横感度である。第3の軸に関して、SzxはX軸入力に対するZ軸出力の割合を表すので横感度であり、SzyはY軸入力に対するZ軸出力の割合を表すので横感度であるのに対して、SzzはZ軸入力に対するZ軸出力の割合を表すので主軸感度、Szpはp軸入力に対するZ軸出力の割合を表すので横感度、Szqはq軸入力に対するZ軸出力の割合を表すので横感度である。第4の軸に関して、SpxはX軸入力に対するp軸出力の割合を表すので横感度、SpyはY軸入力に対するp軸出力の割合を表すので横感度、SpzはZ軸入力に対するp軸出力の割合を表すので横感度、Sppはp軸入力に対するp軸出力の割合を表すので主軸感度、Spqはq軸入力に対するp軸出力の割合を表すので横感度である。第5の軸に関して、SqxはX軸入力に対するq軸出力の割合を表すので横感度、SqyはY軸入力に対するq軸出力の割合を表すので横感度、SqzはZ軸入力に対するq軸出力の割合を表すので横感度、Sqpはp軸入力に対するq軸出力の割合を表すので横感度、Sqqはq軸入力に対するq軸出力の割合を表すので主軸感度である。
(加速度センサが六軸の場合)
加速度センサが六軸の場合には、加速度センサの出力軸は6つで振動台が生成するベクトル空間の次元を6次元とすると、感度マトリックスは次のマトリックスで定義される。
Figure 0004924933
(6)式では、出力軸を、第1の軸はX軸、第2の軸はY軸、第3の軸はZ軸、第4の軸はp軸、第5の軸はq軸、第6の軸はr軸としている。第1の軸に関して、Sxxは、X軸入力に対するX軸出力の割合を表すので、主軸感度であるのに対して、Sxyは、Y軸入力に対するX軸出力の割合を表すので横感度、SxzはZ軸入力に対するX軸出力の割合を表すので横感度、Sxpはp軸入力に対するX軸出力の割合を表すので横感度、Sxqはq軸入力に対するX軸出力の割合を表すので横感度、Sxrはr軸入力に対するX軸出力の割合を表すので横感度である。第2の軸に関して、Syxは、X軸入力に対するY軸出力の割合を表すので横感度であるのに対して、SyyはY軸入力に対するY軸出力の割合を表すので主軸感度、SyzはZ軸入力に対するY軸出力の割合を表すので横感度、Sypはp軸入力に対するY軸出力の割合を表すので横感度、Syqはq軸入力に対するY軸出力の割合を表すので横感度、Syrはr軸入力に対するY軸出力の割合を表すので横感度である。第3の軸に関して、SzxはX軸入力に対するZ軸出力の割合を表すので横感度であり、SzyはY軸入力に対するZ軸出力の割合を表すので横感度であるのに対して、SzzはZ軸入力に対するZ軸出力の割合を表すので主軸感度、Szpはp軸入力に対するZ軸出力の割合を表すので横感度、Szqはq軸入力に対するZ軸出力の割合を表すので横感度、Szrはr軸入力に対するZ軸出力の割合を表すので横感度である。第4の軸に関して、SpxはX軸入力に対するp軸出力の割合を表すので横感度、SpyはY軸入力に対するp軸出力の割合を表すので横感度、SpzはZ軸入力に対するp軸出力の割合を表すので横感度、Sppはp軸入力に対するp軸出力の割合を表すので主軸感度、Spqはq軸入力に対するp軸出力の割合を表すので横感度、Sprはr軸入力に対するp軸出力の割合を表すので横感度である。第5の軸に関して、SqxはX軸入力に対するq軸出力の割合を表すので横感度、SqyはY軸入力に対するq軸出力の割合を表すので横感度、SqzはZ軸入力に対するq軸出力の割合を表すので横感度、Sqpはp軸入力に対するq軸出力の割合を表すので横感度、Sqqはq軸入力に対するq軸出力の割合を表すので主軸感度、Sqrはr軸入力に対するq軸出力の割合を表すので横感度である。第6の軸に関して、SrxはX軸入力に対するr軸出力の割合を表すので横感度、SryはY軸入力に対するr軸出力の割合を表すので横感度、SrzはZ軸入力に対するr軸出力の割合を表すので横感度、Srpはp軸入力に対するr軸出力の割合を表すので横感度、Srqはq軸入力に対するr軸出力の割合を表すので横感度、Srrはr軸入力に対するr軸出力の割合を表すので主軸感度である。
各軸において、対角成分は、,p,q,r各軸方向の並進加速度もしくは角加速度の入力と、当該の出力端子からの出力信号を用いて求められるので、ここでは述べない。また、軸数の中で、並進加速度検出の自由度がいくつで、回転角加速度の検出の個数がいくつになるかは、予め決まっているわけではないことに注意する必要がある。4軸の加速度センサで、回転角加速度検出の自由度が3で、並進角加速度の検出の自由度が1ということが在りうる事が重要である。並進加速度を1つでも検出する自由度がある限り、横感度特性があり、それを表す横感度がある。本発明によって、その横感度を、高価な装置を用いずに、求めることができる。
発明の効果は、以下の通りである。
(1)簡単な構造の一軸振動台と治具とを用いて加速度を検出するセンサのマトリックス感度を計測することができる。
(2)一般的には、加速度計測の精度が向上する。その理由を以下に説明する。
3軸の加速度計を、三次元空間の並進加速度運動の測定に使うとする。その際、マトリックス感度は、以下の式で定義される。
Figure 0004924933
簡単のために、感度マトリックスの対角成分がすべて1であり、横感度がε%であったとする。
横感度を無視すると、(1,1,1)方向の加速度入力X成分、Y成分、Z成分をτに対して、出力信号としての加速度の絶対値は、
Figure 0004924933
となるのに対して、横感度εを考慮したマトリックス感度で考えると、出力信号としての加速度の絶対値は
Figure 0004924933
となる。これを逆に考えると、正しくは
Figure 0004924933
の入力信号として計測されるべき信号が、
Figure 0004924933
として認識されるわけである。このときの誤差は、以下の()式によって、2ε%となる。
Figure 0004924933
圧電加速度センサでは、通常2〜3%の横感度があるといわれており、3%の横感度は6%の計測誤差になる。
現在、シリコンの微細加工による半導体加速度センサやジャイロの開発が世界的大流行であるが、横感度の値を説得力ある方法で計測した結果が添えられた論文は未だに発表されていないというのが現状である。
(3)加速度計測の精度が向上することによって、我が国産業技術の高度化、高付加価値化が図られる。
(4)一軸の振動発生機を用いて多軸多次元振動台を用いて校正したのとほぼ同じ加速度センサのマトリックス感度が得られることになり、ベクトルとしての加速度を計測することが可能になる。
(5)横感度を考慮することにより加速度をより正確に求めることが出来るので、各種強制規格を守って製作しなければならない工業製品開発においては、限界設計が可能になる。強制規格としては、自動車乗員安全規格(米国規格FMVSS201規格に相当する我が国を含めた諸外国の強制法規)、人体振動規格ISO8041、2631-1, 2631-2, 2631-3, 2631-4, 2631-5などが挙げられる。
(6)産業用ロボットの高精度の制御が可能になる。
(7)運動を発生する試験機(例えば、振動発生機など)の高性能化が進む。
(8)ヒューマノイドロボットによる繊細で高度な制御が可能になる。
(9)地震計による地震の計測が、高精度になる。
(10)人体の振動暴露規制値にもとづく人体暴露振動モニター装置の開発につながる。
(11)構造物などのための振動計測、加速度計測の精度が向上する。
(12)国際度量衡局がおこなった国際キーコンパリズンの無意味さが広く認識されるようになり、横感度計測のための国際比較が実施されるようになる。
(13)半導体加速度センサでは、横感度を考えたマトリックス感度による表現が一般化することによって、半導体加速度センサの性能が飛躍的に向上する。
(14)地殻地盤常時監視システムが実現し、地殻変動が画像として認識されるようになる。
実施例では、図4A〜図4Dに示す加速度センサを用いる。
図4Aは1個の一軸加速度センサ5を治具としての立方体ブロック6の一面に取り付けたものであり、
図4Bは2個の一軸加速度センサ5を治具としての立方体ブロック6の二つの面に各々取り付けたものであり、
図4Cは3個の一軸加速度センサ5を治具としての立方体ブロック6の三つの面に各々取り付けたものであり、
図4Dは半導体加速度計(ジャイロ機能、角加速度測定機能を含むものも対象とする)であり、これも治具としての立方体ブロックの一面に取り付ける。
なお、以上の各センサを取り付ける立方体ブロックの各面の定義(符号で示した)は図5または図6に示す通りであり、各センサに共通である。
図4Eは、図4A〜図4Dの加速度センサに対する入力加速度を定義する空間の座標系の座標軸(互いに直交するX軸、Y軸、Z軸)と、加速度10を座標軸方向に分解した状態を示すものである。
1個の一軸加速度センサの場合(図4A)
一軸加速度センサ5として一般的な圧電型加速度センサは、図5のような形状をしており、下端部に設けたねじ部分を治具としての立方体ブロック6の一面にねじ込み固定することによって、一軸加速度センサ5は立方体ブロック6に取り付けられる。立方体ブロック6は十分な形状精度および面精度が得られたものを使用する。この状態では、加速度センサ5の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6aと垂直である。
ここで、一軸加速度センサ5の出力軸(主感度軸)とこの出力軸に直交する2つの軸と入力加速度を定義する空間の座標系の座標軸(X,Y,Z軸)との関係を次のように定義した。すなわち、一軸加速度センサ5の出力軸である主感度軸方向をZ軸と定義した。このため、この出力軸(Z軸)と直交する2軸のうちの一方の軸を、Z軸と直交し、立方体ブロック6の取り付け面6aと直交する他の面6bと直交する軸に一致する軸、すなわちX軸と定義することができ、残りの軸を、Z軸と直交し、立方体ブロック6の取り付け面6aおよび他の面6bと直交する他の面6cと直交する軸、すなわちY軸と定義することができる。このように定義することによって、一軸加速度センサ5における前述したISO5347Part11のような横感度データの最大値および最小値とそのときの角度θma とθminを求めずに、すなわち、このような横感度データの最大値および最小値が得れる位置とは無関係に、一軸加速度センサ5を立方体ブロック6に取り付け固定するだけですむことになる(以下の例でも同様)。
したがって、後述するように、振動台11(図7)のテーブル12面上に、立方体ブロック6の取り付け面6aと反対側の面を取り付け固定すると、一軸加速度センサ5の主感度軸(Z軸)と振動台のテーブル12の振動の方向が一致する。換言すると、入力加速度を定義する空間の座標系の座標軸のうちZ軸の方向に、立方体ブロック6およびこれに取り付けた一軸加速度センサ5を加振することになる。また、振動台11のテーブル12面上に、立方体ブロック6の他の面6bを取り付け固定すると、一軸加速度センサ5のX軸と振動台のテーブル12の振動の方向が一致し、入力加速度を定義する空間の座標系の座標軸のうちX軸の方向に、立方体ブロック6およびこれに取り付けた一軸加速度センサ5を加振することになる。さらに、振動台11のテーブル12面上に、立方体ブロック6の他の面6cを取り付け固定すると、一軸加速度センサ5のY軸と振動台のテーブル12の振動の方向が一致し、入力加速度を定義する空間の座標系の座標軸のうちY軸の方向に、立方体ブロック6およびこれに取り付けた一軸加速度センサ5を加振することになる。
以下の説明(図示)では一軸加速度センサ5の形状を簡略化して図6に示すように円柱で描くこともある。図6において、←→は加速度センサ5の主軸感度軸の方向を示している。
a.主軸感度の計測
図7は一軸加速度センサ5の主軸感度を計測する際の、一軸振動台11に対する一軸加速度センサ5の固定の態様を示すものであり、一軸振動台11の上部のテーブル12上に一軸加速度センサ5を取り付けた立方体ブロック6を固定する。テーブル12は平坦であり、図7に示すように、テーブル12が水平になるように設置された状態で当該テーブル12が垂直方向(図中、矢印⇔で示す)に振動する。図7における固定の態様は、立方体ブロック6の一軸加速度センサ5の取り付け面6aの反対側(裏側)の面をテーブル12に固定した。したがって、この状態では、入力加速度を定義する空間の座標系の座標軸のZ軸の方向が、振動台のテーブル12の振動方向に一致しており、この状態で振動台のテーブル12を振動させる。テーブル12面の運動加速度が一軸加速度センサ5への入力加速度となる。テーブル12面の運動は、レーザ干渉計か、またはより精度の高い加速度センサ等の計測装置で独立に計測する。なお、一軸加速度センサ5への入力加速度の計測は、テーブル面の運動を独立に計測して求める以外にも、後述のようにして求めることができる。
一軸加速度センサ5からの測定結果を示す出力信号と、テーブル12の面の運動を独立に計測する計測装置の計測結果を示す信号とは、演算装置(例えば、コンピュータ)に供給され、この演算装置によって、後述のような演算を行って横感度マトリックスを求める(以下に示す全ての例も同様である)。
まず、一軸加速度センサ5への入力加速度信号(すなわち、テーブル12面を直接的に計測するレーザ干渉計か、またはより精度の高い加速度センサ等の計測装置からの計測信号)と、一軸加速度センサ5からの出力信号との関係を、グラフに表すと、例えば、図8,図9のようになる。
図8の縦軸は、一軸加速度センサ5に入力した加速度を表しており、メートル/(秒・秒)の単位であり、一方、図9の縦軸は、一軸加速度センサ5からの出力を表しており、電圧の単位である。図8、図9の横軸は時間であり、両図の開始タイミングは一致している。
入力加速度をaizexp(jωt)で表し、一軸加速度センサ5の出力信号をaozexp(jωt)で表すとすると、一軸加速度センサ5の主軸感度Szz(ω)は、以下の式で定義される。
Figure 0004924933
ここで、Sの添え字の意味に関しては前記の感度マトリックスの定義におけるそれと同様であり、最初の添え字(ここではz)は入力加速度を定義する空間の座標系の座標軸と一致する軸であって一軸加速度センサ5の出力軸の方向を意味しており(ここではZ軸)、次の添え字(ここではz)は一軸振動台のテーブルに固定した状態の一軸加速度センサの軸のうち振動台のテーブルの振動(加振)方向と一致する軸を意味している(Sの添え字に関しては以下同様)。位相遅れや、感度の減少は、aozの項に入ってくるので、感度は複素数となる。
b.横感度の計測
図10に示すように、振動台11のテーブル12に、一軸加速度センサ5に対して定義したX軸の方向が、振動台のテーブル12の振動の方向と一致するように、一軸加速度センサ5を取り付けた立方体ブロック6の面6bを取り付け固定した。この状態で、振動台のテーブル12を振動させる。主軸感度の計測と同様にして、一軸加速度センサ5からの測定結果と、テーブル12の面の運動を独立に計測する計測装置の計測結果とに基づいて、横感度Szxを求める。すなわち、
入力加速度をaixexp(jωt)で表し、加速度センサの出力信号をaozexp(jωt)で表すとすると、マトリックス感度における加速度センサの感度Szx(ω)は、以下の式で定義される。
Figure 0004924933
勿論、位相がずれたり、ゲインが小さくなることは、aozという複素数に吸収されており、横感度は、角周波数の関数としての複素数となる。
同様にして、図11に示すように、振動台11のテーブル12に、一軸加速度センサ5に対して定義したY軸の方向が、振動台のテーブル12の振動の方向と一致するように、一軸加速度センサ5を取り付けた立方体ブロック6の取り付け面6cを取り付け固定した。この状態で、振動台のテーブル12を振動させる。主軸感度の計測と同様にして、一軸加速度センサ5からの測定結果と、テーブル12の面の運動を独立に計測する計測装置の計測結果とに基づいて、横感度Szyを求める。すなわち、
入力加速度をaiyexp(jωt) で表し、加速度センサ5の出力信号をaozexp(jωt) で表すとすると、マトリックス感度における加速度センサの感度はSzy(ω)は、以下の式で定義される。
Figure 0004924933
勿論、位相がずれたり、ゲインが小さくなることは、aozという複素数に吸収されており、横感度は、角周波数の関数としての複素数となる。
以上から、(1)式を参考にして、一軸加速度センサ5の入出力関係を立てると、以下の(12)式が成立する(左辺が出力、右辺が入力)。
Figure 0004924933
なお、以上の説明は、立方体ブロック6に1個のセンサを取り付けた例について行ったが、これは説明の便宜のためであって、立方体ブロックの一面に取り付け固定するセンサの数は1個に限らない。すなわち、振動台のテーブル面に固定可能な規模の立方体ブロックの同一面に、複数個のセンサを取り付け固定して、複数個のセンサについて同時にまたは個別に測定を実施することもできる。また、振動台のテーブル面に複数個の立方体ブロックを取り付け固定して各立方体ブロックに1個のセンサを取り付け、または各立方体ブロックの一面に複数個のセンサを取り付けて、各センサごとに、または各センサ同時に測定を実施することもできる。これらのことは、以下の各例においても、同様である。
2個の一軸加速度センサの場合(図4B)
2個の一軸加速度センサ5,7を立方体ブロック6の取り付け面6aと6bとに各々取り付け固定する。この状態では、加速度センサ5の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6aと直交しており、加速度センサ7の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6bと直交している。ここで、一軸加速度センサ5については前述した図4Aと同様であり、一軸加速度センサ7の出力軸である主感度軸方向をX軸と定義し、このX軸と直交する2軸であるY軸およびZ軸に関し、このX軸と直交し、立方体ブロック6の取り付け面6cと直交する軸に一致する軸をY軸とし、さらにX軸と直交し、立方体ブロック6の取り付け面6aと直交する軸をZ軸と定義した。
したがって、一軸加速度センサ5のX,Y,Z軸と振動台のテーブル12の振動の方向との関係は上述の例と同様であり、上述の通りにして、一軸加速度センサ5の主軸感度Szz(ω)と横感度Szx(ω)およびSzy(ω)とを求めることができる。
さらに、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6bと反対側の面を取り付け固定して、一軸加速度センサ7の主感度軸(X軸)と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちX軸の方向に加振することによって、一軸加速度センサ7の主軸感度Sxxを求めることができる。
入力加速度をaixexp(jωt)で表し、一軸加速度センサ7の出力信号をaoxexp(jωt)で表すとすると、一軸加速度センサ7の主軸感度Sxx(ω)は、以下の式で定義される。
Figure 0004924933
同様に、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6cを取り付け固定して、一軸加速度センサ7のY軸と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちY軸の方向に加振することによって、一軸加速度センサ7の横感度Sxy(ω)を求めることができる。
入力加速度をaiyexp(jωt)で表し、加速度センサ7の出力信号をaoxexp(jωt)で表すとすると、マトリックス感度における加速度センサ7の感度Sxy(ω)は、以下の式で定義される。
Figure 0004924933
さらに、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6aと反対側の面を取り付け固定して、一軸加速度センサ7のZ軸と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちZ軸の方向に加振することによって、一軸加速度センサ7の横感度Sxz(ω)を求めることができる。
入力加速度をaizexp(jωt)で表し、加速度センサ7の出力信号をaoxexp(jωt)で表すとすると、マトリックス感度における加速度センサ7の感度Sxz(ω)は、以下の式で定義される。
Figure 0004924933
以上から、2個の一軸加速度センサの入出力関係を立てると、以下の(16)式が成立する(左辺が出力、右辺が入力)。
Figure 0004924933
以上をまとめると、マトリックス感度が、(16)式のように定義されるとすると、マトリックスの各要素は、以下のような手順でもとまる。
Figure 0004924933
勿論、加速度計5と加速度計7の出力は同時に計測して良い。
3個の一軸加速度センサの場合(図4C)
3個の一軸加速度センサ5,7,8を立方体ブロック6の取り付け面6aと6bと6cとに各々取り付け固定する。この状態では、加速度センサ5の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6aと直交しており、加速度センサ7の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6bと直交しており、加速度センサ8の主感度軸の方向はこれを固定した立方体ブロック6の取り付け面6cと直交している。ここで、一軸加速度センサ5および7については前述した図4Bと同様であり、一軸加速度センサ8の出力軸である主感度軸方向をY軸と定義し、このY軸と直交する2軸であるX軸およびZ軸に関し、このY軸と直交し、立方体ブロック6の取り付け面6bと直交する軸に一致する軸をX軸とし、さらにY軸と直交し、立方体ブロック6の取り付け面6aと直交する軸をZ軸と定義した。
したがって、一軸加速度センサ5および7のX,Y,Z軸と振動台のテーブル12の振動の方向との関係は上述の例と同様であり、上述の通りにして、一軸加速度センサ5の主軸感度Szz(ω)と横感度Szx(ω)およびSzy(ω)と、一軸加速度センサ7の主軸感度Sxx(ω)と横感度Sxy(ω)およびSxz(ω)とを求めることができる。
さらに、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6cと反対側の面を取り付け固定して、一軸加速度センサ8の主感度軸(Y軸)と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちY軸の方向に加振することによって、一軸加速度センサ8の主軸感度Syy(ω)を求めることができる。
入力加速度をaiyexp(jωt)で表し、一軸加速度センサ8の出力信号をaoyexp(jωt)で表すとすると、一軸加速度センサ8の主軸感度Syy(ω)は、以下の式で定義される。
Figure 0004924933
同様に、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6bと反対側の面を取り付け固定して、一軸加速度センサ8のX軸と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちX軸の方向に加振することによって、一軸加速度センサ8の横感度Syx(ω)を求めることができる。
入力加速度をaixexp(jωt)で表し、加速度センサ8の出力信号をaoyexp(jωt)で表すとすると、マトリックス感度における加速度センサ8の感度Syx(ω)は、以下の式で定義される。
Figure 0004924933
さらに、振動台11のテーブル12面上に、立方体ブロック6の取り付け面6aと反対側の面を取り付け固定して、一軸加速度センサ8のZ軸と振動台のテーブル12の振動の方向を一致させた状態で、振動台のテーブル12を振動させて立方体ブロック6を加振することによって、すなわち、入力加速度を定義する空間の座標系の座標軸のうちZ軸の方向に加振することによって、一軸加速度センサ8の横感度Syz(ω)を求めることができる。
入力加速度をaizexp(jωt)で表し、加速度センサ8の出力信号をaoyexp(jωt)で表すとすると、マトリックス感度における加速度センサ8の感度Syz(ω)は、以下の式で定義される。
Figure 0004924933
以上から、3個の一軸加速度センサの入出力関係を立てると、以下の(20)式が成立する(左辺が出力、右辺が入力)。
Figure 0004924933
以上をまとめると、マトリックス感度が、(20)式のように定義されるとすると、マトリックスの各要素は、以下のような手順でもとまる。
Figure 0004924933
勿論、加速度計5、加速度計7と加速度計8の出力は同じ方向に加振している際には同時に計測して良い。
半導体加速度計(ジャイロ機能、角加速度測定機能を含む)の場合(図4D)
半導体加速度センサ9の場合は、並進加速度の主感度軸を一つ持つ加速度センサを組みあわせたものとみなすことは不可である。すなわち、一軸加速度センサの場合のように、単独に一軸加速度センサの特性を調べてそれぞれの横感度を元に、マトリックス感度を調べるというようなことは不可能である。また、並進加速度についての感度の主軸は最大でも3個しかない。そこで、入力加速度を定義する座標系をX軸、Y軸、Z軸として定義する。半導体加速度センサ9の出力の軸の個数が1個の場合には、OX(Oは座標の原点を示す。以下同様)を出力軸とする。加速度センサ9の出力の軸の個数が2個の場合には、OX、OYを出力軸とする。加速度センサ9の出力の軸の個数が3個の場合には、OX、OY、OZを出力軸とする。
なお、加速度センサ9は、図12〜図14に示すように、治具としての立方体ブロック6に取り付ける。この立方体ブロック6は、振動台のテーブル面上に取り付け固定する。このときに、主軸感度、横感度は、以下の手順によって求めることが出来る。但し、出力軸(主軸感度)は、常に加振加速度が存在する平面(すなわち、振動台のテーブル面)と垂直でなければならない。すなわち、図12に示すように、Z軸が振動台のテーブル面と垂直の場合は、出力軸はOZ、図13に示すように、X軸が振動台のテーブル面と垂直の場合は、出力軸はOX、図14に示すように、Y軸が振動台のテーブル面と垂直の場合は、出力軸はOYとなる。
Figure 0004924933
以上のようにして求めた、並進加速度に関する横感度を、その求め方と、入力加速度ベクトル、出力信号ベクトル定義に基づいて、感度マトリックスの第i行j列成分として入出力の対応関係を考慮して正しい位置に配置していくことにより、感度マトリックスを定義することが出来る。この感度マトリックスを定義するための手法は、半導体加速度センサ9の出力の軸の個数が1個の場合には、前述した「1個の一軸加速度センサの場合(図4A)」と同様であり、半導体加速度センサ9の出力の軸の個数が2個の場合には、前述した「2個の一軸加速度センサの場合(図4B)」と同様であり、半導体加速度センサ9の出力の軸の個数が3個の場合には、前述した「3個の一軸加速度センサの場合(図4C))」と同様である。
なお、上述した3個の一軸加速度センサを組み合わせた例(図4C)の場合および半導体加速度センサであって加速度の出力軸が3つある場合は、加速度の検出精度をより高くすることができる。すなわち、これらの場合は、3次元空間の並進加速度だけを考えると、以下の関係式が成立する。各符号の定義は前述した通りである。
Figure 0004924933
ここで、入力加速度
Figure 0004924933
が、出力加速度
Figure 0004924933
から求まるためには、マトリックス感度の逆マトリックスを出力加速度にかければよいが、その前に、逆マトリックスが存在することを説明する。
xx=Syy=Szz=Sと仮定し、かつ、横感度が全て等しいとして、Sxy=Sxz=Syx=Syz=Szx=Szy=ε×Sと置くと、以下の式が成立するので、マトリックス感度の逆マトリックスを出力信号にかけて、入力信号をより精度高く求めることが可能となる。
Figure 0004924933
通常、横感度と主軸感度の比は1よりも小さいので、ε≦1と仮定することは、妥当である。すると、式(1)からマトリックス感度の逆マトリックスは存在すると考えることができる。
一軸加速度センサへの入力加速度の計測
一軸加速度センサへの入力加速度は、一軸加速度センサにレーザ干渉計からのレーザを直接照射して計測することができる。そのための一軸加速度センサのいくつかの(ケーシングの)構造を説明する。図15に示すように、一般的な構造の一軸加速度センサ13の下部は、被検出物にねじ込み固定するためのナット状をしており、その上の部分は断面円柱状をしている。この一般的な構造の一軸加速度センサ13の上面13cは平坦であり、軸心と直交しており、ここにレーザ干渉計からのレーザを照射することができる。このため、一軸加速度センサ13の上面13cに、入力加速度を定義する空間の座標系のX,Y,Z軸のうちの一つ(例えばZ軸)にその光路を一致させたレーザを垂直に照射することができる。さらに、一軸加速度センサ13の断面円柱状の部分の側面に突出部分13a,13bを形成し、これら2つの突出部分13a,13bを平坦な表面になるように且つこれら表面の間の角度が90度になるように加工(例えば十分高い精度を有する切削加工)し、これら2つの突出部分13a,13bの平坦な表面を、一軸加速度センサ13の軸心と直交するように加工した。したがって、これらの突出部分13a,13bの平坦な表面に、残りの2軸(X,Y軸)に光路を一致させたレーザ干渉計からのレーザを垂直に照射することができ、これらの突出部分13a,13bと上面13cとに照射するレーザの光路をX,Y,Z軸に高精度に一致させることができる。この構造は1個の一軸加速度センサのみを使用する場合に適用できる。
また、図16Aに示すように、一軸加速度センサ14の断面円柱状の部分の側面にねじを形成する。このねじの部分に、図16B,Cに示すような環状の部品15と部品16とをねじ込む。部品15は、隣接する外周の2辺15a,15bが平坦な表面になるように且つこれら表面の間の角度が90度になるように加工(例えば十分高い精度を有する切削加工)し、一軸加速度センサ14の断面円柱状の部分にねじ込んだ状態で、これら2辺15a,15bの平坦な表面を、一軸加速度センサ14の軸心と直交するように加工した。他の部品16は部品15に当接してこれをセンサ14に固定するためのものであって、部品15の一軸加速度センサ14の軸心回りの位置を決定した後にその位置を固定することができる。一軸加速度センサ14の上面14cは平坦であり、軸心と直交しており、ここにレーザ干渉計からのレーザを照射することができる。このような構造によれば、一軸加速度センサ14の上面14cに垂直に照射するレーザの入出力光路を入力加速度を定義する空間の座標系のX,Y,Z軸のうちの一つ(例えばZ軸)に一致させ、さらに、部品15の一軸加速度センサ14の軸心回りの位置を調節して、部品15の2辺15a,15bの平坦な表面に垂直に照射するレーザ干渉計からのレーザの光路を入力加速度を定義する空間の座標系の残りの2軸(X,Y軸)に一致させることができる。したがって、この図16に示す一軸加速度センサ14は、図4BまたはCのように2個または3個を組み合わせる場合に適用できる。
なお、図15,図16に示したような一般的な構造の一軸加速度センサ以外の一軸加速度センサでは、その外側形状に制約が無ければ、外側形状の各一部に、入力加速度を定義する空間の座標系のX軸,Y軸およびZ軸に垂直なレーザ照射面を形成することができる。さらに、半導体加速度センサに関しても同様な構造のものを形成することができる。
角加速度、角速度による影響を考慮する場合
さらに、以上のようなセンサの感度マトリックスを求める際に、当該センサの回転軸回りの回転による影響を考慮することができる。
そのためのセンサのケーシングの構造の例を以下に示す。
図17に示すセンサ17は、ケーシングが、その回転軸(この場合は主感度軸)を含む面上に形成された平面17a,17bを有する例を示しており、この二つの平面17a,17bに2つのレーザ干渉計からのレーザを各々照射できるような構造である。このような構造によれば、センサ17を、回転振動運動を発生する一軸振動台(以下、同様)の回転中心にその回転軸が位置するように前記立方体ブロックを介して取り付け、回転振動運動を印加し、前記印加によって得られた前記センサの出力値と、前記印加時に、二つの平面17a,17bに2つのレーザ干渉計からのレーザを各々照射して得られた角速度振動または角加速度振動の計測値とを、前述した各例におけるセンサの横感度を計算する際に参照することができる。なお、レーザ干渉計により計測値を算出するために必要なセンサ17の回転軸から、平面17a,17bのレーザ照射点までの距離が明確になるように、平面17a,17b上には、例えば、目盛り表示等の指示を設けてある。
この例は基本構造を示すものであり、センサ17の側面に例えば切削加工によって平面17a,17bを形成することができる。
また、回転軸を含む平面上にレーザ照射の平面を形成せずに、回転軸と平行な面上にレーザ照射の平面があってもよい。図18はこのような平面を持つ構造のセンサを示す。まず、図18Aに示すように、センサ18の断面円柱状の部分の側面にねじを形成する。このねじの部分に、図18B,Cに示すような環状の部品19と部品20とをねじ込む。部品19は、隣接する外周の2辺19a,19bがセンサ18にねじ込んだ状態でその回転軸と平行な面上に位置する平坦な表面になるように且つこれら表面の間の角度が90度になるように加工(例えば十分高い精度を有する切削加工)した。他の部品20は部品19に当接してこれをセンサ18に固定するためのものであって、部品19のセンサ14の軸心回りの位置を決定した後にその位置を固定することができる。このような構造ではセンサ18を、回転運動を発生する一軸振動台の回転中心にその回転軸が位置するように前記立方体ブロックを介して取り付け、回転運動を印加し、前記印加によって得られた前記センサ18の出力値と、前記印加時に、平面18aまたは18bの2箇所に2つのレーザ干渉計からのレーザを各々照射して得られた角速度または角加速度の計測値とを、前述した各例におけるセンサの横感度を計算する際に参照することができる。なお、レーザ干渉計により計測値を算出するために、センサ18の回転軸から、平面18aまたは18bまでの距離と、平面18aまたは18b上のレーザ照射点とセンサ18の回転軸との間の幾何学的関係が明確になるように、平面18a,18b上には、例えば、目盛り表示等の指示を設けてある。また、この例の平面18a,18bはセンサ18の主感度軸方向に厚くなっており、センサ18の主感度軸方向に二段に2つのレーザ干渉計からのレーザを照射することができ、この場合には、センサ18の主感度軸以外の回転軸回りの角速度、角加速度の影響を調べることができる。
さらに、図19に示すように、センサの回転軸回りに回折格子を有する構造とすることができる。図19Aは、センサ21の断面円柱状の部分の側面にねじを形成し、このねじの部分に、外周に回折格子を形成したリング状の部品22をねじ込んだものである。また、図19Bは、センサ23の側面に軸回りに回折格子24を切削加工等により形成したものである。このような構造のセンサ21または23を、回転運動を発生する一軸振動台の回転中心にその回転軸が位置するように前記立方体ブロックを介して取り付け、回転運動を印加し、前記印加によって得られた前記センサ21または23の出力値と、前記印加時に、回折格子22または24にレーザ干渉計からのレーザを照射して得られた角速度または角加速度の計測値とを、前述した各例におけるセンサの横感度を計算する際に参照することができる。
角速度、角加速度を検出する加速度センサの横感度を測定する場合
図20は、図7に示す一軸の並進加速度センサの校正方法に対応した、一軸の角加速度センサの校正方法を示している。26は角加速度センサ、6はその取り付けブロック、27は振動角加速度を発生する一軸振動台であり、円板状のテーブル28は一軸振動台27の本体に対して図中の両方向矢印の方向に回転振動する。テーブル28は、その側面に光学回折格子が形成されている。角加速度センサの感度軸周りの振動角加速度は一軸振動台27によって作成され、その方向は両方向矢印である←→により示される。テーブル28の振動角加速度、すなわち、テーブル28に取り付けブロック6を介して取り付けた角加速度センサ26に印加される振動角加速度を計測するためのレーザ干渉計からのレーザ光がテーブル28の側面の光学回折格子に水平に照射される。角加速度センサ26の感度軸は、テーブルの取りつけ面と垂直になるよう、取りつけブロックの各面は高い平面度を持ち、かつ面相互の直角度が出ていなければならない。また、図7に示されている垂直方向の一軸並進振動加速度台のテーブルに、図20に示されている角加速度センサ26をセットすれば感度軸と並進加速度の方向が一致するので、上述した感度軸方向の並進振動加速度に関する、横感度を測定することが出来る。
多軸の加速度センサの場合、あるいは並進加速度と角速度を同時に検出する多軸のモーションセンサの場合には、角加速度、角速度の感度軸と振動台の回転運動の軸を一致させることで、その軸周りの角加速度もしくは角速度に関するセンサの感度を決めることが出来る。そのセンサを、図7に示すように一軸並進運動振動台にセットし、回転運動に対する感度軸と平行に並進運動振動加速度を印加することによって、その感度軸に対する並進運動の横感度を測定することが出来る。並進運動のみに感度をもつ加速度センサでは、横感度は物理的に横のイメージになるが、回転運動の場合にはそうはならない。あくまで感度マトリックスの非対角成分の意味での横感度である。
図21では、一軸の角加速度センサもしくは角速度センサの感度軸と垂直となるX軸周りに回転振動運動を印加して、角加速度または角速度の印加による出力信号を得て横感度を測定する場合を示している。26は角加速度センサ、6はその取り付けブロック、27は振動角加速度を発生する一軸振動台、28は回折格子が側面に製作されている取りつけテーブルである。角加速度センサの感度軸周りの角振動加速度は一軸振動台27によって作成され、その方向は両方向矢印←→により示される。回転振動運動を印加する回転軸をどこに設定するかによって、横感度の値が変化する場合がありうることに注意する必要がある。全く同じ状態で図10に示す一軸の並進運動の振動台の上に設置すれば、X軸方向の並進振動加速度が入力加速度として作用するときの、角加速度センサに関する横感度を計測することが出来る。
多軸の加速度センサの場合、あるいは並進加速度と角速度を同時に検出する多軸のモーションセンサの場合には、角加速度、角速度の感度軸と振動台の回転運動の軸を垂直に配置することによって、その軸周りの角加速度もしくは角速度に関するセンサの感度を決めることが出来る。そのセンサを、図10に示すように一軸並進運動振動台にセットし、回転運動に対する感度軸とは垂直に並進運動振動加速度を印加することによって、その感度軸に対する並進運動の横感度を測定することが出来る。並進運動のみに感度をもつ加速度センサでは、横感度は物理的に横のイメージになるが、回転運動の場合にはそうはならない。あくまで感度マトリックスの非対角成分の意味での横感度である。並進運動加速度であれ、角加速度、角速度の感度軸であれ、感度軸に垂直方向に加速度を印加する際の印加の方向あるいは回転中心となる軸は、加速度を印加する入力軸のいづれか一つと一致していなければならないことはない。例えば、並進加速度を検出するニ軸加速度センサがX軸入力軸、Y軸入力軸を持つとして、感度の計測を、X軸に沿った並進振動加速度、Y軸に沿った並進振動は当然のこととして、Z軸周りの角加速度を印加して横感度を定義してよいのである。この場合には、3次元の空間で二軸加速度センサのマトリックス感度が求められたことになり、2×3の感度マトリックスが得られる。
図22では、一軸の角加速度センサもしくは角速度センサの感度軸と垂直となるY軸周りに回転振動運動を印加して、角加速度または角速度の印加による出力信号を得て横感度を測定する場合を示している。26は角加速度センサ、6はその取り付けブロック、27は振動角加速度を発生する一軸振動台、28は回折格子が側面に製作されている取りつけテーブルである。角加速度センサの感度軸周りの角振動加速度は一軸振動台27によって作成され、その方向は両方向矢印←→により示される。回転振動運動を印加する回転軸をどこに設定するかによって、横感度の値が変化する場合がありうることに注意する必要がある。全く同じ状態で図11に示す一軸の並進運動の振動台の上に設置すれば、Y軸方向の並進振動加速度が入力加速度として作用するときの、角加速度センサに関する横感度を計測することが出来る。
並進運動加速度であれ、角加速度、角速度の感度軸であれ、感度軸に垂直方向に加速度を印加する際の印加の方向あるいは回転中心となる軸は、加速度を印加する入力軸のいづれか一つと一致していなければならないことはない。例えば、並進加速度を検出するニ軸加速度センサがX軸入力軸、Y軸入力軸を持つとして、感度の計測を、X軸に沿った並進振動加速度、Y軸に沿った並進振動は当然のこととして、Z軸周りの角加速度を印加して横感度を定義してよいのである。この場合には、3次元の空間で二軸加速度センサのマトリックス感度が求められたことになり、2×3の感度マトリックスが得られる。
加速度計/加速度センサの校正方法を説明する図である。 加速度計/加速度センサの校正方法を説明する図である。 加速度計/加速度センサの校正方法を説明する図である。 加速度計/加速度センサの校正方法を説明する図である。 ISO5347 Part11に記述されている方法を説明する図である。 加速度センサの機能の数学的定義を説明する図である。 加速度センサの各例と加速度ベクトルを説明する図である。 加速度センサの各例と加速度ベクトルを説明する図である。 加速度センサの各例と加速度ベクトルを説明する図である。 加速度センサの各例と加速度ベクトルを説明する図である。 加速度センサの各例と加速度ベクトルを説明する図である。 立方体ブロックへの一軸加速度センサの取り付けの一態様を示す図である。 立方体ブロックへの一軸加速度センサの取り付けの一態様を簡略化して示す図である。 一軸加速度センサの主軸感度を計測する際の、一軸振動台に対する一軸加速度センサの固定の態様を示す図である。 一軸加速度センサへの入力加速度信号の一例をグラフ表示した図である。 一軸加速度センサ5からの出力信号の一例をグラフ表示した図である。 立方体ブロックへの一軸加速度センサの取り付けの他の態様を簡略化して示す図である。 立方体ブロックへの一軸加速度センサの取り付けのさらに他の態様を簡略化して示す図である。 立方体ブロックへの半導体加速度センサの取り付けの一態様を示す図である。 立方体ブロックへの半導体加速度センサの取り付けの他の態様を示す図である。 立方体ブロックへの半導体加速度センサの取り付けのさらに他の態様を示す図である。 加速度センサの他の一例を示す図である。 加速度センサのさらに他の一例を説明する図である。 加速度センサのさらに他の一例を説明する図である。 加速度センサのさらに他の一例を説明する図である。 センサのケーシングの構造の一例を示す図である。 他のセンサの構造を説明する図である。 他のセンサの構造を説明する図である。 他のセンサの構造を説明する図である。 さらに他のセンサの構造を説明する図である。 さらに他のセンサの構造を説明する図である。 一軸角加速度センサの主軸感度を計測する際の、振動角加速度を発生する一軸振動台に対する一軸角加速度センサの固定の態様を示す図である。 立方体ブロックへの一軸角加速度センサの取り付けの他の態様を簡略化して示す図である。 立方体ブロックへの一軸角加速度センサの取り付けのさらに他の態様を簡略化して示す図である。

Claims (11)

  1. 並進加速度を検出する少なくとも1つのセンサを、治具を介して振動台上に固定し、前記振動台によって前記センサ並進加速度、または回転振動を印加し、前記印加によって得られた前記センサの出力値と、前記印加時に前記センサから独立した計測装置によって計測して得られた前記センサへの入力加速度の計測値とに基づいて、前記センサを校正する方法であって、
    前記振動台は、一軸の振動方向に並進加速度を印加し、または前記一軸を回転軸とする回転振動を印加し、
    前記センサへの入力加速度を定義する空間の座標系の座標軸の1つを前記振動方向と一致させた状態で、前記一軸の振動方向に並進加速度を印加した場合に前記一軸の振動方向と前記センサの出力軸とが一致するときの出力の前記計測して得られた入力に対する比を主軸感度とし、前記一軸の振動方向に対する前記主軸感度軸以外の出力の前記計測して得られた入力に対する比を横感度としたとき、前記並進加速度の印加と前記回転振動の印加を実行して、前記センサの感度マトリックスの要素の1つである主軸感度または横感度を計測し、
    前記振動台に固定する面を変えて前記治具を前記振動台に固定することにより、前記座標軸のすべてについて前記印加を実行して、前記感度マトリックスに含まれる各々の要素を求めることを特徴とするセンサを校正する方法。
  2. 回転角速度または回転角加速度を検出する少なくとも1つのセンサを、治具を介して振動台上に固定し、前記振動台によって前記センサに回転振動、または並進加速度を印加し、前記印加によって得られた前記センサの出力値と、前記印加時に前記センサから独立した計測装置によって計測して得られた前記センサへの入力加速度の計測値とに基づいて、前記センサを校正する方法であって、
    前記振動台は、一軸の振動方向に並進加速度を印加し、または前記一軸を回転軸とする回転振動を印加し、
    前記センサへの入力加速度を定義する空間の座標系の座標軸の1つを前記振動方向と一致させた状態で、前記一軸を回転軸とする回転振動を印加した場合に、前記一軸の振動方向と前記センサの出力軸とが一致するときの出力の前記計測して得られた入力に対する比を主軸感度とし、前記一軸の振動方向に対する前記主軸感度軸以外の出力の前記計測して得られた入力に対する比を横感度としたとき、前記回転振動の印加と前記並進加速度の印加を実行して、前記センサの感度マトリックスの要素の1つである主軸感度または横感度を計測し、
    前記振動台に固定する面を変えて前記治具を前記振動台に固定することにより、前記座標軸のすべてについて前記印加を実行して、前記感度マトリックスに含まれる各々の要素を求めることを特徴とするセンサを校正する方法。
  3. 前記センサが前記治具に固定されたとき、当該センサのケーシングが、少なくとも2個以上の前記座標軸に垂直な面を有することを特徴とする請求項1または2に記載のセンサを校正する方法。
  4. 前記計測装置は、前記センサの前記面にレーザを照射するレーザ干渉計を含むことを特徴とする請求項に記載のセンサを校正する方法。
  5. 前記センサが前記治具に固定されたとき、当該センサのケーシングが、前記回転軸を含む面上かまたは当該回転軸と平行な面上に形成された照射面を有することを特徴とする請求項に記載のセンサを校正する方法。
  6. 前記計測装置は、前記センサの前記照射面の2箇所にレーザを照射するレーザ干渉計を含むことを特徴とする請求項に記載のセンサを校正する方法。
  7. 前記センサが前記治具に固定されたとき、当該センサのケーシングが、前記センサの回転軸回りの回折格子を有することを特徴とする請求項に記載のセンサを校正する方法。
  8. 前記計測装置は、前記センサの前記回折格子にレーザを照射するレーザ干渉計を含むことを特徴とする請求項に記載のセンサを校正する方法。
  9. 前記振動方向に並進運動を発生する振動台によって算出された主軸感度または横感度と、前記一軸を回転軸とする回転振動を発生する振動台によって算出された主軸感度または横感度とを、それぞれ前記センサの感度マトリックスの要素とすることを特徴とする請求項1または2に記載のセンサを校正する方法。
  10. 加速度を検出するN(N:2以上の整数)個のセンサを組み合わせて加速度のN個の成分を計測する加速度計測方法であって、
    請求項1ないしのいずれかの方法により求めた感度マトリックスから逆マトリックスを算出し、
    前記N個のセンサの各々の出力に対応する成分からなるベクトルに、前記逆マトリックスを乗算することによって、加速度を計測することを特徴とする加速度計測方法。
  11. 少なくとも2軸の並進加速度、回転角速度または回転角加速度を検出するセンサによって加速度を計測する加速度計測方法であって、
    請求項1ないしのいずれかの方法より求めた感度マトリックスから逆マトリックスを算出し、
    前記センサの各々の軸の出力に対応する成分からなるベクトルに、前記逆マトリックスを乗算することによって、加速度を計測することを特徴とする加速度計測方法。
JP2006511901A 2004-03-31 2005-03-31 加速度を検出するセンサを校正する方法および加速度計測方法 Active JP4924933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511901A JP4924933B2 (ja) 2004-03-31 2005-03-31 加速度を検出するセンサを校正する方法および加速度計測方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004102736 2004-03-31
JP2004102736 2004-03-31
JP2006511901A JP4924933B2 (ja) 2004-03-31 2005-03-31 加速度を検出するセンサを校正する方法および加速度計測方法
PCT/JP2005/006840 WO2005095998A1 (ja) 2004-03-31 2005-03-31 加速度を検出するセンサの横感度を計測する方法および加速度計測方法

Publications (2)

Publication Number Publication Date
JPWO2005095998A1 JPWO2005095998A1 (ja) 2008-02-21
JP4924933B2 true JP4924933B2 (ja) 2012-04-25

Family

ID=35063916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511901A Active JP4924933B2 (ja) 2004-03-31 2005-03-31 加速度を検出するセンサを校正する方法および加速度計測方法

Country Status (3)

Country Link
US (1) US7644602B2 (ja)
JP (1) JP4924933B2 (ja)
WO (1) WO2005095998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510632A (zh) * 2015-11-24 2016-04-20 上海汽车集团股份有限公司 获取汽车加速度数据的方法与装置
JP6143928B1 (ja) * 2016-08-19 2017-06-07 株式会社ベクトル・ダイナミックス 慣性センサの動的感度マトリクスを計測する方法およびその装置
JP2018505408A (ja) * 2015-01-08 2018-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 慣性センサを検査するための装置および方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516882C (zh) * 2007-03-09 2009-07-22 中国科学院上海微***与信息技术研究所 用波形比较法进行冲击加速度传感器横向响应的测试方法
JP2010117260A (ja) * 2008-11-13 2010-05-27 Epson Toyocom Corp 姿勢検出装置の補正パラメーター作成方法、姿勢検出装置の補正パラメーター作成用装置及び姿勢検出装置
US8266959B2 (en) * 2008-11-26 2012-09-18 Fluke Corporation System and method of identifying the orientation of a tri-axial accelerometer
WO2011083511A1 (ja) * 2010-01-07 2011-07-14 パイオニア株式会社 角速度センサーの検査方法および角速度センサーの検査装置
JP2010117371A (ja) * 2010-02-24 2010-05-27 Epson Toyocom Corp 姿勢検出装置
JP5688842B2 (ja) * 2011-01-18 2015-03-25 株式会社アイエムエス 磁界測定調整装置
CN102654515B (zh) * 2011-03-04 2015-04-15 美新微纳传感***有限公司 三轴加速度传感器的z敏感轴的校准方法
WO2012151360A2 (en) * 2011-05-05 2012-11-08 Cornell University Calibration apparatus, methods, and applications
JP5697149B2 (ja) * 2011-05-09 2015-04-08 国立大学法人東京工業大学 加速度センサ特性評価方法及びプログラム
EP2523005A1 (en) * 2011-05-10 2012-11-14 BAE Systems Plc Calibrating rotational accelerometers
AU2012252135B2 (en) * 2011-05-10 2014-12-18 Bae Systems Plc Calibrating rotational accelerometers
JP6191029B2 (ja) * 2013-10-08 2017-09-06 学校法人明治大学 筒外燃焼モニタ用センサ
FR3015686B1 (fr) * 2013-12-23 2015-12-04 Snecma Banc d'essais, en particulier pour accelerometres
CN104793016A (zh) * 2014-01-21 2015-07-22 无锡华润上华半导体有限公司 用于校准加速度传感器轴向的夹具、校准设备和校准方法
CN104076164A (zh) * 2014-06-12 2014-10-01 株洲南车时代电气股份有限公司 用于固定加速度计的装置和使用装置测量加速度的方法
RU2596778C2 (ru) * 2014-10-13 2016-09-10 ООО "ГлобалТест" Способ определения поперечной чувствительности акселерометра
WO2017075593A1 (en) 2015-10-30 2017-05-04 Ion Geophysical Corporation Multi-axis, single mass accelerometer
JP2018115891A (ja) * 2017-01-17 2018-07-26 パナソニックIpマネジメント株式会社 加速度センサ
CN106771367B (zh) * 2017-01-25 2023-08-04 深圳市森瑟科技发展有限公司 横向灵敏度测试设备和测试方法
WO2020056216A1 (en) 2018-09-13 2020-03-19 Ion Geophysical Corporation Multi-axis, single mass accelerometer
CN111781399A (zh) * 2020-07-06 2020-10-16 广东工业大学 一种用于加速传感器的仿真测试平台
CN113932917B (zh) * 2021-11-16 2022-06-10 厦门乃尔电子有限公司 一种振动传感器校准***输出信号控制方法
CN114878859B (zh) * 2022-02-18 2023-03-24 太原理工大学 三轴加速度计灵敏度矩阵协同修正动态标定***及方法
DE102022126972B3 (de) 2022-10-14 2023-12-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung für die Charakterisierung eines inertialen Sensors
CN116930554A (zh) * 2023-07-11 2023-10-24 哈尔滨工业大学 一种用于精密仪器隔振器的速度传感器标定***及标定方法
CN116609548B (zh) * 2023-07-20 2023-11-03 山东省科学院激光研究所 一种可测倾角的三维光纤加速度传感器***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119542B2 (ja) 1993-05-25 2000-12-25 日本電気株式会社 半導体加速度センサおよび製造方法
JP3874810B2 (ja) 1994-03-07 2007-01-31 株式会社デンソー 車両制御装置
JPH0943269A (ja) 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
US6337688B1 (en) * 1999-01-29 2002-01-08 International Business Machines Corporation Method and system for constructing a virtual reality environment from spatially related recorded images
JP2000338128A (ja) * 1999-03-19 2000-12-08 Ngk Insulators Ltd 加速度センサ素子の感度評価方法
JP2000356647A (ja) 1999-06-14 2000-12-26 Denso Corp 加速度センサのオフセット誤差検出方法及び装置、車両用現在位置検出装置、ナビゲーション装置
JP3985215B2 (ja) 2001-09-26 2007-10-03 日立金属株式会社 半導体加速度センサー
JP2004093552A (ja) 2002-07-10 2004-03-25 Hitachi Metals Ltd 加速度検出装置
US7516660B2 (en) * 2004-05-21 2009-04-14 Met Tech, Inc. Convective accelerometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018505408A (ja) * 2015-01-08 2018-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 慣性センサを検査するための装置および方法
CN105510632A (zh) * 2015-11-24 2016-04-20 上海汽车集团股份有限公司 获取汽车加速度数据的方法与装置
CN105510632B (zh) * 2015-11-24 2018-12-28 上海汽车集团股份有限公司 获取汽车加速度数据的方法与装置
JP6143928B1 (ja) * 2016-08-19 2017-06-07 株式会社ベクトル・ダイナミックス 慣性センサの動的感度マトリクスを計測する方法およびその装置

Also Published As

Publication number Publication date
JPWO2005095998A1 (ja) 2008-02-21
US7644602B2 (en) 2010-01-12
WO2005095998A1 (ja) 2005-10-13
US20070295087A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4924933B2 (ja) 加速度を検出するセンサを校正する方法および加速度計測方法
JP4853937B2 (ja) 慣性センサの動的感度マトリックス計測装置およびその計測方法
US6810738B2 (en) Acceleration measuring apparatus with calibration function
CN109459061B (zh) 微惯性测量单元标定方法、设备及计算机可读存储介质
Huang et al. On-line error compensation of coordinate measuring machines
Umeda et al. Calibration of three-axis accelerometers using a three-dimensional vibration generator and three laser interferometers
US20160298959A1 (en) Calibration of motion systems
JP4257416B2 (ja) 力センサの動的マトリックス感度計測法とその装置
JP6101835B2 (ja) 慣性システムの継続校正
Prato et al. A reliable sampling method to reduce large sets of measurements: a case study on the calibration of digital 3-axis MEMS accelerometers
US20220075342A1 (en) Measurement system, and a method in relation to the measurement system
CN108398576B (zh) 一种静态误差标定***及方法
JP4491596B2 (ja) 加速度を検出するセンサの特性計測方法及び装置
Lin et al. Calibrating the volumetric errors of a precision machine by a laser tracker system
JP2000187042A (ja) 多次元加速度センサのミスアライメント補正方法およびこのセンサを具備する多次元加速度測定装置
Bogdanov Inertial measurement unit AIST-350T: Results of mechanical investigation tests
TWI411766B (zh) Uniaxial Control Input Gyroscope System with Flaw Compensation.
US20240242003A1 (en) Computer implemented method of determining a transfer function of a module or a component and generating such component
Belyaev et al. The effect of elastic strain of a three-axis gyrostabilized platform on the orientation accuracy of the sensitivity axes of the integrating gyroscopes: Experimental evaluation
Nakano et al. Rotational motion effect on sensitivity matrix of MEMS three-axis accelerometer for realization of concurrent calibration using vibration table
McLean et al. A robotic joint sensor
Dupont et al. Identification method for scale, pitch and yaw deviations with linear measurements
Rollett et al. Calibration and Registration Methods for a Condition Monitoring Multi-Sensor System
Swornowski The delimitation of the workspace accuracy in coordinate measuring technique
Liu et al. Self-Calibration of Coupling Error for 3-DOF Displacement Measurement of Planar Working Stage Based on Two Planar Gratings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100512

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250