JP4923073B2 - 遷音速翼 - Google Patents

遷音速翼 Download PDF

Info

Publication number
JP4923073B2
JP4923073B2 JP2009041645A JP2009041645A JP4923073B2 JP 4923073 B2 JP4923073 B2 JP 4923073B2 JP 2009041645 A JP2009041645 A JP 2009041645A JP 2009041645 A JP2009041645 A JP 2009041645A JP 4923073 B2 JP4923073 B2 JP 4923073B2
Authority
JP
Japan
Prior art keywords
section
cross
blade
hub
transonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041645A
Other languages
English (en)
Other versions
JP2010196563A (ja
Inventor
千尋 明連
康雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009041645A priority Critical patent/JP4923073B2/ja
Priority to EP10153679.5A priority patent/EP2226468B8/en
Priority to US12/707,493 priority patent/US8425185B2/en
Publication of JP2010196563A publication Critical patent/JP2010196563A/ja
Application granted granted Critical
Publication of JP4923073B2 publication Critical patent/JP4923073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、流れの全体もしくは一部が遷音速以上の流れ場となる場合に用いられる遷音速翼を備える軸流回転機械に関するものである。
近年の燃料高や環境意識の高まりを背景として、産業用ガスタービンやジェットエンジンといった軸流回転機械における効率向上の重要性がますます高くなっている。軸流回転機械における効率向上手段の一つに、翼の損失低減が挙げられる。翼の損失は、回転軸の径方向における翼の断面(翼形)で発生するプロファイル損失と、その他の損失に大別される。その他の損失の例としては衝撃波損失や2次流れ損失などがある。近年の軸流回転機は1段当たりの負荷が大きく、翼へ流入する作動流体のマッハ数が増加している。そのため、衝撃波損失は増加する傾向にある。すなわち衝撃波損失の低減は、回転機性能の向上に大きく寄与する。
衝撃波損失を低減する研究は従来から行われているが、その中の一つに、スタッキングライン形状の変更がある。特許文献1には、スタッキングラインを上流側に傾けた翼が記載されている。また特許文献2には、ミーン断面からハブ断面にかけての各断面とチップ断面を上流側に移動させることでS字形状のスタッキングラインを構成し、かつチップ断面の移動量を最も大きくした翼が記載されている。
特開平7−224794号公報 特開2008−115736号公報
しかし、特許文献1や2においては、スタッキングラインの変更に対する遷音速翼の強度に関して充分な検討は行われていない。
特許文献1や特許文献2に記載された遷音速翼は、チップ断面での衝撃波による種々の損失を低減するため、全体の重心位置が上流側に移動した形状となっている。このように重心位置が移動した翼では、鉛直方向に垂直なスタッキングラインを有する遷音速翼に比べ、ハブ断面の前縁付近の局所的な応力が増加するという問題がある。
本発明の目的は、チップ断面での衝撃波による損失の低減を達成しつつ、ハブ断面における局所的な応力を低減した遷音速翼を提供することにある。
回転機械の回転軸もしくは外周側ケーシングと接続しているハブ断面と、前記回転軸の垂直方向である翼高さ方向で前記ハブ断面から最も離れた位置にあるチップ断面と、作動流体主流の流れ方向で上流側に位置する前縁と、作動流体主流の流れ方向下流側に位置する後縁とを備え、通過する作動流体の流れの少なくとも一部が遷音速以上の流れとなっている遷音速翼において、前記ハブ断面から前記チップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部が、前記ハブ断面の重心位置であるスタッキング中心よりも作動流体主流の流れ方向で下流側に位置し、遷音速翼全体の重心と、前記スタッキング中心との前記回転軸の長さ方向の差εが、前記ハブ断面の前縁における強度限界を超えないよう設定され、前記ハブ断面と前記チップ断面の間に第三の断面を有し、前記第三の断面と前記チップ断面との間では、スタッキングラインが主流方向下流側に凸とし、
前記第三の断面と前記ハブ断面との間では、スタッキングラインが主流方向上流側に凸とする
本発明によると、チップ断面での衝撃波による損失の低減を達成しつつ、ハブ断面における局所的な応力を低減した遷音速翼を提供できる。
本発明の実施例1である遷音速翼の斜視図。 本発明の実施例1の遷音速翼を組み込む軸流回転機械のサイクル構成図。 軸流圧縮機の子午面断面図。 本発明の実施例1である遷音速翼のチップ断面拡大図。 基準翼と実施例1の遷音速翼の斜視図。 本発明の実施例1である遷音速翼と基準翼とのスタッキングラインの比較図。 本発明の実施例1である遷音速翼と基準翼の軸方向の断面積分布の比較図。 本発明の実施例1である遷音速翼と基準翼の翼高さ方向損失分布の比較図。 本発明の実施例1である遷音速翼と基準翼のミーン断面32からチップ断面33にかけての翼断面における翼面上マッハ数分布の比較図。 本発明の実施例1である遷音速翼と基準翼、および前方S字スイープ翼のスタッキングラインの比較図。 本発明の実施例1である遷音速翼と基準翼、および前方S字スイープ翼の軸方向断面積分布の比較図。 本発明の実施例1である遷音速翼と基準翼、および前方S字スイープ翼の翼高さ方向損失分布の比較図。 本発明の実施例1である遷音速翼と前方S字スイープ翼との最大局所応力の比較図。 本発明の実施例1である遷音速翼と前方S字スイープ翼のスタッキングラインとスタッキング中心の位置の比較図。 本発明の実施例2である遷音速翼の斜視図。 本発明の実施例2である遷音速翼と基準翼、および本発明の実施例1である遷音速翼とのスタッキングラインの比較図。
回転機械の翼において、主流速度が増加し音速に近くなると翼面上に衝撃波が発生する。これに伴い抵抗が増加し、性能が低下する。衝撃波損失を低減する研究は従来から行われているが、その中の一つに、スタッキングライン形状の変更がある。スタッキングラインとは、各翼高さ位置における翼形の重心位置を結んだ線である。従来、翼の設計においては、強度上の観点から翼形の重心をまっすぐに積み上げてスタッキングラインを直線にする手法が広く行われていた。しかしながら、近年の軸流回転機では1段当たりの負荷が大きくなる傾向にあり、衝撃波損失が回転機の性能に与える影響が大きくなってきた。この衝撃波損失の増大に対応すべく、スタッキングライン形状を変更する設計手法が研究されはじめている。
この研究は、当初、特許文献1に記載されているように、スタッキングラインを単純に傾けるものが中心であり、スタッキングラインの変曲点は1点以下であった。特許文献1に記載された翼はスタッキングラインを上流側に傾けたものである。流入マッハ数の大きいケーシング近傍の断面(チップ断面)では、漏れ流れや2次流れといった固体壁からの境界層の発達が懸念される。これに対し、スタッキングラインを上流側に傾ければ、固体壁からの境界層の発達を抑制し、衝撃波との干渉による境界層の拡大を抑制して損失を低減することができる。ただしこの場合、スタッキングラインのチップ断面側が上流側に前傾した形状となる。そうすると、回転軸もしくはケーシングと翼が接続する断面(ハブ断面)側よりも、チップ側の流れが早く増速し始めてしまい、チップ側の静圧が低下する。その結果、ハブ断面側からチップ断面側への作動流体の流れが促進され、ハブ断面側の作動流体の流量が減少する。すなわち、ハブ断面側で境界層が発達しやすくなり、損失が増加してしまうことになる。
また特許文献2には、ミーン断面からハブ断面にかけての各断面とチップ断面を上流側に移動させることでS字形状のスタッキングラインを構成し、かつチップ断面の移動量を最も大きくした翼が記載されている。ミーン断面とは、ハブ断面とチップ断面の中間に位置する断面のことである。特許文献2に記載された翼は、特許文献1に記載された翼に対して、ミーン断面近傍の各翼断面を下流側に移動させた形状をしている。この形状の翼は、スタッキングライン上に変曲点を1つしか持たない特許文献1に記載された翼の欠点であった、ハブ側での損失増加を抑制している。ハブ断面での剥離を抑制しているため、ストールマージン(失速余裕)の低減も可能である。また、チップ側を上流に移動させた形状をとることで、衝撃波によって発生する種々の損失を低減させることも可能であるとされている。
これらに対して以下実施例を用いて説明する本願発明は、衝撃波による損失を低減しつつ、ハブ断面での剥離を抑制して効率向上図ることはもちろんのこと、さらに信頼性の面でも優れた遷音速翼を提供すべく発明者らが検討する中で想到したものである。本願発明の遷音速翼は具体的には、遷音速翼全体の重心と、ハブ断面の重心位置であるスタッキング中心との回転軸の長さ方向位置の差εが、ハブ断面の前縁における強度限界を超えないよう設定されている。さらに、ハブ断面からチップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部が、前記スタッキング中心よりも作動流体主流の流れ方向で下流側に位置する。
上記特許文献1や2に記載の発明では、スタッキングラインを上流側に傾けることによって損失を低減しているが、そうすると翼の重心位置が上流側に移動し、特にハブ断面の前縁付近の局所的な応力が増加するという問題が生じる。
これに対して本願発明は、ハブ断面の前縁における強度限界を超えないようεを設定することで、信頼性の低下を抑制できる。その際、局所的にスタッキングラインを上流側に移動(前方スイープ)させた場合でも、スタッキングラインの一部をスタッキング中心よりも下流側に位置するようにしている。遷音速翼全体の重心を下流側に移動させ、翼全体として重心位置をスタッキング中心に近づけることが可能になるからである。すなわち本発明によると、信頼性の低下を抑制した上で、衝撃波による損失を低減可能な種々の翼形状を採用することができる。また本発明の遷音速翼は構造上高い強度を保つことができるため、高価な材料を用いる必要がなく、コスト削減効果も得られるといえる。
そもそも、スタッキングラインの形状を変更しない従来の翼では、強度上その他の観点から、重心をロータ11の長さ方向にそろえて翼形を積み上げる手法が常識であった。上記特許文献1や2に記載の発明は、強度、すなわち信頼性の面で不利になるのは承知の上で効率向上を図るべく、スタッキングラインを変更して損失低減を狙ったものである。本願発明は、スタッキングラインを変更しながらも、構造を工夫して信頼性の低下を抑制しようとした点で優れている。なおεがほぼ0、すなわち遷音速翼全体の重心とスタッキング中心との回転軸長さ方向位置を一致させればさらに信頼性が高まる。
本発明によれば、ハブ断面〜ミーン断面間のスタッキングラインを上流側に凸な形状とすることで、特許文献1のように単純にスタッキングライン全体を上流側に傾けた遷音速翼に比べ、特許文献2と同様にハブ側での境界層の発達を抑制することができる。またミーン断面〜チップ断面間を下流側に凸にして全体のスタッキングラインをS字形状とすることで、流れ方向の断面積分布が平滑化されてミーン断面〜チップ断面間の流入マッハ数を軽減し、衝撃波による損失を低減することが可能となる。さらにミーン断面〜チップ断面間の重心位置を下流側とすることで全体の重心位置がスタッキング中心に近づくため、前述のようなハブ断面における局所応力の増加を抑制することが可能となる。
以下、図面を参照して本発明の実施の形態について説明する。
図2に実施例1の遷音速翼を組み込む軸流回転機械のサイクル構成図を示す。ここでは、軸流回転機械としてガスタービン圧縮機を例にとって説明する。
まず、サイクルの概要について説明する。作動流体10aはまず軸流圧縮機1に流入する。圧縮機1で圧縮された作動流体は燃焼器2へ流入し、噴射された燃料10bとともに混合燃焼されて高温・高圧の燃焼ガスを生成する。この高温・高圧の燃焼ガス10cがタービン3に流入する。タービン3に流入した燃焼ガスが軸4を回転させることで発電機5を駆動し、発電を行っている。
図3には、軸流圧縮機1の子午面断面図を示す。図3に示すように、圧縮機は回転軸であるロータ11と、ケーシング12,ロータ11の外周側に接続された動翼13,ケーシング12に接続された静翼14によって構成される。作動流体は、ロータ11の外周側とケーシング12の間を通り、初段動翼13a,初段静翼14a、から最終段動翼13b,最終段静翼14bを通過することで圧縮される。以下に説明する実施例1の遷音速翼としては、このうちの初段動翼13aに採用することを想定している。他の動翼もしくは静翼に本実施例の遷音速翼を採用しても構わない。
次に、実施例1である動翼13aについて説明する。図1には実施例1である遷音速翼の斜視図を示す。図1において動翼13aは、ロータ11の外周側と接続しているハブ断面31,ロータ11の長さ方向に対する鉛直方向でありロータ11からケーシング12へ向かう方向(翼高さ方向)において翼高さにおいて半分の位置の断面であるミーン断面32、および翼高さ方向においてハブ断面31から最も離れた断面となるチップ断面33をはじめとする、ロータ11の径方向に連続した断面(翼形)から構成されている。各翼形において最も上流側に位置する点が前縁34であり、最も下流側に位置する点が後縁35である。また各翼形の重心位置を結んだ線をスタッキングライン36,ハブ断面31の重心位置をスタッキング中心37とする。
次にスタッキングライン36の変更方法について図4を用いて説明する。図4は実施例1である遷音速翼のチップ断面の拡大図である。図4において、前縁34と後縁35を結んだ直線をスタッガ線38とする。スタッキングラインとは、各翼高さ位置における各翼形の重心位置を結んだ線である。スタッキングライン36を変更する際はスタッガ線38の長さ方向、すなわちスタッガ線38に平行な直線に沿った方向に移動させる。移動方向として、スタッキング中心より上流側への移動を前方スイープ、下流側への移動を後方スイープと呼ぶ。本実施例の動翼13aは、ハブ断面31付近が前方スイープ、ミーン断面32付近が後方スイープ、チップ断面33付近は前方スイープになっており、スタッキングライン36はS字形状となる。
なお一般的には、スタッガ線38と垂直な方向であるリーン方向へのスタッガ線の変更は、空力性能にあまり効かないといわれている。そのため、スタッガ線38の移動の際に、リーン方向に多少移動させたとしても、空力性能への影響は少ない。
次に、本実施例である動翼13aにおける流れ場の条件について説明する。圧縮機1の圧力比は15程度を想定している。この圧縮機1の初段動翼である動翼13aにおける圧力比は約1.3、先端の相対流入マッハ数は約1.1を想定している。また、鉛直方向に直線のスタッキングラインを持つ、スイープがない遷音速翼を基準翼と定義する。図5に、基準翼と本実施例の遷音速翼の斜視図を示す。本実施例の条件で動翼13aの代わりに基準翼を用いると、ミーン断面からチップ断面にかけて翼の背側に衝撃波が発生し、大きな損失が発生することが予想される。
ここで、本実施例の動翼13aの空力性能に関する特徴を、基準翼との形状比較を用いて説明する。図6に実施例1の動翼13aと基準翼とのスタッキングラインの比較図を、図7には実施例1の動翼13aと基準翼との軸方向の断面積分布の比較図を示す。図6において横軸はスイープの量、縦軸は翼の高さ方向の位置を表している。また図7における横軸は、ハブ断面の翼前縁34の位置を0、後縁35の位置を1とした場合の軸方向位置を表している。縦軸は、流路断面積(入口断面積)に対する翼形の断面積を表している。
一般的に翼のスタッガ線38に直交する方向の厚みは、重心位置に近いほど厚くなる。基準翼では、各翼形の重心位置がロータ11の長さ方向で同一であるため、ロータ11の長さ方向に対する、翼の断面積変化の勾配が大きい。これに対して本実施例の動翼13aでは、図6に示すように各翼形の重心位置は、ハブ断面31からミーン断面32にかけては全体的に基準翼より前縁側に、ミーン断面32からチップ断面33にかけては全体的に基準翼より後縁側にある。このような形状の翼では、図7からも見てとれるように、基準翼に比べ、翼の断面積変化の勾配が緩和される。翼の断面積変化の勾配が緩和されると翼断面における流速の変化が緩和され、衝撃波損失の低減が可能となる。
ここで、図8に実施例1である動翼13aと基準翼との翼高さ方向の損失比較を、図9にミーン断面32からチップ断面33にかけての翼断面における翼面上マッハ数分布の比較を示す。図8,図9に示す通り、本実施例の動翼13aでは断面積分布の変化を緩和することでピークマッハ数を基準翼より減少させ、衝撃波損失を低減している。さらに特許文献1のようなスタッキングラインを単純に前方へスイープさせた翼と比べ、特許文献2の翼と同様、ハブ断面31近傍での境界層の発達は抑制される。よって動翼13aのハブ断面31近傍の損失は、基準翼とほぼ同等になる。
次に本実施例である動翼13aの強度に関する特徴を、以下に示す前方S字スイープ翼との比較によって説明する。本明細書中で前方S字スイープ翼とは、空力性能向上のため、チップ断面、およびハブ断面からミーン断面にかけての前方スイープ量を大きくした遷音速翼を意味する。図10には、本実施例である動翼13aと基準翼、および前方S字スイープ翼のスタッキングラインの比較図を、図11には両者の断面積分布の比較図を、図12には両者の翼高さ方向における損失分布の比較図を示す。図10〜図12に示す通り、前方S字スイープ翼を採用すると、チップ断面33、およびハブ断面31からミーン断面32にかけてのスイープ量を大きくすることができ、断面積分布の変化を動翼13aより大きく緩和し大幅な損失低減を達成可能である。
その一方で、前方S字スイープ翼には強度上の懸念がある。これを説明するため、図13に本実施例である動翼13aと前方S字スイープ翼との最大局所応力の比較図を、図14に両者のスタッキングラインとスタッキング中心の位置の比較を示す。図13の縦軸は最大局所応力を材料の許容値によって無次元化した値である。なお最大局所応力は、両者ともにハブ断面31の前縁近傍で発生している。図13や図14に示すように、前方S字スイープ翼は翼全体の重心がスタッキング中心より上流にある。そのため、ハブ断面の前縁近傍にかかる局所応力が大きくなり、この部分で材料の許容値を超えてしまう可能性が高い。つまり前方S字スイープ翼を実機に使用するためには、高級な材料を使用するなどの対策や設計変更が必要であり、コストの増加など種々の検討課題が発生すると予想される。
一方、本実施例である動翼13aは、重心位置がスタッキング中心から所望の範囲内に収まるよう構成されている。所望の範囲とは、ハブ断面31の前縁近傍の局所応力が、許容値を満足する範囲を意味する。具体的には、このときの動翼13aの重心位置は、スタッキング中心37からの軸方向距離の誤差が翼高さの1%以下程度とするのが望ましいことが、計算上明らかになっている。
なお本実施例の動翼13aにおいて、翼全体の重心位置を満足させるためには、少なくともミーン断面32からチップ断面33にかけての部分の重心位置がスタッキング中心37より下流側になければならない。この条件を満たす範囲であれば、チップ断面33はスタッキング中心37より上流側にあっても問題ない。ただしチップ断面33をあまり上流側にしてしまうとミーン断面32からチップ断面33にかけてのスタッキングライン36の曲率が増加し、その部分の局所応力が許容値を超える可能性がある。このためチップ断面33の位置は全体のなかで最も上流側ではなく、ハブ断面31からミーン断面32にかけてのいずれかの翼断面より下流側にあるのが望ましい。
以上をまとめると、本実施例である動翼13aは、遷音速翼全体の重心と、ハブ断面の重心位置であるスタッキング中心との回転軸4の長さ方向位置の差εが、ハブ断面の前縁における強度限界を超えないよう設定されており、ハブ断面からチップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部が、スタッキング中心よりも作動流体主流の流れ方向で下流側に位置している。さらに、ハブ断面と前記チップ断面の間に第三の断面であるミーンの断面を有し、ミーン断面とチップ断面との間では、スタッキングラインが主流方向下流側に凸であり、ミーン断面とハブ断面との間では、スタッキングラインが主流方向上流側に凸であることを特徴としている。
このような特徴を備えることにより、特許文献2の翼と同じく、スイープを行わない翼に比べてチップ断面側の損失を低減しつつ、ハブ断面側の損失増加を抑制することができる。さらに前方S字スイープ翼や特許文献2に比べ、ハブ断面前縁近傍の局所応力を低減可能であり、構造的にも信頼性を高められる。つまり、空力性能向上と信頼性向上を同時に達成した翼であるといえる。
なお本実施例では簡単のため、チップ断面とハブ断面以外の断面である第三の断面をミーン断面として説明したが、これ以外の断面でも同種の効果を得られる。すなわち、上記本実施例の説明中の「ミーン断面」を「第三の断面」と置き換えても構わない。ただし、第三の断面を、翼高さ半分の位置の断面であるミーン断面とすれば、設計の複雑度を緩和できるというメリットがある。
図15に実施例2である動翼13aの斜視図を示す。実施例1との相違は、ハブ断面31からミーン断面32にかけてのスタッキングラインが直線となっており、チップ断面が最も上流側にある点である。なお図1と重複する機器については番号を同一とし、詳細な説明は省略する。
本実施例である動翼13aの特徴について、図16を用いて説明する。図16は本実施例と実施例1のスタッキングラインの比較である。本実施例のスタッキングライン36はハブ断面31からミーン断面32まで直線であり、ミーン断面32からチップ断面33にかけては主流方向下流側に凸な形状となっている。なお本実施例ではスタッキングラインが直線となる範囲をミーン断面までとしているが、それよりチップ断面33側まででもハブ断面31側まででも構わない。
本実施例の動翼13aは実施例1のようにハブ断面近傍で翼が上流側にスイープした形状となっていない。このためハブ断面31近傍の流量は実施例1よりもさらに増加し、ハブ断面31近傍の境界層の発達を抑制することができる。一方ミーン断面32からチップ断面33にかけては下流側に凸な形状となっているため、スイープによって断面積分布の変化が緩和され、この部分の衝撃波損失が低減できる。
また、ハブ断面31の近傍における上流側への翼断面のスイープがなく、実施例1よりハブ断面31の前縁に応力が集中しにくい構造になっている。よって全体の重心位置とスタッキング中心37との誤差εが一定値以内であれば、局所応力が実施例1の遷音速翼より小さくなると考えられる。
なお本実施例の動翼13aは、スタッキングラインの変曲点が一点の「し」のような形の翼として説明したが、変曲点が二点以上の「S」や「W」のような形の翼でも同種の効果を得ることができる。ただし、いたずらに変曲点を増やすことは、スタッキングラインの局所的な曲率を増加させることにつながり、局所応力の増加で信頼性を低下させる要因になりうる。そのため、本実施例のような遷音速翼では、変曲点は少ない方が望ましい。
変曲点が一点である本実施例の動翼13aの翼形で、重心位置を上流側に移動させるのに貢献しているのは、スタッキング中心37よりも軸長方向で上流にあるチップ断面33付近の翼形のみである。これ以外の翼形の重心は、スタッキング中心37よりも軸長方向で下流にあるため、重心位置の移動に貢献していないか、下流方向への移動に貢献しているかのどちらかである。そのため、翼全体の重心位置をスタッキング中心に近づけるためには、チップ断面31をスタッキング中心37より上流側に移動させることを意味している。すなわち、変曲点が一点の本実施例の遷音速翼では、チップ断面31が、上流側へのスイープ量が最も大きい翼形となる。
以上をまとめると、本実施例における遷音速翼は、スイープを行わない翼に比べてチップ断面側の損失を低減しつつ、ハブ断面側の損失増加を抑制することができる。さらに、その損失増加の抑制効果は実施例1の動翼13aに比べて大きい。またハブ断面前縁における局所応力も、実施例1の動翼13aに比べてさらに低減することが可能である。
なお実施例1および2の遷音速翼の双方において、各断面の翼厚みが最大となる位置(翼弦長に対する比率)が一致しているほど、基準翼に比べた空力性能の向上効果が高くなる。これは最大翼厚みの位置が一致している翼ほど翼全体の最小断面積が小さくなりやすく、スイープによって断面積変化を緩和しやすくなるからである。
本発明は、翼間に衝撃波が発生する遷音速以上の流れ場を作動条件とする翼に対して適用可能である。本発明の遷音速翼の適用先としては、ガスタービンや航空用エンジンといった軸流回転機械が挙げられる。
1 圧縮機
2 燃焼器
3 タービン
4 軸
5 発電機
11 ロータ
12 ケーシング
13a,13b 動翼
14a,14b 静翼
31 ハブ断面
32 ミーン断面
33 チップ断面
34 前縁
35 後縁
36 スタッキングライン
37 スタッキング中心
38 スタッガ線

Claims (9)

  1. 回転機械の回転軸もしくは外周側ケーシングと接続しているハブ断面と、前記回転軸の垂直方向である翼高さ方向で前記ハブ断面から最も離れた位置にあるチップ断面と、作動流体主流の流れ方向で上流側に位置する前縁と、作動流体主流の流れ方向下流側に位置する後縁とを備え、通過する作動流体の流れの少なくとも一部が遷音速以上の流れとなっている遷音速翼において、
    前記ハブ断面から前記チップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部が、前記ハブ断面の重心位置であるスタッキング中心よりも作動流体主流の流れ方向で下流側に位置し、
    遷音速翼全体の重心と、前記スタッキング中心との前記回転軸の長さ方向の差εが、前記ハブ断面の前縁における強度限界を超えないよう設定され、
    前記ハブ断面と前記チップ断面の間に第三の断面を有し、前記第三の断面と前記チップ断面との間では、スタッキングラインが主流方向下流側に凸であり、前記第三の断面と前記ハブ断面との間では、スタッキングラインが主流方向上流側に凸であることを特徴とする遷音速翼。
  2. 請求項1に記載の遷音速翼において、
    前記εが翼高さの1%以下であることを特徴とする遷音速翼。
  3. 請求項1に記載の遷音速翼において、
    前記εが略0であることを特徴とする遷音速翼。
  4. 請求項1に記載の遷音速翼において、
    前記第三の断面と前記チップ断面との間における遷音速翼の重心が、前記スタッキング中心よりも主流方向下流側にあることを特徴とする遷音速翼。
  5. 請求項14に記載の遷音速翼において、
    前記スタッキングラインの上流側への移動量の最も大きい位置が、前記第三の断面と前記ハブ断面との間にあることを特徴とする遷音速翼。
  6. 請求項1,4,5に記載の遷音速翼において
    前記第三断面が、ミーン断面であることを特徴とする遷音速翼。
  7. 請求項1〜6に記載の遷音速翼において
    前記チップ断面から前記ハブ断面にかけての各翼形につき、翼弦長に対する最大厚み位置が各翼形で一致することを特徴とする遷音速翼。
  8. 回転軸と、ケーシングと、複数の動翼と、複数の静翼を有し、通過する作動流体の流れの少なくとも一部が遷音速以上の流れである圧縮機において、
    主流の流れ方向最上流側の動翼が、回転軸と接続しているハブ断面と、前記回転軸の垂直方向である翼高さ方向で前記ハブ断面から最も離れた位置にあるチップ断面と、作動流体主流の流れ方向で上流側に位置する前縁と、作動流体主流の流れ方向で下流側に位置する後縁とを備え、
    遷音速翼全体の重心と、前記ハブ断面の重心位置であるスタッキング中心との前記回転軸の長さ方向位置の差εが、前記ハブ断面の前縁における強度限界を超えないよう設定されており、
    前記ハブ断面から前記チップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部が、前記スタッキング中心よりも作動流体主流の流れ方向で下流側に位置し、
    前記ハブ断面と前記チップ断面の間に第三の断面を有し、前記第三の断面と前記チップ断面との間では、スタッキングラインが作動流体主流の流れ方向下流側に凸であり、前記第三の断面と前記ハブ断面との間では、スタッキングラインが作動流体主流の流れ方向上流側に凸であることを特徴とする圧縮機。
  9. 回転機械の回転軸もしくは外周側ケーシングと接続しているハブ断面と、前記回転軸の垂直方向である翼高さ方向で前記ハブ断面から最も離れた位置にあるチップ断面と、作動流体の流れ方向で上流側に位置する前縁と、作動流体の流れ方向で下流側に位置する後縁とを備え、通過する作動流体の流れの少なくとも一部が遷音速以上の流れとなっている遷音速翼の設計方法において、
    前記ハブ断面から前記チップ断面にかけての各断面の重心を結んだ線であるスタッキングラインの一部を、前記ハブ断面の重心位置であるスタッキング中心よりも作動流体の流れ方向で下流側に位置するようにし、
    遷音速翼全体の重心と、前記スタッキング中心との前記回転軸の長さ方向位置の差εを、前記ハブ断面の前縁における強度限界を超えないように定め、
    前記ハブ断面と前記チップ断面の間の第三の断面に対し、前記第三の断面と前記チップ断面との間では、スタッキングラインが主流方向下流側に凸となるようにし、前記第三の断面と前記ハブ断面との間では、スタッキングラインが主流方向上流側に凸となるようにすることを特徴とする遷音速翼の設計方法。
JP2009041645A 2009-02-25 2009-02-25 遷音速翼 Active JP4923073B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009041645A JP4923073B2 (ja) 2009-02-25 2009-02-25 遷音速翼
EP10153679.5A EP2226468B8 (en) 2009-02-25 2010-02-16 Transonic blade
US12/707,493 US8425185B2 (en) 2009-02-25 2010-02-17 Transonic blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041645A JP4923073B2 (ja) 2009-02-25 2009-02-25 遷音速翼

Publications (2)

Publication Number Publication Date
JP2010196563A JP2010196563A (ja) 2010-09-09
JP4923073B2 true JP4923073B2 (ja) 2012-04-25

Family

ID=42352295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041645A Active JP4923073B2 (ja) 2009-02-25 2009-02-25 遷音速翼

Country Status (3)

Country Link
US (1) US8425185B2 (ja)
EP (1) EP2226468B8 (ja)
JP (1) JP4923073B2 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180617B (zh) * 2010-10-18 2016-05-18 三菱日立电力***株式会社 跨音速叶片
FR2969230B1 (fr) * 2010-12-15 2014-11-21 Snecma Aube de compresseur a loi d'empilage amelioree
JP6030853B2 (ja) 2011-06-29 2016-11-24 三菱日立パワーシステムズ株式会社 タービン動翼及び軸流タービン
FR2981396A1 (fr) * 2011-10-13 2013-04-19 Snecma Aube de stator de turbomachine comportant une portion bombee
FR2986285B1 (fr) * 2012-01-30 2014-02-14 Snecma Aube pour soufflante de turboreacteur
US9121285B2 (en) * 2012-05-24 2015-09-01 General Electric Company Turbine and method for reducing shock losses in a turbine
EP2669475B1 (fr) 2012-06-01 2018-08-01 Safran Aero Boosters SA Aube à profile en S de compresseur de turbomachine axiale, compresseur et turbomachine associée
FR2993323B1 (fr) * 2012-07-12 2014-08-15 Snecma Aube de turbomachine ayant un profil configure de maniere a obtenir des proprietes aerodynamiques et mecaniques ameliorees
US20140072433A1 (en) * 2012-09-10 2014-03-13 General Electric Company Method of clocking a turbine by reshaping the turbine's downstream airfoils
CN102852857B (zh) * 2012-09-28 2015-02-18 哈尔滨工业大学 一种高负荷超、跨音速轴流压气机气动设计方法
US10221707B2 (en) 2013-03-07 2019-03-05 Pratt & Whitney Canada Corp. Integrated strut-vane
US9835038B2 (en) 2013-08-07 2017-12-05 Pratt & Whitney Canada Corp. Integrated strut and vane arrangements
US9435221B2 (en) 2013-08-09 2016-09-06 General Electric Company Turbomachine airfoil positioning
EP3108100B1 (en) 2014-02-19 2021-04-14 Raytheon Technologies Corporation Gas turbine engine fan blade
WO2015175058A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
WO2015175045A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
WO2015175043A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US10352331B2 (en) 2014-02-19 2019-07-16 United Technologies Corporation Gas turbine engine airfoil
WO2015126450A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108107B1 (en) 2014-02-19 2023-10-11 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
US10465702B2 (en) 2014-02-19 2019-11-05 United Technologies Corporation Gas turbine engine airfoil
EP3575551B1 (en) 2014-02-19 2021-10-27 Raytheon Technologies Corporation Gas turbine engine airfoil
US10570915B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
WO2015126454A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175073A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US10385866B2 (en) 2014-02-19 2019-08-20 United Technologies Corporation Gas turbine engine airfoil
EP3108106B1 (en) 2014-02-19 2022-05-04 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3108117B2 (en) 2014-02-19 2023-10-11 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3108109B1 (en) 2014-02-19 2023-09-13 Raytheon Technologies Corporation Gas turbine engine fan blade
WO2015127032A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP4279747A3 (en) 2014-02-19 2024-03-13 RTX Corporation Turbofan engine with geared architecture and lpc blades
US9347323B2 (en) 2014-02-19 2016-05-24 United Technologies Corporation Gas turbine engine airfoil total chord relative to span
WO2015126451A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US9567858B2 (en) 2014-02-19 2017-02-14 United Technologies Corporation Gas turbine engine airfoil
EP3108123B1 (en) 2014-02-19 2023-10-04 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
EP3088663A1 (de) 2015-04-28 2016-11-02 Siemens Aktiengesellschaft Verfahren zum profilieren einer schaufel
US9909434B2 (en) 2015-07-24 2018-03-06 Pratt & Whitney Canada Corp. Integrated strut-vane nozzle (ISV) with uneven vane axial chords
ES2717801T3 (es) 2015-10-26 2019-06-25 MTU Aero Engines AG Alabe móvil
GB2544735B (en) * 2015-11-23 2018-02-07 Rolls Royce Plc Vanes of a gas turbine engine
US10443451B2 (en) 2016-07-18 2019-10-15 Pratt & Whitney Canada Corp. Shroud housing supported by vane segments
US11248622B2 (en) 2016-09-02 2022-02-15 Raytheon Technologies Corporation Repeating airfoil tip strong pressure profile
US10718214B2 (en) * 2017-03-09 2020-07-21 Honeywell International Inc. High-pressure compressor rotor with leading edge having indent segment
WO2020095470A1 (ja) 2018-11-05 2020-05-14 株式会社Ihi 軸流流体機械の動翼
JP7104379B2 (ja) 2019-02-07 2022-07-21 株式会社Ihi 軸流型のファン、圧縮機及びタービンの翼の設計方法、並びに、当該設計により得られる翼
FR3097262B1 (fr) * 2019-06-14 2023-03-31 Safran Aircraft Engines Pi Aji Aube de turbomachine avec talon optimise et procede d’optimisation d’un profil d’aube
DE102019220493A1 (de) * 2019-12-20 2021-06-24 MTU Aero Engines AG Gasturbinenschaufel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989406A (en) * 1974-11-26 1976-11-02 Bolt Beranek And Newman, Inc. Method of and apparatus for preventing leading edge shocks and shock-related noise in transonic and supersonic rotor blades and the like
US4585395A (en) * 1983-12-12 1986-04-29 General Electric Company Gas turbine engine blade
GB2164098B (en) * 1984-09-07 1988-12-07 Rolls Royce Improvements in or relating to aerofoil section members for turbine engines
US4726737A (en) * 1986-10-28 1988-02-23 United Technologies Corporation Reduced loss swept supersonic fan blade
JP2665005B2 (ja) * 1989-10-24 1997-10-22 三菱重工業株式会社 軸流機械の動翼
JPH07224794A (ja) 1993-12-14 1995-08-22 Mitsubishi Heavy Ind Ltd 軸流機械の動翼
JP3697296B2 (ja) * 1995-08-25 2005-09-21 株式会社東芝 タービン動翼
US5642985A (en) * 1995-11-17 1997-07-01 United Technologies Corporation Swept turbomachinery blade
GB9607316D0 (en) * 1996-04-09 1996-06-12 Rolls Royce Plc Swept fan blade
US6071077A (en) * 1996-04-09 2000-06-06 Rolls-Royce Plc Swept fan blade
US6755612B2 (en) * 2002-09-03 2004-06-29 Rolls-Royce Plc Guide vane for a gas turbine engine
FR2851798B1 (fr) * 2003-02-27 2005-04-29 Snecma Moteurs Aube en fleche de turboreacteur
US7547186B2 (en) * 2004-09-28 2009-06-16 Honeywell International Inc. Nonlinearly stacked low noise turbofan stator
US7476086B2 (en) * 2005-04-07 2009-01-13 General Electric Company Tip cambered swept blade
JP4664890B2 (ja) 2006-11-02 2011-04-06 三菱重工業株式会社 遷音速翼及び軸流回転機
GB0701866D0 (en) * 2007-01-31 2007-03-14 Rolls Royce Plc Tone noise reduction in turbomachines

Also Published As

Publication number Publication date
US20100215503A1 (en) 2010-08-26
US8425185B2 (en) 2013-04-23
EP2226468A3 (en) 2014-12-31
EP2226468A2 (en) 2010-09-08
EP2226468B1 (en) 2016-12-14
JP2010196563A (ja) 2010-09-09
EP2226468B8 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP4923073B2 (ja) 遷音速翼
JP5433793B2 (ja) 遷音速翼
EP2820279B1 (en) Turbomachine blade
JP5909057B2 (ja) 輪郭形成バンドを有するタービンノズル
US8911215B2 (en) Compressor blade for an axial compressor
JP5946707B2 (ja) 軸流タービン動翼
US9726197B2 (en) Turbomachine element
JP6060145B2 (ja) 高キャンバ圧縮機ロータブレード
US9074483B2 (en) High camber stator vane
JP6001999B2 (ja) エーロフォイル、圧縮機、ベーン、ガスタービンエンジン、およびステータの列
CA2731092C (en) Axial turbomachine with low tip clearance losses
JP4665916B2 (ja) ガスタービンの第1段動翼
JP2015183691A (ja) ガスタービンブレード
JP2012052524A (ja) 端壁輪郭形成の翼形部及び選択的クロッキングを有するタービン組立体
US10294796B2 (en) Blade or vane arrangement for a gas turbine engine
JP7104379B2 (ja) 軸流型のファン、圧縮機及びタービンの翼の設計方法、並びに、当該設計により得られる翼
EP3392459A1 (en) Compressor blades
JP2007009761A (ja) 軸流タービン
JP2003020903A (ja) 軸流タービンとその静翼および動翼

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R151 Written notification of patent or utility model registration

Ref document number: 4923073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250