JP4922850B2 - Plasma display panel - Google Patents

Plasma display panel Download PDF

Info

Publication number
JP4922850B2
JP4922850B2 JP2007177938A JP2007177938A JP4922850B2 JP 4922850 B2 JP4922850 B2 JP 4922850B2 JP 2007177938 A JP2007177938 A JP 2007177938A JP 2007177938 A JP2007177938 A JP 2007177938A JP 4922850 B2 JP4922850 B2 JP 4922850B2
Authority
JP
Japan
Prior art keywords
protective film
plane
display panel
discharge
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007177938A
Other languages
Japanese (ja)
Other versions
JP2009016227A (en
Inventor
俊介 森
竜也 三宅
敬三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007177938A priority Critical patent/JP4922850B2/en
Publication of JP2009016227A publication Critical patent/JP2009016227A/en
Application granted granted Critical
Publication of JP4922850B2 publication Critical patent/JP4922850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Description

本発明はプラズマディスプレイパネル(Plasma Display Panel:以下、プラズマパネルまたはPDPとも称する)に関し、特に、寿命特性を向上させ、かつ高効率で高画質化を実現できるプラズマパネル構造とその製造方法、その駆動方法、および駆動装置を含めたプラズマディスプレイ装置に関する。   The present invention relates to a plasma display panel (hereinafter also referred to as plasma panel or PDP), and more particularly to a plasma panel structure capable of improving life characteristics and realizing high image quality with high efficiency, a manufacturing method thereof, and a drive thereof The present invention relates to a method and a plasma display device including a driving device.

近年、大型かつ厚みに薄いカラー表示装置として、プラズマディスプレイ装置が期待されている。特に、表示放電を同一基板上に設けられた電極間で発生させ、且つ交流駆動される、交流面内放電型PDPは、構造の単純さと高信頼性のため、もっとも実用化の進んでいる方式である。一般的な交流面内放電型PDPの構造は図1に示すように、放電空間14を挟んで前面板12と背面板13が対向配置され、放電空間14には放電ガスが封入されている。背面板13は背面基板11上に形成されたストライプ状のアドレス電極10と、アドレス電極を覆う誘電体層9と、誘電体層9上に形成されて放電距離維持と隣接セル間のクロストークを防止する隔壁7と、各隔壁7間に形成された赤色、緑色と青色の各色に発光する蛍光体層8とでなる。前面板12は前面基板1上にアドレス電極10と直交したストライプ状の透明電極4a,5aとバス電極4b,5bとで構成される表示電極6と、表示電極6を覆う誘電体層2と、誘電体層2の表面上に形成される保護膜3とでなる。保護膜3は3000-10000Åの厚さで誘電体層2上に形成する。   In recent years, a plasma display device is expected as a large and thin color display device. In particular, the AC in-plane discharge type PDP, which generates display discharge between electrodes on the same substrate and is driven by AC, is the most practical method due to its simple structure and high reliability. It is. As shown in FIG. 1, a general AC in-plane discharge type PDP has a front plate 12 and a back plate 13 that are opposed to each other with a discharge space 14 interposed therebetween, and a discharge gas is sealed in the discharge space 14. The back plate 13 is formed on the back substrate 11 with striped address electrodes 10, a dielectric layer 9 covering the address electrodes, and formed on the dielectric layer 9 to maintain a discharge distance and to crosstalk between adjacent cells. The barrier ribs 7 to be prevented and the phosphor layers 8 that are formed between the barrier ribs 7 and emit light in red, green, and blue colors. The front plate 12 has a display electrode 6 composed of striped transparent electrodes 4a and 5a and bus electrodes 4b and 5b orthogonal to the address electrode 10 on the front substrate 1, a dielectric layer 2 covering the display electrode 6, The protective film 3 is formed on the surface of the dielectric layer 2. The protective film 3 is formed on the dielectric layer 2 with a thickness of 3000-10000 mm.

保護膜には、可視光透過性があり、放電ガスのイオン衝撃による誘電体層の保護と二次電子放出及び壁電荷保持性能を併せ持つ酸化マグネシウム(以下、MgOと記す)を主に使用している。このような各機能は保護膜と放電空間との界面の状態に影響する。特に界面における結晶面(配向面)は大きく影響する。前記MgO保護膜の全体は一般に複数の配向結晶からなる多結晶体であって、従来では (100)面や(111) 面などの結晶面からなる。(111) 面配向した保護膜は(100) 面配向した保護膜よりもイオン衝撃によるスパッタリング耐性があり、(111) 面配向した保護膜は(100) 面配向した保護膜よりも二次電子放出と放電応答性に優れる。しかし、(111) 面配向した保護膜は(100) 面配向した保護膜よりも壁電荷を保持しにくい(例えば、特許文献1)。   The protective film is mainly made of magnesium oxide (hereinafter referred to as MgO), which has visible light permeability and has both the protection of the dielectric layer by ion bombardment of the discharge gas and the secondary electron emission and wall charge retention performance. Yes. Each of these functions affects the state of the interface between the protective film and the discharge space. In particular, the crystal plane (orientation plane) at the interface is greatly affected. The MgO protective film as a whole is generally a polycrystalline body composed of a plurality of oriented crystals, and conventionally comprises a crystal plane such as a (100) plane or a (111) plane. The (111) -oriented protective film is more resistant to sputtering by ion bombardment than the (100) -oriented protective film, and the (111) -oriented protective film is more capable of emitting secondary electrons than the (100) -oriented protective film. Excellent discharge response. However, the (111) -oriented protective film is less likely to retain wall charges than the (100) -oriented protective film (for example, Patent Document 1).

従来技術では、保護膜は成膜条件を調整することで(100)面配向や(111)面配向などの複数配向結晶の割合を調整し、スパッタリング耐性と放電応答性の相反する特性のバランスをとった条件で使用している。しかしながら、従来技術の成膜方法では、保護膜は誘電体上に一様に同じ配向特性になっているため、そのバランスをとる方法には限界があり、放電特性の劣化が発生してしまう。特に、表示電極の配設位置上の保護膜領域は放電による劣化がそれ以外の保護膜領域と比べて大きく、保護膜表面形状が保護膜形成時に凹凸であったものが平滑となり、比表面積が減少し、二次電子放出特性や放電応答性が劣化してしまう。   In the conventional technology, the ratio of multiple oriented crystals such as (100) plane orientation and (111) plane orientation is adjusted by adjusting the deposition conditions of the protective film to balance the conflicting characteristics of sputtering resistance and discharge response. It is used under the conditions taken. However, in the conventional film formation method, since the protective film has the same orientation characteristic on the dielectric, there is a limit to the method of balancing the protective film, and the discharge characteristic is deteriorated. In particular, the protective film region on the position where the display electrode is disposed is greatly deteriorated by discharge as compared with the other protective film regions, and the surface shape of the protective film is uneven when the protective film is formed. As a result, the secondary electron emission characteristics and the discharge response are deteriorated.

特開平5-234519号広報Japanese Laid-Open Patent Publication No.5-234519

本発明では、保護膜を領域ごとに特性を変えて成膜する手法を用いることにより、耐スパッタリング機能をもつ領域と、壁電荷保持機能をもつ領域に機能分離し、スパッタリング耐性と放電応答性の優れた保護膜を得ることができる。即ち、耐スパッタリング機能を必要とする保護膜の領域は放電に曝される表示電極の配設位置上であり、その表示電極上の保護膜をスパッタリング耐性が高い、 (111)面配向を主とする保護膜を形成する。前記表示電極以外の保護膜領域は壁電荷保持機能の高い、(100)面配向を主とする保護膜を形成する。放電特性は各領域での(111)面配向と(100)面配向の比率を調整することにより、最適な条件を得ることができる。   In the present invention, by using a method of forming a protective film by changing the characteristics for each region, it is functionally separated into a region having a sputtering resistance function and a region having a wall charge holding function, and has a sputtering resistance and a discharge responsiveness. An excellent protective film can be obtained. That is, the region of the protective film that requires the sputtering resistance function is on the position where the display electrode is exposed to discharge, and the protective film on the display electrode has high sputtering resistance. A protective film is formed. In the protective film region other than the display electrode, a protective film mainly having a (100) plane orientation having a high wall charge holding function is formed. The discharge characteristics can be optimally adjusted by adjusting the ratio of (111) plane orientation to (100) plane orientation in each region.

本発明のプラズマディスプレイパネルは、放電特性に大きく寄与する表示電極の配設位置上の保護膜領域および表示電極上以外の保護膜領域において、(111)面と(100)面に配向した配向結晶が放電空間と接する表面に臨んでいる比率を調整して、各配向面の放電特性を制御し、長期間安定した表示品質を得ることができる。特に、表示電極の配設位置上の保護膜領域で(111)面配向を主とする保護膜にすることにより、放電による初期の凹凸状態から平滑状態への保護膜表面状態の経時劣化を抑制し保護膜領域の比表面積が維持され、二次電子放出と放電応答性の寿命特性が良好なものとなる。   The plasma display panel of the present invention is an oriented crystal oriented in the (111) plane and the (100) plane in the protective film region on the arrangement position of the display electrode and the protective film region other than on the display electrode that greatly contribute to the discharge characteristics. By adjusting the ratio facing the surface in contact with the discharge space, the discharge characteristics of each orientation plane can be controlled, and stable display quality can be obtained for a long time. In particular, by using a protective film mainly composed of (111) planes in the protective film region at the position where the display electrode is disposed, the deterioration of the protective film surface state from the initial uneven state to the smooth state due to discharge is suppressed over time. Thus, the specific surface area of the protective film region is maintained, and the life characteristics of secondary electron emission and discharge response are improved.

以下、本発明の実施例を図面を参照して詳細に説明する。なお、実施例を説明する全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, parts having the same function are given the same reference numerals, and repeated explanation thereof is omitted.

図1に本発明のプラズマディスプレイパネルの分解斜視図を示す。前面板12の形成方法について説明する。前面基板上1にストライプ状の透明電極4a、5aとバス電極4b、5bとで構成される表示電極6が配設され、表示電極6はスキャン電極4とサステイン電極5の対からなる。透明電極4a、5aは透明導電体である酸化インジウムスズ(ITO)からなる膜で形成され、その上に銀の単層膜からなるバス電極4b、5bが透明電極4a、5aより狭い幅で付設されている。なお、透明電極4a、5aとして酸化スズや酸化亜鉛等、バス電極4b、5bとしてアルミニウムの単層膜、またはクロム/銅/クロムの積層膜で形成しても構わない。表示電極6を構成する透明電極4a、5aとバス電極4b、5bは誘電体層2により覆われる。誘電体層2は可視光透過性がある誘電体ガラス膜で形成される。そして誘電体層2の表面上に保護膜3が形成される。この保護膜3は金属酸化物のMgOにより形成される。保護膜3の形成方法は、後に詳しく説明する。   FIG. 1 is an exploded perspective view of the plasma display panel of the present invention. A method for forming the front plate 12 will be described. A display electrode 6 composed of striped transparent electrodes 4 a and 5 a and bus electrodes 4 b and 5 b is disposed on the front substrate 1, and the display electrode 6 is composed of a pair of scan electrode 4 and sustain electrode 5. The transparent electrodes 4a and 5a are formed of a film made of indium tin oxide (ITO) which is a transparent conductor, and bus electrodes 4b and 5b made of a single silver film are provided on the transparent electrodes 4a and 5a with a narrower width than the transparent electrodes 4a and 5a. Has been. The transparent electrodes 4a and 5a may be formed of tin oxide, zinc oxide or the like, and the bus electrodes 4b and 5b may be formed of a single layer film of aluminum or a laminated film of chromium / copper / chromium. The transparent electrodes 4 a and 5 a and the bus electrodes 4 b and 5 b constituting the display electrode 6 are covered with the dielectric layer 2. The dielectric layer 2 is formed of a dielectric glass film having visible light transmittance. A protective film 3 is formed on the surface of the dielectric layer 2. This protective film 3 is formed of MgO which is a metal oxide. A method for forming the protective film 3 will be described in detail later.

次に背面板13の形成方法について説明する。背面基板上11に表示電極6と直交したストライプ状のアドレス電極10が配設される。アドレス電極10は誘電体層9によって覆われ、その上には放電距離維持と隣接セル間のクロストークを防止する隔壁7が形成される。隔壁7はアドレス電極10と平行に配設されており、アドレス電極10は隔壁7間に位置する。各隔壁7間には蛍光体層8が形成される。   Next, a method for forming the back plate 13 will be described. Striped address electrodes 10 orthogonal to the display electrodes 6 are disposed on the rear substrate 11. The address electrode 10 is covered with a dielectric layer 9, on which a partition wall 7 is formed for maintaining a discharge distance and preventing crosstalk between adjacent cells. The partition walls 7 are arranged in parallel with the address electrodes 10, and the address electrodes 10 are located between the partition walls 7. A phosphor layer 8 is formed between the barrier ribs 7.

表示電極6とアドレス電極10を直交するように前面板12と背面板13を対向配置させ、両板の非表示領域を封着剤により封着する。これにより外気と隔離された放電空間14が形成される。放電空間14には、放電ガスとしてネオン(Ne)‐キセノン(Xe)をガス基体とした混合ガスを所定の圧力及び分圧で封入される。   The front plate 12 and the back plate 13 are arranged to face each other so that the display electrodes 6 and the address electrodes 10 are orthogonal to each other, and the non-display areas of both plates are sealed with a sealing agent. Thereby, the discharge space 14 isolated from the outside air is formed. The discharge space 14 is filled with a gas mixture of neon (Ne) -xenon (Xe) as a discharge gas at a predetermined pressure and partial pressure.

図2および図3を用いて、本実施例の保護膜3を領域ごとに特性を変えて成膜する手法について説明する。図2は図1のXZ方向およびYZ方向から見た詳細断面図である。保護膜3及び表示電極の配設位置上の保護膜領域3aの形成方法について図3に詳細に説明する。図3には、活性化室15、蒸着室16、冷却室17からなる成膜装置の構成を示す。最初に、前面板12を活性化室15の導電板18と対向になるように水平に配置する。この導電板18は前面板12と同程度の大きさである。さらに、表示電極6に活性化用電極19を取り付けて外部電源20と接続する。前面板12を活性化室15に設置後、仕切り扉21を閉じて活性化室を真空ポンプにより排気し、1×10‐3 Pa以下の真空状態にする。 A method of forming the protective film 3 of this embodiment by changing the characteristics for each region will be described with reference to FIGS. FIG. 2 is a detailed cross-sectional view seen from the XZ direction and the YZ direction of FIG. A method for forming the protective film 3 and the protective film region 3a on the position where the display electrode is disposed will be described in detail with reference to FIG. FIG. 3 shows a configuration of a film forming apparatus including an activation chamber 15, a vapor deposition chamber 16, and a cooling chamber 17. First, the front plate 12 is horizontally arranged so as to face the conductive plate 18 of the activation chamber 15. The conductive plate 18 is about the same size as the front plate 12. Further, the activation electrode 19 is attached to the display electrode 6 and connected to the external power source 20. After the front plate 12 is installed in the activation chamber 15, the partition door 21 is closed and the activation chamber is evacuated by a vacuum pump to be in a vacuum state of 1 × 10 −3 Pa or less.

この真空状態を維持しながら、前面板12を活性化室14内のヒーターで加熱する。加熱により、前面板12及び誘電体層2表面の温度が200〜300℃に到達すると、外部電源20から表示電極6に電圧を印加して表示電極15と導電板間18で放電させる。これにより、表示電極6の配設位置上の誘電体層2表面を選択的に活性化することができ、誘電体層2表面において吸着物質の脱着等による改質が行われる。   The front plate 12 is heated with a heater in the activation chamber 14 while maintaining this vacuum state. When the temperature of the front plate 12 and the surface of the dielectric layer 2 reaches 200 to 300 ° C. by heating, a voltage is applied from the external power source 20 to the display electrode 6 to discharge between the display electrode 15 and the conductive plate 18. Thereby, the surface of the dielectric layer 2 on the position where the display electrode 6 is disposed can be selectively activated, and the surface of the dielectric layer 2 is modified by desorption or the like of the adsorbed substance.

活性化後に活性化室15と蒸着室16の仕切り扉22を開け、前面板12の温度と真空状態を維持しながら、蒸着室16に前面板12を導入する。導入後、誘電体層2を蒸着源22に向けて前面板12を固定し、活性化室15と蒸着室16の仕切りを閉じる。本実施例では保護膜3を形成するMgOを電子ビーム蒸着法により成膜する。MgOの成膜方法はイオンアシスト蒸着法、スパッタリング法、化学蒸着(CVD)法等でも構わない。蒸着室16の構成は、熱電子を蒸着材料に照射して加熱、蒸発させる蒸着源23と、蒸着させる基板を加熱するヒーター部分からなる。蒸着材料にはMgO単結晶を用いる。蒸着材料として放電特性改善のために不純物をMgOにドープした焼結体等を用いても構わない。   After the activation, the partition door 22 between the activation chamber 15 and the vapor deposition chamber 16 is opened, and the front plate 12 is introduced into the vapor deposition chamber 16 while maintaining the temperature and vacuum state of the front plate 12. After the introduction, the front plate 12 is fixed with the dielectric layer 2 facing the vapor deposition source 22, and the partition between the activation chamber 15 and the vapor deposition chamber 16 is closed. In this embodiment, MgO for forming the protective film 3 is formed by electron beam evaporation. The MgO film forming method may be an ion-assisted vapor deposition method, a sputtering method, a chemical vapor deposition (CVD) method, or the like. The configuration of the vapor deposition chamber 16 includes a vapor deposition source 23 that heats and vaporizes the vapor deposition material by irradiating the vapor deposition material, and a heater portion that heats the substrate to be vapor deposited. MgO single crystal is used as the vapor deposition material. A sintered body in which impurities are doped in MgO for improving discharge characteristics may be used as the vapor deposition material.

蒸着は、熱電子を蒸着材料に照射して加熱し蒸発させ、蒸着材料を誘電体層2上に成膜させる。蒸着中の蒸着室16内は、前面板12及び誘電体層2表面の温度が200〜300℃、真空状態は1×10‐2 Pa以下に維持されている。このとき、保護膜3の膜質を制御するために酸素ガスや水素ガスを蒸着室16に供給しても構わない。蒸着により形成するMgOからなる保護膜3の膜厚は3000‐10000Åである。 The vapor deposition is performed by irradiating the vapor deposition material with heat electrons and heating and evaporating the vapor deposition material to deposit the vapor deposition material on the dielectric layer 2. In the vapor deposition chamber 16 during vapor deposition, the temperature of the front plate 12 and the surface of the dielectric layer 2 is maintained at 200 to 300 ° C., and the vacuum state is maintained at 1 × 10 −2 Pa or less. At this time, oxygen gas or hydrogen gas may be supplied to the vapor deposition chamber 16 in order to control the film quality of the protective film 3. The film thickness of the protective film 3 made of MgO formed by vapor deposition is 3000 to 10,000 mm.

蒸着後、蒸着室16と冷却室17の仕切り扉22を開けて前面板12を冷却室17に導入する。前面板12を冷却室17に導入後、蒸着室16と冷却室17の仕切り扉22を閉め、前面板12を常温まで冷却し、冷却室17に不活性ガス等を導入して真空状態から大気圧にする。冷却室17が大気圧になったら前面板12を搬出する。MgOからなる保護膜3の結晶性や配向性は、活性化による誘電体層2表面の状態や温度、成膜速度等の蒸着条件に依存する。これらの条件を制御することにより、表示電極の配設位置上の保護膜領域3aにおける(111)面配向と(100)面配向の配向結晶の比率を調節することができる。本実施例では、表示電極の配設位置上の保護膜領域3aは(111)面配向を主とし、表示電極の配設位置上の保護膜領域3bは(100)面配向を主とし、それらの領域面積の割合、あるいは各領域での配向結晶の比率を調節することにより、最適なスパッタリング耐性と放電応答性の優れた保護膜3を得ることが出来た。なお、今回は誘電体層2の表面を選択的に活性化することにより結晶性や配向性を制御したが、マスクを使った領域選択した蒸着方法やメッキ法を用いた手法でも保護膜3の領域を分けて結晶性や配向性を制御することも可能である。   After vapor deposition, the partition door 22 between the vapor deposition chamber 16 and the cooling chamber 17 is opened, and the front plate 12 is introduced into the cooling chamber 17. After the front plate 12 is introduced into the cooling chamber 17, the partition door 22 between the vapor deposition chamber 16 and the cooling chamber 17 is closed, the front plate 12 is cooled to room temperature, and an inert gas or the like is introduced into the cooling chamber 17 to increase the pressure from the vacuum state. Set to atmospheric pressure. When the cooling chamber 17 reaches atmospheric pressure, the front plate 12 is unloaded. The crystallinity and orientation of the protective film 3 made of MgO depend on the deposition conditions such as the surface state, temperature, and deposition rate of the dielectric layer 2 due to activation. By controlling these conditions, it is possible to adjust the ratio of the (111) -oriented and (100) -oriented crystals in the protective film region 3a on the display electrode arrangement position. In this embodiment, the protective film region 3a on the display electrode arrangement position mainly has (111) plane orientation, and the protective film region 3b on the display electrode arrangement position has mainly (100) plane orientation. By adjusting the ratio of the area of each region or the ratio of the oriented crystals in each region, the protective film 3 having the optimum sputtering resistance and excellent discharge response could be obtained. In this case, the crystallinity and orientation were controlled by selectively activating the surface of the dielectric layer 2, but the protective film 3 can be formed by a region-selective vapor deposition method using a mask or a plating method. It is also possible to control the crystallinity and orientation by dividing the region.

成膜した保護膜3の放電応答性と寿命特性の評価は以下のようにして行う。放電応答性の評価では、前面板12のスキャン電極4と背面板13のアドレス電極10間における放電遅延時間測定を行う。通常、前面板12のスキャン電極4と背面板13のアドレス電極10間に電圧を印加した直後では放電が起こらず、電圧印加後から時間が経ってから放電が起こる。この電圧印加後から放電を開始するまでの時間を放電遅延時間という。   Evaluation of the discharge responsiveness and lifetime characteristic of the formed protective film 3 is performed as follows. In the evaluation of the discharge response, the discharge delay time is measured between the scan electrode 4 on the front plate 12 and the address electrode 10 on the back plate 13. Usually, immediately after a voltage is applied between the scan electrode 4 of the front plate 12 and the address electrode 10 of the back plate 13, no discharge occurs, and a discharge occurs after a lapse of time after the voltage is applied. The time from the start of voltage application to the start of discharge is called the discharge delay time.

駆動方法は、前面板12のスキャン電極4とサステイン電極5と背面板13のアドレス電極10を駆動装置に接続し、図4で示される駆動波形の電圧を印加する。最初にサステイン電極5とスキャン電極4間で面放電(サステイン放電)を行い、一定の休止時間の後にスキャン電極4とアドレス電極10で対向放電(アドレス放電)を行う。放電特性は、対向放電での放電遅延時間を測定している。評価方法は、保護膜3の全面が(100)面の配向結晶での放電遅延時間を基準として相対値で表す。   In the driving method, the scan electrode 4 and the sustain electrode 5 on the front plate 12 and the address electrode 10 on the back plate 13 are connected to a driving device, and a voltage having a driving waveform shown in FIG. 4 is applied. First, a surface discharge (sustain discharge) is performed between the sustain electrode 5 and the scan electrode 4, and a counter discharge (address discharge) is performed between the scan electrode 4 and the address electrode 10 after a certain rest time. For the discharge characteristics, the discharge delay time in the counter discharge is measured. The evaluation method is expressed as a relative value based on the discharge delay time when the entire surface of the protective film 3 is a (100) -oriented crystal.

寿命特性はMgOのスパッタリング耐性から評価する。保護膜3は、イオン衝撃によるスパッタリングにより、保護膜がエッチングされる。エッチング量(S)はエッチング速度(dS/dt)とエッチング時間(t)に比例し、次式で表される。

Figure 0004922850
配向結晶の各比率におけるスパッタリング耐性は(111)面の配向結晶のエッチング速度を基準として相対値で表し、(100)面の配向結晶のエッチング速度から内挿した。
成膜した保護膜3の(111)面の配向結晶の比率に対する放電特性と寿命特性を図5に示す。ここで、表示電極の配設位置上の保護膜領域3aにおける(111)面の配向結晶の比率は、微小X線回折法による(100)面に対する(111)面の回折強度比から算出した値である。 The life characteristics are evaluated from the sputtering resistance of MgO. The protective film 3 is etched by sputtering by ion bombardment. The etching amount (S) is proportional to the etching rate (dS / dt) and the etching time (t), and is expressed by the following equation.
Figure 0004922850
Sputtering resistance at each ratio of oriented crystals was expressed as a relative value based on the etching rate of oriented crystals on the (111) plane, and was interpolated from the etching rate of oriented crystals on the (100) plane.
FIG. 5 shows discharge characteristics and lifetime characteristics with respect to the ratio of oriented crystals on the (111) plane of the protective film 3 formed. Here, the ratio of the orientation crystal of the (111) plane in the protective film region 3a on the position where the display electrode is disposed is a value calculated from the diffraction intensity ratio of the (111) plane to the (100) plane by the micro X-ray diffraction method. It is.

図5のグラフから、放電応答性は (111)面の配向結晶の比率が増加すると放電遅延時間が減少し、70%以上95%以下の範囲において最小となる。このような形状のグラフとなるのは、 (111)面の配向結晶は放電応答性が(100)面の配向結晶よりも良好であるが、壁電荷を保持しにくい性質のためである。本実施例では、図4で示す駆動波形において、放電遅延時間測定に用いた対向放電の直前に休止時間を設けてあるため、休止時間中に壁電荷が減少している。特に、(111)面の配向結晶の比率が100%であると、休止時間を増加すると壁電荷が減少し、放電応答性が悪化する傾向がある。このことから、駆動条件を考慮すると、(111)面の配向結晶の比率が70%以上95%以下であることが好ましい。また、(111)面の配向結晶と(100)面の配向結晶のエッチング速度が異なるため、表示電極の配設位置上の保護膜領域3aにおいては(100)面の配向結晶が選択的にエッチングされ、凹凸形状を形成して比表面積が増大する。これにより、(111)面に優先配向すると二次電子放出特性や放電応答性が良好になる。
寿命特性は、各比率のスパッタリング耐性の相対値は内挿により算出されている。保護膜3表面形状の経時劣化を考慮すると、スパッタ耐性の相対値が0.8以上となる、(111)面の配向結晶の比率が70%以上であることが好ましい。
以上から、(111)面の配向結晶の比率、すなわち、(100)面に対する(111)面のX線回折強度比が70%以上95%以下の範囲において、良好な放電特性と寿命耐性を有する保護膜が得られる。
From the graph of FIG. 5, the discharge responsiveness decreases as the ratio of oriented crystals on the (111) plane increases, and becomes minimum in the range of 70% to 95%. The graph having such a shape is because the (111) -oriented crystal has better discharge response than the (100) -oriented crystal, but it is difficult to retain wall charges. In the present embodiment, in the drive waveform shown in FIG. 4, since the pause time is provided immediately before the counter discharge used for the discharge delay time measurement, the wall charges are reduced during the pause time. In particular, when the ratio of the (111) -oriented crystal is 100%, the wall charge decreases and the discharge response tends to deteriorate when the rest time is increased. Therefore, in consideration of driving conditions, it is preferable that the ratio of oriented crystals on the (111) plane is 70% or more and 95% or less. Further, since the etching rate of the (111) oriented crystal is different from that of the (100) oriented crystal, the (100) oriented crystal is selectively etched in the protective film region 3a on the display electrode arrangement position. As a result, an irregular shape is formed and the specific surface area is increased. As a result, when preferentially oriented in the (111) plane, secondary electron emission characteristics and discharge response are improved.
In the life characteristics, the relative values of the sputtering resistance at each ratio are calculated by interpolation. In consideration of the temporal deterioration of the surface shape of the protective film 3, it is preferable that the relative value of the sputtering resistance is 0.8 or more and the ratio of the (111) -oriented crystals is 70% or more.
From the above, in the range where the ratio of the (111) plane oriented crystal, that is, the X-ray diffraction intensity ratio of the (111) plane to the (100) plane is 70% or more and 95% or less, it has good discharge characteristics and lifetime durability A protective film is obtained.

保護膜3の形成方法が、実施例1と異なる実施形態について説明する。図6に本実施例による成膜過程を示す。図6(a) に示すように、誘電体層2を形成後、表示電極6の配設位置を除く誘電体層2の表面上にマスク24を配置する。スパッタリング法により、表示電極6の配設位置上の誘電体層2の表面上に中間層25を形成する。中間層25は成膜条件を制御して(111)面を主とした配向結晶を形成した。なお、表示電極6の配設位置上の誘電体層3表面に中間層25を形成する方法として、印刷法、電着法等でも構わない。   An embodiment in which the method for forming the protective film 3 is different from that in Example 1 will be described. FIG. 6 shows a film forming process according to this embodiment. As shown in FIG. 6A, after the dielectric layer 2 is formed, a mask 24 is disposed on the surface of the dielectric layer 2 excluding the position where the display electrode 6 is disposed. An intermediate layer 25 is formed on the surface of the dielectric layer 2 on the position where the display electrode 6 is disposed by sputtering. The intermediate layer 25 was formed by controlling the film formation conditions to form oriented crystals mainly composed of the (111) plane. As a method for forming the intermediate layer 25 on the surface of the dielectric layer 3 on the position where the display electrode 6 is disposed, a printing method, an electrodeposition method, or the like may be used.

図6(b) に示すように、中間層25の形成後にマスク24を除去し、MgOからなる保護膜3を電子ビーム蒸着により成膜する。蒸着材料にはMgO単結晶を用いる。実施例1と同様に、成膜方法をイオンアシスト蒸着、スパッタリング、化学蒸着(CVD)等、蒸着材料として放電特性改善のために不純物をMgOにドープした焼結体等を用いても構わない。蒸着条件は、前面板12及び誘電体層2表面の温度が200〜300℃、真空状態は1×10‐2 Pa以下に維持されている。実施例1と同様に、蒸着中に膜質を制御するために酸素ガスや水素ガスを蒸着室16に供給しても構わない。蒸着により形成するMgOからなる保護膜3の膜厚は3000‐10000Åである。 As shown in FIG. 6B, after the intermediate layer 25 is formed, the mask 24 is removed, and the protective film 3 made of MgO is formed by electron beam evaporation. MgO single crystal is used as the vapor deposition material. As in the first embodiment, ion-assisted deposition, sputtering, chemical vapor deposition (CVD) or the like may be used as a deposition method, and a sintered body doped with impurities in MgO for improving discharge characteristics may be used as a deposition material. The deposition conditions are such that the temperature of the front plate 12 and the surface of the dielectric layer 2 is 200 to 300 ° C., and the vacuum state is maintained at 1 × 10 −2 Pa or less. Similarly to Example 1, oxygen gas or hydrogen gas may be supplied to the vapor deposition chamber 16 in order to control the film quality during vapor deposition. The film thickness of the protective film 3 made of MgO formed by vapor deposition is 3000 to 10,000 mm.

形成される中間層25と誘電体層2表面の状態は大きく異なるため、実施例1における活性化と同様な効果がある。中間層25は成膜条件を制御することにより、表示電極の配設位置上の保護膜領域3aにおける(111)面の配向結晶の比率を調節することが可能である。   Since the state of the intermediate layer 25 and the surface of the dielectric layer 2 to be formed are greatly different, the same effect as the activation in the first embodiment is obtained. By controlling the film forming conditions of the intermediate layer 25, it is possible to adjust the ratio of the (111) plane oriented crystals in the protective film region 3a on the display electrode arrangement position.

表示電極の配設位置上の保護膜領域3aは中間層25上に成膜されているため、中間層25の膜厚を制御することにより、保護膜3の表面に凹凸形状を形成できる。これにより、表示電極の配設位置上の保護膜領域3aは凸部となり、サステイン電極5とスキャン電極4間での面放電(サステイン放電)において、電界集中が生じて放電特性の向上を計ることができる。また、表示電極の配設位置上の保護膜領域だけ膜厚が大きくできるため、スパッタによる保護膜の掘削時間が大きく、保護膜の機械的寿命を向上させることができる。   Since the protective film region 3 a on the position where the display electrode is disposed is formed on the intermediate layer 25, an uneven shape can be formed on the surface of the protective film 3 by controlling the film thickness of the intermediate layer 25. Thereby, the protective film region 3a on the position where the display electrode is disposed becomes a convex portion, and electric field concentration occurs in the surface discharge (sustain discharge) between the sustain electrode 5 and the scan electrode 4, thereby improving the discharge characteristics. Can do. Further, since the film thickness can be increased only in the protective film region on the display electrode arrangement position, the excavation time of the protective film by sputtering is long, and the mechanical life of the protective film can be improved.

本発明のプラズマディスプレイパネルの分解斜視図である。It is a disassembled perspective view of the plasma display panel of this invention. 図1の一画素を示す構造のx−z、y−z断面図である。2 is an xz, yz cross-sectional view of a structure showing one pixel in FIG. 1. FIG. 本発明の実施例1による保護膜形成のための成膜装置の構成図である。It is a block diagram of the film-forming apparatus for protective film formation by Example 1 of this invention. 本発明の実施例1により成膜される保護膜の放電特性評価に用いる駆動波形である。It is a drive waveform used for discharge characteristic evaluation of the protective film formed into a film by Example 1 of this invention. 本発明の実施例1により成膜される保護膜の(111)面、(100)面からなる配向結晶の比率と放電特性、寿命特性の関係を表すグラフである。It is a graph showing the relationship between the ratio of the oriented crystal which consists of the (111) plane of a protective film formed by Example 1 of this invention, and a (100) plane, and a discharge characteristic and a lifetime characteristic. 図1の一画素を示す構造において、(a)は本発明の実施例2における中間層の成膜過程を説明する図面であり、(b)は本発明の実施例2における前面板の保護膜側を上にしたx−z断面図である。In the structure showing one pixel in FIG. 1, (a) is a drawing for explaining the film formation process of the intermediate layer in Example 2 of the present invention, and (b) is a protective film for the front plate in Example 2 of the present invention. It is xz sectional drawing which made the side up.

符号の説明Explanation of symbols

1…前面基板、2…誘電体層、3…保護膜、3a…表示電極の配設位置上の保護膜領域、3b…表示電極の配設位置以外の保護膜領域、4…スキャン電極、5、…サステイン電極、4a、5a…透明電極、4b、5b…バス電極、6…表示電極、7…隔壁、8…蛍光体層、9…誘電体層、10…アドレス電極、11…背面基板、12…前面板、13…背面板、14…放電空間、15…活性化室、16…蒸着室、17…放電空間、18…導電板、19…活性化用電極、20…外部電源、21、22、24、25…仕切り扉、23…蒸着源、24…マスク、25…中間層。 DESCRIPTION OF SYMBOLS 1 ... Front substrate, 2 ... Dielectric layer, 3 ... Protective film, 3a ... Protective film area | region on the arrangement position of a display electrode, 3b ... Protective film area | regions other than the arrangement position of a display electrode, 4 ... Scan electrode, 5 ,... Sustain electrode, 4a, 5a ... Transparent electrode, 4b, 5b ... Bus electrode, 6 ... Display electrode, 7 ... Partition, 8 ... Phosphor layer, 9 ... Dielectric layer, 10 ... Address electrode, 11 ... Back substrate, DESCRIPTION OF SYMBOLS 12 ... Front plate, 13 ... Back plate, 14 ... Discharge space, 15 ... Activation chamber, 16 ... Deposition chamber, 17 ... Discharge space, 18 ... Conductive plate, 19 ... Electrode for activation, 20 ... External power supply, 21, 22, 24, 25 ... partition door, 23 ... evaporation source, 24 ... mask, 25 ... intermediate layer.

Claims (5)

放電空間を挟んで対向配置された基板の一方に表示電極が配設され、前記表示電極を覆って誘電体層が形成され、さらに前記誘電体層上に酸化マグネシウムからなる保護膜が積層したプラズマディスプレイパネルにおいて、前記表示電極の配設位置上の保護膜領域が(111)面に優先配向した配向結晶からなり、その他の保護膜領域、すなわち、前記表示電極の配設位置上以外の保護膜領域は(100)面に優先配向した配向結晶になっていることを特徴とするプラズマディスプレイパネル。 A plasma in which a display electrode is disposed on one of substrates opposed to each other across a discharge space, a dielectric layer is formed to cover the display electrode, and a protective film made of magnesium oxide is laminated on the dielectric layer. In the display panel, the protective film region on the position where the display electrode is disposed is made of oriented crystals preferentially oriented on the (111) plane, and the other protective film region, that is, the protective film other than on the position where the display electrode is disposed A plasma display panel characterized in that the region is an oriented crystal preferentially oriented in the (100) plane. 請求項1記載のプラズマディスプレイパネルにおいて、前記表示電極の配設位置上の保護膜領域は前記誘電体層上に形成される(111)面の配向結晶と(100)面の配向結晶とからなることを特徴とするプラズマディスプレイパネル。 According to claim 1, wherein the plasma display panel, the protective film region on the arrangement position of the display electrode is composed of the oriented crystal of the formed on the dielectric layer (111) plane oriented crystal and the (100) plane A plasma display panel characterized by that. 請求項1、2記載のプラズマディスプレイパネルにおいて、前記表示電極の配設位置上の誘電体層上に中間層が形成され、中間層上に形成される保護膜領域が凸となることを特徴とするプラズマディスプレイパネル。   3. The plasma display panel according to claim 1, wherein an intermediate layer is formed on the dielectric layer on a position where the display electrode is disposed, and a protective film region formed on the intermediate layer is convex. Plasma display panel. 請求項2、3記載のプラズマディスプレイパネルにおいて、前記保護膜全体のX線回折図形における(100)面に対する(111)面の回折強度比が、70%以上95%以下の範囲内であることを特徴とするプラズマディスプレイパネル。   4. The plasma display panel according to claim 2, wherein a diffraction intensity ratio of the (111) plane to the (100) plane in the X-ray diffraction pattern of the entire protective film is within a range of 70% to 95%. A characteristic plasma display panel. 請求項1から4記載のプラズマディスプレイパネルの製造方法において、前記表示電極の配設位置上の誘電体層の表面を活性化する工程と、前記活性化後に前記保護膜の形成する工程からなることを特徴とするプラズマディスプレイパネルの製造方法5. The method of manufacturing a plasma display panel according to claim 1, comprising a step of activating a surface of the dielectric layer on a position where the display electrode is disposed, and a step of forming the protective film after the activation. A method of manufacturing a plasma display panel characterized by the above.
JP2007177938A 2007-07-06 2007-07-06 Plasma display panel Expired - Fee Related JP4922850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177938A JP4922850B2 (en) 2007-07-06 2007-07-06 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177938A JP4922850B2 (en) 2007-07-06 2007-07-06 Plasma display panel

Publications (2)

Publication Number Publication Date
JP2009016227A JP2009016227A (en) 2009-01-22
JP4922850B2 true JP4922850B2 (en) 2012-04-25

Family

ID=40356879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177938A Expired - Fee Related JP4922850B2 (en) 2007-07-06 2007-07-06 Plasma display panel

Country Status (1)

Country Link
JP (1) JP4922850B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2663909B2 (en) * 1995-04-11 1997-10-15 日本電気株式会社 Method for manufacturing plasma display panel
JP2005310581A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP4399344B2 (en) * 2004-11-22 2010-01-13 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP2007141483A (en) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd Plasma display panel
JP2007128920A (en) * 2007-02-21 2007-05-24 Matsushita Electric Ind Co Ltd Ac type plasma display panel

Also Published As

Publication number Publication date
JP2009016227A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
KR101124135B1 (en) Plasma display panel
WO2005109464A1 (en) Plasma display panel
JP2005340206A (en) Plasma display panel
JP4468239B2 (en) Plasma display panel
WO2002058095A1 (en) Plasma display panel and its manufacturing method
JP4596005B2 (en) Method for manufacturing plasma display panel
US20070210712A1 (en) Surface-discharge-type plasma display panel
JP4321593B2 (en) Plasma display panel
JP4922850B2 (en) Plasma display panel
JP4042502B2 (en) Plasma display panel and manufacturing method thereof
JP3582946B2 (en) Plasma display panel and method of forming protective film
US20070114936A1 (en) Plasma display apparatus and method of manufacturing the same
JP2003317631A (en) Plasma display panel
US6744201B2 (en) Plasma information display element and method for producing the same
JP4736933B2 (en) Plasma display panel
JP4541834B2 (en) Plasma display panel
JP4788227B2 (en) Plasma display panel
JP3442059B2 (en) Electron-emitting thin film, plasma display panel using the same, and manufacturing method thereof
JP2009146803A (en) Plasma display panel
JP3912567B2 (en) Gas discharge display device
JPH11135023A (en) Plasma display panel and its manufacture
JP2009217940A (en) Plasma display device
KR100759444B1 (en) Plasma display panel
US20060038493A1 (en) Plasma display panel
JP2004273364A (en) Manufacturing method of plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees