JP4920654B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4920654B2
JP4920654B2 JP2008250974A JP2008250974A JP4920654B2 JP 4920654 B2 JP4920654 B2 JP 4920654B2 JP 2008250974 A JP2008250974 A JP 2008250974A JP 2008250974 A JP2008250974 A JP 2008250974A JP 4920654 B2 JP4920654 B2 JP 4920654B2
Authority
JP
Japan
Prior art keywords
flow rate
pump
air conditioner
valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008250974A
Other languages
Japanese (ja)
Other versions
JP2010084951A (en
Inventor
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008250974A priority Critical patent/JP4920654B2/en
Publication of JP2010084951A publication Critical patent/JP2010084951A/en
Application granted granted Critical
Publication of JP4920654B2 publication Critical patent/JP4920654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は熱源機で生成した温熱または冷熱を複数存在する負荷に対し効率よく分配をおこなう空気調和装置に関するものである。   The present invention relates to an air conditioner that efficiently distributes a plurality of hot and cold heat generated by a heat source device.

従来より、空気調和装置における省エネルギー制御の一つとして、空調機へ媒体を循環させるポンプの電気消費量を最小にする最小抵抗制御が知られている。この最小抵抗制御では、空調機への媒体の供給通路に設けられた制御弁の開度が最大となるように、すなわち制御弁において消耗される圧力損失が最小となるようにポンプ流量を制御する(例えば特許文献1参照)。   Conventionally, as one of energy saving controls in an air conditioner, a minimum resistance control for minimizing the electric consumption of a pump that circulates a medium to an air conditioner is known. In this minimum resistance control, the pump flow rate is controlled so that the opening degree of the control valve provided in the medium supply passage to the air conditioner is maximized, that is, the pressure loss consumed in the control valve is minimized. (For example, refer to Patent Document 1).

特開2004−317000号公報(第9頁〜第15頁、図1)JP 2004-317000 A (pages 9 to 15, FIG. 1)

ところが、上記特許文献1で示される従来例では、運転中の室内機の中で、能力が不足あるいは余剰となる程度の負荷変動には追従できるが、室内機の運転台数が大きく変化する様な不連続で過渡的な負荷パターンでは、変化に追従できなかったり、ハンチングが発生したりして安定するまでの時間が長くなり、過渡を含めた効率が低下する虞がある。
本発明は、上記のような課題を解決するために為されたものであり、負荷の変動が伴う場合であっても短時間で安定する効率のよい温熱または冷熱供給ができることを目的としている。
However, in the conventional example shown in the above-mentioned Patent Document 1, it is possible to follow a load fluctuation that is insufficient or excessive in the capacity of the indoor units that are in operation, but the number of indoor units that are operated greatly changes. With a discontinuous and transient load pattern, it may not be possible to follow the change, or hunting will occur and the time until stabilization will become longer, which may reduce the efficiency including transients.
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to enable efficient hot or cold supply that is stable in a short time even when a load fluctuates.

本発明に係る空気調和装置は、第1の媒体が循環する第1のサイクルと、第2の媒体が循環する第2のサイクルと、を備え、第1のサイクルは、温熱または冷熱を生成して第1の媒体に供給する熱源機と、第1の媒体の温熱または冷熱を熱交換により第2の媒体に供給する熱交換器と、を備え、第2のサイクルは、熱交換器と、第2の媒体を駆動させるポンプと、ポンプの流量を制御するポンプ流量制御手段と、を備え、第2のサイクルの一部が複数の分岐路に分岐し、各分岐路は、個別の負荷に対応してそれぞれ設けられ、第2の媒体の温熱または冷熱を負荷側に供給する空調機と、第2の媒体の前記空調機に流れる流量を調整する流量調整弁と、流量調整弁の開度を制御する弁開度制御手段と、を備え、ポンプ流量制御手段は、各空調機の予め定めた能力、各空調機の運転有無、及び各流量調整弁開度についての情報を有しており、複数の流量調整弁の開度のうち最大となるものを選択し、選択した流量調整弁の開度が所定の上限値となるようにポンプの流量を制御するとともに、空調機の総合能力の変化率に基づいてポンプの流量を調節し、空調機の総合能力の変化率は、所定の周期間隔で運転中の全ての空調機の能力を総合した総合能力と、1つ前の周期の総合能力とに基づいて算出されるものである。 An air conditioner according to the present invention includes a first cycle in which a first medium circulates and a second cycle in which a second medium circulates, and the first cycle generates hot or cold. A heat source device that supplies the first medium to the first medium, and a heat exchanger that supplies the heat or cold of the first medium to the second medium by heat exchange, and the second cycle includes the heat exchanger; A pump for driving the second medium, and a pump flow rate control means for controlling the flow rate of the pump, wherein a part of the second cycle branches into a plurality of branch paths, and each branch path has an individual load. An air conditioner that is provided correspondingly and supplies the heat or cold of the second medium to the load side, a flow adjustment valve that adjusts the flow rate of the second medium that flows to the air conditioner, and the opening of the flow adjustment valve and a valve opening control means for controlling the pump flow rate control means, each of the air conditioners Predetermined capacity, the operation whether each of the air conditioners, and has information about each flow regulating valve opening, select the one with the maximum of the degree of opening of the plurality of flow rate adjusting valve, the flow rate adjustment selected The flow rate of the pump is controlled so that the opening degree of the valve becomes a predetermined upper limit value, and the flow rate of the pump is adjusted based on the rate of change of the overall capacity of the air conditioner. in the periodic interval, and overall ability to comprehensively all of the ability of the air conditioner in operation, is intended to be calculated on the basis of the total capacity of the previous cycle.

本発明によれば、ポンプ流量制御手段が空調機の運転台数の変化に応じてポンプの流量を調節するので、多数に分散した負荷が個別に変化する場合であっても、短時間で安定した効率のよい温熱または冷熱供給ができる。
また、ポンプ流量制御手段は、総合能力の変化率に基づいてポンプの流量を調節し、空調機の総合能力の変化率は、所定の周期間隔で運転中の全ての空調機の能力を総合した総合能力と、1つ前の周期の総合能力とに基づいて算出されるので、能力を基に回転数を変えることで、能力の大きい大型の室内機と、能力の小さい小型の室内機とで重み付けをすることができ、安定した制御が実現できる。
According to the present invention, the pump flow rate control means adjusts the flow rate of the pump according to the change in the number of operating air conditioners. Efficient warm or cold supply is possible.
The pump flow rate control means adjusts the flow rate of the pump based on the rate of change of the total capacity, the rate of change of the total capacity of the air conditioner, at a predetermined periodic interval, integrating the full power of the air conditioner in operation It is calculated based on the total capacity and the total capacity of the previous cycle, so by changing the rotation speed based on the capacity, large indoor units with large capacity and small indoor units with small capacity Can be weighted, and stable control can be realized.

実施の形態1.
以下この発明の実施の形態1について説明する。図1はこの発明の実施の形態1に係わる空気調和装置の回路図である。図1に示すように、空気調和装置1は、第1の媒体である冷媒が循環する第1のサイクル10と、第2の媒体である利用側媒体が循環し、一部が複数の分岐路30a〜30eに分岐して構成される第2のサイクル20と、を備え、第1のサイクル10は、温熱または冷熱を生成して冷媒に供給する熱源機11と、冷媒の温熱または冷熱を利用側媒体に供給する熱交換器12と、を備え、第2のサイクル20は、熱交換器12と、利用側媒体を駆動させるポンプ21と、分岐路30a〜30eと、分岐路30a〜30eに対応して個別に設けられ、利用側媒体の温熱または冷熱を空気と熱交換する空調機(室内機)22a〜22eと、分岐路30a〜30eに対応して個別に設けられ空調機22a〜22eに流れる利用側媒体の流量を調整する複数の流量調整弁23a〜23eと、流量調整弁23a〜23eに対応して個別に設けられ、流量調整弁23a〜23eの開度を制御する複数の弁開度制御手段24a〜24eと、空調機22a〜22eの個別の運転状況に応じてポンプ21の流量を調節するポンプ流量制御手段25と、から構成されている。
また、空調機22a〜22eは、ファン26a〜26eと、このファン26a〜26eによって供給される室内の空気と第2のサイクル20内を流れる利用側媒体との間で熱交換する空気熱交換器27a〜27eと、から構成されている。
なお、利用側媒体は水でもブラインでもよい。
また、流量調整弁23a〜23eは二方弁であり、二方弁の開度が小さいと二方弁の流路抵抗が大、開度が大きいと二方弁の流路抵抗が小となり、開度に応じて流路抵抗が連続的に変化する。よって二方弁の開度による空調機22a〜22eの流量調整が可能である。なお、弁開度制御手段24a〜24eとポンプ流量制御手段25は伝送線で接続され、相互に情報が伝送可能になっている。(だから、ポンプ流量制御手段25は流量調整弁23a〜23eの開度がわかる)
また、熱源機11は、圧縮機11aと、四方弁11bと、室外熱交換器11cと、室外ファン11dと、減圧弁11eと、逆止弁11f、11g、11h、11iと、アキュムレータ11jとから構成される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below. 1 is a circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioner 1 includes a first cycle 10 in which a refrigerant that is a first medium circulates, and a use-side medium that is a second medium circulates, and a part of which is a plurality of branch paths. And a second cycle 20 configured to branch into 30a to 30e. The first cycle 10 generates heat or cold and supplies it to the refrigerant, and uses the heat or cold of the refrigerant. The second cycle 20 includes a heat exchanger 12, a pump 21 that drives the use-side medium, branch paths 30a to 30e, and branch paths 30a to 30e. Air conditioners (indoor units) 22a to 22e that are individually provided correspondingly and exchange heat and cold of the use side medium with air and air conditioners 22a to 22e individually provided corresponding to the branch paths 30a to 30e. The flow rate of the user-side medium flowing through A plurality of flow rate adjusting valves 23a to 23e, a plurality of valve opening degree control means 24a to 24e that are individually provided corresponding to the flow rate adjusting valves 23a to 23e and control the opening degree of the flow rate adjusting valves 23a to 23e, and air conditioning And pump flow rate control means 25 for adjusting the flow rate of the pump 21 in accordance with the individual operating conditions of the machines 22a to 22e.
The air conditioners 22a to 22e are air heat exchangers for exchanging heat between the fans 26a to 26e and the indoor air supplied by the fans 26a to 26e and the use side medium flowing in the second cycle 20. 27a to 27e.
The use side medium may be water or brine.
The flow rate adjusting valves 23a to 23e are two-way valves. When the opening of the two-way valve is small, the flow resistance of the two-way valve is large, and when the opening is large, the flow resistance of the two-way valve is small. The channel resistance changes continuously according to the opening. Therefore, the flow rate of the air conditioners 22a to 22e can be adjusted by the opening of the two-way valve. The valve opening control means 24a to 24e and the pump flow rate control means 25 are connected by a transmission line so that information can be transmitted between them. (So, the pump flow rate control means 25 knows the opening degree of the flow rate adjustment valves 23a-23e)
The heat source unit 11 includes a compressor 11a, a four-way valve 11b, an outdoor heat exchanger 11c, an outdoor fan 11d, a pressure reducing valve 11e, check valves 11f, 11g, 11h, and 11i, and an accumulator 11j. Composed.

次に、本実施の形態1における動作を利用側媒体の流れを中心として図1を参照しながら説明する。
以下、冷熱を供給する場合(冷房運転)について説明する。
この空気調和装置1では、第1のサイクル10において、熱源機11によって生成された冷熱が、熱源機11内の圧縮機11aによって駆動される冷媒を介して熱交換器12に運ばれ、この熱交換器12で、熱交換により第2のサイクル2へ受け渡される。熱交換を終えた冷媒は再び熱源機1へ戻る。熱交換器12は例えばプレート熱交換器であり、熱源機11で生成された冷熱は、この熱交換器12によって冷媒から第2のサイクル20を流れる利用側媒体へと伝達される。第2のサイクル20では利用側媒体はポンプ21により駆動動力を得て流れ、分岐して各空調機22a〜22eに入る。各空調機22a〜22e にて利用側媒体が空気熱交換器27a〜27eを通過する際にファン26a〜26eにより搬送されて空気熱交換器27a〜27eを通過する空気と熱交換することで、冷熱は熱負荷である空気へと到達する。冷熱を伝達した後の利用側媒体は流量調整弁23a〜23eを通過し、集約して再び熱交換器12へ至る。流量調整弁23a〜23eの弁開度による流路抵抗により、各空調機22a〜22eの空気熱交換器27a〜27eを流れる利用側媒体の流量が定まる。
次に、熱源機11の内部の動作について説明する。四方弁11bは図中の実線で示すように接続され、圧縮機11aにより圧縮された高温高圧のガス冷媒が四方弁11bを介して室外熱交換器11cに至る。ここで、室外ファン11dにより搬送される外気と冷媒が熱交換され、外気の持つ冷熱が冷媒へ受け渡されて、室外熱交換器11cを出る時には低温高圧の液冷媒となる。その後、冷媒は減圧弁11eで減圧され低圧の二相冷媒となり、逆止弁11fを通過して熱交換器12で利用側媒体と対向流形式で熱交換され、冷媒が持つ冷熱が利用側媒体に受け渡される。熱交換器12を通過した冷媒は低圧ガス冷媒であり、逆止弁11g、四方弁11b、アキュームレータ11jを通過し、再び圧縮機11aに至る。圧縮機11aの回転数増減により冷媒の循環量が変化し、冷熱の生成量もこれに応じて増減する。
本実施の形態1では空調機を5台接続した場合を記載したが、5台でなくとも、複数台であれば良い。空調機22a〜22eと流量調整弁23a〜23eの順序は逆であっても良いし、熱交換器12とポンプ21の順序が逆でも良い。また、空気の代わりに水と熱交換させる温水器や冷水器であっても構わない。
Next, the operation according to the first embodiment will be described with reference to FIG.
Hereinafter, the case where cooling is supplied (cooling operation) will be described.
In the air conditioner 1, in the first cycle 10, the cold generated by the heat source unit 11 is conveyed to the heat exchanger 12 via the refrigerant driven by the compressor 11 a in the heat source unit 11, and this heat In the exchanger 12, it is transferred to the second cycle 2 by heat exchange. The refrigerant that has finished the heat exchange returns to the heat source unit 1 again. The heat exchanger 12 is, for example, a plate heat exchanger, and the cold heat generated by the heat source device 11 is transmitted from the refrigerant to the use side medium flowing in the second cycle 20 by the heat exchanger 12. In the second cycle 20, the usage-side medium flows by obtaining drive power from the pump 21, and branches into the air conditioners 22 a to 22 e. In each air conditioner 22a-22e, when the use side medium passes through the air heat exchangers 27a-27e, it is conveyed by the fans 26a-26e and exchanges heat with the air passing through the air heat exchangers 27a-27e. The cold heat reaches the heat load air. The utilization side medium after transmitting the cold heat passes through the flow rate adjusting valves 23a to 23e, and is collected and reaches the heat exchanger 12 again. The flow rate of the use side medium flowing through the air heat exchangers 27a to 27e of the air conditioners 22a to 22e is determined by the flow path resistance due to the valve opening degree of the flow rate adjusting valves 23a to 23e.
Next, the internal operation of the heat source device 11 will be described. The four-way valve 11b is connected as shown by the solid line in the figure, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 11a reaches the outdoor heat exchanger 11c via the four-way valve 11b. Here, heat is exchanged between the outside air conveyed by the outdoor fan 11d and the refrigerant, and the cold heat of the outside air is transferred to the refrigerant to become a low-temperature and high-pressure liquid refrigerant when leaving the outdoor heat exchanger 11c. Thereafter, the refrigerant is depressurized by the pressure reducing valve 11e to become a low-pressure two-phase refrigerant, passes through the check valve 11f, and is heat-exchanged with the use side medium in a counter flow manner by the heat exchanger 12, and the cold heat of the refrigerant is used by the use side medium. Is passed on. The refrigerant that has passed through the heat exchanger 12 is a low-pressure gas refrigerant, passes through the check valve 11g, the four-way valve 11b, and the accumulator 11j, and reaches the compressor 11a again. The circulation amount of the refrigerant is changed by the increase / decrease of the rotation speed of the compressor 11a, and the generation amount of the cold heat is also increased / decreased accordingly.
Although the case where five air conditioners are connected has been described in the first embodiment, a plurality of air conditioners may be used instead of five. The order of the air conditioners 22a to 22e and the flow rate adjusting valves 23a to 23e may be reversed, and the order of the heat exchanger 12 and the pump 21 may be reversed. Further, a water heater or a water cooler that exchanges heat with water instead of air may be used.

図2は本実施の形態1におけるポンプ流量制御手段25の動作を示すフローチャートである。次に、本実施の形態1におけるポンプ流量制御手段25の動作を図1と図2を参照しながら説明する。
まず、ユーザは空気調和装置1の図示しない電源スイッチを投入することにより、空気調和装置1が起動される。これにより、ポンプ流量制御手段25は、S101で熱源機11や空調機22a〜22eの起動やさまざまな初期設定を行う。次に、ポンプ流量制御手段25はS102で流量調整弁23a〜23eの初期開度、S103でポンプ21の初期回転数が設定され、S104でポンプ21が起動する。ポンプ流量制御手段25はS105で一定時間Tintが経過するまでは初期設定のまま運転を行い、一定時間Tintが経過すると次のステップへ進む。Tintは主に熱源機11の状態が安定に向う時間によって定まり、例えば10分である。次に、S106で弁開度制御手段24a〜24eが流量調整弁23a〜23eを並行して個別制御する。なお、この制御は運転中の空調機に対してのみ実施され、運転しない空調機に対応する流量調整弁23は弁開度制御手段24によって全閉もしくは全閉に近い状態に制御される。
S107からS115は、運転している空調機22aに関する制御であるが、他の運転している空調機についても同様である。弁開度制御手段24aはS107で空調機22aでユーザによって設定された目標温度aと、図示しない温度センサが検知する室内温度aより
(目標温度差a)=(室内温度a)-(目標温度a)
を演算する。次に、弁開度制御手段24aはS108で一定時間Tlが経過したか判定し、経過しない場合はS107へ戻り、経過した場合はS109へ進み目標温度差a(dTa)>0か判定する。S109での判定結果が真の場合、弁開度制御手段24aはS110で流量調整弁23aの開度を La←La-dLa に変更しS112へ進む。S109で偽の場合、弁開度制御手段24aはS112で流量調整弁23aの開度を La←La+dLa に変更しS112へ進む。なお、dLaは負の数である。
次に、弁開度制御手段24aはS112で流量調整弁23aの開度Laが最小開度Lmina以下か判定し、真の場合はS113でLaを最小開度Lminaに変更してS116へ進む。S112での判定結果が偽の場合はS114へ進み、流量調整弁23aの開度Laが最大開度Lmaxa以上か判定する。S114での判定結果が真の場合は、弁開度制御手段24aはS115で流量調整弁23aの開度Laを最大開度Lmaxaに変更してS116へ進み、S114における判定結果が偽の場合は、そのままS116へ進む。
FIG. 2 is a flowchart showing the operation of the pump flow rate control means 25 in the first embodiment. Next, the operation of the pump flow rate control means 25 in the first embodiment will be described with reference to FIGS.
First, the user turns on the air conditioner 1 by turning on a power switch (not shown) of the air conditioner 1. Thereby, the pump flow control means 25 performs activation of the heat source device 11 and the air conditioners 22a to 22e and various initial settings in S101. Next, the pump flow rate control means 25 sets the initial opening of the flow rate adjusting valves 23a to 23e in S102, the initial rotational speed of the pump 21 in S103, and the pump 21 is started in S104. The pump flow rate control means 25 operates with the initial setting until the predetermined time Tint elapses in S105, and proceeds to the next step when the predetermined time Tint elapses. Tint is mainly determined by the time during which the state of the heat source device 11 is stable, and is, for example, 10 minutes. Next, in S106, the valve opening control means 24a to 24e individually control the flow rate adjusting valves 23a to 23e in parallel. This control is performed only for the air conditioner that is in operation, and the flow rate adjustment valve 23 corresponding to the air conditioner that is not in operation is controlled by the valve opening degree control means 24 to be in a fully closed state or nearly fully closed state.
S107 to S115 are controls related to the operating air conditioner 22a, but the same applies to other operating air conditioners. The valve opening control means 24a is based on the target temperature a set by the user in the air conditioner 22a in S107 and the indoor temperature a detected by a temperature sensor (not shown).
(Target temperature difference a) = (Indoor temperature a) − (Target temperature a)
Is calculated. Next, the valve opening degree control means 24a determines whether or not the predetermined time Tl has elapsed in S108, and if not, returns to S107, and if it has elapsed, proceeds to S109 and determines whether the target temperature difference a (dTa)> 0. If the determination result in S109 is true, the valve opening degree control means 24a changes the opening degree of the flow rate adjusting valve 23a to La ← La-dLa in S110, and proceeds to S112. If false in S109, the valve opening degree control means 24a changes the opening degree of the flow rate adjusting valve 23a to La ← La + dLa in S112, and proceeds to S112. DLa is a negative number.
Next, the valve opening degree control means 24a determines whether or not the opening degree La of the flow rate adjusting valve 23a is equal to or smaller than the minimum opening degree Lmina in S112. If true, La is changed to the minimum opening degree Lmina in S113 and the process proceeds to S116. If the determination result in S112 is false, the process proceeds to S114, and it is determined whether the opening degree La of the flow rate adjusting valve 23a is equal to or greater than the maximum opening degree Lmaxa. If the determination result in S114 is true, the valve opening degree control means 24a changes the opening degree La of the flow rate adjusting valve 23a to the maximum opening degree Lmaxa in S115 and proceeds to S116. If the determination result in S114 is false The process proceeds to S116 as it is.

このようにして空調機22aで負荷に見合う冷熱を供給できるように流量調整弁23aの開度を調整して適度な流量とする。S107からS115までの制御と同じ制御が空調機22a〜22eの内、運転中の空調機全てに対して同時に並行して実施される。   In this way, the opening degree of the flow rate adjusting valve 23a is adjusted so as to provide an appropriate flow rate so that the air conditioner 22a can supply cold heat corresponding to the load. The same control as the control from S107 to S115 is simultaneously performed in parallel for all the air conditioners in operation among the air conditioners 22a to 22e.

次に、ポンプ流量制御手段25はS116で空調機がどの程度運転されているかを演算する。Qj(j=1,2,3,…)は各空調機の能力を示しており、ΣQjはその総量である。次にポンプ流量制御手段25は、S117で一定時間Tpが経過したか判断し、経過してない場合はS106へ戻る。TpはTlより十分大きく、例えば5分である。S117での判定結果が真の場合(一定時間Tpが経過した場合)は、S118でΣQjが以前のΣQjであるΣQjoldと同じか判断する。S118での判定結果が真の場合にはいわゆる最小抵抗制御を行う。即ち、ポンプ流量制御手段25はS119で運転中の空調機に対応する流量調整弁23の内で開度が最大のもの(Lmax_i)を演算し、S120でこの開度(Lmax_i)が設定最大開度Lmax1より小さいか判定する。
S120での判定結果が真の場合、ポンプ流量制御手段25は、流量抵抗を減らすためにS121でポンプの回転数npを、np→np-dnpと低減させてS122へ進んだ後、ポンプの回転数の低減により能力が低下する分、流量調整弁の開度を増大させて補うためにS106へ進む。そして、最大の開度をもつ流量調整弁の開度(Lmax_i)が設定最大開度Lmax1より小さい間は、この動作を繰り返すことで、(Lmax_i)が設定最大開度Lmax1と一致するようになる。この結果、流量抵抗が最小となり、全体の能力は増大することになる。なお、dnpは回転数の調整量であり正の数である。S120での判定結果が偽の場合、ポンプ流量制御手段25はS123で(Lmax_i)が設定最大開度Lmaxより大きいか判定する。S123での判定結果が真の場合、このままでは(Lmax_i)が設定最大開度Lmaxを超えているため、制御不可能となる。そこで、ポンプ流量制御手段25は流量調整弁の開度が最大のもの(Lmax_i)を設定最大開度Lmaxに一致させるためにS124でポンプの回転数npを、np→np+dnpと増加させてS122へ進む。S123での判定結果が偽の場合はそのままS122へ進む。
なおLmax1≦Lmaxである。
次に、ポンプ流量制御手段25はS122で前回のΣQjoldに現在のΣQjを代入し、S106へ戻る。
なお、上記のLmax1に示すように、設定最大開度は、流量調整弁の設計上の上限開度である必要はなく、例えば上限開度の90%であってもよい。物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度でよい。
S118での判定結果が偽の場合は空調機の運転台数が変化しており、ポンプ流量制御手段25はこれに応じでポンプ回転数npを変化させるために、S125へ進みポンプの回転数をΣQj/ΣQjoldに比例させる値とし(np→np×ΣQj/ΣQjold)、この後S122で前回のΣQjoldに現在のΣQjを代入し、S106へ戻る。
Next, the pump flow rate control means 25 calculates how much the air conditioner is operated in S116. Qj (j = 1, 2, 3,...) Indicates the capacity of each air conditioner, and ΣQj is the total amount. Next, the pump flow rate control means 25 determines whether or not the predetermined time Tp has elapsed in S117, and if not, returns to S106. Tp is sufficiently larger than Tl, for example, 5 minutes. If the determination result in S117 is true (when the predetermined time Tp has elapsed), it is determined in S118 whether ΣQj is the same as ΣQjold, which is the previous ΣQj. If the determination result in S118 is true, so-called minimum resistance control is performed. That is, the pump flow rate control means 25 calculates the maximum opening (Lmax_i) of the flow rate adjustment valve 23 corresponding to the air conditioner being operated in S119, and this opening (Lmax_i) is set to the maximum opening in S120. Judge whether the degree is less than Lmax1.
If the determination result in S120 is true, the pump flow rate control means 25 reduces the pump rotation speed np from np → np-dnp in S121 in order to reduce the flow resistance, and proceeds to S122. Since the capacity decreases due to the decrease in the number, the process proceeds to S106 in order to increase and compensate for the opening of the flow regulating valve. Then, as long as the opening (Lmax_i) of the flow rate adjusting valve having the maximum opening is smaller than the set maximum opening Lmax1, this operation is repeated so that (Lmax_i) matches the set maximum opening Lmax1. . As a result, the flow resistance is minimized and the overall capacity is increased. Note that dnp is an adjustment amount of the rotational speed and is a positive number. If the determination result in S120 is false, the pump flow rate control means 25 determines whether (Lmax_i) is larger than the set maximum opening Lmax in S123. If the determination result in S123 is true, if it remains as it is, (Lmax_i) exceeds the set maximum opening Lmax, and control is impossible. Accordingly, the pump flow rate control means 25 increases the pump rotation speed np from np → np + dnp in S124 in order to make the maximum flow rate adjustment valve opening (Lmax_i) coincide with the set maximum opening Lmax. Proceed to S122. If the determination result in S123 is false, the process proceeds directly to S122.
Note that Lmax1 ≦ Lmax.
Next, the pump flow rate control means 25 substitutes the current ΣQj for the previous ΣQjold in S122, and returns to S106.
As shown in Lmax1 above, the set maximum opening need not be the upper limit opening in the design of the flow rate adjustment valve, and may be 90% of the upper limit opening, for example. The valve does not need to be fully open or fully closed physically, and may be a fully open or predetermined maximum opening degree close to the full close in consideration of the reliability of the valve.
If the determination result in S118 is false, the number of air conditioners operating has changed, and the pump flow rate control means 25 proceeds to S125 in order to change the pump rotation speed np accordingly, and the pump rotation speed is set to ΣQj The value is made proportional to / ΣQjold (np → np × ΣQj / ΣQjold). Thereafter, in S122, the current ΣQj is substituted for the previous ΣQjold, and the process returns to S106.

これらの動作により、ポンプ回転数を空調機の運転状況に短時間で追従させることができる。なおかつ流量調整弁の開度の関係は保たれるので、各空調機に分配される流量を適切に調整できる。
また流量調整弁の制御時間間隔と、ポンプ回転数の制御時間間隔が異なっているので、ハンチングなど制御安定性を阻害する要因を除去することができる。また、運転台数そのものでなく、Qj(能力)を基に回転数を変えることで、能力の大きい大型の室内機と、能力の小さい小型の室内機とで重み付けをすることができ、安定した制御が実現できる。
なお、図2のフローチャートにおけるdLa、dnpは固定値である必要はなく、運転状況等により変化させても良い。また、S125でΣQjに応じてポンプ回転数npを変化させるが、常に比例(np→np×ΣQj/ΣQjold)ではなく、現在のポンプ回転数npに応じて重み付けを付加しても良い(np→k(np)×np×ΣQj/ΣQjold ここで、k(np)は重み付け関数であり、k(np)は1近傍の値であるが、npに応じて変化する)。また、各室内機において、能力が不足しているかあるいは能力が余剰状態であるかの判定は、室内温度と目標温度との比較結果を基準としていたが、室内熱交換器の出入口温度差と目標温度差との比較結果を判定基準としても同様の効果が得られる。
また、本実施の形態では負荷の変動に応じて調整可能なポンプ流量を安定して実現し、熱源機11が生成した冷熱を適切に負荷側に供給することができるが、熱源機11での冷熱生成量自体は熱源機の制御、例えば熱交換器12における冷媒2の入口温度や出口温度を検知して圧縮機11aの回転数増減により冷媒の循環量を増減させることにより冷熱生成量を変化させる。このため、負荷の変化に対して熱源機の冷熱生成が追従できず、遅れる可能性がある。そこで、空調機の発停などの情報を熱源機にも伝達し、ポンプ21の回転数と同様に、熱源機11の図示しない制御手段の制御の下に圧縮機11aの回転数を増減させることにより、短時間で安定した冷熱供給が実現できる。
なお、本実施の形態は冷熱を供給する場合(冷房運転)について説明したが、温熱を供給する場合(暖房運転)についても同等の効果が得られる。この場合、四方弁11bは図中の破線で示すように接続され、室外ファン11dにより搬送される外気と冷媒が熱交換され、外気の持つ温熱が冷媒へ受け渡されて、室外熱交換器11cを出ると高温低圧のガス冷媒となる。そして、四方弁11b、アキュムレータ11jを介して、圧縮機11aに吸入され、電気入力による圧縮仕事によりさらなる温熱が冷媒へ受け渡され高温高圧のガス冷媒となる。圧縮機11aを出た冷媒は、四方弁11b、逆止弁11iを通過して熱交換器12で利用側媒体に対向流形式で熱交換され、冷媒が持つ温熱が利用側媒体に受け渡される。その後逆止弁11h、減圧弁11eを通過し、再び室外熱交換器11cへ至る。逆止弁11f〜11iにより、温熱供給(冷房運転)、温熱供給(暖房)どちらの場合であっても、熱交換器12において対向流形式で熱交換できる。また、暖房運転ではフローチャートS111、S112でのdLaは正の数である。
With these operations, the pump rotation speed can be made to follow the operation status of the air conditioner in a short time. In addition, since the relationship between the opening amounts of the flow rate adjusting valves is maintained, the flow rate distributed to each air conditioner can be adjusted appropriately.
Further, since the control time interval of the flow rate adjusting valve is different from the control time interval of the pump rotation speed, a factor that hinders control stability such as hunting can be removed. In addition, by changing the rotation speed based on Qj (capacity) instead of the number of units in operation, weight can be assigned to large indoor units with large capabilities and small indoor units with small capacities. Can be realized.
Note that dLa and dnp in the flowchart of FIG. 2 do not have to be fixed values, and may be changed depending on the driving situation or the like. In S125, the pump rotation speed np is changed according to ΣQj, but is not always proportional (np → np × ΣQj / ΣQjold), and may be weighted according to the current pump rotation speed np (np → k (np) × np × ΣQj / ΣQjold Here, k (np) is a weighting function, and k (np) is a value in the vicinity of 1 but changes according to np). In each indoor unit, whether the capacity is insufficient or the capacity is in excess is based on the comparison result between the indoor temperature and the target temperature. The same effect can be obtained by using the result of comparison with the temperature difference as a criterion.
Moreover, in this Embodiment, the pump flow volume which can be adjusted according to the fluctuation | variation of load is implement | achieved stably, and the cold / heat produced | generated by the heat-source equipment 11 can be supplied to the load side appropriately, The amount of cold generated itself is controlled by controlling the heat source, for example, detecting the inlet temperature and outlet temperature of the refrigerant 2 in the heat exchanger 12, and changing the amount of cold generated by increasing or decreasing the circulation amount of the refrigerant by increasing or decreasing the rotation speed of the compressor 11a. Let For this reason, the cold heat generation of the heat source device cannot follow the change in the load and may be delayed. Therefore, information such as the start / stop of the air conditioner is also transmitted to the heat source machine, and the rotation speed of the compressor 11a is increased or decreased under the control of a control means (not shown) of the heat source machine 11 in the same manner as the rotation speed of the pump 21. Thus, stable cooling supply can be realized in a short time.
In addition, although this Embodiment demonstrated the case where cold heat is supplied (cooling operation), the same effect is acquired also when supplying warm heat (heating operation). In this case, the four-way valve 11b is connected as indicated by the broken line in the figure, and the outside air conveyed by the outdoor fan 11d and the refrigerant are heat-exchanged, and the heat of the outside air is transferred to the refrigerant, and the outdoor heat exchanger 11c. After leaving, it becomes a high-temperature and low-pressure gas refrigerant. And it is suck | inhaled by the compressor 11a via the four-way valve 11b and the accumulator 11j, and further heat is delivered to a refrigerant | coolant by the compression work by an electrical input, and it becomes a high temperature / high pressure gas refrigerant. The refrigerant that has exited the compressor 11a passes through the four-way valve 11b and the check valve 11i, and is heat-exchanged to the use side medium by the heat exchanger 12 in a counter flow manner, and the warm heat of the refrigerant is transferred to the use side medium. . Thereafter, it passes through the check valve 11h and the pressure reducing valve 11e, and reaches the outdoor heat exchanger 11c again. With the check valves 11f to 11i, the heat exchanger 12 can exchange heat in a counterflow manner regardless of whether the heat supply (cooling operation) or the heat supply (heating) is performed. In the heating operation, dLa in the flowcharts S111 and S112 is a positive number.

なお、ポンプはインバータで回転数制御することで流量制御を実施しているが、ポンプを複数台設定して台数制御を段階的に行っても同等の効果が得られる。   In addition, although the flow rate control is implemented by controlling the rotation speed of the pump with an inverter, the same effect can be obtained even if a plurality of pumps are set and the number of units is controlled stepwise.

また、図1の分岐路に空気熱交換器22a〜22eの各々をバイパスするバイパス流路を分岐路に設けてもよい。図3は、図1の回路図に空気熱交換器22a〜22eの各々をバイパスするバイパス流路を分岐路に追加した場合の構成を示す回路図である。
図3に示すように、分岐路30a〜30eの空気熱交換器22a〜22eの各々の入口側と出口側をバイパスするバイパス流路31a〜31eを設け、バイパス経路31a〜31eの一端を流量調整弁28a〜28eに接続する。この場合、流量調整弁28a〜28eとして三方弁が用いられる。三方弁の開度が小さいと、バイパス経路31a〜31eから熱交換器12へ至る経路の三方弁内流路抵抗よりも、空気熱交換器27a〜27eから熱交換器12へ至る経路の三方弁内流路抵抗の方が大きい。三方弁の開度が増加するに従い、前者の三方弁内流路抵抗は単調増加し、後者の三方弁内流路抵抗は単調減少し、流路抵抗の大小関係が逆転する。よって開度により室内機22a〜22eの流量調整が可能である。
Moreover, you may provide in the branch path the bypass flow path which bypasses each of the air heat exchangers 22a-22e in the branch path of FIG. FIG. 3 is a circuit diagram showing a configuration in the case where a bypass channel that bypasses each of the air heat exchangers 22a to 22e is added to the branch path in the circuit diagram of FIG.
As shown in FIG. 3, bypass flow paths 31 a to 31 e for bypassing the inlet side and the outlet side of the air heat exchangers 22 a to 22 e of the branch paths 30 a to 30 e are provided, and one end of the bypass paths 31 a to 31 e is adjusted in flow rate. Connect to valves 28a-28e. In this case, three-way valves are used as the flow rate adjusting valves 28a to 28e. When the opening degree of the three-way valve is small, the three-way valve on the path from the air heat exchangers 27a to 27e to the heat exchanger 12 rather than the flow resistance in the three-way valve on the path from the bypass paths 31a to 31e to the heat exchanger 12 The inner channel resistance is larger. As the opening of the three-way valve increases, the flow resistance in the former three-way valve monotonously increases, the flow resistance in the latter three-way valve monotonously decreases, and the magnitude relation of the flow resistance is reversed. Therefore, the flow rate of the indoor units 22a to 22e can be adjusted by the opening degree.

なお、利用側媒体が二酸化炭素であれば、冷房運転の場合には、熱交換器で利用側媒体が冷やされることで熱交換器の出口における媒体の密度が高くなり、空気熱交換器で利用側媒体が温められることで空気熱交換器の出口の密度が低くなるため、媒体の密度差を駆動源とする自然循環方式にすることが可能になる。暖房運転の場合には、空気熱交換器で利用側媒体が冷やされることで、空気熱交換器の出口における媒体の密度が高くなり、熱交換器で利用側媒体が温められることで熱交換器の出口の密度が低くなるため、媒体の密度差を駆動源とする自然循環方式にすることが可能になる。これにより、ポンプを廃止でき電気入力を削減することができる。   If the use-side medium is carbon dioxide, in the case of cooling operation, the use-side medium is cooled by the heat exchanger, so that the density of the medium at the outlet of the heat exchanger increases and is used by the air heat exchanger. Since the density of the outlet of the air heat exchanger is lowered by warming the side medium, it is possible to adopt a natural circulation system that uses the density difference of the medium as a drive source. In the case of heating operation, the use side medium is cooled by the air heat exchanger, so that the density of the medium at the outlet of the air heat exchanger is increased, and the use side medium is heated by the heat exchanger. Therefore, the natural circulation system using the difference in the density of the medium as the driving source can be realized. Thereby, a pump can be abolished and an electrical input can be reduced.

この発明の実施の形態1における空気調和装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the air conditioning apparatus in Embodiment 1 of this invention. この発明の実施の形態1における空気調和装置の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the air conditioning apparatus in Embodiment 1 of this invention. この発明の実施の形態1における空気調和装置の構成を示す別の回路図である。It is another circuit diagram which shows the structure of the air conditioning apparatus in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 空気調和装置、10 第1のサイクル、11 熱源機、11a 圧縮機、11b 四方弁、11c 室外熱交換器、11d 室外ファン、11e 減圧弁、11f〜11i 逆止弁、11j アキュムレータ、12 熱交換器、20 第2のサイクル(循環サイクル)、21 ポンプ、22、22a〜22e 空調機、23、23a〜23e 流量調整弁、24a〜24e 弁開度制御手段、25 ポンプ流量制御手段、26a〜26e ファン、27a〜27e 空気熱交換器、28a〜28e 流量調整弁、30a〜30e 分岐路、31a〜31e バイパス経路。   DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus, 10 1st cycle, 11 heat source machine, 11a compressor, 11b four-way valve, 11c outdoor heat exchanger, 11d outdoor fan, 11e pressure reducing valve, 11f-11i check valve, 11j accumulator, 12 heat exchange 20, second cycle (circulation cycle), 21 pump, 22, 22 a to 22 e air conditioner, 23, 23 a to 23 e flow control valve, 24 a to 24 e valve opening control means, 25 pump flow control means, 26 a to 26 e Fan, 27a-27e Air heat exchanger, 28a-28e Flow control valve, 30a-30e Branch, 31a-31e Bypass path.

Claims (7)

第1の媒体が循環する第1のサイクルと、
第2の媒体が循環する第2のサイクルと、を備え、
前記第1のサイクルは、温熱または冷熱を生成して前記第1の媒体に供給する熱源機と、
前記第1の媒体の温熱または冷熱を熱交換により前記第2の媒体に供給する熱交換器と、を備え、
前記第2のサイクルは、前記熱交換器と、
前記第2の媒体を駆動させるポンプと、
このポンプの流量を制御するポンプ流量制御手段と、を備え、
前記第2のサイクルの一部が複数の分岐路に分岐し、各分岐路は、
個別の負荷に対応してそれぞれ設けられ、前記第2の媒体の温熱または冷熱を負荷側に供給する空調機と、
前記第2の媒体の前記空調機に流れる流量を調整する流量調整弁と、
前記流量調整弁の開度を制御する弁開度制御手段と、を備え、
前記ポンプ流量制御手段は、前記の各空調機の予め定めた能力、各空調機の運転有無、及び各流量調整弁開度についての情報を有しており、
前記複数の流量調整弁の開度のうち最大となるものを選択し、選択した流量調整弁の開度が所定の上限値となるように前記ポンプの流量を制御するとともに、前記空調機の総合能力の変化率に基づいて前記ポンプの流量を調節し、
前記空調機の総合能力の変化率は、所定の周期間隔で運転中の全ての前記空調機の前記能力を総合した前記総合能力と、1つ前の周期の前記総合能力とに基づいて算出されることを特徴とする空気調和装置。
A first cycle in which the first medium circulates;
A second cycle in which the second medium circulates,
The first cycle includes a heat source device that generates hot or cold heat and supplies the generated heat to the first medium;
A heat exchanger that supplies heat or cold of the first medium to the second medium by heat exchange,
The second cycle includes the heat exchanger;
A pump for driving the second medium;
A pump flow rate control means for controlling the flow rate of the pump,
A part of the second cycle branches into a plurality of branches, and each branch is
An air conditioner that is provided corresponding to each individual load, and supplies the heat or cold of the second medium to the load side;
A flow rate adjusting valve for adjusting a flow rate of the second medium flowing through the air conditioner;
And a valve opening control means for controlling the opening of the flow rate adjusting valve,
The pump flow rate control means has information about the predetermined capacity of each air conditioner, whether or not each air conditioner is operating, and each flow rate adjustment valve opening,
The largest one of the opening amounts of the plurality of flow rate adjustment valves is selected, and the flow rate of the pump is controlled so that the opening amount of the selected flow rate adjustment valve becomes a predetermined upper limit value. Adjusting the flow rate of the pump based on the rate of change of capacity,
Calculating the rate of change of the total capacity of the air conditioner, at a predetermined periodic interval, based took the total of all of the capabilities of the air conditioner in operation the overall capacity, the said total capacity of the previous cycle An air conditioner.
前記ポンプ流量制御手段は、前記選択した流量調整弁の開度が前記所定の上限値よりも小さい場合には、前記ポンプの流量を所定の調整量だけ低減し、
前記弁開度制御手段は、前記ポンプの流量を低減したことで発生する運転能力の低下分を補うために前記選択した流量調整弁の開度が前記所定の上限値に到達するまで前記複数の流量調整弁の開度を増大させることを特徴とする請求項1に記載の空気調和装置。
The pump flow rate control means reduces the flow rate of the pump by a predetermined adjustment amount when the opening of the selected flow rate adjustment valve is smaller than the predetermined upper limit value,
The valve opening degree control means is configured to reduce the operating capacity generated by reducing the flow rate of the pump until the opening degree of the selected flow rate adjustment valve reaches the predetermined upper limit value. The air conditioner according to claim 1, wherein the opening degree of the flow regulating valve is increased.
前記流量調整弁の制御時間間隔と、ポンプ回転数の制御時間間隔が異なることを特徴とする請求項1または請求項2に記載の空気調和装置。   The air conditioner according to claim 1 or 2, wherein a control time interval of the flow rate adjusting valve is different from a control time interval of the pump rotation speed. 前記ポンプ流量制御手段は、前記ポンプの流量制御と同期して、前記熱源機の能力を増減させることを特徴とする請求項1〜3のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 3, wherein the pump flow rate control unit increases or decreases the capacity of the heat source unit in synchronization with the flow rate control of the pump. 前記流量調整弁は二方弁であることを特徴とする請求項1〜4のいずれかに記載の空気調和装置。   The air conditioning apparatus according to any one of claims 1 to 4, wherein the flow rate adjusting valve is a two-way valve. 前記分岐路は、前記空調機の入口と出口を接続するバイパスを備え、
前記流量調整弁が三方弁であり、一口が前記バイパスに接続されることを特徴とする請求項1〜4のいずれかに記載の空気調和装置。
The branch path includes a bypass connecting an inlet and an outlet of the air conditioner,
The air conditioning apparatus according to any one of claims 1 to 4, wherein the flow rate adjustment valve is a three-way valve, and one mouth is connected to the bypass.
前記第2の媒体が水またはブラインであることを特徴とする請求項1〜6のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 6, wherein the second medium is water or brine.
JP2008250974A 2008-09-29 2008-09-29 Air conditioner Active JP4920654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008250974A JP4920654B2 (en) 2008-09-29 2008-09-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250974A JP4920654B2 (en) 2008-09-29 2008-09-29 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010084951A JP2010084951A (en) 2010-04-15
JP4920654B2 true JP4920654B2 (en) 2012-04-18

Family

ID=42249093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250974A Active JP4920654B2 (en) 2008-09-29 2008-09-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP4920654B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537253B2 (en) * 2010-05-14 2014-07-02 東京瓦斯株式会社 Water supply control system and control method thereof
JP2013217631A (en) 2012-03-14 2013-10-24 Denso Corp Refrigeration cycle device
JP5933031B2 (en) 2012-12-12 2016-06-08 三菱電機株式会社 Air conditioner
JP6065637B2 (en) * 2013-02-20 2017-01-25 株式会社デンソー Cooling system
JP6295622B2 (en) * 2013-11-26 2018-03-20 富士通株式会社 Equipment and cooling method
KR102332091B1 (en) * 2017-09-14 2021-11-30 한온시스템 주식회사 Air conditioning system for automotive vehicles
EP3751213A4 (en) 2018-02-07 2021-02-17 Mitsubishi Electric Corporation Air conditioning system and air conditioning control method
US11525598B2 (en) * 2018-09-28 2022-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7448325B2 (en) * 2019-09-26 2024-03-12 高砂熱学工業株式会社 Air conditioning system, air conditioning method and air conditioning system control method
CN113883579B (en) * 2021-10-29 2022-11-22 青岛海信日立空调***有限公司 Water system air conditioner
CN114484748B (en) * 2022-01-26 2022-09-16 清华大学 Air conditioner water system control method and device without differential pressure bypass valve
TW202411578A (en) * 2022-06-21 2024-03-16 加拿大商Xnrgy氣候系統公司 Cooling systems with passive sub-coolers
JP7444230B1 (en) 2022-11-30 2024-03-06 株式会社富士通ゼネラル Air conditioning equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410051A (en) * 1987-07-01 1989-01-13 Yazaki Corp Cool/hot water flow rate controller of space cooling/ heating system
JPH08278044A (en) * 1995-04-04 1996-10-22 Shimizu Corp Central heat source type air conditioner
JP4334818B2 (en) * 2002-05-16 2009-09-30 サンデン株式会社 Cooling system
JP2004309032A (en) * 2003-04-08 2004-11-04 Hiroshi Ogawa Central air conditioning and heating equipment and its operation control method
JP4435533B2 (en) * 2003-10-09 2010-03-17 高砂熱学工業株式会社 Heat source system and control device
JP4422572B2 (en) * 2004-07-29 2010-02-24 東洋熱工業株式会社 Cold / hot water control method for cold / hot heat source machine
JP4594276B2 (en) * 2006-05-26 2010-12-08 東洋熱工業株式会社 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP4829818B2 (en) * 2007-03-15 2011-12-07 新日本空調株式会社 Operation control method for 1 pump heat source equipment

Also Published As

Publication number Publication date
JP2010084951A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP4920654B2 (en) Air conditioner
JP5265001B2 (en) Air conditioner
KR101508448B1 (en) Heat source system and number-of-machines control method for heat source system
KR101505856B1 (en) Air conditioner and control method for the same
WO2015125863A1 (en) Heat source device
JP2012141113A (en) Air conditioning/water heating device system
CN110296490B (en) Hot water unit with constant temperature hot water function and control method thereof
WO2017204287A1 (en) Heat source system and heat source system control method
JP6681896B2 (en) Refrigeration system
JP4651551B2 (en) Air conditioning system
JP4934413B2 (en) Air conditioner
JP2007303725A (en) Device and method of deciding number of operated heat source machine
JP2016102636A (en) Air conditioning system
JP2009281639A (en) Air-conditioning and hot water supplying system
JP2017009269A (en) Air conditioning system
JP2004257707A (en) Method and device for controlling proper capacity of heat source apparatus
JP2014035101A (en) Air conditioning system
US20220128285A1 (en) Water regulator
JP2012247118A (en) Air-cooled heat pump chiller
JP5248437B2 (en) Hot water storage heater
JP5907812B2 (en) Heat pump system and operation method thereof
WO2016024504A1 (en) Load distribution system
JP2014098547A (en) Heat-pump air conditioner and heat-pump air conditioner control method
JP6507598B2 (en) Air conditioning system
JP7287809B2 (en) heating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250