JP4920168B2 - Titanium welded tube and manufacturing method thereof - Google Patents

Titanium welded tube and manufacturing method thereof Download PDF

Info

Publication number
JP4920168B2
JP4920168B2 JP2003198496A JP2003198496A JP4920168B2 JP 4920168 B2 JP4920168 B2 JP 4920168B2 JP 2003198496 A JP2003198496 A JP 2003198496A JP 2003198496 A JP2003198496 A JP 2003198496A JP 4920168 B2 JP4920168 B2 JP 4920168B2
Authority
JP
Japan
Prior art keywords
titanium
welded
heat treatment
plate
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003198496A
Other languages
Japanese (ja)
Other versions
JP2005034860A (en
Inventor
一浩 高橋
照彦 林
道久 弘田
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003198496A priority Critical patent/JP4920168B2/en
Publication of JP2005034860A publication Critical patent/JP2005034860A/en
Application granted granted Critical
Publication of JP4920168B2 publication Critical patent/JP4920168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チタン溶接管およびその製造方法に関する。
【0002】
【従来の技術】
チタン溶接管の製造は、冷間圧延されたチタン板を真空あるいはアルゴンガス中で焼鈍した後に、管形状に成形し、そのつき合わせ部をアルゴンガスでシールドして溶接する方法が一般的である。溶接後にさらに大気中で熱処理することによって造管などで付与された歪みを除去する場合もある。
【0003】
溶接部の健全性を確保するためには、非特許文献1の104〜109ページに記載されているように、溶接時のアルゴンガスによるシールドが重要である。これは、チタンは酸素や窒素との反応性が高いためにシールドガス中に大気や酸素、窒素などの不純ガスが混入すると溶接部が酸化や窒化されて脆くなる問題がある他に、ブローホールを引き起こす要因でもあるためである。したがって、チタンの溶接時には、不純ガスが混入しないようなアルゴンガスによるシールドを実施することによって、上記問題を解決している。
【0004】
またチタン管の溶接部は溶融凝固した部分(Depo部)と熱影響部(HAZ部)からなり、いずれもβ変態点(この温度以上でβ相単相となる温度)超の高温域から急冷された組織であり、純チタンとα型チタン合金およびα+β型チタン合金は粗大な旧β相結晶粒(β変態点超の温度域でβ相であった結晶粒)が、β型チタン合金ではβ相の粗大な結晶粒が、各々素地となっている。このように溶接部は粗大な結晶粒からなっている。その化学組成は、上述のように不純ガスが混入しないようにアルゴンガスでシールドしているため、酸素や窒素の濃度はほとんど増加しない。
【0005】
造管して溶接した状態で使用される場合、つまり溶接後に大気中で熱処理が施されない場合には、チタン管の表面は、母材部、溶接部ともに無着色の金属色であり、酸化や窒化による着色を呈していない。したがって、溶接管の内外表面は干渉色や物質色を呈しない程度の極薄い酸化膜で覆われており、その酸化膜の厚さは100Å程度である。一方、溶接後に大気中で熱処理を実施すると、母材部、溶接部ともに表面に数100Åと厚い酸化膜が形成されて着色される。
【0006】
【非特許文献1】
(社)日本チタン協会 編集、日刊工業新聞社 発行の「チタンの加工技術」
【0007】
【発明が解決しようとする課題】
上述の通りチタン溶接管の溶接部はDepo部とHAZ部ともに旧β相或いはβ相の粗大な結晶粒からなることから、疲労には必ずしも有利ではない。溶接部の強度を高めることによって疲労特性を高める方法がある。その手段として、シールドガス中の大気、酸素、窒素などの不純物ガス量を一定に制御して、溶接部内部の酸素や窒素の濃度を高める方法が考えられるが、上述のように僅かな不純物ガス量の違いでも顕著に材質特性が変化し急激に脆くなり加工性が低下することがあるとともに、ブローホールが発生する可能性がある。
【0008】
またチタンは非常に活性な金属であることから耐摩耗性が問題となることがある。チタン溶接管においても管と接触する支持治具などとの間で、その潤滑および応力状態によってはフレッティング疲労が生じる場合が想定される。
【0009】
その対策として、上述のように溶接後のチタン管を大気中で熱処理することによって表面に厚い酸化膜を形成し、管がその支持治具などと擦れる際の保護膜或いは潤滑膜として活用する方法が考えられる。しかしながら、表面の酸化膜が厚くなる程度の熱処理では、溶接部内部まで強度が増す程に酸素や窒素が拡散することはなく、上述の溶接部の疲労特性に関する課題は依然そのままである。
【0010】
このように従来の技術ではチタン溶接管は、溶接部が粗大な結晶粒になるために疲労特性は必ずしも良くないとともに、管表面が無着色の金属色まま、つまり干渉色や物質色を呈しないほどに薄い皮膜(膜厚が100Å程度)では、管の支持治具などと擦れてフレッティング疲労を生じる場合があった。またシールドガス中の不純ガス量を制御して溶接部の強度を安定して高めることは困難であった。
【0011】
本発明は、溶接部の疲労特性が安定して高く且つフレッティング疲労を生じにくいチタン溶接管とその製造方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
発明者らは、上述の課題を解決すべく鋭意検討を重ねた結果、溶接部内部の窒素濃度を所定の範囲内で高めることによって溶接部の成形性を維持しつつ疲労特性を向上させ、且つチタン窒化物を有する母材表面とすることによって潤滑性を高めフレッティング疲労の発生を抑えることができるチタン溶接管を見出し、以下に示すような本発明のチタン溶接管とその製造方法を完成するに至った。
1) 表面から5μm表層領域を除く窒素濃度が、母材部に比べて溶接部の方が0.003〜0.030質量%高く、且つ冷間圧延ままの表面形状を有する母材部の表面がチタン窒化物を有することを特徴とする、耐フレッティング疲労部材用チタン溶接管。
2) さらに溶接部の外表面が窒化または酸化によって着色されていることを特徴とする上記1)に記載の、耐フレッティング疲労部材用チタン溶接管。
3) 板または帯状の冷間圧延ままの表面形状を有するチタンを窒素ガス雰囲気で670〜850℃、3〜120秒間加熱することによって(1)式が成り立つように窒化熱処理し、続いてその板または帯を管形状に成形し、続いてそのつき合わせ部をアルゴンガスでシールドして溶材を使用せずに溶接することを特徴とする、上記1)または2)に記載の、耐フレッティング疲労部材用チタン溶接管の製造方法。
0.003 ≦ CN1−CN2 ≦ 0.030 ・・・(1)式
ただし、CN1:窒素ガス雰囲気で熱処理した後の板または帯において、その表面を研磨などで除去することなく分析したときの当該板または帯の窒素濃度(質量%)、CN2:窒素ガス雰囲気で熱処理した後の板または帯において、その表面を全面5μm以上研磨で除去した後に分析したときの当該板または帯の窒素濃度(質量%)である。
4) 前記溶接に続いて窒素ガス雰囲気で軽窒化熱処理することを特徴とする上記3)に記載の、耐フレッティング疲労部材用チタン溶接管の製造方法。
5) 前記溶接に続いて酸化雰囲気で軽酸化熱処理することを特徴とする上記3)に記載の、耐フレッティング疲労部材用チタン溶接管の製造方法。
【0013】
ここで、上記1)、2)に規定する母材部および溶接部の窒素濃度は、チタン溶接管の母材部と溶接部から試料を切り出し、表面を5μm以上研磨した後、JIS H1612に規定されている洗浄、乾燥をしてから、例えばLECO−TC436の自動窒素・酸素分析装置を用いて不活性ガス溶融−熱伝導度法にて測定することにより求めることができる。そして、上記1)、2)で母材部の表面にチタン窒化物を有するとは、薄膜法などのX線回折測定にてチタン窒化物であるTi2NiやTiNのピークが検出さることである。
【0014】
通常、アルゴンガスでシールドされた状態で溶接された場合の溶接部表面は無着色の金属色(光沢のある銀色)であるが、上記2)の溶接部の外表面が窒化または酸化によって着色されている状態とは、溶接部の外表面が酸化膜や窒化膜によって青色や金色などの着色を呈している状態のことである。
【0015】
上記3)に規定するCN1は、板または帯の表面を除去せず、そのままの状態でJIS H1612に規定されている洗浄、乾燥をしてから、不活性ガス溶融−熱伝導度法等によって分析した窒素濃度である。またCN2は、板または帯の表面を5μm以上研磨した後、JIS H1612に規定されている洗浄、乾燥をしてから、不活性ガス溶融−熱伝導度法等にて測定した窒素濃度である。不活性ガス溶融−熱伝導度法による測定にはLECO−TC436の自動窒素・酸素分析装置を用いることができる。CN1は板または表面を除去しない状態での、CN2は板または帯の表面を5μm以上研磨した状態での、それぞれ板または帯の厚み方向平均窒素濃度が測定される。
【0016】
上記3)、4)、5)の溶接方法は、チタン溶接管で汎用されているTIG溶接のみに限定するものではなく、溶接棒などの溶材を使用しない方法であればプラズマなどのアーク溶接をはじめ、レーザー溶接、電子ビーム溶接などでもよい。
【0017】
【発明の実施の形態】
溶接部の疲労特性を高めるために、溶接部の窒素濃度をある程度増加させると効果があるが、一方で窒素濃度を増加しすぎると成形性を維持できなくなる。図1に、溶接部の窒素濃度を変えた工業用純チタンJIS2種溶接管の「溶接部の四点曲げ疲労試験の寿命」と「溶接部と母材部を窒素濃度差」(以降、「溶接部の窒素増量」とする)の関係を示す。また図1にはへん平試験による溶接部の割れ発生有無(図1の○:割れ無し、×:割れ有り)との関係も示す。用いた溶接管は、外径25.4mm、板厚0.5mmで、TIG溶接またはCO2レーザービーム溶接したものである。
【0018】
ここで、四点曲げ疲労試験は以下の条件で実施した。支持間隔200mm、中央の負荷間隔50mmで、管の溶接ビードが曲げ負荷部にくるように設置した。応力振幅は196MPa、応力比−1、繰り返し5Hzで繰り返し曲げた。但し、未破断の場合、1.00×107回で疲労試験を終了した。なお、四点の支持用治具には硬質樹脂を用いた。また疲労試験の管の曲げ負荷部に欠陥がないことをX線透過検査によって確認した。
【0019】
へん平試験は以下の要領で実施した。50mm長の管を2枚の平板の間に挟み平板間の距離がH(mm)となるまで押しつぶした後、溶接部の割れの有無を目視にて評価した。このとき溶接部を圧縮方向に対して直角方向に向けて該試験を実施した。Hの値はJIS H4635のへん平試験で定められている H=(1+e)t/(e+t/D) から決めた。図1の試験に用いた溶接管は、板厚tが0.5mm、外径Dが25.4mmで、JIS2種であることからeは0.07であることから、Hを6mmとしてへん平させた(6mmまで押しつぶした)。
【0020】
図1より、横軸の溶接部の窒素増量を0.003質量%以上にすると、窒素増量が0質量%の場合に比べて疲労寿命(曲げ回数)が一桁超も向上する。また0.03質量%以上で若干低下する傾向にある。一方で0.03質量%を超えるとへん平試験で溶接部に割れが発生してしまう。
【0021】
次に、図2に、母材部のフレッティング疲労による破断発生率、つまり母材部が負荷支持部から破断する確率と造管に使用した板および帯(元板)の「CN1−CN2」の関係を示す。図2には母材部の表面(つまり元板の表面)にチタン窒化物が有るか否かを併せて示す。ここで用いた溶接管は図1同様に、工業用JIS2種で、外径25.4mm、板厚0.5mmで、TIG溶接またはCO2レーザービーム溶接したものである。
【0022】
フレッティング疲労による破断発生率は以下の方法で求めた。上述の四点曲げ疲労試験で負荷部の支持治具を鋼製に変えて、5回の疲労試験を実施し、負荷支持部(支持用治具下)から疲労破断した場合が5回中何回生じたかで評価した。その際に溶接ビードが負荷部から90°の位置になるように溶接管を設置した。その他の条件(支持間隔や応力振幅など)は上述条件と同一である。
【0023】
板の両表面を研磨で除去した後の窒素濃度CN2の分析に供した試料は、板の両表面を各5〜10μm深さ研磨で除去した。また研磨後の色調は無着色の金属色であった。この研磨量は、各片面を研磨した後に質量を測定してその質量変化から計算した値である。板表面の研磨量を種々変えて窒素濃度を分析した結果、研磨量が5μm以上になるとCN2の値はほぼ一定となることから、板の両表面を各5μm以上研磨で除去した試料を用いて分析した窒素濃度であるCN2は母材部の窒素濃度に相当する。
【0024】
ここで、母材部(元板)の表面にチタン窒化物が存在するか否かは、薄膜法X線回折測定にてチタン窒化物(Ti2NやTiN)のピークが検出されるか否かで判定した。チタン窒化物のピークが検出された場合は表面にチタン窒化物が有ると判定し、検出されない場合にはチタン窒化物が無いと判定した。薄膜法X線回折測定は、理学電機社製X線回折装置RAD−3C型を用いており、CuKα線、管電圧40kV、管電流40mA、ドライビングスリット0.2°、入射角1°の諸条件で実施した。
【0025】
図2より、横軸の「CN1−CN2」が0.002質量%以下の場合にはフレッティング疲労が20〜40%の確率で発生するが、0.003質量%以上にすると発生確率は0%になる。薄膜法X線回折測定の結果、「CN1−CN2」を0.003質量%以上にする母材部の表面にチタン窒化物が存在している。これより、母材表面のチタン窒化物によって、金属チタンと支持治具の鋼との接触が抑制され、その効果によってフレッティング疲労の発生が低減したものと考えられる。
【0026】
以上の図1と図2で用いた元板の「CN1−CN2」および「表面のチタン窒化物の有無」は以下の方法で制御した。まず、硝フッ酸水溶液に浸漬して脱スケールした板厚3.5mmの熱間圧延板を板厚0.5mmまで冷間圧延した後にアルカリ水溶液中で洗浄した。その冷間圧延板を窒素ガス雰囲気中で650〜850℃,3〜300秒の加熱して焼鈍するとともに、窒化熱処理の温度と時間を変化させることによって表面の窒化程度を種々制御した。また、図1の溶接部の窒素増量(横軸)が0となった元板と図2で「CN1−CN2」(横軸)が0となった元板の双方は、冷間圧延板を真空中で焼鈍熱処理したチタン板である。但し、焼鈍と同時に窒化熱処理することに限定するものではなく、例えば真空焼鈍後に、窒化のための窒化熱処理を施しても同等の板を得ることができる。
【0027】
以上、図1と図2に示したように、請求項1では溶接部の疲労寿命が向上し、へん平試験で割れが発生しないことから、「溶接部の窒素増量」を0.003〜0.030質量%とした。好ましくは疲労寿命が高位に安定することから0.005〜0.030質量%とする。更にフレッティング疲労破断の発生確率が0%となることから、母材部の表面にチタン窒化物を有するものとした。
【0028】
上述のような窒素濃度分布を有するチタン溶接管は、後に詳述するとおり、まず板または帯状のチタンを窒化熱処理して表面にチタン窒化物を有する層を形成し、その後成形及び溶接を行うことによって形成することができる。溶接時に溶接部表層に存在する窒素が溶接部内部に拡散し、その結果として溶接部の耐疲労特性を向上することができる。また、母材部の表面には窒化物が形成されているので、母材部の耐フレッティング疲労特性を向上することができる。
【0029】
母材部のフレッティング疲労破断の発生は、前述のとおり母材部表面のチタン窒化物の形成で抑制することができる。しかしながら、溶接部は溶接ままでは無着色の金属色を呈しており、その表面には干渉色や物質色を呈しないほどに薄い皮膜(膜厚が100Å程度)しか存在しない。溶接部は上記の窒素増加によっても強度が増すためにフレッティング疲労破断は発生しにくい方向となるが、よりフレッティング疲労破断を生じにくくするために、請求項2では請求項1に加えて溶接部表面の潤滑性を高めるために、酸化膜または窒化膜を溶接部の表面に形成されることとした。つまり、請求項2に規定するチタン溶接管では溶接部表面を軽窒化熱処理と軽酸化熱処理によって着色された状態とする。このとき酸化膜または窒化膜の膜厚は数100Å程度であり、溶接部の疲労寿命には影響しない。
【0030】
次に、製造方法について説明する。溶接のシールドに用いるアルゴンガス中に大気や窒素ガスを混入させて、溶接部の窒素濃度を増加させる方法もあるが、後述の本発明例の如くブローホールが発生する。通常チタンを溶接する場合に用いられるアルゴンシールドガスを使用した場合には溶接部の窒素濃度は増加しない。そこで、請求項3では、ブローホールの発生を抑制して溶接部の窒素濃度を安定して増加させる方法として、溶接に用いる板または帯状のチタンを予め窒素ガス雰囲気中で窒化熱処理することによって、その表面を窒化させてチタン窒化物を有する状態としたのち、アルゴンガスでシールドして溶接することとした。また、この方法は溶接部の溶融時間は冷却時間の影響を受けにくいため安定して溶接部の窒素濃度を増加することができる。
【0031】
ここで、請求項3に規定する製造方法における元板の窒化熱処理による窒化程度は、請求項1のチタン溶接管に対応して溶接部の窒素増量を0.003〜0.03質量%とするために、「CN1−CN2」が0.003〜0.030質量%であることとする。好ましくは「CN1−CN2」を0.005〜0.030質量%とする。即ち、請求項3に規定する製造方法により、請求項1に規定するチタン溶接管を製造することができる。「CN1−CN2」が0.003〜0.030質量%を満足するチタン板の表面を薄膜法X線評価法によって評価すると、チタン窒化物が存在している。
【0032】
ここで、請求項3に規定する窒化熱処理は、焼鈍後に新たに実施しても良いし、焼鈍を窒素ガス雰囲気で窒化熱処理を実施することによって焼鈍と同時に表面を窒化させても良い。
【0033】
請求項4に規定する製造方法は、請求項3のように溶接した後に、窒素ガス雰囲気で溶接管を窒化熱処理することによって、溶接部の表面を窒化させて着色させるものであり、この製造方法によって請求項2に規定するチタン溶接管を製造することができる。また、請求項5に規定する製造方法は、請求項3のように溶接した後に、酸化雰囲気で溶接管を軽酸化熱処理することによって、溶接部の表面を酸化させて着色させるものであり、この製造方法によって請求項2に規定するチタン溶接管を製造することができる。
【0034】
ここで請求項5に規定する酸化雰囲気とは、チタンが熱処理温度で酸化されて着色される程度に酸素を含む雰囲気であれば良く、例えば大気、あるいは酸素を300ppm含有するアルゴンガス雰囲気や露点が−20℃と高いアルゴンガス雰囲気などである。
【0035】
以上の本発明の実施形態におけるチタン板の溶接方法として、TIG溶接とCO2レーザー溶接を中心に説明してきたが、チタン溶接管で汎用されているTIG溶接のみに限定するものではなく、溶接棒などの溶材を使用しない方法であればプラズマなどのアーク溶接をはじめ、レーザー溶接、電子ビーム溶接などでも上記同様の本発明の効果が得られる。
【0036】
【実施例】
以下、実施例により、本発明の効果を説明する。
【0037】
表1に工業用純チタンJIS2種(表中では純チタンJIS2種と表記)溶接管の、元板のCN1とCN2および「CN1−CN2」、溶接条件、溶接部の窒素増量(溶接部−母材部)、溶接部のX線透過検査結果、四点曲げ疲労寿命、へん平試験結果、さらに母材部が支持部から疲労破断する確率(フレッティング疲労破断の発生率)を示す。
【0038】
表2に工業用純チタンJIS2種(表中では純チタンJIS2種と表記)溶接管を造管後に熱処理した場合の例を示す。表2には、表1同様の種々特性評価結果と、造管後の熱処理条件と溶接ビード部の外観色も示す。
【0039】
表3に工業用純チタンJIS1種、JIS3種(表中では各々、純チタンJIS1種、純チタンJIS3種と表記)、チタン合金であるTi−3Al−2.5Vの例を示す。
【0040】
表1、表2、表3の元板の「CN1−CN2」は以下の方法で制御した。まず、硝フッ酸水溶液に浸漬して脱スケールした板厚3.5mmの熱間圧延板を板厚0.5mmまで冷間圧延した後にアルカリ水溶液中で洗浄した。その冷間圧延板を窒素ガス雰囲気中で650〜850℃,3〜300秒の窒化熱処理を施すことによって焼鈍するとともに、窒化熱処理の温度と時間によって表面の窒化程度を種々制御した。また、元板の「CN1−CN2」が0となっているNo.1,14,15,16,17,18,25,28,31は冷間圧延板を真空中で焼鈍熱処理したものである。表4に各実施例の元板の窒化熱処理条件を示すともに、表1、表2、表3には元板の種類の欄に窒化熱処理条件を表4の記号を用いて示す。
【0041】
表1、表2、表3の#1、#2、#3、#4のマークは各々の以下の試験方法にて実施したことを意味する。
【0042】
#1;X線透過検査を以下の条件で実施した。長さ2mの溶接管を用いて、X線透過検査(RT)によって溶接欠陥を評価した。記号NDは欠陥なし、記号BH0.1のBHはブローホールを意味して、後ろの数字はブローホールの直径(mm)を示す。つまり、BH0.1は直径0.1mmのブローホールが検出されたことを示す。
【0043】
#2;四点曲げ疲労試験は以下の条件で実施した。支持間隔200mm、中央の負荷間隔50mmで、管の溶接ビードが曲げ負荷部にくるように設置した。応力振幅は196MPa(JIS1種と2種)、294(JIS3種)、392(Ti−3Al−2.5V)、応力比−1、繰り返し5Hz で繰り返し曲げた。但し、未破断の場合、1.00×107で疲労試験を終了した。なお、四点の支持用治具には硬質樹脂を用いた。また疲労試験の管の曲げ負荷部に欠陥がないことをX線透過検査によって確認した。表1〜3において、例えば破断回数2.24×105回を「2.24E+05」と表示している。
【0044】
#3;へん平試験は以下の要領で実施した。50mm長の管を2枚の平板の間に挟み平板間の距離がH(mm)となるまで押しつぶした後、溶接部の割れの有無を目視にて評価した。このとき溶接部を圧縮方向に対して直角方向に向けて該試験を実施した。Hの値はJIS H4635のへん平試験で定められている H=(1+e)t/(e+t/D) から決めた。板厚tが0.5mm、外径Dが25.4mmで、eが0.07(JIS1種と2種)、0.06(3種)、0.04(Ti−3Al−2.5V)であることから、HをJIS1種と2種では6mm、JIS3種では6.5mm、Ti−3Al−2.5Vでは8.5mmとしてへん平させた(Hの値まで押しつぶした)。但し、Ti−3Al−2.5Vはeの値に既定がないことから同程度の材質であるJIS4種の値0.04を使用した。
【0045】
#4;フレッティング疲労による破断発生率は以下の方法で求めた。上述の四点曲げ疲労試験で負荷部の支持治具を鋼製に変えて、5回の疲労試験を実施し、負荷支持部(支持用治具下)から疲労破断した場合が5回中何回生じたかで評価した。その際に溶接ビードが負荷部から90°の位置になるように溶接管を設置した。
【0046】
その他の条件(支持間隔や各品種毎の応力振幅など)は上述条件と同一である。表1〜3において、アンダーラインは本発明範囲から外れていることを示す。
【0047】
【表1】

Figure 0004920168
【0048】
【表2】
Figure 0004920168
【0049】
【表3】
Figure 0004920168
【0050】
【表4】
Figure 0004920168
【0051】
比較例である表1のNo.1,2は、元板に「CN1−CN2」が0.002質量%以下でチタン窒化物が無いものを用いており、溶接管の溶接部と母材部の窒素濃度差(溶接部の窒素増量)が0.002質量%以下であるために、溶接部の疲労寿命が5.13×105回以下と短く、母材部で支持部破断が発生する確率が20%以上と高い。
【0052】
これに対して、本発明例であるNo.3〜11は、元板に「CN1−CN2」が0.0030.030質量%でチタン窒化物が有るものを用いており、溶接管の溶接部と母材部の窒素濃度差(溶接部の窒素増量)が0.0030.030質量%である。溶接部の疲労寿命が比較例No.1,2よりも一桁超長く3.76×106回〜未破断1.00×107であり、且つ母材部で支持部破断が発生する確率も0%とフレッティング疲労破断が生じていない。さらにへん平試験でも溶接部は割れない。加えて、X線透過検査を実施しても溶接部から欠陥は検出されない。
【0053】
一方で、元板に「CN1−CN2」が0.0350.039質量%と高い比較例であるNo.12,13はへん平試験で溶接部に割れが発生している。また、溶接時のシールドガスに空気を混合した比較例であるNo.14,15は溶接部の窒素増量は0.026質量%以上と高いが、母材表面にチタン窒化物が無いために四点曲げ疲労試験で母材部が支持部から破断する場合があるとともに、溶接部からブローホールが検出されている。
【0054】
表2は造管後に熱処理した場合であり、元板に「CN1−CN2」が0.000質量%でチタン窒化物が無いものを用いた比較例であるNo.16,〜18は、造管後に大気中や窒素ガス中で軽窒化熱処理しても、溶接部と母材部の窒素濃度差(溶接部の窒素増量)が0.000質量%であるために、溶接部の疲労寿命が2.30×105回以下と短く、母材部で支持部破断が発生する確率が20%以上と高い。
【0055】
これに対して、本発明例であるNo.19〜24は、元板に「CN1−CN2」が0.005質量%0.009質量%でチタン窒化物が有るものを用いており、造管後の大気中や窒素ガス中の軽窒化熱処理によって溶接ビード部は無着色の金属色ではなく金色や青色などに着色されている。溶接管の溶接部と母材部の窒素濃度差(溶接部の窒素増量)は0.005質量%0.009質量%であり、溶接部の疲労寿命が比較例No.16〜18よりも一桁超長く7.41×106回〜未破断1.00×107である。且つ母材部で支持部破断が発生する確率も0%とフレッティング疲労破断が生じていない。さらにへん平試験でも溶接部は割れない。
【0056】
表3に示したように、純チタンJIS1種、JIS3種、チタン合金であるTi−3Al−2.5Vでも、純チタンJIS2種と同様に本発明の効果が得られる。各々のチタン品種において、溶接管の溶接部と母材部の窒素濃度差(溶接部の窒素増量)が0.000質量%と低い比較例であるNo.25,28,31は溶接部の疲労寿命が3.42×105以下である。またフレッティング疲労破断も生じている。これに対して、母材表面にチタン窒化物を有し且つ溶接部の窒素増量が0.0050.012質量%と所定量である本発明例のNo.26,27、No.29,30、No.32,33は、溶接部の疲労寿命が一桁超長く6.02×106回〜未破断1.00×107である。且つ母材部でフレッティング疲労破断が生じていない。さらにへん平試験でも溶接部は割れない。一方で元板に「CN1−CN2」が0.041質量%と高いものを用いたTi−3Al−2.5Vの比較例No.34はへん平試験で溶接部に割れが発生している。
【0057】
以上、純チタンJIS2種を中心に本発明を説明してきたが、表3に示したように、純チタンJIS1種、JIS3種、チタン合金であるTi−3Al−2.5Vでも、純チタンJIS2種と同様に本発明の効果が得られる。本発明は純チタンにその適用を限定するものではなく、種々チタン合金においてもその効果を確認した。
【0058】
【発明の効果】
チタン溶接管において、溶接部内部の窒素濃度を所定の範囲内で高めることによって溶接部の成形性を維持しつつ疲労特性を向上させ、且つチタン窒化物を有する母材表面とすることによってフレッティング疲労の発生を抑えた。造管に用いる板または帯状のチタンを窒素ガス雰囲気で加熱することによって窒化熱処理して所定の窒化を施した後、その板または帯を管形状に成形し、そのつき合わせ部をアルゴンガスでシールドして溶接することによって、安定して溶接部の窒素濃度を増加できるとともにブローホールの発生を抑制し上記チタン溶接管を製造することができる。
【図面の簡単な説明】
【図1】溶接管の「溶接部と母材部の窒素濃度差」(溶接部―母材部)と「溶接部の四点曲げ疲労試験の寿命」、および「へん平試験による溶接部の割れ発生有無」の関係を示す図である。
【図2】造管に使用した板および帯(元板)の「CN1−CN2」、母材部のフレッティング疲労による破断発生率、つまり母材部が負荷支持部から破断する確率の関係を示す図である。あわせて、母材部の表面(つまり元板の表面)にチタン窒化物が有るか無いかを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium welded pipe and a method for manufacturing the same.
[0002]
[Prior art]
In general, a titanium welded tube is manufactured by annealing a cold-rolled titanium plate in a vacuum or argon gas, forming the tube into a tube shape, and shielding the abutting portion with argon gas for welding. . In some cases, the strain imparted by pipe making or the like is removed by further heat treatment in the air after welding.
[0003]
In order to ensure the soundness of the welded portion, as described on pages 104 to 109 of Non-Patent Document 1, shielding with argon gas during welding is important. This is because titanium has a high reactivity with oxygen and nitrogen, so there is a problem that if the impure gas such as the atmosphere, oxygen or nitrogen is mixed in the shield gas, the weld is oxidized or nitrided and becomes brittle. It is also a factor that causes Therefore, at the time of titanium welding, the above problem is solved by performing a shield with argon gas so that impure gas is not mixed.
[0004]
The welded part of the titanium tube consists of a melted and solidified part (Depo part) and a heat-affected part (HAZ part). Pure titanium, α-type titanium alloy and α + β-type titanium alloy have coarse old β-phase crystal grains (grains that were β-phase in the temperature range above the β transformation point). Coarse grains of β phase are the basis. Thus, the weld is made of coarse crystal grains. Since the chemical composition is shielded with argon gas so that impure gas is not mixed as described above, the concentrations of oxygen and nitrogen hardly increase.
[0005]
When the pipe is used after being welded, that is, when heat treatment is not performed in the air after welding, the surface of the titanium pipe is a non-colored metal color in both the base metal part and the welded part. No coloring due to nitriding. Therefore, the inner and outer surfaces of the welded pipe are covered with an extremely thin oxide film that does not exhibit interference color or substance color, and the thickness of the oxide film is about 100 mm. On the other hand, when heat treatment is performed in the air after welding, a thick oxide film having a thickness of several hundreds of mm is formed on the surface of both the base material portion and the welded portion and colored.
[0006]
[Non-Patent Document 1]
"Titanium processing technology", edited by Nihon Titanium Association and published by Nikkan Kogyo Shimbun
[0007]
[Problems to be solved by the invention]
As described above, the welded portion of the titanium welded pipe is made of coarse crystal grains of the old β phase or β phase in both the Depo portion and the HAZ portion, and thus is not necessarily advantageous for fatigue. There is a method for improving fatigue characteristics by increasing the strength of the weld. As a means for this, a method of increasing the concentration of oxygen or nitrogen inside the weld by controlling the amount of impurity gas such as air, oxygen, nitrogen, etc. in the shield gas to a constant level is conceivable. Even if the amount is different, the material characteristics change remarkably and become brittle and the workability may deteriorate, and blow holes may occur.
[0008]
In addition, since titanium is a very active metal, wear resistance may be a problem. Also in a titanium welded pipe, fretting fatigue is assumed to occur between the supporting jig and the like that come into contact with the pipe depending on the lubrication and stress state.
[0009]
As a countermeasure, a titanium oxide tube after welding is heat-treated in the atmosphere as described above to form a thick oxide film on the surface and used as a protective film or a lubricating film when the tube is rubbed against its supporting jig. Can be considered. However, in the heat treatment to such an extent that the oxide film on the surface becomes thick, oxygen and nitrogen do not diffuse as the strength increases to the inside of the welded portion, and the above-mentioned problems relating to the fatigue characteristics of the welded portion still remain.
[0010]
As described above, in the conventional technique, the titanium welded pipe has coarse crystal grains, so the fatigue characteristics are not always good, and the pipe surface remains uncolored metal color, that is, does not exhibit interference color or substance color. With a reasonably thin film (film thickness of about 100 mm), fretting fatigue may occur due to rubbing against a tube support jig or the like. Further, it has been difficult to stably increase the strength of the welded portion by controlling the amount of impure gas in the shielding gas.
[0011]
An object of the present invention is to provide a titanium welded pipe having a stable and high fatigue property of a welded portion and hardly causing fretting fatigue, and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors have improved the fatigue characteristics while maintaining the formability of the welded portion by increasing the nitrogen concentration inside the welded portion within a predetermined range, and A titanium welded pipe that can improve lubricity and suppress the occurrence of fretting fatigue by using a base material surface having titanium nitride is found, and the titanium welded pipe of the present invention and the manufacturing method thereof are completed as shown below. It came to.
1) The nitrogen concentration excluding the 5 μm surface layer region from the surface is 0.003 to 0.030 mass% higher in the welded portion than in the base material portion, and Has a cold rolled surface shape The surface of the base material part has titanium nitride. For fretting fatigue members Titanium welded pipe.
2) Further described in 1) above, wherein the outer surface of the weld is colored by nitriding or oxidation For fretting fatigue members Titanium welded pipe.
3) Plate or strip Has a cold rolled surface shape Titanium in nitrogen gas atmosphere 670-850 ° C., 3-120 seconds Nitriding heat treatment is performed so that the formula (1) is satisfied by heating, then the plate or band is formed into a tube shape, and then the mating portion is shielded with argon gas. Without using the melting material Characterized by welding For fretting fatigue members as described in 1) or 2) above Manufacturing method of titanium welded pipe.
0.003 ≦ CN1-CN2 ≦ 0.030 (1)
However, CN1: a plate or band after heat treatment in a nitrogen gas atmosphere, the nitrogen concentration (mass%) of the plate or band when analyzed without removing the surface by polishing or the like, CN2: heat treatment in a nitrogen gas atmosphere This is the nitrogen concentration (% by mass) of the plate or strip when the plate or strip is analyzed after removing the entire surface by polishing 5 μm or more.
4) The light nitriding heat treatment is performed in a nitrogen gas atmosphere following the welding, For fretting fatigue members Manufacturing method of titanium welded pipe.
5) A light oxidation heat treatment is performed in an oxidizing atmosphere following the welding, For fretting fatigue members Manufacturing method of titanium welded pipe.
[0013]
Here, the nitrogen concentration of the base metal part and the welded part specified in the above 1) and 2) is specified in JIS H1612 after a sample is cut out from the base metal part and the welded part of the titanium welded tube and the surface is polished by 5 μm or more. After washing and drying, it can be obtained by measuring by an inert gas melting-thermal conductivity method using, for example, an automatic nitrogen / oxygen analyzer of LECO-TC436. In the above 1) and 2), “having titanium nitride on the surface of the base material portion” means that Ti which is titanium nitride by X-ray diffraction measurement such as thin film method. 2 Ni and TiN peaks detected This Is Rukoto.
[0014]
Usually, the surface of the welded part when it is welded in a state shielded with argon gas is an uncolored metal color (glossy silver), but the outer surface of the welded part of 2) above is colored by nitriding or oxidation. The state in which the outer surface of the weld is colored blue or gold by an oxide film or nitride film.
[0015]
CN1 specified in 3) above is analyzed by the inert gas melting-thermal conductivity method, etc., without removing the surface of the plate or strip, after washing and drying as specified in JIS H1612. Nitrogen concentration. CN2 is a nitrogen concentration measured by an inert gas melting-thermal conductivity method or the like after the surface of the plate or strip is polished by 5 μm or more and then washed and dried as defined in JIS H1612. An LECO-TC436 automatic nitrogen / oxygen analyzer can be used for measurement by an inert gas melting-thermal conductivity method. CN1 is a state in which the plate or the surface is not removed, and CN2 is a state in which the surface of the plate or the strip is polished by 5 μm or more.
[0016]
The welding methods 3), 4), and 5) are not limited to TIG welding, which is widely used for titanium welded pipes, and arc welding such as plasma can be used as long as a welding material such as a welding rod is not used. First, laser welding, electron beam welding, or the like may be used.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to enhance the fatigue characteristics of the welded portion, it is effective to increase the nitrogen concentration in the welded portion to some extent. On the other hand, if the nitrogen concentration is increased too much, the formability cannot be maintained. Figure 1 shows the "life of a four-point bending fatigue test for welds" and "nitrogen concentration difference between weld and base metal" for industrial pure titanium JIS type 2 welded pipes with different nitrogen concentrations in the welds (hereinafter " The relationship of “increased nitrogen in the weld” is shown. FIG. 1 also shows the relationship between the occurrence of cracks in the welded portion and the presence or absence of cracks (circles in FIG. 1: no cracks, x: cracks present). The welded tube used had an outer diameter of 25.4 mm and a plate thickness of 0.5 mm, and was either TIG welded or CO 2 2 Laser beam welded.
[0018]
Here, the four-point bending fatigue test was performed under the following conditions. The tube was placed so that the weld bead of the tube came to the bending load portion with a support interval of 200 mm and a central load interval of 50 mm. The stress amplitude was 196 MPa, the stress ratio-1 and repeated bending at 5 Hz. However, in the case of unbreakage, 1.00 × 10 7 Finished the fatigue test. A hard resin was used for the four-point support jig. Further, it was confirmed by an X-ray transmission inspection that there was no defect in the bending load portion of the fatigue test tube.
[0019]
The flat test was conducted as follows. A 50 mm long tube was sandwiched between two flat plates and crushed until the distance between the flat plates became H (mm), and then the presence or absence of cracks in the weld was visually evaluated. At this time, the test was performed with the welded portion oriented in a direction perpendicular to the compression direction. The value of H was determined from H = (1 + e) t / (e + t / D) defined in the flat test of JIS H4635. The welded tube used in the test of FIG. 1 has a plate thickness t of 0.5 mm, an outer diameter D of 25.4 mm, and since it is JIS type 2 and e is 0.07, flattening with H as 6 mm. (Crushed to 6 mm).
[0020]
As shown in FIG. 1, when the nitrogen increase in the welded portion on the horizontal axis is 0.003% by mass or more, the fatigue life (number of bendings) is improved by more than an order of magnitude compared to the case where the nitrogen increase is 0% by mass. Moreover, it tends to decrease slightly at 0.03% by mass or more. On the other hand, if it exceeds 0.03% by mass, cracks will occur in the welded portion in the flat test.
[0021]
Next, FIG. 2 shows the occurrence rate of fracture due to fretting fatigue of the base material part, that is, the probability that the base material part breaks from the load support part, and “CN1-CN2” of the plates and strips (base plates) used for pipe making The relationship is shown. FIG. 2 also shows whether or not titanium nitride is present on the surface of the base material portion (that is, the surface of the base plate). The welded pipe used here is industrial JIS type 2 as shown in FIG. 1, has an outer diameter of 25.4 mm, a plate thickness of 0.5 mm, TIG welding or CO 2. 2 Laser beam welded.
[0022]
The fracture occurrence rate due to fretting fatigue was determined by the following method. In the above four-point bending fatigue test, the load support jig was changed to steel, and five fatigue tests were performed. It was evaluated based on whether it occurred twice. At that time, the welded pipe was installed so that the weld bead was positioned at 90 ° from the load portion. Other conditions (support interval, stress amplitude, etc.) are the same as the above-mentioned conditions.
[0023]
The sample used for analysis of nitrogen concentration CN2 after removing both surfaces of the plate by polishing removed both surfaces of the plate by polishing 5 to 10 μm each. The color tone after polishing was an uncolored metal color. This polishing amount is a value calculated from the change in mass after measuring the mass of each single side. As a result of analyzing the nitrogen concentration by variously changing the polishing amount of the plate surface, the value of CN2 becomes almost constant when the polishing amount becomes 5 μm or more. CN2 which is the analyzed nitrogen concentration corresponds to the nitrogen concentration of the base material portion.
[0024]
Here, whether or not titanium nitride exists on the surface of the base material portion (base plate) is determined by thin film method X-ray diffraction measurement. 2 The determination was made based on whether or not N or TiN peaks were detected. When a titanium nitride peak was detected, it was determined that there was titanium nitride on the surface, and when it was not detected, it was determined that there was no titanium nitride. The thin film method X-ray diffraction measurement uses an X-ray diffractometer RAD-3C type manufactured by Rigaku Corporation. Various conditions of CuKα ray, tube voltage 40 kV, tube current 40 mA, driving slit 0.2 °, and incident angle 1 °. It carried out in.
[0025]
From FIG. 2, when “CN1-CN2” on the horizontal axis is 0.002 mass% or less, fretting fatigue occurs with a probability of 20 to 40%, but when it is 0.003 mass% or more, the probability of occurrence is 0. %become. As a result of the thin film method X-ray diffraction measurement, titanium nitride is present on the surface of the base material portion that makes “CN1-CN2” 0.003% by mass or more. From this, it is considered that the contact between the titanium metal and the steel of the support jig is suppressed by the titanium nitride on the surface of the base material, and the occurrence of fretting fatigue is reduced by the effect.
[0026]
The “CN1-CN2” and “presence / absence of titanium nitride on the surface” of the base plate used in FIGS. 1 and 2 were controlled by the following method. First, a hot-rolled sheet having a thickness of 3.5 mm that had been descaled by immersion in a nitric hydrofluoric acid solution was cold-rolled to a thickness of 0.5 mm and then washed in an alkaline aqueous solution. The cold-rolled sheet was annealed by heating at 650 to 850 ° C. for 3 to 300 seconds in a nitrogen gas atmosphere, and various degrees of nitridation of the surface were controlled by changing the temperature and time of the nitriding heat treatment. Moreover, both the base plate in which the nitrogen increase (horizontal axis) of the welded portion in FIG. 1 is 0 and the base plate in which “CN1-CN2” (horizontal axis) is 0 in FIG. It is a titanium plate annealed in vacuum. However, it is not limited to performing nitriding heat treatment at the same time as annealing, and for example, an equivalent plate can be obtained by performing nitriding heat treatment for nitriding after vacuum annealing.
[0027]
As described above, as shown in FIGS. 1 and 2, in claim 1, since the fatigue life of the welded portion is improved and cracking does not occur in the flat test, the “nitrogen increase in the welded portion” is set to 0.003 to 0. 0.030% by mass. Preferably, it is 0.005 to 0.030 mass% because the fatigue life is stabilized at a high level. Furthermore, since the occurrence probability of fretting fatigue fracture is 0%, the surface of the base material portion has titanium nitride.
[0028]
As described in detail later, the titanium welded pipe having the nitrogen concentration distribution as described above is formed by first forming a layer having titanium nitride on the surface by nitriding heat treatment of a plate or band-shaped titanium, and thereafter performing forming and welding. Can be formed. Nitrogen present on the surface of the weld zone during welding diffuses into the weld zone, and as a result, the fatigue resistance of the weld zone can be improved. Further, since the nitride is formed on the surface of the base material portion, the fretting fatigue resistance of the base material portion can be improved.
[0029]
The occurrence of fretting fatigue fracture of the base material portion can be suppressed by the formation of titanium nitride on the surface of the base material portion as described above. However, the welded portion exhibits an uncolored metal color as it is welded, and there is only a thin film (having a film thickness of about 100 mm) on its surface so as not to exhibit an interference color or a substance color. The welded portion increases in strength due to the increase in nitrogen as described above, so that the fretting fatigue fracture is less likely to occur. However, in order to make the fretting fatigue fracture more difficult to occur, the second aspect is welded in addition to the first aspect. In order to improve the lubricity of the surface of the part, an oxide film or a nitride film is formed on the surface of the welded part. That is, in the titanium welded pipe defined in claim 2, the surface of the welded portion is colored by light nitriding heat treatment and light oxidation heat treatment. At this time, the film thickness of the oxide film or nitride film is about several hundreds of mm, and does not affect the fatigue life of the welded portion.
[0030]
Next, a manufacturing method will be described. Although there is a method of increasing the nitrogen concentration in the welded portion by mixing air or nitrogen gas into the argon gas used for the welding shield, a blowhole is generated as in the present invention example described later. The nitrogen concentration in the weld does not increase when the argon shielding gas that is normally used when welding titanium is used. Therefore, in claim 3, as a method of stably increasing the nitrogen concentration of the welded portion by suppressing the occurrence of blowholes, by performing nitriding heat treatment in advance in a nitrogen gas atmosphere, a plate or strip-shaped titanium used for welding, The surface was nitrided to have titanium nitride and then shielded with argon gas and welded. In addition, this method can increase the nitrogen concentration of the welded portion stably because the melting time of the welded portion is not easily affected by the cooling time.
[0031]
Here, the degree of nitridation by the nitriding heat treatment of the base plate in the manufacturing method defined in claim 3 is such that the amount of nitrogen increase in the welded portion is 0.003 to 0.03% by mass corresponding to the titanium welded pipe of claim 1. Therefore, "CN1-CN2" shall be 0.003-0.030 mass%. Preferably, “CN1-CN2” is 0.005 to 0.030 mass%. In other words, the titanium welded tube specified in claim 1 can be manufactured by the manufacturing method specified in claim 3. When the surface of the titanium plate satisfying “CN1-CN2” of 0.003 to 0.030 mass% is evaluated by a thin film X-ray evaluation method, titanium nitride is present.
[0032]
Here, the nitriding heat treatment defined in claim 3 may be newly performed after annealing, or the surface may be nitrided simultaneously with the annealing by performing the nitriding heat treatment in a nitrogen gas atmosphere.
[0033]
The manufacturing method defined in claim 4 is a method for nitriding and coloring the surface of the welded portion by performing nitriding heat treatment of the welded tube in a nitrogen gas atmosphere after welding as in claim 3. Thus, a titanium welded pipe as defined in claim 2 can be manufactured. Moreover, the manufacturing method prescribed | regulated to Claim 5 makes the surface of a welding part oxidize and color by carrying out light oxidation heat processing of the weld pipe in an oxidizing atmosphere after welding like Claim 3. A titanium weld pipe defined in claim 2 can be manufactured by the manufacturing method.
[0034]
Here, the oxidizing atmosphere defined in claim 5 may be an atmosphere containing oxygen to the extent that titanium is oxidized and colored at the heat treatment temperature. For example, the atmosphere or an argon gas atmosphere containing 300 ppm of oxygen or a dew point is used. For example, an argon gas atmosphere as high as −20 ° C.
[0035]
As a titanium plate welding method in the embodiment of the present invention described above, TIG welding and CO 2 Although the explanation has focused on laser welding, it is not limited to TIG welding, which is widely used for titanium welded pipes, and laser welding, including plasma welding, can be used as long as it does not use welding rods or other materials. The same effects of the present invention can be obtained by electron beam welding.
[0036]
【Example】
Hereinafter, the effects of the present invention will be described with reference to examples.
[0037]
Table 1 shows industrial pure titanium JIS type 2 (indicated in the table as pure titanium JIS type 2) welded pipes, CN1 and CN2 and “CN1-CN2” of the base plate, welding conditions, and nitrogen increase in the welded part (welded part-mother) Material part), X-ray transmission inspection results of welded parts, four-point bending fatigue life, flattening test results, and the probability that the base material part will fatigue from the support part (incidence of fretting fatigue fracture).
[0038]
Table 2 shows an example of a case where an industrial pure titanium JIS type 2 (denoted as pure titanium JIS type 2 in the table) welded pipe is heat-treated after pipe forming. Table 2 also shows the results of various characteristic evaluations similar to Table 1, the heat treatment conditions after pipe making, and the appearance color of the weld bead.
[0039]
Table 3 shows examples of industrial pure titanium JIS type 1, JIS type 3 (in the table, pure titanium JIS type 1 and pure titanium JIS type 3 respectively) and Ti-3Al-2.5V which is a titanium alloy.
[0040]
"CN1-CN2" of the base plate of Table 1, Table 2, and Table 3 was controlled by the following method. First, a hot-rolled sheet having a thickness of 3.5 mm that had been descaled by immersion in a nitric hydrofluoric acid solution was cold-rolled to a thickness of 0.5 mm and then washed in an alkaline aqueous solution. The cold-rolled sheet was annealed by performing a nitriding heat treatment at 650 to 850 ° C. for 3 to 300 seconds in a nitrogen gas atmosphere, and the surface nitriding degree was variously controlled by the temperature and time of the nitriding heat treatment. In addition, “CN1-CN2” of the base plate is 0. 1,14,15,16,17,18,25,28,31 are the cold-rolled sheets annealed in vacuum. Table 4 shows the nitriding heat treatment conditions for the base plate of each example, and Tables 1, 2, and 3 show the nitriding heat treatment conditions in the column of the base plate using the symbols in Table 4.
[0041]
The marks of # 1, # 2, # 3, and # 4 in Table 1, Table 2, and Table 3 mean that the test was performed by the following test methods.
[0042]
# 1: An X-ray transmission test was performed under the following conditions. Weld defects were evaluated by X-ray transmission inspection (RT) using a 2 m long welded tube. The symbol ND indicates no defect, the symbol BH0.1 BH indicates a blowhole, and the number after it indicates the diameter (mm) of the blowhole. That is, BH0.1 indicates that a blow hole having a diameter of 0.1 mm has been detected.
[0043]
# 2: The four-point bending fatigue test was performed under the following conditions. The tube was placed so that the weld bead of the tube came to the bending load portion with a support interval of 200 mm and a central load interval of 50 mm. The stress amplitude was 196 MPa (JIS 1 type and 2 types), 294 (JIS 3 type), 392 (Ti-3Al-2.5 V), stress ratio −1, and repeated bending at 5 Hz. However, in the case of unbreakage, 1.00 × 10 7 The fatigue test was completed. A hard resin was used for the four-point support jig. Further, it was confirmed by an X-ray transmission inspection that there was no defect in the bending load portion of the fatigue test tube. In Tables 1 to 3, for example, the number of breaks 2.24 × 10 Five The number of times is displayed as “2.24E + 05”.
[0044]
# 3; The flat test was conducted as follows. A 50 mm long tube was sandwiched between two flat plates and crushed until the distance between the flat plates became H (mm), and then the presence or absence of cracks in the weld was visually evaluated. At this time, the test was performed with the welded portion oriented in a direction perpendicular to the compression direction. The value of H was determined from H = (1 + e) t / (e + t / D) defined in the flat test of JIS H4635. Plate thickness t is 0.5mm, outer diameter D is 25.4mm, e is 0.07 (JIS type 1 and 2 types), 0.06 (3 types), 0.04 (Ti-3Al-2.5V) Therefore, H was flattened to 6 mm for JIS 1 and 2 types, 6.5 mm for JIS 3 type, and 8.5 mm for Ti-3Al-2.5V (squeezed to a value of H). However, since Ti-3Al-2.5V has no predetermined value for e, JIS4 type value 0.04, which is the same material, was used.
[0045]
# 4: The fracture occurrence rate due to fretting fatigue was determined by the following method. In the above four-point bending fatigue test, the load support jig was changed to steel, and five fatigue tests were performed. It was evaluated based on whether it occurred twice. At that time, the welded pipe was installed so that the weld bead was positioned at 90 ° from the load portion.
[0046]
Other conditions (such as the support interval and the stress amplitude for each product type) are the same as those described above. In Tables 1 to 3, the underline indicates that it is outside the scope of the present invention.
[0047]
[Table 1]
Figure 0004920168
[0048]
[Table 2]
Figure 0004920168
[0049]
[Table 3]
Figure 0004920168
[0050]
[Table 4]
Figure 0004920168
[0051]
No. of Table 1 which is a comparative example. 1 and 2 have “CN1-CN2” on the base plate 0.002% by mass The following is used without titanium nitride, and the difference in nitrogen concentration between the welded part of the welded pipe and the base metal part (nitrogen increase in the welded part) 0.002% by mass Since the fatigue life of the welded portion is 5.13 × 10 Five The probability of occurrence of breakage of the support portion in the base material portion is as high as 20% or more.
[0052]
On the other hand, No. which is an example of the invention. 3-11 are "CN1-CN2" on the base plate 0.003 ~ 0.030% by mass The one with titanium nitride is used, and the difference in nitrogen concentration between the welded part of the welded pipe and the base metal part (nitrogen increase in the welded part) 0.003 ~ 0.030% by mass It is. The fatigue life of the welded part is comparative example No. One order of magnitude longer than 1, 2 and 3.76 × 10 6 Times to unbroken 1.00 × 10 7 In addition, the probability of occurrence of breakage of the support portion in the base material portion is also 0%, and fretting fatigue breakage has not occurred. Furthermore, the weld does not break even in the flat test. In addition, no defect is detected from the welded portion even when the X-ray transmission inspection is performed.
[0053]
On the other hand, "CN1-CN2" is on the base plate 0.035 ~ 0.039% by mass No. which is a high comparative example. Nos. 12 and 13 have cracks in the welded portion in the flat test. In addition, No. 1 is a comparative example in which air is mixed with the shielding gas during welding. 14 and 15, the increase in nitrogen in the weld zone is as high as 0.026% by mass or more, but since there is no titanium nitride on the base metal surface, the base metal part may break from the support part in the four-point bending fatigue test. A blowhole is detected from the weld.
[0054]
Table 2 shows the case where heat treatment is performed after pipe making, and “CN1-CN2” is present on the base plate. 0.000% by mass No. 1 which is a comparative example using no titanium nitride. Nos. 16 and 18 show a difference in nitrogen concentration between the welded portion and the base metal portion (nitrogen increase in the welded portion) even if light nitriding heat treatment is performed in the air or in nitrogen gas after pipe forming. 0.000% by mass Therefore, the fatigue life of the welded portion is 2.30 × 10 Five The probability of occurrence of breakage of the support portion in the base material portion is as high as 20% or more.
[0055]
On the other hand, No. which is an example of the invention. 19-24 are "CN1-CN2" on the base plate 0.005 mass% When 0.009 mass% In this case, the weld bead portion is colored not in an uncolored metal color but in a gold color or a blue color by light nitriding heat treatment in the atmosphere after pipe making or in nitrogen gas. The difference in nitrogen concentration between the welded part and the base metal part of the welded pipe (nitrogen increase in the welded part) 0.005 mass% When 0.009 mass% The fatigue life of the welded part is comparative example No. 7.41x10 longer than 16-18 6 Times to unbroken 1.00 × 10 7 It is. In addition, the probability of occurrence of breakage of the support part in the base material part is 0%, and fretting fatigue breakage does not occur. Furthermore, the weld does not break even in the flat test.
[0056]
As shown in Table 3, the effects of the present invention can be obtained even with pure titanium JIS type 1, JIS type 3, and Ti-3Al-2.5V, which is a titanium alloy, as with pure titanium JIS type 2. In each of the titanium varieties, a comparative example in which the difference in nitrogen concentration between the welded portion of the welded pipe and the base metal portion (nitrogen increase in the welded portion) is 0.000% by mass is low. Nos. 25, 28, and 31 have a fatigue life of the welded portion of 3.42 × 10 Five It is as follows. In addition, fretting fatigue fracture has occurred. In contrast, the surface of the base metal has titanium nitride, and the amount of nitrogen increase in the welded portion is 0.005 ~ 0.012% by mass No. of the example of the present invention which is a predetermined amount. 26, 27, no. 29, 30, no. 32 and 33, the fatigue life of the welded part is longer by an order of magnitude 6.02 × 10 6 Times to unbroken 1.00 × 10 7 It is. In addition, fretting fatigue fracture does not occur in the base material. Furthermore, the weld does not break even in the flat test. On the other hand, "CN1-CN2" is on the base plate 0.041% by mass Comparative example No. of Ti-3Al-2.5V using high and high ones. No. 34 is cracked in the welded part in the flat test.
[0057]
As described above, the present invention has been mainly described with reference to pure titanium JIS type 2. However, as shown in Table 3, pure titanium JIS type 1, JIS type 3, and titanium alloy Ti-3Al-2.5V are pure titanium JIS type 2. The effect of the present invention can be obtained in the same manner as above. The application of the present invention is not limited to pure titanium, and the effect of various titanium alloys has been confirmed.
[0058]
【Effect of the invention】
In a titanium welded tube, fretting is achieved by increasing the nitrogen concentration inside the weld zone within a predetermined range to improve the fatigue characteristics while maintaining the formability of the weld zone and making the surface of the base material having titanium nitride. Reduced fatigue. A plate or strip of titanium used for pipe making is heated in a nitrogen gas atmosphere to perform a nitriding heat treatment to form a predetermined nitridation, then the plate or strip is formed into a tube shape, and the mating portion is shielded with argon gas By welding, the nitrogen concentration in the welded portion can be increased stably, and the occurrence of blowholes can be suppressed and the titanium welded tube can be manufactured.
[Brief description of the drawings]
[Fig. 1] "Difference in nitrogen concentration between weld and base metal" (welded part-base metal part), "life of four-point bending fatigue test of welded part" and "welding part by flat test" It is a figure which shows the relationship of "the presence or absence of a crack generation".
FIG. 2 shows the relationship between “CN1-CN2” of plates and strips (base plates) used for pipe making, the fracture occurrence rate due to fretting fatigue of the base material part, that is, the probability that the base material part breaks from the load support part. FIG. In addition, it shows whether or not titanium nitride is present on the surface of the base material portion (that is, the surface of the base plate).

Claims (5)

表面から5μmの表層領域を除く窒素濃度が、母材部に比べて溶接部の方が0.003〜0.030質量%高く、且つ冷間圧延ままの表面形状を有する母材部の表面が、チタン窒化物を有することを特徴とする、耐フレッティング疲労部材用チタン溶接管。The nitrogen concentration excluding the surface layer region of 5 μm from the surface is 0.003 to 0.030 mass% higher in the welded portion than the base metal portion, and the surface of the base metal portion having the surface shape as cold rolled is A titanium welded pipe for a fretting fatigue member, characterized by comprising titanium nitride. さらに溶接部の外表面が窒化または酸化によって着色されていることを特徴とする請求項1に記載の、耐フレッティング疲労部材用チタン溶接管。Furthermore, the outer surface of a welding part is colored by nitriding or oxidation, The titanium welded pipe for fretting fatigue members of Claim 1 characterized by the above-mentioned. 板または帯状の冷間圧延ままの表面形状を有するチタンを窒素ガス雰囲気で670〜850℃、3〜120秒間加熱することによって(1)式が成り立つように窒化熱処理し、続いてその板または帯を管形状に成形し、続いてそのつき合わせ部をアルゴンガスでシールドして溶材を使用せずに溶接することを特徴とする、請求項1または2に記載の耐フレッティング疲労部材用チタン溶接管の製造方法。
0.003 ≦ CN1−CN2 ≦ 0.030 ・・・(1)式
ただし、CN1:窒素ガス雰囲気で熱処理した後の板または帯において、その表面を研磨などで除去することなく分析したときの当該板または帯の窒素濃度(質量%)、CN2:窒素ガス雰囲気で熱処理した後の板または帯において、その表面を全面5μm以上研磨で除去した後に分析したときの当該板または帯の窒素濃度(質量%)である。
Titanium having a surface shape in the form of a cold rolled sheet or strip is heated in a nitrogen gas atmosphere at 670 to 850 ° C. for 3 to 120 seconds to perform nitriding heat treatment so that the formula (1) is satisfied, and then the plate or strip 3. A titanium weld for a fretting fatigue member according to claim 1 or 2, characterized in that the welded part is formed into a tube shape, and then the abutting portion is shielded with argon gas and welded without using a molten material. A method of manufacturing a tube.
0.003 ≦ CN1-CN2 ≦ 0.030 (1) Formula However, CN1: In the plate or strip after heat treatment in a nitrogen gas atmosphere, when the surface is analyzed without removing it by polishing or the like Nitrogen concentration (mass%) of the plate or band, CN2: The nitrogen concentration (mass) of the plate or band when analyzed after removing the entire surface by polishing 5 μm or more in the plate or band after heat treatment in a nitrogen gas atmosphere %).
前記溶接に続いて窒素ガス雰囲気で軽窒化熱処理することを特徴とする請求項3に記載の、耐フレッティング疲労部材用チタン溶接管の製造方法。4. The method for producing a titanium welded pipe for a fretting fatigue member according to claim 3, wherein a light nitriding heat treatment is performed in a nitrogen gas atmosphere following the welding. 前記溶接に続いて酸化雰囲気で軽酸化熱処理することを特徴とする請求項3に記載の、耐フレッティング疲労部材用チタン溶接管の製造方法。4. The method for producing a titanium welded pipe for a fretting fatigue member according to claim 3, wherein a light oxidation heat treatment is performed in an oxidizing atmosphere following the welding.
JP2003198496A 2003-07-17 2003-07-17 Titanium welded tube and manufacturing method thereof Expired - Fee Related JP4920168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198496A JP4920168B2 (en) 2003-07-17 2003-07-17 Titanium welded tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198496A JP4920168B2 (en) 2003-07-17 2003-07-17 Titanium welded tube and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011140699A Division JP2011251340A (en) 2011-06-24 2011-06-24 Titanium welded pipe for fretting fatigue resistant member, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005034860A JP2005034860A (en) 2005-02-10
JP4920168B2 true JP4920168B2 (en) 2012-04-18

Family

ID=34208264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198496A Expired - Fee Related JP4920168B2 (en) 2003-07-17 2003-07-17 Titanium welded tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4920168B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539454B2 (en) 2012-07-20 2014-07-02 ファナック株式会社 Striated structure for industrial robot with hollow member
JP7301296B2 (en) * 2019-02-13 2023-07-03 株式会社ダイテック Materials, Welding Methods, and Welding Equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398555B2 (en) * 1997-01-23 2003-04-21 新日本製鐵株式会社 Titanium sheet for forming and its manufacturing method
JP2000280076A (en) * 1999-03-31 2000-10-10 Daihen Corp Arc welding method of titanium and titanium alloy
JP3600792B2 (en) * 2000-12-15 2004-12-15 新日本製鐵株式会社 Industrial pure titanium sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2005034860A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
EP1514949B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
CA3056054C (en) Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure
WO2013141030A1 (en) Cast product having alumina barrier layer, and method for manufacturing same
JPH0474855A (en) Production of welded tube of corrosion resisting titanium alloy
TWI653346B (en) Black ferrous iron-based stainless steel plate
JP5488762B2 (en) Cr-containing austenitic alloy and method for producing the same
EP3116677B1 (en) Iron-nickel alloy having improved weldability
KR101996712B1 (en) Cr-containing austenitic alloy
JP7176637B2 (en) MARTENSITE STAINLESS STEEL PIPE AND METHOD FOR MANUFACTURING MARTENSITE STAINLESS STEEL PIPE
JP4920168B2 (en) Titanium welded tube and manufacturing method thereof
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
WO2020059700A1 (en) Ti-containing fe-ni-cr alloy having superior slitted surface quality
EP0699773B1 (en) Method for manufacturing electric-resistance-welded steel pipe
JP7341016B2 (en) Ferritic stainless cold rolled steel sheet
JP2011251340A (en) Titanium welded pipe for fretting fatigue resistant member, and method for manufacturing the same
JPH1025551A (en) Heat resistant feritic stainless steel pipe excellent in workability
JP7133917B2 (en) Al-containing ferritic stainless steel sheet with excellent surface properties and sulfidation corrosion resistance, and method for producing the same
JPH10204609A (en) Titanium thin sheet for forming and its production
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
KR101104998B1 (en) Weld metal and laser welding method for austenitic stainless steel
JP7469635B2 (en) Fe-based alloy pipes and welded joints
JP3551069B2 (en) Welding and joining method of titanium material
JP2006002178A (en) Method for producing pure molybdenum or molybdenum alloy thin strip
EP4269628A1 (en) Fe-ni-cr alloy having excellent corrosion resistance, weldability and oxidation resistance, and method for producing same
JP4199413B2 (en) Fe-Cr-Ni alloy for electron gun electrode excellent in corrosion resistance and its strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R151 Written notification of patent or utility model registration

Ref document number: 4920168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees